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ABSTRACT

In this paper, we study the normal mode solutions of 3D incompressible
viscous fluid flowmodels. The obtained theoretical results are then applied
to analyze several time-stepping schemes for the numerical solutions of the
3D incompressible fluid flowmodels.
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1. Introduction

Many types of flow motions can be described by using various forms of incompressible viscous
flow models [1]. In particular, the incompressible Navier–Stokes equations (NSEs) have been widely
used to model many important applications [2] such as ocean currents [1], water flow in a pipe [3],
water pollution, and blood flow in vessels. The NSEs are useful because they describe the physics of
many phenomena of scientific and engineering interest. The NSEs for a viscous, incompressible flow
read as

∂ �v
∂t

+ ∇p = −�v · ∇�v + ν∇2�v + �f (�x ∈ �); (1)

∇ · �v = 0 (�x ∈ �). (2)

Here, �v(�x, t) is the velocity field at (�x, t); p(�x, t) is the pressure, ν is the kinematic viscosity, f (�x, t)
is an external force and � is a bounded domain with piecewise smooth boundary ∂�. The deriva-
tion of the NSEs can be found in many references such as [4–9]. However, the theoretical analysis of
NSEs in the three-dimensional case is notoriously difficult [4, 5, 9–12]. Many researchers resort to
numerical investigation of incompressible viscous flow models [6, 13–19]. Among various numeri-
cal algorithms for NSEs, the nonlinear term is usually treated explicitly while the reaction–diffusion
term is solved implicitly. The pressure term can be viewed as a Lagrangemultiplier or can be solved by
using a deduced pressure Poisson equation [13, 15, 18]. Nevertheless, various numerical algorithms
may lead to instability, inaccuracy, and artificial numerical boundary layers. In the literature, a power-
ful tool called normalmode analysis is frequently used to analyze the stability and the errors of various
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numerical methods. Such an analysis provides a convenient framework for the analysis of numerical
methods to solve incompressible flow problems. In the normal mode analysis, we first linearize the
nonlinear model (if the original model is nonlinear), then we find all possible eigenfunctions (so-
called normal modes) of the eigenvalue problem associated with the linearized model. The general
operator theory shows that all normal modes form a basis of a properly selected function space for
the solutions so that the solution of the linearized model is a superposition of the normal modes.
Therefore, we only need to test the stability of each normal mode solution in order to test it for the
arbitrary solution of the problem. Our focus is the 3D NSEs because the increase in dimension will
lead to essential difficulties on both theoretical aspect and numerical aspect. Correspondingly, the
analysis is more difficult. In this paper, we start with the analysis of a quasi-one dimensional Stokes
model. We derive the normal mode solution in a detailed way. Then, we investigate the stability and
accuracy of several time-stepping schemes for the solution of incompressible viscous flow models.

The rest of the paper is organized as follows: in Section 2 we derive the normal mode solutions to a
one-dimensional linearizedmodel of NSEs. In Section 3, we perform the normalmode analysis to the
Backward Euler time differencing method and Crank–Nicolson time differencing method. We study
the stability and accuracy of solutions of a splitting method in the Section 4. Concluding remarks are
given in Section 5.

2. Normal mode solutions

The linearized model of NSEs without the external force is the following three-dimensional Stokes
equations :

∂ �v
∂t

+ ∇p = ν∇2�v (�x ∈ �); (3)

∇ · �v = 0 (�x ∈ �). (4)

A one-dimensional reduced linearmodel that embodies the essential features of the incompressibility
and viscous terms of the Navier–Stokes equations can be obtained by considering the solution of the
form

�v = (u(x, t), v(x, t),w(x, t))ei(ky+lz), p = p(x, t)ei(ky+lz)

for the three-dimensional Stokes equations with homogeneous Dirichlet boundary conditions along
x -direction:

�v(�x, t) = 0 (if x = −1 and x = 1). (5)

To proceed normal mode analysis, as stated as above, we assume that the solution (�v, p) is periodic
along y and z directions with k and l being the corresponding wave numbers. Denoting D = ∂/∂x,
then equations satisfied by (u, v,w, p) are

∂u

∂t
= −Dp + ν[D2 − (k2 + l2)]u; (6)

∂v

∂t
= −ikp + ν[D2 − (k2 + l2)]v; (7)

∂w

∂t
= −ilp + ν[D2 − (k2 + l2)]w; (8)

Du + ikv + ilw = 0. (9)



APPLICABLE ANALYSIS 3

Here and there after, without losing generality, we set the domain

� = [−1, 1] × [−π ,π] × [−π ,π] = {(x, y, z) | − 1 ≤ x ≤ 1; −π ≤ y ≤ π ; −π ≤ z ≤ π}.

