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1. Introduction

Many types of flow motions can be described by using various forms of incompressible viscous
flow models [1]. In particular, the incompressible Navier-Stokes equations (NSEs) have been widely
used to model many important applications [2] such as ocean currents [1], water flow in a pipe [3],
water pollution, and blood flow in vessels. The NSEs are useful because they describe the physics of
many phenomena of scientific and engineering interest. The NSEs for a viscous, incompressible flow
read as

v . a2
8—1;+Vp=—v~Vv+vV2v~|—f (x € Q); (1)

V-i=0 (xeQ). (2)
Here, U(%, ) is the velocity field at (, t); p(x,t) is the pressure, v is the kinematic viscosity, f (X, t)
is an external force and €2 is a bounded domain with piecewise smooth boundary d€2. The deriva-
tion of the NSEs can be found in many references such as [4-9]. However, the theoretical analysis of
NSEs in the three-dimensional case is notoriously difficult [4, 5, 9-12]. Many researchers resort to
numerical investigation of incompressible viscous flow models [6, 13-19]. Among various numeri-
cal algorithms for NSEs, the nonlinear term is usually treated explicitly while the reaction-diffusion
term is solved implicitly. The pressure term can be viewed as a Lagrange multiplier or can be solved by
using a deduced pressure Poisson equation [13, 15, 18]. Nevertheless, various numerical algorithms
may lead to instability, inaccuracy, and artificial numerical boundary layers. In the literature, a power-
ful tool called normal mode analysis is frequently used to analyze the stability and the errors of various

CONTACT Guoping Zhang @ guoping.zhang@morgan.edu; hyzgp73@gmail.com

© 2019 Informa UK Limited, trading as Taylor & Francis Group



2 G. ZHANG AND M. CAI

numerical methods. Such an analysis provides a convenient framework for the analysis of numerical
methods to solve incompressible flow problems. In the normal mode analysis, we first linearize the
nonlinear model (if the original model is nonlinear), then we find all possible eigenfunctions (so-
called normal modes) of the eigenvalue problem associated with the linearized model. The general
operator theory shows that all normal modes form a basis of a properly selected function space for
the solutions so that the solution of the linearized model is a superposition of the normal modes.
Therefore, we only need to test the stability of each normal mode solution in order to test it for the
arbitrary solution of the problem. Our focus is the 3D NSEs because the increase in dimension will
lead to essential difficulties on both theoretical aspect and numerical aspect. Correspondingly, the
analysis is more difficult. In this paper, we start with the analysis of a quasi-one dimensional Stokes
model. We derive the normal mode solution in a detailed way. Then, we investigate the stability and
accuracy of several time-stepping schemes for the solution of incompressible viscous flow models.

The rest of the paper is organized as follows: in Section 2 we derive the normal mode solutions to a
one-dimensional linearized model of NSEs. In Section 3, we perform the normal mode analysis to the
Backward Euler time differencing method and Crank-Nicolson time differencing method. We study
the stability and accuracy of solutions of a splitting method in the Section 4. Concluding remarks are
given in Section 5.

2. Normal mode solutions

The linearized model of NSEs without the external force is the following three-dimensional Stokes
equations :

v e -
E#—Vp:vv v (x € Q) (3)
V-1=0 (xeQ. 4)

A one-dimensional reduced linear model that embodies the essential features of the incompressibility
and viscous terms of the Navier-Stokes equations can be obtained by considering the solution of the
form

3= (u(x, ), v(x, 1), wix, t))e' &), p = plx t)elkr+io)

for the three-dimensional Stokes equations with homogeneous Dirichlet boundary conditions along
x -direction:

v(x,t) =0 (ifx=—landx=1). (5)

To proceed normal mode analysis, as stated as above, we assume that the solution (v, p) is periodic
along y and z directions with k and I being the corresponding wave numbers. Denoting D = 9/dx,
then equations satisfied by (u, v, w, p) are

% = —Dp +v[D* — (k¥ + P)]u; (6)
av . 2 2, 72

i —ikp + v[D* — (kK + I)]v; )
%’ = —ilp + v[D* — (K* + P)]w; (8)

Du + ikv + ilw = 0. 9)
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Here and there after, without losing generality, we set the domain

Q=[-L1] x[-m,7n]l x[-m,7]l={xp2)| —1<x<1; -n<y<m; —mw <z<m}.

