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Abstract We prove that for most entire functions f in the sense of category, a strong
form of the Baker–Gammel–Wills conjecture holds.More precisely, there is an infinite
sequence S of positive integers n, such that given any r > 0, and multipoint Padé
approximants Rn to f with interpolation points in {z : |z| ≤ r}, {Rn}n∈S converges
locally uniformly to f in the plane. The sequence S does not depend on r , or on the
interpolation points. For entire functions with smooth rapidly decreasing coefficients,
full diagonal sequences of multipoint Padé approximants converge.
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1 Introduction

Let D be an open connected subset ofC, and let f : D → C be analytic. Given n ≥ 0
and 2n + 1 not necessarily distinct points �n = {

z j
}2n+1
j=1 in D, and

ωn (z) = ωn (�n, z) =
2n+1∏

j=1

(
z − z j

)
,
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the (n, n) multipoint Padé approximant to f with interpolation set �n is a rational
function

Rn (�n, z) = pn (�n, z)

qn (�n, z)
,

or more simply,

Rn (z) = pn (z)

qn (z)
,

where pn and qn are polynomials of degree ≤ n, with qn not identically zero, such
that

f (z) qn (z) − pn (z)

ωn (z)

is analytic in D. The special case where all z j = 0 gives the Padé approximant
[n/n] (z). It is easily seen that Rn exists and is unique, though pn and qn are not
separately unique.

The convergence of Padé and multipoint Padé approximants is a much studied
subject, with uniform convergence established for large classes of special functions.
One of the pitfalls of the method is the appearance of spurious poles, namely poles
that do not reflect the analytic properties of the interpolated function f [1,2,5,8,12,
14,22–24,27,29–31,33]. For this reason, the most general results, such as the Nuttall–
Pommerenke theorem, often involve convergence in capacity, rather than uniform
convergence. In 1961, Baker, Gammel, andWills nevertheless conjectured that at least
a subsequence of the diagonal Padé sequence converges locally uniformly. Throughout
this paper,

Br = {z : |z| < r} , r > 0.

Baker–Gammel–Wills Conjecture
Let f bemeromorphic in B1 and analytic at 0. Then there is a subsequence {[n/n]}n∈S
of {[n/n]}n≥1 that converges uniformly to f in compact subsets of B1 omitting poles
of f .

The author showed in 2001 [24] that the conjecture is false, by considering the
Rogers–Ramanujan function with a nonstandard value of q on the unit circle. While
this provided a meromorphic counterexample, A.P. Buslaev quickly followed [6] with
an analytic counterexample, formed from an algebraic function, and then showed that
even the Rogers–Ramanujan function provides an analytic counterexample [7]. Baker
[3] subsequently noted that for these counterexamples, just two subsequences together
provide locally uniform convergence in the unit ball. He went on to conjecture that
a patchwork of finitely many subsequences can provide locally uniform convergence
for functions meromorphic in the ball [4].

One of the unsolved issues is whether the Baker–Gammel–Wills conjecture is valid
for entire functions, or perhaps even functions meromorphic in the plane. To date,
there is still no counterexample. The author proved [19] that the Baker–Gammel–
Wills conjecture is true for most entire functions in the sense of category.

In this paper, we shall show that a stronger form of the conjecture, allowing inter-
polation points in any compact set, with the same subsequence, is true for most entire
functions in the sense of category. Accordingly, letA denote the space of entire func-
tions, with metric defined in terms of power series coefficients: if
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f (z) =
∞∑

j=0

a j z
j and g (z) =

∞∑

j=0

b j z
j ,

then define
d∗ ( f, g) = sup

j≥0

∣∣a j − b j
∣∣1/max{ j,1}

. (1.1)

Convergence in this space is equivalent to uniform convergence in compact sets. Recall
that a subset ofA is of the first category if it is a countable union of nowhere dense sets.
As such, it is small in the sense of category. Recall too that an Fσ set is a countable
union of closed sets.

Theorem 1.1
There is an Fσ subset E of A of the first category, such that for f ∈ A\E , there is
an infinite subsequence S of positive integers with the following property: given any
r > 0 and for n ∈ S, multipoint Padé approximants Rn to f of type (n, n) formed
from interpolation points �n ⊂ Br , we have

lim
n→∞,n∈S

Rn (z) = f (z) (1.2)

uniformly in compact subsets of the plane.

Observe that while S depends on f , it does not depend on the ball Br in which the
interpolation points lie. As far as the author is aware, ez is the only function for which
diagonal rational interpolants with interpolation points in any compact set (and that
are not restricted to include complex conjugate interpolation points) has been proven
to converge locally uniformly [10,32]. For Markov–Stieltjes functions, convergence
of diagonal multipoint Padé approximants, with interpolation points symmetric about
the real axis, has been investigated in [9,13].

We also prove some more explicit results when the Maclaurin series coefficients
decay rapidly and/or smoothly:

Theorem 1.2
Assume that

f (z) =
∞∑

j=0

a j z
j , (1.3)

where a j 	= 0 for j ≥ 0 and for some fixed J , and for j ≥ J ,

∣∣∣∣∣
a j−1a j+1

a2j

∣∣∣∣∣
≤ χ2, (1.4)

where χ < ρ0 and ρ0 = 0.4559 . . . is the positive root of the equation

∞∑

j=1

ρ j2 = 1

2
. (1.5)
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Let r > 0. For n ≥ 1, let Rn denote a multipoint Padé approximant to f formed with
interpolation points in Br . Then uniformly in compact subsets of the plane,

lim
n→∞ Rn (z) = f (z) .

Theorem 1.3
Assume that f is given by (1.3), where a j 	= 0 for j ≥ 0 and for some |q| < 1,

lim
j→∞

a j−1a j+1

a j2
= q. (1.6)

Then the conclusion of Theorem 1.2 remains valid.

We note that Theorems 1.2 and 1.3 were proved for the special case of Padé
approximants in [20,21]. In [20], the slightly more general condition χ ≤ ρ0 was
allowed. We note also that Theorems 1.2 and 1.3 and the results of [25] show that
given s > r > 0, then for large enough n, f − Rn formed from interpolation points in
Br , has exactly 2n+1 zeros, counting multiplicity, in Bs . Related results dealing with
smooth Maclaurin series coefficients appear in [11,15,16,28]. Without smoothness
but with more rapid decay, we prove convergence of a subsequence:

Theorem 1.4
Assume that for f given by (1.3),

lim sup
j→∞

∣∣a j
∣∣1/j2 <

1

3
. (1.7)

Then there is a subsequence S of integers with the property (1.2) as described in
Theorem 1.1.

