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Abstract We prove that for most entire functions f in the sense of category, a strong
form of the Baker—Gammel-Wills conjecture holds. More precisely, there is an infinite
sequence S of positive integers n, such that given any r > 0, and multipoint Padé
approximants R, to f with interpolation points in {z : |z] < r}, {R,},cs converges
locally uniformly to f in the plane. The sequence S does not depend on r, or on the
interpolation points. For entire functions with smooth rapidly decreasing coefficients,
full diagonal sequences of multipoint Padé approximants converge.
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1 Introduction

Let D be an open connected subset of C, and let f : D — C be analytic. Givenn > 0

and 2n + 1 not necessarily distinct points A, = {z; }i':;l in D, and
2n+1
op () =wp (M) =[] (2-2)).
j=1
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Constr Approx

the (n, n) multipoint Padé approximant to f with interpolation set A, is a rational

function (A, 2)
4
Ry (Ag.2) = D22m
qu (An’ Z)
or more simply,
b4
R, (2) = Pn_()7
qn (2)
where p,, and g, are polynomials of degree < n, with g, not identically zero, such
that
J (@) gn (2) = pn (2)
wy (2)
is analytic in D. The special case where all z; = 0 gives the Padé approximant

[n/n] (z). It is easily seen that R, exists and is unique, though p, and g, are not
separately unique.

The convergence of Padé and multipoint Padé approximants is a much studied
subject, with uniform convergence established for large classes of special functions.
One of the pitfalls of the method is the appearance of spurious poles, namely poles
that do not reflect the analytic properties of the interpolated function f [1,2,5,8,12,
14,22-24,27,29-31,33]. For this reason, the most general results, such as the Nuttall—
Pommerenke theorem, often involve convergence in capacity, rather than uniform
convergence. In 1961, Baker, Gammel, and Wills nevertheless conjectured that at least
a subsequence of the diagonal Padé sequence converges locally uniformly. Throughout
this paper,

B ={z:|z| <r},r >0.

Baker—-Gammel-Wills Conjecture

Let f be meromorphic in By and analytic at 0. Then there is a subsequence {[n/nl}, cs
of {[n/nl}, > that converges uniformly to f in compact subsets of By omitting poles
of f.

The author showed in 2001 [24] that the conjecture is false, by considering the
Rogers—Ramanujan function with a nonstandard value of ¢ on the unit circle. While
this provided a meromorphic counterexample, A.P. Buslaev quickly followed [6] with
an analytic counterexample, formed from an algebraic function, and then showed that
even the Rogers—Ramanujan function provides an analytic counterexample [7]. Baker
[3] subsequently noted that for these counterexamples, just two subsequences together
provide locally uniform convergence in the unit ball. He went on to conjecture that
a patchwork of finitely many subsequences can provide locally uniform convergence
for functions meromorphic in the ball [4].

One of the unsolved issues is whether the Baker—Gammel-Wills conjecture is valid
for entire functions, or perhaps even functions meromorphic in the plane. To date,
there is still no counterexample. The author proved [19] that the Baker—Gammel-
Wills conjecture is true for most entire functions in the sense of category.

In this paper, we shall show that a stronger form of the conjecture, allowing inter-
polation points in any compact set, with the same subsequence, is true for most entire
functions in the sense of category. Accordingly, let A denote the space of entire func-
tions, with metric defined in terms of power series coefficients: if
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f)= Zajzj and g (z) = ijzj,
j=0

j=0

then define 1 .
d" (/. 8) = suplaj — b;| /", (L1)
jz

Convergence in this space is equivalent to uniform convergence in compact sets. Recall
that a subset of .4 is of the first category if it is a countable union of nowhere dense sets.
As such, it is small in the sense of category. Recall too that an F,; set is a countable
union of closed sets.

Theorem 1.1

There is an F, subset £ of A of the first category, such that for f € A\E, there is
an infinite subsequence S of positive integers with the following property: given any
r > 0 and for n € S, multipoint Padé approximants Ry, to f of type (n,n) formed
from interpolation points A, C B, , we have

lim s R, (2) = f (2) (1.2)

n—oo,n

uniformly in compact subsets of the plane.

Observe that while S depends on f, it does not depend on the ball B, in which the
interpolation points lie. As far as the author is aware, e is the only function for which
diagonal rational interpolants with interpolation points in any compact set (and that
are not restricted to include complex conjugate interpolation points) has been proven
to converge locally uniformly [10,32]. For Markov—Stieltjes functions, convergence
of diagonal multipoint Padé approximants, with interpolation points symmetric about
the real axis, has been investigated in [9,13].