The homogeneous Dirichlet boundary conditions then become

u(±1, t) = v(±1, t) = w(±1, t) = 0, (10)

and the wave numbers k and l become integers.
We notice that (u, v,w, p) = (0, 0, 0, p(t)) is always a solution of the problem (3)–(5) for any single

variable function p(t). This type of solutions are called trivial solutions. In this paper, we are only
interested in nontrivial solutions of the problem (3)–(5).

If the nontrivial solution of the boundary-value problem (6)–(10) is in separable form:

u(x, t) = û(x)U(t), v(x, t) = v̂(x)V(t), w(x, t) = ŵ(x)W(t), p(x, t) = p̂(x)P(t),

then we have the following proposition, which actually states that the time frequency is a negative
number σ and ensures the solution is stable.

Proposition 2.1: Without losing generality, we assume that

U(0) = V(0) = W(0) = P(0) = 1.

Then, there exists a real constant σ < 0 such that

U(t) = V(t) = W(t) = P(t) = eσ t .

Proof: We break the proof into two steps: in first step we prove the existence of the real constant σ

and then we prove that σ must be negative for a nontrivial solution in the second step.
After substituting the separate forms of u(x, t), v(x, t),w(x, t) and p(x, t) into (6)–(10), we obtain

û
dU

dt
= (−Dp̂)P + ν[D2 − (k2 + l2)]ûU; (11)

v̂
dV

dt
= −ikp̂P + ν[D2 − (k2 + l2)]v̂V ; (12)

ŵ
dW

dt
= −ilp̂P + ν[D2 − (k2 + l2)]ŵW; (13)

(Dû)U + ikv̂V + ilŵW = 0. (14)

Applying the operator D on Equation (11), we have

(Dû)
dU

dt
= (−D2p̂)P + ν[D2 − (k2 + l2)](Dû)U. (15)

Multiplying ik to Equation (12) and il to Equation (13) respectively, we obtain

(ikv̂)
dV

dt
= k2p̂P + ν[D2 − (k2 + l2)](ikv̂)V ; (16)

(ilŵ)
dW

dt
= l2p̂P + ν[D2 − (k2 + l2)](ilŵ)W. (17)
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Differentiating Equation (14) with respect to the variable t, we get

(Dû)
dU

dt
+ ikv̂

dV

dt
+ ilŵ

dW

dt
= 0. (18)

We denote

r =
√

k2 + l2. (19)

Applying (14) and (18) on the sum of (15), (16) and (17), we obtain

[(D2 − r2)p̂]P(t) = 0,

which implies

(D2 − r2)p̂ = 0. (20)

Thus, we have

p̂(x) = c1 sinh rx + c2 cosh rx. (21)

�

Applying (D2 − r2) on (11), we get

(D2 − r2)û
dU

dt
= ν(D2 − r2)2ûU,

which implies

dU
dt

U
= ν(D2 − r2)2û

(D2 − r2)û
= σ1. (22)

Here, σ1 must be a constant since the left-hand side of the above equation is a function depending on
t only while the right-hand side of the above equation is a function depending on x only. Combining
with U(0) = 1, we obtain

U(t) = eσ1t .

Applying (D2 − r2) on (12), we get

(D2 − r2)v̂
dV

dt
= ν(D2 − r2)2v̂V ,

which implies that

dV
dt

V
= ν(D2 − r2)2v̂

(D2 − r2)v̂
= σ2

with σ2 being a constant. Combining with V(0) = 1, we obtain

V(t) = eσ2t .