Theorem 1.1 suggests a stronger form of the Baker–Gammel–Wills conjecture for
entire functions:

Conjecture 1.5
Let f be entire. Then there is an infinite subsequence S of positive integers with the
following property: given any r > 0 and for n ∈ S, multipoint Padé approximants Rn

to f of type (n, n) formed from interpolation points �n ⊂ Br , we have (1.2).

We close this section with more notation, firstly, finite differences: given distinct
z1, z2, z3, . . ., define f [z1] = f (z1) ,

f [z1, z2] = f (z2) − f (z1)

z2 − z1
;

and recursively, for r ≥ 2,

f [z1, . . . , zr+1] = f [z1, . . . , zr−1, zr+1] − f [z1, . . . , zr−1, zr ]
zr+1 − zr

.
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When points coalesce, that is, not all
{
z j
}
are distinct, the finite difference is defined

as the appropriate derivative. We also set

fi, j = f
[
zi+1, zi+2, . . . , z j+1

]
. (1.8)

We shallmake extensive use of the following formula for the denominator in Rn (�n, z)
when �n = {

z j
}2n+1
j=1 [2, p. 339]:

det

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

fn,n+1 fn,n+2 · · · fn,2n

n∏

k=1
(z − zk)

fn−1,n+1 fn−1,n+2 · · · fn−1,2n

n−1∏

k=1
(z − zk)

...
...

. . .
...

...

f0,n+1 f0,n+2 · · · f0,2n 1

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

.

It is valid as long as this last determinant is not identically 0. By row and column
swaps, we can recast it (absorbing a sign change into the numerator polynomial) as

qn (�n, z) = det

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

1 f0,n+1 f0,n+2 · · · f0,2n
z − z1 f1,n+1 f1,n+2 · · · f1,2n

...
...

...
. . .

...
n−1∏

k=1
(z − zk) fn−1,n+1 fn−1,n+2 · · · fn−1,2n

n∏

k=1
(z − zk) fn,n+1 fn,n+2 · · · fn,2n

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

. (1.9)

Throughout this paper, we assume that f is entire, not a polynomial, and hasMaclaurin
series given by (1.3). The paper is organized as follows: we prove Theorems 1.1 and
1.4 in Sect. 2, Theorem 1.2 in Sect. 3, and Theorem 1.3 in Sect. 4.

2 Proof of Theorems 1.1 and 1.4

We begin by bounding coefficients of nonpolynomial entire functions, given in (1.3),
much as in [19]. Let

K = max {1, |a0|} .

Define an increasing sequence of integers

0 = j0 < j1 < j2 < · · ·
and positive numbers

{
ρ j

}
as follows: first, choose j1 ≥ 1 such that

ρ−1
j1

=
(∣∣a j1

∣∣

K

)1/j1

= max

⎧
⎨

⎩

(∣∣a j
∣∣

K

)1/j

: j ≥ 1

⎫
⎬

⎭
.
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Having defined ρ j1 , . . . , ρ jk , define ρ jk+1 by

ρ−1
jk+1

=
∣∣∣∣
a jk+1

a jk

∣∣∣∣

1
jk+1− jk = max

{∣∣∣∣
a j

a jk

∣∣∣∣

1
j− jk : j > jk

}

.

If there is more than one choice of jk , choose the largest one. Define

ρn = ρ jk+1 for jk + 1 ≤ n ≤ jk+1 and k ≥ 0.

Lemma 2.1

(a)

|an| ≤ K/

n∏

�=1

ρ�, for n ≥ 0, (2.1)

with equality when
n = jk for some k ≥ 1.

(b) {ρk} is an increasing sequence with limit ∞.

(c) If n = jk for some k ≥ 1, then for r ≥ −n,

∣∣∣∣
an+r

an

∣∣∣∣ ≤
{

ρ−r
n+1, r ≥ 0,

ρ−r
n , r < 0.

(2.2)

Proof

(a) Suppose that k is given, and jk + 1 ≤ n ≤ jk+1. Then by definition of jk+1,

∣∣∣∣
an
a jk

∣∣∣∣

1
n− jk ≤ ρ−1

jk+1

⇒ |an| ≤ ∣∣a jk

∣∣ ρ−(n− jk )
jk+1

= ∣∣a jk

∣∣ /
n∏

�= jk+1

ρ�.

We have equality if n = jk+1. Applying this inequality recursively to a jk , a jk−1 ,
…, we obtain (2.1), with equality if n equals some jk , for some k ≥ 1.

(b) Now as jk+2 > jk+1,

ρ−1
jk+1

=
∣∣∣∣
a jk+1

a jk

∣∣∣∣

1
jk+1− jk

>

∣∣∣∣
a jk+2

a jk

∣∣∣∣

1
jk+2− jk

=
∣∣∣∣
a jk+2

a jk+1

∣∣∣∣

1
jk+2− jk

∣∣∣∣
a jk+1

a jk

∣∣∣∣

1
jk+2− jk
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⇒
∣∣∣∣
a jk+1

a jk

∣∣∣∣

1
jk+1− jk

− 1
jk+2− jk

>

∣∣∣∣
a jk+2

a jk+1

∣∣∣∣

1
jk+2− jk

⇒
∣∣∣∣
a jk+1

a jk

∣∣∣∣

jk+2− jk+1
jk+1− jk

>

∣∣∣∣
a jk+2

a jk+1

∣∣∣∣

⇒
∣∣∣∣
a jk+1

a jk

∣∣∣∣

1
jk+1− jk

>

∣∣∣∣
a jk+2

a jk+1

∣∣∣∣

1
jk+2− jk+1

⇒ ρ−1
jk+1

> ρ−1
jk+2

.

The monotonicity of {ρn} follows, and the fact that f is entire forces them to have
limit ∞.

(c) If r ≥ 0, we have (using that there is equality in (2.1) for n = jk),

∣∣∣∣
an+r

an

∣∣∣∣ ≤
n+r∏

�=n+1

ρ−1
� ≤ ρ−r

n+1.

If r < 0, we instead have

∣∣∣∣
an+r

an

∣∣∣∣ ≤
n−1∏

�=n+r

ρ� ≤ ρ−r
n .