We also prove some more explicit results when the Maclaurin series coefficients
decay rapidly and/or smoothly:

Theorem 1.2
Assume that

o0
f@ =Y aj, (1.3)
=0
where a; # 0 for j > 0 and for some fixed J, and for j > J,

aj—1aj+1
2
J

< x% (1.4)

a

where x < po and po = 0.4559 ... is the positive root of the equation
- l 1.5
dp > (1.5)
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Letr > 0. Forn > 1, let R,, denote a multipoint Padé approximant to f formed with
interpolation points in B,. Then uniformly in compact subsets of the plane,

nlggo Ry(2)=f(2).

Theorem 1.3

Assume that f is given by (1.3), where aj # 0 for j > 0 and for some |q| < 1,
lim 221 (1.6)
j—0o0 a2

J
Then the conclusion of Theorem 1.2 remains valid.

We note that Theorems 1.2 and 1.3 were proved for the special case of Padé
approximants in [20,21]. In [20], the slightly more general condition y < py was
allowed. We note also that Theorems 1.2 and 1.3 and the results of [25] show that
given s > r > 0, then for large enough n, f — R, formed from interpolation points in
B,, has exactly 2n + 1 zeros, counting multiplicity, in By. Related results dealing with
smooth Maclaurin series coefficients appear in [11,15,16,28]. Without smoothness
but with more rapid decay, we prove convergence of a subsequence:

Theorem 1.4
Assume that for f given by (1.3),
2
lim sup |aj|l/j <

1
— (1.7)

Then there is a subsequence S of integers with the property (1.2) as described in
Theorem 1.1.

Theorem 1.1 suggests a stronger form of the Baker—Gammel-Wills conjecture for
entire functions:

Conjecture 1.5

Let f be entire. Then there is an infinite subsequence S of positive integers with the
following property: given any r > 0 and forn € S, multipoint Padé approximants R,,
to f of type (n, n) formed from interpolation points A, C B, , we have (1.2).

We close this section with more notation, firstly, finite differences: given distinct
21,22, 23, - - -, define f [z1] = f (z1),

[ (@) — f(z1),

flzi, 22l =
722 — 21
and recursively, for r > 2,
flzts oo zr—1, Zrpt] = flzr, oo ze—15 2]
f[zlv"'9zr+l]: .
Zr+1 — Zr
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When points coalesce, that is, not all {z j} are distinct, the finite difference is defined
as the appropriate derivative. We also set

fij = [lziv1.zig2. - 2] (1.8)
We shall make extensive use of the following formula for the denominatorin R,, (A, z)
when A, = {Zj}?:;] [2, p. 339]:
_ . _
fn,n+l fn,n+2 cet fn,2n l_[ (z—z1)
k=1
n—1
det | fo—tn+t1 fo—tns2 - fa—r12n T] (2—20)
k=1
L Sfontr  Sony2z o foon 1 i

It is valid as long as this last determinant is not identically 0. By row and column
swaps, we can recast it (absorbing a sign change into the numerator polynomial) as

i 1 Sfon+1  Sfont2 0 foon ]
=721 Sintt finv2 0 fiom
Gn (Ap,7) = det | n—1 (1.9)
l_[ (z—z1) fn—l,n—H fn—l,n—i—Z cet fn—l,2n
k=1
n
l_[ (z — zx) fn,n—H fn,n+2 tet fn,2n
L k=1 _

Throughout this paper, we assume that f is entire, not a polynomial, and has Maclaurin
series given by (1.3). The paper is organized as follows: we prove Theorems 1.1 and
1.4 in Sect. 2, Theorem 1.2 in Sect. 3, and Theorem 1.3 in Sect. 4.

2 Proof of Theorems 1.1 and 1.4

We begin by bounding coefficients of nonpolynomial entire functions, given in (1.3),
much as in [19]. Let
K = max {1, |ap|} .

Define an increasing sequence of integers
O=jo<ji<jp<---

and positive numbers {P./'} as follows: first, choose j; > 1 such that

jasl )" il )"
pjl‘=('7') = max (7) =
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Having defined pj,, ..., pj, define pj,, by
— 1 - - 1-
_ ai; Ter 1k a; |7k . .
,ojkil: el = max | |—— > i -
Ajy ajy

If there is more than one choice of ji, choose the largest one. Define
Pn = Pjiyy for jx +1<n < jryrand k > 0.

Lemma 2.1

(a)

n
lanl < K/ [T pe. forn = 0, @1
=1
with equality when

n = jy for some k > 1.