The homogeneous Dirichlet boundary conditions then become
u(£l,t) = v(£l, 1) = w(xl, 1) =0, (10)
and the wave numbers k and / become integers.

We notice that (u, v, w, p) = (0,0, 0, p(#)) is always a solution of the problem (3)-(5) for any single
variable function p(t). This type of solutions are called trivial solutions. In this paper, we are only
interested in nontrivial solutions of the problem (3)-(5).

If the nontrivial solution of the boundary-value problem (6)-(10) is in separable form:

u(x,t) = a(x)UE), vt =0x)V(©), wt) =wx)W(E), plxt) = px)P(1),

then we have the following proposition, which actually states that the time frequency is a negative
number ¢ and ensures the solution is stable.

Proposition 2.1: Without losing generality, we assume that
U(0) = V(0) = W(0) = P(0) = L.
Then, there exists a real constant o < 0 such that
Ut) = V() = W(t) = P(t) = e°L.
Proof: We break the proof into two steps: in first step we prove the existence of the real constant o

and then we prove that o must be negative for a nontrivial solution in the second step.
After substituting the separate forms of u(x, t), v(x, t), w(x, t) and p(x, t) into (6)-(10), we obtain

dUu A N

i = (=Dp)P +v[D* — (¥ + )]s (11)
dv N N

by = —ikPP+ v[D* — (K + )] V; (12)
dw A N

W = —ilpP + v[D? — (K2 + P)1ww; (13)

(DU + ikdV + ilwW = 0. (14)

Applying the operator D on Equation (11), we have
.. dU 25 2 2 2\(D
(DM)E = (=D°p)P +v[D” — (k" + 1) |(Di)U. (15)
Multiplying ik to Equation (12) and il to Equation (13) respectively, we obtain
a4V 2 2 PR\
(zkv)a = k°pP + v[D” — (k* + I*)](ik0) V; (16)

(il@)ddltv = PpP + v[D* — (K + P)] () W. (17)
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Differentiating Equation (14) with respect to the variable ¢, we get

(DA)—dU + 'kA—dV + 'lA—dW 0
u ik ilw =0.
dt dt dt

We denote

r=+vk?+ L
Applying (14) and (18) on the sum of (15), (16) and (17), we obtain
[(D? — )pIP(t) =0,
which implies
(D* —Hp =0.
Thus, we have

p(x) = c; sinhrx + ¢, cosh rx.

Applying (D? — %) on (11), we get
du
(D* — rz)ﬁE =v(D* — U,

which implies

%—({ v(D? — 2%
= =——— =o0].
U @m-mu

(20)

1)

(22)

Here, o1 must be a constant since the left-hand side of the above equation is a function depending on
t only while the right-hand side of the above equation is a function depending on x only. Combining

with U(0) = 1, we obtain
U(t) = e,
Applying (D? — %) on (12), we get

dv
(D? — rz)ﬁa =v(D?* — )%V,

which implies that

C}l—‘t/ v(D? — r%)?%)

da _ 2 7
vV~ D= 2

with o being a constant. Combining with V(0) = 1, we obtain
V() = %!,
Similarly, we obtain
ddl;/ v(D? — r2)%w
— = = = 0'3
w (D? — 2w
and

W(t) = e,

(23)
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Substituting V and W into (12) and (13) respectively, we obtain

kosw —v(D? — )W

el02—03)t _ ,
I 030 — v(D? — r2)0

which implies that 0, = 03 = o since the right hand of the above equation is independent of ¢.
Similarly, after multiplying ik on (11) and applying D on (12), we obtain