��
We shall frequently use a series expansion for finite differences. Assume R >

0, � ≥ 1, and z1, z2, . . . , z� ∈ BR . Then by the contour integral representation for
finite differences [26, p. 11], if � = {t : |t | = S}, where S > R, then

f [z1, z2, . . . , z�] = 1

2π i

∫

�

f (t)
�∏

k=1
(t − zk)

dt

= 1

2π i

∫

�

f (t)

t�
∑

i1···i�≥0

zi11 z
i2
2 · · · zi��

t i1+i2+..+i�
dt

=
∑

i1···i�≥0

zi11 z
i2
2 · · · zi�� a�−1+i1+i2+..+i� . (2.3)

Lemma 2.2
Assume that n = ji for some i ≥ 1 , where the { ji } are as above. Assume that all∣∣z j

∣∣ ≤ R and ρn > R.

(a) Then for 0 ≤ j, k ≤ n, with the notation (1.8),

(ρnρn+1)
k− j
2

∣∣∣∣
f j,n+k

an

∣∣∣∣ ≤
(

ρn

ρn+1

) |k− j |
2

(1 − R/ρn)
−(n+1+k− j) . (2.4)
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(b) For 0 ≤ j ≤ n,

∣∣∣∣
f j,n+ j

an
− 1

∣∣∣∣ ≤ (1 − R/ρn+1)
−(n+1) − 1. (2.5)

Proof

(a) Let � = n + 1 + k − j . From the series (2.3) above,

∣∣∣∣
f j,n+k

an

∣∣∣∣ =
∣∣∣∣∣∣

∑

i1···i�≥0

zi1j+1z
i2
j+2 · · · zi�j+�

a�−1+i1+i2+···+i�

an

∣∣∣∣∣∣

≤
∞∑

s=0

∣∣∣∣
a�−1+s

an

∣∣∣∣ R
s

∑

i1···i�≥0,
i1+i2+···+i�=s

1

=
∞∑

s=0

∣∣∣∣
a�−1+s

an

∣∣∣∣ R
s
∣∣∣∣

(−�

s

)∣∣∣∣ . (2.6)

If k ≥ j , then all indices � − 1 + s ≥ n, so (2.2) gives

∣∣∣∣
f j,n+k

an

∣∣∣∣ ≤
∞∑

s=0

ρ
−(�−1−n+s)
n+1 Rs

∣∣∣∣

(−�

s

)∣∣∣∣

= ρ
−(�−1−n)
n+1 (1 − R/ρn+1)

−� .

Then

(ρnρn+1)
k− j
2

∣∣∣∣
f j,n+k

an

∣∣∣∣ ≤
(

ρn

ρn+1

) k− j
2

(1 − R/ρn+1)
−(n+1+k− j) . (2.7)

If k < j , then we split into those indices < and ≥ n, and use the appropriate
inequalities in (2.2):

∣∣∣∣
f j,n+k

an

∣∣∣∣ ≤
j−k−1∑

s=0

ρ−(�−1−n+s)
n Rs

∣∣∣∣

(−�

s

)∣∣∣∣ +
∞∑

s= j−k

ρ
−(�−1−n+s)
n+1 Rs

∣∣∣∣

(−�

s

)∣∣∣∣

≤
j−k−1∑

s=0

ρ
−(k− j+s)
n Rs

∣∣∣∣

(−�

s

)∣∣∣∣ +
∞∑

s= j−k

ρ
−(k− j+s)
n Rs

∣∣∣∣

(−�

s

)∣∣∣∣

= ρ
−(k− j)
n (1 − R/ρn)

−� .
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Then

(ρnρn+1)
k− j
2

∣∣∣∣
f j,n+k

an

∣∣∣∣ ≤
(

ρn

ρn+1

) |k− j |
2

(1 − R/ρn)
−(n+1+k− j) .

Since ρn ≤ ρn+1, this and (2.7) give (2.4).
(b) From (2.6) with � = n + 1,

∣∣∣∣
f j,n+ j

an
− 1

∣∣∣∣ ≤
∞∑

s=1

∣∣∣∣
an+s

an

∣∣∣∣ R
s
∣∣∣∣

(−n − 1

s

)∣∣∣∣

≤
∞∑

s=1

(R/ρn+1)
s
∣∣∣∣

(−n − 1

s

)∣∣∣∣ = (1 − R/ρn+1)
−(n+1) − 1.

��
In estimating the denominators, we need the notion of diagonal dominance: amatrix

B = [
b jk

]
1≤ j,k≤n

is called diagonally dominant if for all 1 ≤ j ≤ n, we have

∣∣b j j
∣∣ >

n∑

k=1,k 	= j

∣∣b jk
∣∣ .

We shall use the basic fact that a diagonally dominant matrix has nonzero determinant
[17, p. 373].

Lemma 2.3
Assume that for some ε ∈ (

0, 1
2

)
, infinite sequence of integers S, and n = ji , i ∈ S,

ρn

ρn+1
≤ 1

9
(1 − ε) (2.8)

and
lim

n= ji ,i∈S
ρn

n
= ∞. (2.9)

Then for any R > 0 and all �n ⊂ BR, we have for large enough n = ji , i ∈ S,

inf|z|≤R
|qn (�n, z)| > 0. (2.10)

Proof
Let us assume that the integers { ji } = { ji ( f )} and {ρn} are chosen as above. Assume
that n = ji for some i . We use (1.9):

qn (�n, z) = det [c B] ,
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where c is an (n + 1) × 1 column vector and B is an (n + 1) × n matrix:

c =
⎡

⎣
j−1∏

�=1

(z − z�)

⎤

⎦

1≤ j≤n+1

; B = [
f j−1,n+k−1

]
1≤ j≤n+1;
2≤k≤n+1

.

We divide the 2nd, 3rd, …, (n + 1)st column in [c B] by an and multiply the j th row
by (ρn+1ρn)

− j/2 and kth column by (ρn+1ρn)
k/2 for all j, k. Then we obtain

qn (�n, z) a
−n
n = det

[
ĉ B̂

]
,

where

ĉ =
⎡

⎣(ρn+1ρn)
(1− j)/2

j−1∏

�=1

(z − z�)

⎤

⎦

1≤ j≤n+1

;

B̂ =
[
(ρn+1ρn)

(k− j)/2 f j−1,n+k−1

an

]

1≤ j≤n+1;
2≤k≤n+1

.