(d) {pr} is an increasing sequence with limit co.
(c) Ifn = ji for some k > 1, then forr > —n,

An+r
an

—r
< {pn+1’ r= 8’ 2.2)

—= —r
oy r<

Proof

(a) Suppose that & is given, and ji + 1 < n < ji41. Then by definition of j;,1,

1
n—jk —1

<p

An

a;, Jer1
n
—(n—ji)
= lay| < |ajk|pjk+1 Y= ’ajk‘/ 1_[ Pe-
{=jr+1

We have equality if n = ji1. Applying this inequality recursively to aj,, aj,_,,
..., we obtain (2.1), with equality if n equals some ji, for some k > 1.
(b) Now as jik+2 > Jjk+1,

1 .
Jk+1"Jk Jk+2"Jk

-1 Ajisy1 Djita
Pjey = a; a;
Jk Jk
aijr2 Jk+2"Jk aij Jk+2"Jk
Ay A ji
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1 1 1
Ajpyy | Hr1=0k Tev2=k Jer2—Jk

a;
Jk+2
= _
A ji Ajiy1
Jk42 k1
a; Tk+1"Jk a;
Jk+1 Jk+2
= | Ikt
A ji i1
a;i Jk+1"Jk a;j Jk+2 " Jk+1
Jk+1 Jk+2
= | — _
A ji Qi1

—1 —1
= Pjis1 = Pjesa-

The monotonicity of {p, } follows, and the fact that f is entire forces them to have
limit oo.
(c) If r = 0, we have (using that there is equality in (2.1) for n = ji),

a n+r
’:ﬂ < [T o' =euis
n t=n+1
If r < 0, we instead have
a n—1
vl o T o< or
ap

t=n+r
O

We shall frequently use a series expansion for finite differences. Assume R >
0,¢ > 1, and z1, 22, ...,2¢ € Bgr. Then by the contour integral representation for
finite differences [26, p. 11],if ' = {¢ : |t| = S}, where S > R, then

1
f[ZhZZ’.“’ZZ]:%‘/I:#dl

[T~z
k=1
i1 _i7 iy
_ 1 f(t) Z ZIZZ"‘Zldt
27ri r t/é tiitia+.+ig
i1-ig>0
i i i
= > By vt (2.3)
i1-+ig=>0

Lemma 2.2
Assume that n = j; for some i > 1, where the {j;} are as above. Assume that all
|Zj| < R and p, > R.

(a) Then for0 < j, k < n, with the notation (1.8),

lk—jl

2 .
< (—p" ) (1= R/p) "HH=D 0 (24)
Pn+1

ki | fjntk
(onon+1) 2 Se

n
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(b) ForO0 < j <n,

finti
an

< =R/par)” "V — 1. 2.5)

Proof

(a) Let{ =n+ 14k — j. From the series (2.3) above,

Jintk| _ I g, A1y +ip++ig
a |- i L P
n i1-ig>0 n
e a
S = D S
a
5s=0 n ipig>0,
i1 tip+-tig=s
o0
Af—1+ —L
ZZ 5| RS ) (2.6)
a, s
s=0

If k > j, then all indices £ — 1 + s > n, so (2.2) gives

Sjntk > 12
jont —(0—1—n-+s) -
dap San_H K <S>‘
s=0
—(—1— _

an+(1 n)(l = R/pn+1) L.

Then
f k—j
k=i | fjn+k 1Y 2 - i
(Pnpns1) T |5 < (—) (1= R/pp)”"THHE=D 27
dn Pn+1

If k < j, then we split into those indices < and > n, and use the appropriate
inequalities in (2.2):

f j—k—1 ) 0 )
j.n+k —(—1=n+s)ps | [ — —(t—1— s~
Jan = Z 'On(é R (s >'+ Z 'OVHEI "R (s )'
" 5=0 s=j—k
k=1 . y 00 ' »
- o i) s < )‘Jr S iR ( )‘
S N S
s=0 s=j—k

—(k—i _
=0, A =R/pn)".
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Then

lk—jl

2 .
< (”—) (1= R/py)” "H1HA=D
Pn+1

% fj,n+k

(OnPn+1)

n

Since p, < pp+1, this and (2.7) give (2.4).
(b) From (2.6) with £ =n + 1,
—n—1
s

fj,n—i—j _ ]‘ < i
S —n—1
SZ(R/,OnJ,-])S‘( I’ls )‘:(1—R/pn+1)—(n+l)_1_
s=1

An+s RS
Qn

a
n s=1

O

In estimating the denominators, we need the notion of diagonal dominance: a matrix

B = [bjk]lgj,kgn

is called diagonally dominant if for all 1 < j < n, we have

n

bij| > > bl

k=1,k#j

We shall use the basic fact that a diagonally dominant matrix has nonzero determinant
[17, p. 373].