02D — v(D? — r?)DD

elo1—o)t _ ,
ik(o1t — v(D? — r2)i1)

which implies that 02 = 01 = o since the right hand of the above equation is independent of t.
Therefore, we complete the proof for the existence of the real constant o.
Now we show that o < 0 in the nontrivial solution of the form

uxt) = a(x)e”’, viot) =0(x)e’!, wxt) =wx)e’, plxt) = px)e’’ (24)

to the boundary-value problem (6)-(10). This kind of solutions are called normal modes. Substitut-
ing (24) into (6)-(10), we have

ot = —Dp + v[D* — *lii; (25)
od = —ikp + v[D* — r*]0; (26)
oW = —ilp 4+ v[D? — r*]i; (27)

Dii + ik0 + ilw = 0. (28)

The homogeneous Dirichlet boundary conditions become
(1) = D(£1) = Ww(E£1) = 0. (29)
From (28) and (29), we obtain
Dii(£1) = 0. (30)

It is easy to show that if r = v/k* 4+ > = 0, then there are only trivial solutions to the problem (3)-(5).
Therefore, we can assume that r > 1 from now on.
Applying (ikD) on (26) and (27), then adding the resulting equations, we obtain

— oD*ii = *Dp — v[D* — *]D*, (31)
which leads to the following equation after combining with (25):
v[D? — P14 = o [D* — . (32)
We can rewrite (32) as
(D? = ?)(D? —* — o /v)it = 0.
The corresponding characteristic equation is
(m2 — r2)(m2 —r— o/v)=0.
Defining
w=+—0c/v—r2

then we can show that o must be negative by proving the following stronger statement.
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Claim: r> + o/v < 0, and therefore u = /—(c/v +r2) > 0Oand 0 = —v(r* + u?) < 0.

Proof: We assert that r? + o//v < 0 and therefore > 0. We use the argument by contradiction to
prove this statement. To proceed, we discuss the following two cases. [

Case (1): r> + o /v > 0.
Let i = m. If o # 0 then the general solution of (32) is

2t = c1 cosh(rx) + ¢, sinh(rx) + ¢3 cosh(fix) + ¢4 sinh(fix),
Dii = r(cy sinh(rx) + ¢; cosh(rx)) + fi(c3 sinh(fix) + ¢4 cosh(fix)).

The boundary conditions give use that

i(£1) =0, Di(%1) = 0.

This implies that
coshr  sinhr 1\ _ [—coshjii —sinhji) (c3 (33)
coshr —sinhr)\c;) ™ \—coshii sinhji 4
and
rsinhr rcoshr) (c1\ _ (—psinhft —ficoshit) (c3 (34)
—rsinhr rcoshr)\cy) = \ fisinht  —jicoshii) \cs)”

More clearly, from Equation (33), we have

cosh sinh &
g =— 3, € =—— C4,
! coshr > 2 sinhr *
from Equation (34), we see that
[ sinh [t cosh
Q=—-——0aG, O=—-———00.
rsinhr rcoshr

If ¢3 # 0, then i tanh it = rtanh 7.

If ¢4 # 0, then tanh /1 = tanhr/r.

Since x tanh x is strictly increasing on the interval [0, 00) and tanh x/x is strictly decreasing on
[0, 00), there must hold ft = r, which implies that o = 0. This is a contradiction!

If o = 0, then the general solution of (32) is

2t = c1 sinh rx 4 ¢, cosh rx + x(c3 sinh rx + ¢4 cosh rx).

By a similar argument we can derive a contradiction. Therefore, in Case (1), there is only a trivial
solution ¢ = ¢ = ¢3 = ¢4 = 0 for (32).

Case (2): > + o /v = 0.

The general solution of (32) is

2t = ¢y sinh rx + ¢; cosh rx + c3x + ¢4.

By a similar argument, we can prove that there is only trivial solution ¢; = ¢; = ¢3 = ¢4 = 0 for (32)
for Case (2). Thus the Claim has been proved. Therefore the proof of Proposition 2.1 is completed.
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From Proposition 2.1, we only need to consider the following ODE with u > 0.
v(D?* — )20 = o (D? — )i, (35)
and # satisfies the boundary conditions
u(£1) =0, Du(+l)=0. (36)

We notice that o is actually an eigenvalue and the nonzero function # is the associated eigenfunction
to the boundary value problem (35)-(36).
The general solution of (35) is

i = c1 cosh(rx) + ¢, sinh(rx) + c3 cos(uux) + ¢4 sin(ux).
Therefore,

Dt = cyrsinh(rx) + car cosh(rx) — c3u sin(ux) + c4pt cos(jux).