Let R > 0, |z| ≤ R, and all
∣∣z j

∣∣ ≤ R. We now show that this last matrix
[
ĉ B̂

]
is

diagonally dominant for n = ji and i large enough. Consider the j th row. If j = 1,
its diagonal element is 1. For j ≥ 2, the diagonal element is

f j−1,n+ j−1

an
= 1 + ε j,n, (2.11)

where by the previous lemma and by (2.9),

∣∣ε j,n
∣∣ ≤ (1 − R/ρn+1)

−n − 1 → 0 as n → ∞ (2.12)

uniformly in j . Now consider the sum of the absolute values of the nondiagonal

elements in the j th row of
[
ĉ B̂

]
, namely

τ j := (ρn+1ρn)
(1− j)/2

∣∣∣∣∣∣

j−1∏

�=1

(z − z�)

∣∣∣∣∣∣

+
⎛

⎝
j−1∑

k=2

+
n+1∑

k= j+1

⎞

⎠ (ρn+1ρn)
(k− j)/2

∣∣∣∣
f j−1,n+k−1

an

∣∣∣∣ .
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Of course, if j = 1, the first term and first sum are omitted. Using that |z| ≤ R, and
all |zk | ≤ R , and (2.4), we continue this as

τ j ≤
(

2R

(ρn+1ρn)
1/2

) j−1

+
⎛

⎝
j−1∑

k=2

+
n+1∑

k= j+1

⎞

⎠
(

ρn

ρn+1

) |k− j |
2

(1 − R/ρn)
−(n+1+k− j)

≤ 2R

(ρn+1ρn)
1/2 + (1 − R/ρn)

−2n−2 2
∞∑

�=1

(
ρn

ρn+1

)�/2

= 2R

(ρn+1ρn)
1/2 + (1 − R/ρn)

−2n−2
2
(

ρn
ρn+1

)1/2

1 −
(

ρn
ρn+1

)1/2

< o (1) + (1 + o (1))
2
3 (1 − ε)1/2

1 − 1
3 (1 − ε)1/2

< (1 + o (1)) (1 − ε)1/2 ,

by (2.8) and (2.9). In view of (2.11), (2.12), we have diagonal dominance of
[
ĉ B̂

]
,

and then (2.10) follows. ��
Proof of Theorem 1.4
Now for n = ji , for some i ≥ 1, we have

|an| = K/

n∏

�=1

ρ� ≥ K/ρn
n

⇒ lim inf
n→∞,n= ji

ρ
1/n
n ≥ lim inf

n→∞,n= ji
K 1/n2/ |an|1/n2 ≥ 3/ (1 − ε)1/2

for some ε > 0, by (1.7). Thus ρ ji grows roughly at least as fast as
(
3 (1 − ε)1/2

) ji .
Next, for n = ji ,

|an| = K

ρn
1

n∏

�=1

ρ1

ρ�

= K

ρn
1

n∏

�=2

(
ρ1

ρ2

ρ2

ρ3

ρ3

ρ4
· · · ρ�−1

ρ�

)

= K

ρn
1

(
ρ1

ρ2

)n−1 (
ρ2

ρ3

)n−2 (
ρ3

ρ4

)n−3

· · · ρn−1

ρn
.

Then from (1.7), for some ε > 0,

(1 − ε)1/2

3
≥ lim sup

n→∞
|an|1/n2

≥ lim inf
n→∞

(
ρn

ρn+1

)[(n−1)+(n−2)+(n−3)···+1]/n2

= lim inf
n→∞

(
ρn

ρn+1

)1/2

.
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So for some infinite sequence of integers S,

ρn

ρn+1
≤ 1 − ε

9
, n ∈ S.

So we have (2.8). But since ρn+1 = ρn unless n = ji and n + 1 = ji + 1 for some i ,
so, as above, ρn = ρ ji grows at least as fast as (3 (1 − ε)) ji . Then (2.9) also follows.
Now let S > R > 0. It follows from the previous lemma that for z ∈ BS and�n ⊂ BR ,
we have for large enough n ∈ S that |qn (�n, z)| > 0, so Rn (�n, z) has no poles in
BS . Then the uniform convergence in compact subsets of BS follows easily from the
contour integral error formula for multipoint Padé approximation [2]. ��

We turn to the proof of Theorem 1.1 and first introduce some notation. Recall that
A denotes the space of entire functions, with metric defined by (1.1). Given R > 0,
n ≥ 1, we let

Bn,R = {
f ∈ A : qn (�n, z) has full degree n and no zeros in BR whenever �n ⊂ BR

}
.

Also, let

Cn,R =
∞⋃

j=n

B j,R .

Lemma 2.4
For each n and R > 0, Cn,R is open and dense in A.

Proof
Wefirst show that eachBn,R is open, and then the openness ofCn,R follows. Fix ann and
f ∈ Bn,R . Since we need to indicate dependence of the multipoint Padé denominators
on f , we use the notation qn ( f,�n, z) in this proof only. By compactness, and the
continuity of qn ( f,�n, z) in �n as long as it has full degree [as follows from (1.8),
(1.9)], we see that

min
{|qn ( f,�n, z)| : z ∈ BR , �n ⊂ BR

}
> 0.

Moreover, by our hypothesis that the denominators have full degree, all their leading
coefficients are nonzero, and then also from (1.9).

min
{∣∣∣det

[
f j−1,n+k

]
1≤ j,k≤n

∣∣∣ : �n ⊂ BR

}
> 0.

If we consider entire g with d∗ ( f, g) small enough, then the Maclaurin series coef-
ficients of g will be as close to those of f as we please, and consequently all finite
differences g j−1,n+k will be close to the corresponding differences for f . Then we
can ensure that also

min
{∣∣∣det

[
g j−1,n+k

]
1≤ j,k≤n

∣∣∣ : �n ⊂ BR

}
> 0.
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By the same token, considering the formula (1.9), we can also ensure that

min
{|qn (g,�n, z)| : z ∈ BR , �n ⊂ BR

}
> 0.

Thus also g ∈ Bn,R . So each Bn,R is open, and hence each Cn,R is open.
The denseness is somewhat more difficult. Fix now some f ∈ A. We shall construct
g ∈ Cn,R with d∗ ( f, g) as small as we please. Let us assume that the integers { ji } =
{ ji ( f )} and {ρn} = {ρn ( f )} are chosen as above. Choose now some large positive
integer i0. Note that by choice of our

{
ρ j

}
above,

|an| ≤ K/

n∏

j=1

ρ j ( f ) for n ≤ ji0 ( f ) ,

and we have equality when n = jk , some 1 ≤ k ≤ i0. Now define ρ̂ j for j > ji0 by

ρ̂ j = 10 j− ji0ρ ji0 .