Lemma 2.3
Assume that for some ¢ € (O, %) , infinite sequence of integers S, andn = j;,i € S,

1
P Z(1—¢) 2.8)

Pn+1 9

and P
lim ™ = co. (2.9)

n:jl-,ieS n

Then for any R > 0 and all A, C Bg, we have for large enoughn = j;, i € S,

inf |g, (A, 2)| > 0. (2.10)
[zI<R

Proof
Let us assume that the integers {j;} = {j; (f)} and {p,} are chosen as above. Assume
that n = j; for some i. We use (1.9):

qn (A, 7) = det[c B],
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where ¢ is an (n + 1) x 1 column vector and B is an (n + 1) X n matrix:

j—1

C= H(Z_Zi) ;B = [fj—l,n+k—l]l§j§n+l; .
_ 2<k<n+1
=1 1<j<n+l

We divide the _2nd, 3rd, ..., (n + 1)st column in [¢ B] by a,, and multiply the jth row
by (Pn+100) "7/ and kth column by (p,41p,)/? for all j, k. Then we obtain

Gn (An, 2) a," = det [é é] ,

where

j—1
&= | (our1p) "] 2= z0) ;
=1 1<j<n+1
- _iva Jimtntk—1
B = (k=p/2 Li=LnAr=2 .
|:(pn+lpn) an I<j<ntl:
2<k<n+1

Let R > 0, |z] < R, and all |zj‘ < R. We now show that this last matrix [é é] is

diagonally dominant for n = j; and i large enough. Consider the jth row. If j = 1,
its diagonal element is 1. For j > 2, the diagonal element is

Jiztn+j-1 =1+¢jn 2.11)
dn
where by the previous lemma and by (2.9),
lejn] < (L =R/ppy1) ™ —1 - 0asn — oo (2.12)

uniformly in j. Now consider the sum of the absolute values of the nondiagonal

elements in the jth row of [é E], namely

Jj—1
7 1= (owsron) 2 [T @ = 20
=1
j—1 n+1 )
(X 2 | i | Lt
k=2 k=j+1 Gn
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Of course, if j = 1, the first term and first sum are omitted. Using that |z|] < R, and
all |zx| < R, and (2.4), we continue this as

2R j—1 jil ri] Pn lk;ﬂ (n+1+k—j)
fjs(—> et ( ) .
(,0n+1/0n)1/2 k=2 k=j+1 Pn1
2R o
<" R/p )—2n 22 ( )
(pn+1/0n)]/2 Z Pt

- R La- R/py) 72—
- (pn+1pn)l/2 P _( Pn )1/2
Pn+1
%(1 -/ 12
<0(1)+(1+0(1))1 T s <U+oM)d—-2e)"",
-la-

by (2.8) and (2.9). In view of (2.11), (2.12), we have diagonal dominance of [é é]
O

and then (2.10) follows.

Proof of Theorem 1.4
Now for n = j;, for some i > 1, we have

n
lanl = K/ [ ] pe = K/0}

(=1
= liminf oY/ > liminf KY%/|a,|'/" >3/ (1 — &)1/
n—00,n=j; n—00,n=j;

for some ¢ > 0, by (1.7). Thus p;; grows roughly at least as fast as (3 1 - e)l/z)ji.

Next, for n = j;,
L Kyy(eiees et
l_[ (pz P3 P4 Pr )

1_[1 plzz

) ) ()

Then from (1.7), for some ¢ > 0,

lay| =

K
oy
K
_n
1

1—e)l/2
# > lim sup |an|1/”2
3 n— 00
[(n—1)+(n—2)+(n—3)--+11/n?
> lim inf ( >
=00\ Pn+l1

12
=liminf< P ) .
100 \ Pt
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So for some infinite sequence of integers S,

Pn < l—¢
Pn+1

,neS.

So we have (2.8). But since p,+1 = p, unless n = j; andn 4+ 1 = j; 4+ 1 for some i,
so, as above, p, = pj; grows at least as fastas (3 (1 — 8))ji. Then (2.9) also follows.
NowletS > R > 0. Itfollows from the previous lemma that for z € Bgand A,, C Bgp,
we have for large enough n € S that |g, (A, z)| > 0, so R, (A,, z) has no poles in
Bg. Then the uniform convergence in compact subsets of Bg follows easily from the
contour integral error formula for multipoint Padé approximation [2]. O

We turn to the proof of Theorem 1.1 and first introduce some notation. Recall that
A denotes the space of entire functions, with metric defined by (1.1). Given R > 0,
n > 1, welet

Bnr = {f € A: g, (A, ) has full degree n and no zeros in Bz whenever A,, C TR} .

Also, let

(0.¢]
Cor = Bjx.
j=n

Lemma 2.4
For eachn and R > 0, C, g is open and dense in A.

Proof

We first show thateach 3, g is open, and then the openness of C,, g follows. Fix ann and
f € B,.r. Since we need to indicate dependence of the multipoint Padé denominators
on f, we use the notation g, (f, Ay, z) in this proof only. By compactness, and the
continuity of g, (f, An, z) in A, as long as it has full degree [as follows from (1.8),
(1.9)], we see that

min {Igx (f, A, 2)| : 2 € Br, An C Br} > 0.