Applying the boundary conditions (36), we obtain
coshr  sinhr 1\ _ (—cosp —sinp\ (c3
coshr —sinhr)\c;/  \—cospu sinpu C4

rsinhr  rcoshr) (c1\ ([ mwsinp —pcosp) [c3
—rsinhr rcoshr)\cy) = \—pusinu —pcosp) \ca/)”
We only discuss the nontrivial solutions. Notice that if ¢4 = 0 and ¢3 # 0, then —p tan u = rtanh r;

ifcs4 # 0 and ¢3 = 0, then p cot © = r coth r; while ¢4 # 0, c3 # 0 implies a contradiction. Thus, we
have the following conclusion.

and

Proposition 2.2: The boundary value problem (35)—(36) has only the following two type of nontrivial
solutions forr > 1.

Case 1 (even solution): u = /—r> — o /v satisfies
—pmtan u = rtanhr,

and the corresponding eigenvalue o = —v(u* + r?) < 0 and the associated eigenfunction is a constant
multiple of

2t = cos jt cosh rx — cosh r cos px.

Correspondingly,

~ .| COSU o, coshr
v:zk|: Msmhrx—i—“

5 sin ux |,
r r

>
I

cos coshr
il [ e sinh rx + e S sin //,xi| ,
r

>

o CosiL |
— sinh rx.

r
Case 2 (odd solution): i = \/—r* — o /v satisfies

JLcot u = rcothr,
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and the corresponding eigenvalue o = —v(u? + r?) < 0 and the associated eigenfunction is a constant
multiple of

i = sin p sinh rx — sinh r sin px.
Correspondingly,

.~ . [sinu e sinh r
v =ik coshrx — S cos pux |,
r r

. [sinu usinhr
w =il coshrx — S COS x|,
r

o sin
— coshrx.

p=

r

Remark 2.3: (1) For given r = v/k? + [> > 1, by a simple analysis we know that on each interval
((w/2) + (k — 1), (7w /2) + k), k = 1,2,.. ., there is a unique px such that

— g tan wg = rtanhr,

and the eigenvalue o} = —v(ui + 1?) < 0, the associated eigenfunction i is denoted by uy.
(2) For given r > 1, on each interval (kz, (k + 1)7), k = 1,2, ..., there is a unique (i such that

i cot fix = rcothr,

and the eigenvalue 6 = —v(/li + 1?) < 0, the associated eigenfunction i is denoted by .
(3) If we define the function space

W¢[-1,1] = {u € H*[~1,1] : u(&1) = Du(+1) = 0},

then the general operator theory shows that the set of all eigenfunctions {uy, iy : k =1,2,3,...}
forms a basis of WZ[—1,1] (see [6]).

3. Semidiscrete implicit coupled methods

In this section, we are seeking normal mode solutions to some semidiscrete equations which are
analogues to the normal mode solutions of the continuous model problem in Section 2. The
corresponding normal modes are of the form

(" (x), v" (), w" (x), p" (%)) = K" (i1(x), U(x), w(x), p(x)), (37)

where K is the amplification factor and #n denotes the n-th time step. The semidiscrete approximation
is stable if |[K| < 14 O( At) for all normal modes and is unstable otherwise [6]. The accuracy of
the particular semidiscrete methods can be studied by computing the exponential growth rate &
defined by

In K

K" = exp(6 nAt), 6 = NS (38)

The error 6 — o, where o is given by (35)-(36), measures the time discretization error.
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3.1. Backward Euler time differencing

If the system (6)-(10) is approximated by the backward Euler time differencing scheme, denoting

r = +k? + I2, then

un+1 —u"