Also define for n > ji0 ,

ân = a ji0
/

n∏

j= ji0+1

ρ̂ j = a ji0
ρ

−(
n− ji0

)

ji0 . 10−(
n− ji0

)
(n− ji0+1)/2

and

g (z) =
ji0∑

j=0

a j z
j +

∞∑

j= ji0+1

â j z
j .

Then g is entire (of order 0), and

d∗ ( f, g) ≤ sup

{∣∣∣∣an − a ji0
ρ

−(
n− ji0

)

ji0 . 10−(
n− ji0

)
(n− ji0+1)/2

∣∣∣∣

1/n

: n > ji0

}

.

Straightforward estimation shows that by choosing i0 large enough, this can be made
as small as we please. Next, as g and f have the same series coefficients up to the
coefficient of z ji0 , we see that

jk (g) = jk ( f ) , k ≤ i0 and ρn (g) = ρn ( f ) , n ≤ ji0 .

Next, if n > m ≥ ji0 , we see that

( ∣∣ân
∣∣

∣∣âm
∣∣

)1/(n−m)

=
⎛

⎝
n∏

j=m+1

(
ρ−1
ji0
10−(

j− ji0
))
⎞

⎠

1/(n−m)

= ρ−1
ji0
10 ji0

(
10−n(n+1)/2+m(m+1)/2

)1/(n−m)
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= ρ−1
ji0
10 ji0 10−(n−m)(n+m+1)/(2(n−m))

= ρ−1
ji0
10 ji0−(n+m+1)/2,

which is maximal for a given m and n > m, if and only if n = m + 1. It follows easily
that

ji0+k (g) = ji0 ( f ) + k, k ≥ 1,

and for n > ji0 ,
ρn (g) = ρ̂n = 10n− ji0ρ ji0 .

Then for n ≥ ji0 ,
ρn+1 (g)

ρn (g)
= 10

and
lim
n→∞ ρn (g)1/n = 10.

It then follows fromLemma 2.3 that for large enough n and all�n ⊂ BR , qn (g,�n, z)
has no zeros in BR . Thus g ∈ Bn,R for all large enough n, and in particular, g ∈ Cn,R ,
while gmay bemade as close to the given f as we please, by choosing i0 large enough.
As f ∈ A is arbitrary, so Cn,R is dense. ��
Proof of Theorem 1.1
Let

C =
∞⋂

�=1

∞⋂

n=1

Cn,�

and

E = A\C =
∞⋃

�=1

∞⋃

n=1

A\Cn,�.

Here since Cn,� is open and dense, E = A\C is a countable union of closed nowhere
dense sets and is an Fσ set. Next if f ∈ A\E , then f ∈ C, so f ∈ Cn,� for all n, � .
Then we can choose an increasing sequence of integers {n�}�≥1 such that f ∈ Bn�,�

for � ≥ 1. Then qn�

(
�n�

, z
)
has full degree n and no zeros in B� whenever�n�

⊂ B�.
This gives the desired uniform convergence of

{
Rn�

(
�n�

, ·)}
�≥1 whenever�n�

⊂ BR ,
for some R > 0. ��

3 Proof of Theorem 1.2

We proceed partly as in [20]. Let a j 	= 0, j ≥ 1, and

σ j = a j−1a j+1/a
2
j , j ≥ 1. (3.1)

For integers t ≥ −n + 1, we let

rn,t = an+t

an

(
an
an+1

σ
1/2
n

)t

. (3.2)
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Lemma 3.1

(a)

rn,t = σ
|t |/2
n

|t |−1∏

�=1

σ
|t |−�
n+�sign(t). (3.3)

(b) Assume that for j ≥ J, ∣∣σ j
∣∣ ≤ χ < 1. (3.4)

Then for n ≥ 1 and t ≥ −n − 1 such that min {n, n + t + 1} ≥ J ,

∣∣rn,t
∣∣ ≤ χ t2/2. (3.5)

(c) If (3.4) holds for j ≥ J , then for some C0 = C0 (J ) , and all n ≥ J, and
t = 0,±1,±2, . . . such that n + t > 0,

∣∣rn,t
∣∣ ≤ C0χ

t2/2. (3.6)

Proof

(a) If t > 0, we use
a j+1

a j
= σ j

a j

a j−1
,

so

an+t

an
=

t−1∏

k=0

an+k+1

an+k

=
t−1∏

k=0

(
σn+kσn+k−1 · · · σn+1

an+1

an

)

=
(
an+1

an

)t

σ t−1
n+1σ

t−2
n+2 · · · σn+t−1. (3.7)

If t < 0, we use
a j−1

a j
= σ j

a j

a j+1
,

so

an+t

an
=

|t |∏

k=1

an−k

an−k+1

=
|t |∏

k=1

(
σn−k+1σn−k+2 · · · σn an

an+1

)
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=
(

an
an+1

)|t |
σ |t |
n σ

|t |−1
n−1 · · · σn+1−|t |.

This and (3.7) easily give the identity (3.3).
(b) This follows directly from (a), as n + �sign (t) ≥ min {n, n + t + 1} ≥ J in the

product, so we can apply the bound (3.4).
(c) Assume

C1 = sup
j≥1

∣∣σ j
∣∣ .

This also follows directly from (a). Indeed, using (3.4),

∣∣rn,t
∣∣ ≤ χ |t |/2

⎛

⎜⎜
⎝

∏

1≤�≤|t |−1;
n+�sign(t)≥J

χ |t |−�

⎞

⎟⎟
⎠

∏

1≤�≤|t |−1;
n+�sign(t)<J

C |t |−�
1 ,

which easily gives the result, as there are O
(
J 2

)
factors of C1 arising from �

where n + �sign (t) < J.

��
Next for given n and j ≥ 0, k ≥ 0, let

b j,k = f j,n+k

an

(
an
an+1

σ
1/2
n

)k− j

, (3.8)

where f j,n+k is the divided difference in (1.8).

Lemma 3.2
Assume all

∣∣z j
∣∣ ≤ R. Assume also that (3.4) holds for j ≥ J.