Moreover, by our hypothesis that the denominators have full degree, all their leading
coefficients are nonzero, and then also from (1.9).

min Hdet [fj—lv""'k]lsj,kfn i A, C B_R} > 0.

If we consider entire g with d* (f, g) small enough, then the Maclaurin series coef-
ficients of g will be as close to those of f as we please, and consequently all finite
differences g;_1 ,4+« Will be close to the corresponding differences for f. Then we
can ensure that also

min {‘det [gj—l»”+k]l§j,k§n t A, C B_R} > 0.
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By the same token, considering the formula (1.9), we can also ensure that
min {|51n (gs Ana Z)' 1z € B_R7 An - B_R} > O
Thus also g € By, r. So each B, g is open, and hence each C, r is open.
The denseness is somewhat more difficult. Fix now some f € A. We shall construct
g € C,, g with d* (f, g) as small as we please. Let us assume that the integers {j;} =

{ji (/H}and {p,} = {pn (f)} are chosen as above. Choose now some large positive
integer ip. Note that by choice of our { pj} above,

n
lanl < K/ [ ] pj (f) forn < jiy (f)
j=1
and we have equality when n = ji, some 1 < k < io. Now define p; for j > j;, by
5 — 10/ Jio p;
pj =10"""opj .

Also define for n > jj,,

an—a]’o/ 1_[ :0] a]zo ( ]10)10 (n /’0)(" j’()+l)/2

j= ]to+1
and '
Jig e}
g(z)=zajzf+ Z ajz’.
j=0 J=lig+1

Then g is entire (of order 0), and

(n J:O)lo (n ],O)(n ]IO—H)/Z

d*(f.g) < SUP{ ~ iy P,

1/n
R > i (-

Straightforward estimation shows that by choosing i large enough, this can be made
as small as we please. Next, as g and f have the same series coefficients up to the
coefficient of z/0, we see that

Je (@) = jk (f), k <ipand p, (8) = pu (f) .1 < jiy.

Next, if n > m > j;,, we see that

1/(n—m) n
) (11 o)
. Jig

— p~ 1070 (lofn(n+1)/2+m(m+l)/2)1/(n_m)
Jig

1/(n—m)
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= pj;!10/0 10— 44D /Cln=m)

_ —110Jjip—(n+m+1)/2
=05 1070 ;

which is maximal for a given m and n > m, if and only if n» = m + 1. It follows easily
that

jio+k (g) = jio (f) +k, k>1,
and forn > jj, '
Pn (8) = pn = 10""V0pj,
Then for n > jj,,
Prt1 (&) g
pn (8)
and
lim Pn (g)]/n = 10.
n—o0

It then follows from Lemma 2.3 that for large enoughn and all A,, C Br, qn (g, An, 2)
has no zeros in Bg. Thus g € B, g for all large enough n, and in particular, g € C, g,
while g may be made as close to the given f as we please, by choosing i( large enough.
As f € Ais arbitrary, so C, g is dense. O

Proof of Theorem 1.1
Let

oo 0
C={(Cne
e=1n=1
and
oo o0
E=AC=JJACue
{=1n=1
Here since C, ¢ is open and dense, £ = A\C is a countable union of closed nowhere
dense sets and is an F, set. Nextif f € A\E ,then f € C,s0 f € C, ¢ foralln, £ .
Then we can choose an increasing sequence of integers {n¢},> such that f € B,, ¢
for £ > 1. Then gy, (An,. z) has full degree n and no zeros in By whenever A,, C By.
This gives the desired uniform convergence of { R, (An,. )} 41 Whenever A, C Bgr,
for some R > 0. O

3 Proof of Theorem 1.2
We proceed partly as in [20]. Let a; #0, j > 1, and

oj =aj 1aj1/aj, j = 1. (3.1)

For integers t > —n + 1, we let
t
. nti ( an Gnl/2> . (32)
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Lemma 3.1
(a)
|t]—1
|z1/2 lt]—¢
Tni = Op H Ot tsign(r)” 3.3)
=1
(b) Assume that for j > J,
‘Uj| <yx<l. (3.4)

Then forn > 1 andt > —n — 1 such that min {n,n +t + 1} > J,
lrai| < 12 (3.5)

(c) If (3.4) holds for j > J, then for some Coy = Co(J), and all n > J, and
t=0,%1,%£2,...suchthatn +1t > 0,

|ru] < Cox'™/?. (3.6)
Proof
(a) If t > 0, we use
aj+1 aj
L =g .
aj aj_l

SO

t—1
An+r 1—[ An+k+1

an k=0 An+k
t—1
an+1
= 1_[ On+kOn+k—1"" " On+1 P
k=0 "
ang1)
n t—1 __t-2
= < ) Oy 10ptn " Ontr—1- 3.7
An
Ift <0, we use
aj_q a
J :Gj J ,
aj aj+1
SO
[£]
An+r An—k
a, ay—
n iy 4n k+1
7]
An
= 1_[ (Unk+]ank+2 © O )
=1 an+1
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|7]
o dn lt] _lt]—1
=\ On Op—1 """ Ontl—|t]-
Aan+1