N — _Dpn—H Y [DZ o 7’2] un+l,
un+1 — "
= —ik p"tt + v [D* — ] ",
WnJrl —

" = —ilp"t 4 v [D* — Pl W',

Du" 4 ik o™ il w" =0,
W (+1) = v (£1) = W' (1) =0,
which imply
Du"tl(£1) = 0.
Applying D on (39), we have
Dy — Dyt
—
Multiplying ik to (40), we see that

lkun"rl — ikvn _ kzpn+l + v [D2 _ 72] (lk vn"rl)'
At
Multiplying il to (41), we have

ilw”“A—;ilw" = Pp"l 4y [D? — 2] (il WY,
Adding (45)-(47) together and applying (42), we obtain

(D? — P)p™+ =0
Applying (D? — #2) on (37), we obtain

(D2 _ rz)(u’“'l —uM
At

(DZ _ rz)(u”ﬂ —uM)
At

W"N(£1) = DU (+1) = 0.

= (D2 _ 7'2)2 uﬂ+l)

Substituting u” = K" &1, u"*! = K"*! # into (49), we obtain

K—-1

D? — i = v(D? — )4,
KAt( ) ( )

f(£1) = Di(£1) = 0.

= —D*p""! v [D?* — ] (Du™).

— _D(DZ _ r2) pn-H + v (D2 _ 1’2)2 un-l—l,

(39)

(40)

(41)

(42)
(43)

(44)

(45)

(46)

(47)

(48)

(49)

(50)

(51)
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Let

K=1 k=
KAt T 1—0oAt

We have
o (D?* — i = v(D? — )*1,

which is the same as (35). The time dependance of (u",v",w",p") is proportional to K" =
exp(6 nAt), where

In K —In(1—-0Af)

o =
At At
Since
o0 xn+1
In (1 —x)=—
1-x) Zn—i—l
n=0
for small At, we have
o
(o A"l 1, 5, 1 5 4
—In(1 —ocAt) = ———— =0At+ —0“At* + -0 A" + - - - .
( ) ; n+1 2 3

Thus

1 1

&=0+-0’At+ -0 AP+,

2 3
which implies that

6 —o = O(AD).
So the exponential growth rate 6 for the Backward Euler scheme is in error of the order O(At).
Noting that 0 < 0, we have K < 1, and therefore this numerical scheme is unconditionally stable.

Thus, the normal analysis demonstrates the stability property of this implicit semidiscrete scheme.
Moreover, this scheme is convergent if At — 0.

3.2. Crank-Nicolson time differencing

If the system (6)-(10) is approximated by Crank-Nicolson scheme, then we have

un+l _— 1 1
v A L [CANE TP (52)

n+l _ . n 1
: At T ikp SvID? =] " ), (53)

n+l _ . n 1
- At Yoo ipti 4 QV[DZ =Pl W, (54)

Du" ! ik o™ il w T =0, (55)
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W (+1) = v (+1) = w21 = 0. (56)

We will show that this numerical scheme is both unconditionally stable and accurate to the order of
O(A#?). Indeed, we can use a similar method to derive that

(DZ _ r2)pi’l+% — 0
Applying (D? — r?) on (52),we obtain

(D2 _ r2)(un+1 _ un)
At

1
= EV(DZ — 2 um. (57)
Let
u"=K"'u, v'=K"0, w"=K"W,

substituting them into (57), we have

KD ey = EEDY 0 oy
At 2
Let
2K — 1)
TAK+ D)
we have

o(D* — )it = v(D* — r*)*@,

which is the same as (35) where we have o < 0. Let

2K — 1) 2+oAt 1+ UAt
At(K+1) 2—oAt 1——UAt

Setting
K" = exp(6 nA¥),
we have
s_InK_In(+ Jo At —In(1 — JoAb)
At At '
o0 (_1)n(%0At)n+l

1
In(1 + -0 At) = -
n(—i_ZU ) § n—+1

>\ (Fo AnH

Z n+1

—In(1 — ! At)
n 20’

n=0
1 ( t)n-i-l
o =— 1" e
~ Z[( )"+ —
2 o O'2m+1At2m+1 S 02m+lAt2m
T At 2. m + D)22mtl — L — (2m + 1)227

m=0

o+ U—(At) + (At) 4+ =0+ 0P
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which implies
& —o = O(A).