(a) There exists M depending only on R, χ, J, such that for 0 ≤ j, k ≤ n, satisfying

n + k − j ≥ M, (3.9)

we have for some constant C2 depending only on R, χ, J,

∣∣b j,k
∣∣ ≤ χ(k− j)2/2

{
1 + C2 (n + 1 + k − j) χn+1+k− j

}
. (3.10)

(b) For n ≥ M and 0 ≤ j ≤ n,

∣∣b j, j − 1
∣∣ ≤ C2nχn . (3.11)
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(c) We have for some constant C4 depending only on R, χ, J, and all 0 ≤ j, k ≤ n,

∣∣b j,k
∣∣ ≤ C4χ

(k− j)2/2. (3.12)

Proof
(a) We may assume that M > J . Let � = n + 1 + k − j . Using (2.6),

∣∣∣∣
f j,n+k

an

∣∣∣∣ ≤
∞∑

s=0

∣∣∣∣
a�−1+s

an

∣∣∣∣ R
s
∣∣∣∣

(−�

s

)∣∣∣∣ .

Then as all � − 1 + s ≥ J , we can apply our definitions (3.2), (3.8), and the bound
(3.5) and deduce

∣∣b j,k
∣∣ ≤

∞∑

s=0

(∣∣∣∣
an
an+1

∣∣∣∣ σ
1/2
n

)−s ∣∣rn,k− j+s
∣∣ Rs

∣∣∣∣

(−�

s

)∣∣∣∣

≤
∞∑

s=0

(∣∣∣∣
an
an+1

∣∣∣∣ σ
1/2
n

)−s

χ(k− j+s)2/2Rs
∣∣∣∣

(−�

s

)∣∣∣∣

= χ(k− j)2/2
∞∑

s=0

(∣∣∣∣
an+1

an

∣∣∣∣ σ
−1/2
n χk− j R

)s

χ s2/2
∣∣∣∣

(−�

s

)∣∣∣∣

≤ χ(k− j)2/2
∞∑

s=0

(∣∣∣∣
an+1

an

∣∣∣∣ σ
−1/2
n χk− j+1/2R

)s ∣∣∣∣

(−�

s

)∣∣∣∣ .

Here

∣∣∣∣
an+1

an

∣∣∣∣ σ
−1/2
n χk− j+1/2R

= σnσn−1σn−2 · · · σJ

∣∣∣∣
aJ
aJ−1

∣∣∣∣ σ
−1/2
n χk− j+1/2R

≤ χn+1+k− j−J
∣∣∣∣
aJ
aJ−1

∣∣∣∣ R

= C3χ
�, (3.13)

where C3 = χ−J
∣∣∣ aJ
aJ+1

∣∣∣ R. So

∣∣b j,k
∣∣ ≤ χ(k− j)2/2

∞∑

s=0

(
C3χ

�
)s ∣∣∣∣

(−�

s

)∣∣∣∣

≤ χ(k− j)2/2
(
1 − C3χ

�
)−�

,
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provided C3χ
� < 1. We now use the inequality

(1 − x)−� − 1 ≤ 2�x for x ∈
[
0,

1

2�

]
, � ≥ 2. (3.14)

This gives
∣∣b j,k

∣∣ ≤ χ(k− j)2/2
{
1 + 2C3�χ

�
}

,

provided

C3χ
� ≤ 1

2�
. (3.15)

As χ < 1, this last inequality holds for � = n + 1+ k − j ≥ M and some threshhold
M .
(b) Here, proceeding as in (a), we see that for n ≥ J, with � = n + 1,

∣∣∣∣
f j,n+ j

an
− 1

∣∣∣∣ ≤
∞∑

s=1

∣∣∣∣
a�−1+s

an

∣∣∣∣ R
s
∣∣∣∣

(−�

s

)∣∣∣∣

≤
∞∑

s=1

(∣∣∣∣
an
an+1

∣∣∣∣ σ
1/2
n

)−s ∣∣rn,s
∣∣ Rs

∣∣∣∣

(−�

s

)∣∣∣∣

≤
∞∑

s=1

(∣∣∣∣
an
an+1

∣∣∣∣ σ
1/2
n

)−s

χ s2/2Rs
∣∣∣∣

(−�

s

)∣∣∣∣

≤
∞∑

s=1

(∣∣∣∣
an+1

an

∣∣∣∣ σ
−1/2
n Rχ1/2

)s ∣∣∣∣

(−�

s

)∣∣∣∣

≤ (
1 − C3χ

n R
)−n−1 − 1,

as above. Using (3.14), we continue this for n ≥ M , and uniformly in j , as

∣∣b j, j − 1
∣∣ ≤ C2nχn .

(c) As above, we let � = n + 1 + k − j . If n + 1 + k − j ≥ M , we can apply (a). So
assume � = n + 1 + k − j < M . Now

∣∣∣∣

(−�

s

)∣∣∣∣ =
(

� + s − 1

s

)
≤ 2max{�+s−1,0} ≤ 2�+s .

Proceeding as in (a), but using Lemma 3.1 (c),

∣∣b j,k
∣∣ ≤

∞∑

s=0

(∣∣∣∣
an
an+1

∣∣∣∣ σ
1/2
n

)−s ∣∣rn,k− j+s
∣∣ Rs

∣∣∣∣

(−�

s

)∣∣∣∣

≤ C0

∞∑

s=0

(∣∣∣∣
an
an+1

∣∣∣∣ σ
1/2
n

)−s

χ(k− j+s)2/2Rs2�+s
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≤ C02
�χ(k− j)2/2

∞∑

s=0

(
2

∣∣∣∣
an+1

an

∣∣∣∣ σ
−1/2
n χk− j+1/2R

)s

χ
(
s2−s

)
/2.

As in (3.13), and since 0 ≤ � = n + 1 + k − j < M,

2

∣∣∣∣
an+1

an

∣∣∣∣ σ
−1/2
n χk− j+1/2R ≤ 2Rχn+k− j−J+1

∣∣∣∣
aJ
aJ−1

∣∣∣∣ ≤ 2Rχ−J
∣∣∣∣
aJ
aJ−1

∣∣∣∣ = 2C3,

so
∣∣b j,k

∣∣ ≤ C02
Mχ(k− j)2/2

∞∑

s=0

(2C3)
s χ

(
s2−s

)
/2.

Then (3.12) follows. ��
Lemma 3.3
Assume that (1.4) holds with χ < ρ0, where ρ0 = 0.4559 . . . is the root of (1.5). For
any R > 0 and �n ⊂ BR, we have for large enough n,

inf|z|≤R
|qn (�n, z)| > 0. (3.16)

Proof
We use (1.9):

qn (�n, z) = det [c B] ,

where c is a column vector and B is an (n + 1) × n matrix:

c =
⎡

⎣
j−1∏

�=1

(z − z�)

⎤

⎦

1≤�≤n+1

; B = [
f j−1,n+k−1

]
1≤ j≤n+1;
2≤k≤n+1

.