This and (3.7) easily give the identity (3.3).
(b) This follows directly from (a), as n + ¢sign (t) > min{n,n +t + 1} > J in the
product, so we can apply the bound (3.4).
(c) Assume
C1 = sup ‘a j] .
j=1

This also follows directly from (a). Indeed, using (3.4),

|rn,t| = Xlt‘/z 1_[ Xltl_z l_[ Crl_ea

I=<e<|t|-1; I=<e<|t|-1;
n+esign(t)>J n+esign(t)<J

which easily gives the result, as there are O (J?) factors of C; arising from ¢
where n + £sign (1) < J.

O
Next for givenn and j > 0,k > 0, let
fimtk (an 12 k=
bjk=="— (—on ) , (3.8)
an an+1

where f; 4« is the divided difference in (1.8).

Lemma 3.2
Assume all |zj| < R. Assume also that (3.4) holds for j > J.

(a) There exists M depending only on R, x, J, such that for 0 < j, k < n, satisfying
n+k—j>M, (3.9
we have for some constant Cy depending only on R, x, J,
|bjx| < x kD2 {1 FCmA1+k—)) X"+1+’<—f} : (3.10)
(b) Forn > M and0 < j <n,

|bj.; — 1| < Conx™. (3.11)
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(c) We have for some constant C4 depending onlyon R, x, J, and all0 < j, k <n,
iy
|bjk| < Cax® D72, (3.12)

Proof
(a) We may assume that M > J.Let{ =n + 1+ k — j. Using (2.6),

fi > |a —L
j.n+k < Z L—1+s RS < )‘ )
a, =l an K

Then as all £ — 1 4+ s > J, we can apply our definitions (3.2), (3.8), and the bound
(3.5) and deduce

o0

—s
An 1/2 st
bik| < E — o Tnk—j+s| R
il < — (an+1 " ) k=] ‘(S)‘
s=0
ZOO an | 12\ itz |~
S — o, X( 7]+S) / RS
s=0 n+1 §

o N
=x("‘”2/2z Antl| =12, k=i g 4522 —t
an s
s=0
weir e (laner| —12 i jvip o\ | (¢
< X Z a_ oy X R s .
s=0 n
Here
a _ .
n+tl o 1/2Xk—]+1/2R
dp
aj —1/2 k—j
= 0p0n—10p-2--:0J 4 On /Xk j+1/2R
17
< k== aj R
- aj—1
= Cax", (3.13)
— /|4
where C3 = x W R. So

00 ¢
b;i| < x k=12 Z (Csx’z)b

(e )|(3)

< &=’ (l - C3xl)_lz ,
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provided C3x* < 1. We now use the inequality

1

(1—x)f—1<2xforxe [0, ﬂ} ,0>2. (3.14)

This gives

|bja] < x %92 {1 + 2C3€xl} :
provided
1

Cix' < —. 3.15
=55 (3.15)

As x < 1, this last inequality holds for ¢ =n 4 14k — j > M and some threshhold
M.
(b) Here, proceeding as in (a), we see that forn > J, with ¢ =n + 1,

()

—5
dn 0711/2> |rn,s| R®

Ag—1+s
dn

finti |
dn

S RS

WK

©
Il
_

M

IA
WK
I~ I/~

an+1

w
Il
<

-5
a 1/2 2
n Un/ ) Xs /2Rs
ap+1

_ Sl/—e
an+1 o 1/2RX1/2) ‘( )‘
ay N

1—Cyx"R) ™" =1,

,,
Il
_

Il
—

—_

<
as above. Using (3.14), we continue this for n > M, and uniformly in j , as
}bj,j — 1| < Conyx".