Aso < 0,weseethaté < 0and |K| < 1. Thus, the exponential growth rate & for the Crank-Nicolson
scheme is in error of the order O(A#?) and this scheme is unconditionally stable.

4, Splitting method

In this section, we consider the velocity-pressure splitting with the normal velocity boundary
conditions [15, 18]. The time-differencing scheme involves the following two split time steps.
The first step involves solution of the inviscid equation:

u* —u"
——D n+1’ 58
A7 P (58)
v¥ — "
= —ikp"t!, 59
At wp (59)
w* — wi
= —il p"t1, 60
At vp (60)
Du* + ikv* + ilw* = 0, (61)
u*(£1) = v*(£1) = w'(£1) = 0. (62)

The second step involves the solution of the viscous equation

un+1 _ u*
— D2 2 n+l’ 63
Iy, v( ) u (63)
un+1 —*
= v(D? — ) ", 64
A ( ) (64)
whtl g%
YooY Dt n+1’ 65
A7 ( ) w (65)
u"(£1) = v (£ = W (£D) = 0. (66)

Remark: In the above splitting algorithm, (58)-(66), u", v", w" do not satisfy the incompressibility
constraint, although the intermediate variables u*, v*, w* do.

4.1. The computation of u and u*

To analyze the splitting method, we firstly derive the results for the normal modes of the above system.
The general conclusion then follow from the completeness of the normal modes.
Let

", v, w", p") = K" (&1, 0, W, p) (67)
and
(w*,v*, w") = K"(0*, 0%, w"). (68)
Substituting (67) and (68) into (58)-(66) gives
i* — it = —(KAt)Dp, (69)
" — 0 = —ik (KAY)p, (70)
w* —w = —il(KAt)p, (71)
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Du* + ikv* +ilw* =0, (72)

W (1) = 7 (1) = W (£1) = 0, (73)
] ]

D2 PR i 74

O = =" Toal (74)
1 1

D22 - 5 75

(D" —r vAt) “T T koAt (75)
1

D2 V. 76

( r vAt) KvAtW (76)

(1) = (1) = (1) = 0. 77)

Applying D on (69), multiplying ik on (70) and multiplying il on (71), then adding them together, we
have

(KAt)(D* — 1*) p = Dii + ikd + iliw. (78)

Applying D on (74), multiplying ik on (75) and multiplying il on (76), then adding them together, we
see that

(D* — 1% — L)(Da + ikd + ilw) = 0. (79)
VAt
(78) and (79) imply that
(D* —)(D* =1 — —)p =0. (80)
Applying (D? — r*)(D?* — r* — —) on (69) gives
22
(D? 2)<D2—r—L>£¢*:(Dz—r2)<D2—r2—L>~:—u£¢*,
At VAt Kv At
2 20~ _ K= 2 ~x
(D* —r)“u* = oAl At(D )ik, (81)
(72) and (73) imply
Du*(£1) = u*(£1) = 0. (82)

The characteristic equation of (81)

K—-1 K—-1

2 2,2 2 2
— =——m —r)=> m==4r,+,/—1r* - .
) KvAt( ) KvAt

i , K—1\2 .
=|-r - > 0.
H KvAt

The general solution of Equation (81) can be expressed as

(m

Let

#* = ¢ coshrx+ cp sinhrx + ¢3 cos fix + ¢4 sin jix,
Dit* = ¢; r sinhrx + ¢ ¥ coshrx — c3 fi sin fix 4 c4 [L COS [LX,
(1) =0 = ¢1 coshr+ cysinh r+¢3 cosfi + ¢4 sinji =0,
*(—1) =0 = ¢; coshr — ¢, sinh r+c3 cosft — ¢4 sinft =0,
Dii*(1) =0 = ¢y r sinhr+ ¢y r coshr — ¢3 fisin i + c4 ft cos i =0,
Du*(—1) =0 = —cyr sinhr + ¢y rcoshr + c3 fisinft + ¢4 fi cos it = 0,
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which imply that
Cos [L sin it
q=- G, 0 =—- C4,
coshr sinh r
[ sin i L cos i
€l =—— 3, =- 4.
rsinhr rcoshr