We divide the 2nd, 3rd, …, (n + 1)st column by an , and multiply the j th row by(
an

an+1
σ
1/2
n

)− j
and kth column by

(
an

an+1
σ
1/2
n

)k
, for all j, k. Then we obtain

qn (�n, z) a
−n
n = det

[
ĉ B̂

]
, (3.17)

where

ĉ =
⎡

⎣
(

an
an+1

σ
1/2
n

)1− j j−1∏

�=1

(z − z�)

⎤

⎦

1≤ j≤n+1

;

and after an index change,

B̂ =
[(

an
an+1

σ
1/2
n

)k− j f j,n+k

an

]

0≤ j≤n;
1≤k≤n

= [
b j,k

]
0≤ j≤n;
1≤k≤n

. (3.18)
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Here we are using the notation (3.8). Let R > 0, |z| ≤ R, and all
∣∣z j

∣∣ ≤ R. We now

show that
[
ĉ B̂

]
is diagonally dominant. Consider the ( j + 1)st row, where 0 ≤ j ≤ n.

If j = 0, its diagonal element is 1. For j ≥ 1, the diagonal element is

b j, j = 1 + ε j,n, (3.19)

where by Lemma 3.2 (b),

∣∣ε j,n
∣∣ ≤ C2nχn → 0 as n → ∞, (3.20)

uniformly in j . Now consider the sum of the absolute values of the nondiagonal
elements in the ( j + 1)st row, namely

τ j =
(∣∣∣∣

an+1

an
σ

−1/2
n

∣∣∣∣

) j
∣∣∣∣∣∣

j∏

�=1

(z − z�)

∣∣∣∣∣∣
+

⎛

⎝
j−1∑

k=1

+
n∑

k= j+1

⎞

⎠
∣∣b j,k

∣∣ .

Of course, if j = 1, the first term and first sum are omitted. First let us assume that

n − j ≥
[
2 log n

|logχ |
]

= �n,

say. Then for large enough n, we have (3.9) for all terms in the sum, so can then
estimate

τ j ≤
(∣∣∣∣

an+1

an
σ

−1/2
n

∣∣∣∣ 2R
) j

+
⎛

⎝
j−1∑

k=1

+
n+1∑

k= j+1

⎞

⎠χ(k− j)2/2
{
1 + C2 (n + 1 + k − j) χn+1+k− j

}

≤ o (1) + (1 + o (1)) 2
∞∑

�=1

χ�2/2 ≤ 1 − ε,

for some small enough ε. Recall that χ < ρ0, where ρ0 is the root of (1.5). Using
(3.19) and (3.20), we see then that the ( j + 1, j + 1) element in the ( j + 1)st row
has absolute value larger than τ j , as required for diagonal dominance. We still have to
handle those terms for which n− j ≤ �n . Here most of τ j can be estimated as above:

(∣∣∣∣
an+1

an
σ

−1/2
n

∣∣∣∣ 2R
) j

+
n+1∑

k=�n+1

χ(k− j)2/2
{
1 + C2 (n + 1 + k − j) χn+1+k− j

}

≤ 1 − ε.
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Next, for 2 ≤ k ≤ �n and n − j ≤ �n , we have j − k ≥ n − 2�n , so

�n∑

k=2

∣∣b j,k
∣∣

≤ C3

�n∑

k=2

χ(k− j)2/2

≤ C3�nχ
(n−2�n)

2/2 → 0,

as n → ∞, by Lemma 3.2 (c). Again we obtain diagonal dominance. ��
Proof of Theorem 1.2
Given any r > 0, the interpolants Rn (�n, z) have no poles in Br for large enough n.
Then as above, the locally uniform convergence follows. ��

4 Proof of Theorem 1.3

This case is more delicate than the proof of Theorem 1.2. We have to multiply by
a suitable matrix before proving diagonal dominance. Accordingly for q ∈ C and
n ≥ 1, let

An (q) =
[
q(k− j)2/2

]

1≤ j,k≤n
.

The determinant of this matrix can be reduced to that of a Vandermonde matrix by
multiplying rows and columns by suitable factors. It is known that (see, e.g., [21, p.
326])

det (An (q)) =
n−1∏

j=1

(
1 − q j

)n− j
.

When thismatrix is nonsingular, its inverse admits uniform bounds on its entries.More
precisely, the (k, �) entry in An (q)−1 admits the bound

∣∣∣
(
An (q)−1

)

k�

∣∣∣ ≤ S |q||�−k|/2 , (4.1)

where

S = 2
∞∏

j=1

(
1 + |q| j
1 − |q| j

)2

.

See [21, Lemma 2.1, pp. 326-327]. For integers t ≥ −n + 1, we define rn,t by (3.2).
We begin with bounds and asymptotics for rn,t :
Lemma 4.1
Let L ≥ 1. We have for |t | ≤ L ,

rn,t = qt
2/2 (1 + εn,t

)
,
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where
max|t |≤L

∣∣εn,t
∣∣ → 0 as n → ∞. (4.2)

Proof
Since the total number of σ factors in the right-hand side of (3.3) is |t | /2+ (|t | − 1)+
(|t | − 2) + · · · + 1 = |t |2 /2, the assertion follows from our hypothesis that σm → q
as m → ∞. ��

Next for given n and j ≥ 0, n + k ≥ 0, define b j,k by (3.8).

Lemma 4.2
Let L ≥ 1 and χ ∈ (|q| , 1). For 1 ≤ j, k ≤ n, we can write

b j,k = q(k− j)2/2 + δ j,k, (4.3)

where

(a) if | j − k| ≤ L ,

η∗
L = max| j−k|≤L

∣∣∣δ j,k/q(k− j)2/2
∣∣∣ → 0 as n → ∞. (4.4)

(b) for all 0 ≤ j, k ≤ n, ∣∣δ j,k
∣∣ ≤ C4χ

(k− j)2/2, (4.5)

where C4 is independent of n, j, k and of L above.

Proof
(a) Let � = n + 1 + k − j , where | j − k| ≤ L . As in (2.6),

∣∣∣∣
f j,n+k

an
− a�−1

an

∣∣∣∣ =

∣∣∣∣∣∣∣

a�−1

an

∑

i1···i�≥0 with at least one i j≥1

z
i1
j+1z

i2
j+2 · · · zi�j+�

a�−1+i1+i2+···+i�
a�−1

∣∣∣∣∣∣∣

≤
∣∣∣∣
an+k− j

an

∣∣∣∣

∞∑

s=1

Rs
∣∣∣∣
a�−1+s

a�−1

∣∣∣∣

∣∣∣∣

(−�

s

)∣∣∣∣ .