(c) Asabove,welet{ =n+1+k—j.Ifn+1+k— j > M, we can apply (a). So
assume f =n+14+k — j < M. Now

'<_Z)’ _ (E +s - 1) < pmax{l+s—1,0} - 5l+s
s s N - '

Proceeding as in (a), but using Lemma 3.1 (c),

o]

—s
n 1/2 o=t
bir| < — | 0 Tnk—its| R
bl =3 (o) sl ()
5s=0
o0 —s
a 1/2 _ 2
5C02<a nl Crn/) =4822 pagtits
s=0 n+
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o0
< C2tx k=23 (2 iian
s=0

s
Gn—1/2xkj+l/2R) L6292,

n

Asin (3.13),andsince0 <l =n+14+k—j < M,

5 |dntl Un—l/zxk—j+l/2RSZRXn+k—j—J+1 aj <2Ry~ aj —20;.
an aj—1 aj—1

SO

o0
|bjk| < Co2M x &2 3" 23y )2,

s=0

Then (3.12) follows. O

Lemma 3.3

Assume that (1.4) holds with x < po, where po = 0.4559 ... is the root of (1.5). For
any R > 0 and A, C Bpg, we have for large enough n,

inf |g, (A, 2)| > 0. (3.16)
[zI<R

Proof
We use (1.9):
gn (Ap, z) = det[c B],

where c¢ is a column vector and B is an (n + 1) X n matrix:

Jj—1
c= l_[ (z—z0) s B =[fi-tnth—1]i<j<n+1; -
=1

2<k<n+1
1<t<n+1

We divide the 2nd, 3rd, ..., (n + 1)st column by a,, and multiply the jth row by

an 12\ an _1/2\k ) i
((THG” ) and kth column by (ma,, ) , for all j, k. Then we obtain

Gn (An, 2) ;" = det [é é] , (3.17)

where

1—jJj—1
. an 12
¢= (—"G/) [[e-20 ;
(=1

an+1
1<j<n+l
and after an index change,
k—j
A an 12 fjn+k
B = <—a,, ) — =[bj,k] . (3.18)
nt1 an fo<j<n; 0<j=m
1<k<n

1<k<n
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Here we are using the notation (3.8). Let R > 0, |z|] < R, and all ’zj] < R. We now

show that [é f?] is diagonally dominant. Consider the (j + 1)strow, where 0 < j < n.
If j = 0, its diagonal element is 1. For j > 1, the diagonal element is

bjj=1+¢jn, (3.19)
where by Lemma 3.2 (b),
|8j,,,| < Cunx" — 0asn — oo, (3.20)

uniformly in j. Now consider the sum of the absolute values of the nondiagonal
elements in the (j + 1)st row, namely

o~

Of course, if j = 1, the first term and first sum are omitted. First let us assume that

. 2logn
’l—]Z :An»
llog x|

say. Then for large enough n, we have (3.9) for all terms in the sum, so can then
estimate

i1 n

1+ Y | 1Bl

k=j+1

n+1 172
2 s,
an

jlJ
) H(z—ze) +

J
(=1 k=

J
n
Jj—1 n+1 ,
+ Z+ Z X(k*j) /2{1+C2(n+1+k—j)xn+l+k7]]
k=1 k=j+1

o
<oM+A+o)2) x“P<1-s¢
(=1

for some small enough ¢. Recall that ¥ < pg, where pg is the root of (1.5). Using
(3.19) and (3.20), we see then that the (j + 1, j + 1) element in the (j 4 1)st row

has absolute value larger than 7}, as required for diagonal dominance. We still have to
handle those terms for whichn — j < A,,. Here most of t j can be estimated as above:

(

@ Springer

j n+1 ' .
it =172 2R> - X(k—1)2/2=1+C2 (n+1+k_j)xn+1+k—1}

k=An+1
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Next, for2 <k < Ajandn — j < A,,wehave j —k >n —2A,, so
Ay
Dbl
k=2

Aﬂ
2
<Yy ki
k=2

S C3 AnX(n72A11)2/2 — O’
as n — 0o, by Lemma 3.2 (c). Again we obtain diagonal dominance. O

Proof of Theorem 1.2
Given any r > 0, the interpolants R, (A,, z) have no poles in B, for large enough n.
Then as above, the locally uniform convergence follows. O

4 Proof of Theorem 1.3

This case is more delicate than the proof of Theorem 1.2. We have to multiply by
a suitable matrix before proving diagonal dominance. Accordingly for ¢ € C and

n>1,let
_ 2
An(q) = [¢477]

The determinant of this matrix can be reduced to that of a Vandermonde matrix by
multiplying rows and columns by suitable factors. It is known that (see, e.g., [21, p.
326])

1<j,k<n ’

n—1

det (an g =[] (1-4')"".

j=1

When this matrix is nonsingular, its inverse admits uniform bounds on its entries. More
precisely, the (k, £) entry in A, (q)’1 admits the bound
(4 @) | = Slal"=r2, (1)

o 2
1 J

S=2 +lal’)
L\ TP

j=1

where

See [21, Lemma 2.1, pp. 326-327]. For integers t > —n + 1, we define r,, ; by (3.2).
We begin with bounds and asymptotics for ry, ; :

Lemma 4.1
Let L > 1. We have for |t| < L,

Tngt = q12/2 (1 + 8n,t) ,
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where

|n|1ax|8n,|—>0(1sn—>oo
1=

Proof

4.2)

Since the total number of o factors in the right-hand side of (3.3)is |#] /24 (|¢] — 1) +
el —2)4+---+1= |t|2 /2, the assertion follows from our hypothesis that o, — ¢

as m — oQ.
Next for givenn and j > 0,n + k > 0, define b x by (3.8).