By a similar analysis to that in Section 2, we obtain the boundary value problem (81)-(84) has only
the following two types of solutions.
(i) Even solution: The eigenvalue [i satisfies

—jtan i = rtanhr,

and the corresponding eigenfunction is a constant multiple of

#* = cos jt cosh rx — cosh r cos fix.
(ii) Odd solution: The eigenvalue & satisfies

[Lcot i = rcothr,

and the corresponding eigenfunction is a constant multiple of

%" = sin i sinh rx — sinh rsin [ix.
Let

K-1

KAt’

then (81) becomes
vw(D? — 0" = o (D? — )i,
which is exactly the same as (35). Since
- ,  O0\1/2
e (r-3)
v
we see that

K = ; — eo’ At‘
1 —oAt
The leading behavior o of the growth rate & agrees with that of the exact solution:

InK _ln(l — o At)

6=— =
At At
1, L 5.3
=0+ S0 At 200 A 4o (83)
which implies that
6 —o = O(AD).
Let
1 \1/2
r=(r+— > 0.
VAL
Equation (74) becomes
2 2\~ 1 ~%
(D" = A )H)u=— u,

KvAt
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i(+1) = 0. (84)
We consider two cases:
Case (i):
#* = cos ju cosh rx — cosh r cos ux
is even.

Noting that r # A and r # u, we see that the general solution of (84) is

= ¢ coshAx + ¢y sinhAx + .

Here,
up = A coshrx + Bcos jux,
Diiy = Ar sinhrx — B sin jux,
Dzﬁp = Ar? cosh rx — Bu? cos ux,
(D* — Xz)ﬁp = A(r* — A?) coshrx — B(u? + A?) cos ux,
Cos (L cosh r
=— h , 85
KvAtCOS rx+KUAtcosux (85)
which implies that
A= cos [ )
KvAt(\2 —r?)
B coshr
T KvAt(A2 + p?)’
cos u cosh rx cosh rcos ux
U, = — .
P KvALA2 —12)  KvAt(A2 + p?)
Noting that
1—oAt ( )
Thus,
. cos i cosh rx cosh r cos ux
21 = ¢; coshAx + ¢ sinh Ax + e — s .
KvAt(A2 —r?)  KvAt(A?2 + u?)
From
1 1 o
)\.2—}’22—, )\2 2=___,
VAL ta vAt v
we obtain

21 = ¢ cosh Ax + ¢ sinh Ax + (1 — o At) cos u cosh rx — cosh r cos pux.
Applying the boundary conditions:
(1) = 0= ¢ coshA + ¢ sinhA — o At cospcoshr =0,
u(—1) =0 = ¢ coshA — ¢, sinhA — o At cos pucoshr = 0,

we have

o At cos L coshr 0
(q=——"7"797¥—"", ¢=0.
! cosh A :
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Thus,

cosh Ax

U= o0Atcosu <cosh r — cosh rx> + (cos u cosh rx — cosh r cos jux)

COS

is also even.
Case (ii): u™ = sin u sinh rx — sinh 7 sin ux is odd.

u=c coshix+c; sinh A x + i,

where
up = Asinhrx + Bsin ux,
Duy, = Ar cosh rx + B cos ux,
Dzﬁp = Ar? sinh rx — Bu? sin ux,
1 sin sinhr
D?* — )i, = — 0= — sinh rx sin jux,
( Y = Koat KvAt VA
) ) sin i sinh r
= A(r* — A?) sinhrx — B(u? + A?) sin ux = — sinh rx + sin pux
( ) (e ) sin KoA? Ap Snp
sin
= M, B = —sinhr.
K
sin p sinh rx
= 11 = ¢; coshix+ ¢y sinhA x+ 'MT — sinh 7 sin ux.
Applying the boundary condition,
N . sin  sinh r . )
(1) =0 = ¢y coshA + ¢ sinhA = ——x + sin e sinh r,
sin j sinh r
(—1) =0 = ¢; coshA — ¢, sinhA = SMASIAT sinh 7 sin 1.
We have
0 o At sin pusinhr
aq=0¢g=—7-—-—"
! 2 sinh A
Thus,
~ sinh Ax
u=oAtsinu (sinh r— — sinh rx) + (sin p sinh rx — sinh 7 sin px)
sin
is also odd.