Proceeding as in Lemma 3.2 and using Lemma 3.1 (c),

∣∣b j,k − rn,k− j
∣∣ ≤ ∣∣rn,k− j

∣∣
∞∑

s=1

Rs
∣∣∣∣
a�

a�−1
σ

−1/2
�−1

∣∣∣∣

s ∣∣r�−1,s
∣∣
∣∣∣∣

(−�

s

)∣∣∣∣

≤ ∣∣rn,k− j
∣∣

∞∑

s=1

Rs
∣∣∣∣
a�

a�−1
σ

−1/2
�−1

∣∣∣∣

s

C4χ
s2/2

∣∣∣∣

(−�

s

)∣∣∣∣

≤ ∣∣rn,k− j
∣∣C4

{(
1 − R

∣∣∣∣
a�

a�−1
σ

−1/2
�−1

∣∣∣∣χ
1/2

)−�

− 1

}

≤ ∣∣rn,k− j
∣∣C5 (n + k − j) χn+k− j

≤ C6
∣∣rn,k− j

∣∣ nχn,
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by (3.14). Then Lemma 4.1 gives

∣∣δ j,k
∣∣ =

∣∣∣b j,k − q(k− j)2/2
∣∣∣

≤ ∣∣b j,k − rn,k− j
∣∣ +

∣∣∣rn,k− j − q(k− j)2/2
∣∣∣

≤ ∣∣rn,k− j
∣∣
{
C6nχn + C7 max|t |≤L

∣∣εn,t
∣∣
}

≤ η∗
L |q|(k− j)2/2 ,

where η∗
L → 0 as L → ∞.

(b) Choose J such that
∣∣σ j

∣∣ ≤ χ for j ≥ J . Note that J is independent of L in (a).
Using Lemma 3.2 (c), for all 0 ≤ j, k ≤ n,

∣∣b j,k
∣∣ ≤ C4χ

(k− j)2/2,

so ∣∣δ j,k
∣∣ ≤ ∣∣b j,k

∣∣ + |q|(k− j)2/2 ≤ (C4 + 1) χ(k− j)2/2.

��
Proof of Theorem 1.3
It suffices to show that given R > 0 and �n ⊂ BR , n ≥ 1, then for large enough n,

inf
z∈BR

|qn (�n, z)| > 0.

We use (3.17), namely

qn (�n, z) a
−n
n = det

[
ĉ B̂

]
, (4.6)

where
[
ĉ B̂

]
is given by (3.18). We partition the column ĉ and matrix B̂ as follows:

qn (�n, z) a
−n
n = det

[
1 f
d An (q) + �

]
,

where d is an n by 1 column vector; f is an n by 1 row vector; and � is an n by n
matrix with “small” entries. Thus

d =
⎡

⎣
(

an
an+1

σ
1/2
n

)− j j∏

�=1

(z − z�)

⎤

⎦

1≤ j≤n

;

f =
[(

an
an+1

σ
1/2
n

)k f0,n+k

an

]T

1≤k≤n

= [
b0,k

]
1≤k≤n ;
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� =
[(

an
an+1

σ
1/2
n

)k− j f j,n+k

an

]

1≤ j,k≤n

− An (q)

= [
b j,k

]
1≤ j,k≤n − An (q) = [

δ j,k
]
1≤ j,k≤n . (4.7)

We multiply the determinant above by

det

[
1 −f An (q)−1

0 An (q)−1

]
= det An (q)−1 .

We then see that

qn (�n, z) a
−n
n (det An (q))−1

= det

[
1 f
d An (q) + �

] [
1 −f An (q)−1

0 An (q)−1

]

= det

[
1 0T

d −df An (q)−1 + I + �An (q)−1

]

= det
[
I − df An (q)−1 + �An (q)−1

]
. (4.8)

We shall show the matrix in this last determinant is diagonally dominant. First,

df An (q)−1

=
⎡

⎣
(

an
an+1

σ
1/2
n

)− j
⎛

⎝
j∏

�=1

(z − z�)

⎞

⎠ b0,k

⎤

⎦

1≤ j,k≤n

An (q)−1 ,

so the sum of the absolute values of elements in the j th row of the matrix df An (q)−1

is, using (4.5) and (4.1),

∣∣∣∣∣∣

(
an
an+1

σ
1/2
n

)− j j∏

�=1

(z − z�)

∣∣∣∣∣∣

∣∣∣∣∣

n∑

�=1

n∑

k=1

b0,k
(
An (q)−1

)

k�

∣∣∣∣∣

≤ SC3

(
2R

∣∣∣∣
an+1

an

∣∣∣∣

) j n∑

�=1

n∑

k=1

χk2/2 |q||k−�|/2

≤ 2SC3

(
1 − |q|1/2

)−1
( ∞∑

k=1

χk2/2

)(
2R

∣∣∣∣
an+1

an

∣∣∣∣

) j

≤ C4

(
2R

∣∣∣∣
an+1

an

∣∣∣∣

) j

. (4.9)
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Next, the sum of absolute values of elements in the j th row of the matrix �An (q)−1

is bounded above by

n∑

k=1

n∑

�=1

∣∣∣δ j,�An (q)−1
�,k

∣∣∣

≤ S
n∑

k=1

n∑

�=1

∣∣δ j,�
∣∣ |q||k−�|/2

≤ 2S
(
1 − |q|1/2

)−1 n∑

�=1

∣∣δ j,�
∣∣

≤ 2S
(
1 − |q|1/2

)−1

⎧
⎨

⎩
η∗
L

∑

�:| j−�|≤L

|q|( j−�)2/2 + C3

∑

�:| j−�|>L

χ( j−�)2/2

⎫
⎬

⎭

≤ 2S
(
1 − |q|1/2

)−1
{
2η∗

L

(
1 − |q|1/2

)−1 + C3χ
L2/2

}
,

by (4.2) and (4.5). It is crucial here that C3 is independent of L . Choosing L large
enough and then using that η∗

L → 0 as n → ∞, we see that this row sum may be
made < 1

4 for large enough n. Together with (4.9), this shows that the matrix in the
determinant in (4.8) is diagonally dominant, and we are done. ��
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