Lemma 4.2
Let L > 1and x € (|q|, 1). For 1 < j, k < n, we can write

—i)?
bik=q* P+,

where

@ iflj -kl <L,

2
n} = max ‘8j,k/q(k_/) /2‘ — 0asn — oo.

lj—k|<L
(b) forall0 < j, k <n,
|8.k| < C4X(k_j)2/2,
where Cy is independent of n, j, k and of L above.

Proof
(@Lletl =n+1+4+k— j,where|j —k| < L. Asin (2.6),

s=1

Proceeding as in Lemma 3.2 and using Lemma 3.1 (c),

_ —L
i =i = A;RS el | ()
< I ]|st e
< |rn,k_j| Cy {(1 — R a—ZU:l/z
ag—1

< |rup—j| Cs (n+k — j) x" 7
< Co |rnp—j|nx".

@ Springer

Fintk ag—1| _ |ae— )3 i in Jie At iyt
n a |~ | an R R R N
i1-+ig>0 with at least one i j > 1
< In+k—j Z RS A—14s —t
| an ap_q AR

",
Xl/z) _ 1}

]

(4.3)
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by (3.14). Then Lemma 4.1 gives

14| = )b,-,k _q(kfnz/z‘

_ k=22

< ij,k - f”n,k—j| + |\ rnk—j —q ‘

< |rn—j| {me” + C7 max |8,,,,|}
lt|<L

2
< nz |q|(k J) /2’

where n; — 0as L — oo.
(b) Choose J such that |a j| < x for j > J. Note that J is independent of L in (a).
Using Lemma 3.2 (¢), forall 0 < j, k < n,

|bjx| < Cax &2,

SO
187] < [Bja] +1g1®=D7/2 < (Cat 1) g 69712,

Proof of Theorem 1.3
It suffices to show that given R > 0 and A, C Bg, n > 1, then for large enough n,

inf |g, (An, 2)| > 0.
zEBR

We use (3.17), namely
qn (Ap, 2)a," = det [é é] , (4.6)

where [é I§] is given by (3.18). We partition the column ¢ and matrix B as follows:

T f
qn (A, 2) @, —det[d Av(@)+ A |

where d is an n by 1 column vector; f is an n by 1 row vector; and A is an n by n
matrix with “small” entries. Thus

—j J
a 1/2
d= (a—”an/) [Tc-z0 ;
i n+1 =1 1<j<n

k T
a 0,n+k

a a
[ \¢ntl " i<k<n
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k—=j
‘ |
A= [(— oni”) —f-”"”‘} — A (@)
et o Jizjkzn

= [bjk) i< pen = An @ = [8j4] 1<) pn- (4.7)

We multiply the determinant above by

_ -1
et [1 fA, (q)

We then see that

gn (An, 2) @ " (det Ay (q) "
_ 1 f 1 —fA, (¢)"!
‘de‘[d An(q>+AH0 Ay (q)”! }

et ! o’
T —dtA, @)+ T+ A4, ()
= det [1 —dfA, () + AA, (q)—l] . (4.8)

We shall show the matrix in this last determinant is diagonally dominant. First,

dfA, ()~

dap = / _
= (—on”) [Tc-z0|box An@)7"

a
o =1 1<jk<n

so the sum of the absolute values of elements in the jth row of the matrix df A, (q)_l
is, using (4.5) and (4.1),

n

3 b (4, @),

—j i
( u 0;3/2) [[Gc-20
=1

dn+1 (=1 k=1
ln1 j n o n )
< 5cx (2R |2} 303 2 g2
n =1 k=1

an+1

_ o0 J
ooy (o))
k=1
J
) . 4.9)

dn

§C4<2R Ant1

dn
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Next, the sum of absolute values of elements in the jth row of the matrix AA,, (¢) ™"
is bounded above by

n n
S |sredn @it

k=1 (=1

n n
<S [87.¢] 1g 1" =172
J

k=1 (=1

1.
a5 (-0 S s
=1

-1 : )2 c N2
<25 (1-1g1"?) Y 1glUT P ae Y AU
L] j—LI<L £ j—t|>L

—1 -1 2
<28 (1 - |q|1/2> {2;72 (1 - |q|1/2) + it /2},

by (4.2) and (4.5). It is crucial here that C3 is independent of L. Choosing L large
enough and then using that n; — 0 as n — oo, we see that this row sum may be
made < }‘ for large enough n. Together with (4.9), this shows that the matrix in the
determinant in (4.8) is diagonally dominant, and we are done. O
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