Since u* is the exact normal mode solution, we can compute the error & — #* as follows.
Case (i): #4* = cosu cosh rx — cosh rcos u x,

cosh Ax
T coshrx | 4+ (cos uu cosh rx — cosh r cos ux),

= oAtcosu (cosh r
cos

which implies that

s cosh Ax
u—u"=oAtcosu | coshr
cosh A

— cosh rx) .

Obviously, we have the error estimate:

u—u* = O(AD).
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The error is uniformly bounded with respect to x in [ —1,1] as At — 0 because

1 \2
/\=<r2+$> — o0 asAt— 0,
%

cosh A x

osh A

x] < 1= — 0 asi — oo.

Case (ii):#* = sin u sinh rx — sinh rsin u x,

sinh Ax

Nitsl

u=oAtsinu (sinh r — sinh rx) + (sin p sinh rx — sinh r sin ux),

which implies that
i — " = O(AL).

The error is uniformly bounded with respect to x in [ —1,1] as At — 0 because

1 \:2
)\=<r2+$) — o0 asAt— 0,
v

sinh A x
x| < 1= — — 0 asi — oo.
sinh A
4.2. The Computation of p
Case (i): u™iseven.
From (69),
. u—u* o cos
Dp = = — s [cosh rcosh A x — cosh A cosh rx]
KAt K cosh i
. o cospu [coshr | coshA .
= p=— sinh A x — sinh rx | + ¢,
P K cosh A |: A r

where c is a constant. From (81):

(D* — (D> = A®)p =0.

= p = cosh rx+ ¢ sinh rx+ ¢3 coshA x + ¢4 sinh A x.

Thus, we see that c=0 and

- cos cosh r cosh A
p= g i sinh A x — sinh rx | (1 — o At).
cosh A A r
Notice that
N o Ccos
p=-—  sinh rx,
’
. . ocospucoshr Ato? cos cosh r cosh A
p—p= e sinh A x — o sinh A x — sinh rx |.
coshr A cosh A A
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Moreover,

2 12 (1/2) 1 1/2
A= i = O(At™ = — =0O(At
(r +- At) ( )= = =0
Because sinh A x/cosh A is uniformly bounded on [—1, 1] as At — 0, we have

p—p=0O(ALY?).

Case (ii): u* is odd.

u—1u o sin
D = = — [sinh rsinh A x — sinh A sinh rx] — i .
KAt K sinh A
From (80),
p =c1 cosh rx+ ¢, sinh rx+ ¢3 coshA x4 ¢4 sinh X x.
Thus,
. osin sinh r sinh A
p=— e cosh A x — cosh rx| (1 — o AY),
sinh A A
R o sin
p=- # cosh rx,
. . osinusinh rcoshA  Ato?sin sinh r sinh A
p—p= ad - - — a coshi x — cosh rx |.
A sinh A sinh A A
We see that

b —p=0(t?).

Similarly, one can compute v, 0%, w, w*. As the derivations are similar, we omit the details.

5. Concluding remarks

In this work, we derive the normal mode solution of a 3D linearized incompressible fluid flow model.
Then, we apply the results to analyze some implicit time stepping schemes including the Backward
Euler and the Crank-Nicolson schemes, as well as the splitting method. By using the normal mode
analysis, we rigorously prove that both the Backward Euler scheme and Crank-Nicolson schemes for
the 3D Stokes equations are unconditionally stable; The time errors of the Backward Euler scheme and
the Crank-Nicolson scheme are of the order O(At) and O(At?), respectively. Moreover, based on
the normal mode analysis, we give the estimates of error orders of each variable and the intermediate
variables for the splitting method.
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