Similarly, we obtain

dW
dt

W
= ν(D2 − r2)2ŵ

(D2 − r2)ŵ
= σ3

and

W(t) = eσ3t . (23)
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Substituting V andW into (12) and (13) respectively, we obtain

e(σ2−σ3)t = k

l

σ3ŵ − ν(D2 − r2)ŵ

σ2v̂ − ν(D2 − r2)v̂
,

which implies that σ2 = σ3 ≡ σ since the right hand of the above equation is independent of t.
Similarly, after multiplying ik on (11) and applying D on (12), we obtain

e(σ1−σ2)t = σ2Dv̂ − ν(D2 − r2)Dv̂

ik(σ1û − ν(D2 − r2)û)
,

which implies that σ2 = σ1 = σ since the right hand of the above equation is independent of t.
Therefore, we complete the proof for the existence of the real constant σ .
Now we show that σ < 0 in the nontrivial solution of the form

u(x, t) = û(x)eσ t , v(x, t) = v̂(x)eσ t , w(x, t) = ŵ(x)eσ t , p(x, t) = p̂(x)eσ t (24)

to the boundary-value problem (6)–(10). This kind of solutions are called normal modes. Substitut-
ing (24) into (6)–(10), we have

σ û = −Dp̂ + ν[D2 − r2]û; (25)

σ v̂ = −ikp̂ + ν[D2 − r2]v̂; (26)

σ ŵ = −ilp̂ + ν[D2 − r2]ŵ; (27)

Dû + ikv̂ + ilŵ = 0. (28)

The homogeneous Dirichlet boundary conditions become

û(±1) = v̂(±1) = ŵ(±1) = 0. (29)

From (28) and (29), we obtain

Dû(±1) = 0. (30)

It is easy to show that if r =
√
k2 + l2 = 0, then there are only trivial solutions to the problem (3)–(5).

Therefore, we can assume that r ≥ 1 from now on.
Applying (ikD) on (26) and (27), then adding the resulting equations, we obtain

− σD2û = r2Dp̂ − ν[D2 − r2]D2û, (31)

which leads to the following equation after combining with (25):

ν[D2 − r2]2û = σ [D2 − r2]û. (32)

We can rewrite (32) as

(D2 − r2)(D2 − r2 − σ/ν)û = 0.

The corresponding characteristic equation is

(m2 − r2)(m2 − r2 − σ/ν) = 0.

Defining

µ =
√

−σ/ν − r2,

then we can show that σ must be negative by proving the following stronger statement.
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Claim: r2 + σ/ν < 0, and therefore µ =
√

−(σ/ν + r2) > 0 and σ = −ν(r2 + µ2) < 0.

Proof: We assert that r2 + σ/ν < 0 and therefore µ > 0. We use the argument by contradiction to
prove this statement. To proceed, we discuss the following two cases. �

Case (1): r2 + σ/ν > 0.
Let µ̃ =

√

r2 + σ/ν. If σ 	= 0 then the general solution of (32) is

û = c1 cosh(rx) + c2 sinh(rx) + c3 cosh(µ̃x) + c4 sinh(µ̃x),

Dû = r(c1 sinh(rx) + c2 cosh(rx)) + µ̃(c3 sinh(µ̃x) + c4 cosh(µ̃x)).

The boundary conditions give use that

û(±1) = 0, Dû(±1) = 0.

This implies that

(

cosh r sinh r
cosh r − sinh r

)(

c1
c2

)

=
(− cosh µ̃ − sinh µ̃

− cosh µ̃ sinh µ̃

) (

c3
c4

)

(33)

and
(

r sinh r r cosh r
−r sinh r r cosh r

)(

c1
c2

)

=
(

−µ̃ sinh µ̃ −µ̃ cosh µ̃

µ̃ sinh µ̃ −µ̃ cosh µ̃

)(

c3
c4

)

. (34)

More clearly, from Equation (33), we have

c1 = −cosh µ̃

cosh r
c3, c2 = − sinh µ̃

sinh r
c4,

from Equation (34), we see that

c1 = − µ̃ sinh µ̃

r sinh r
c3, c2 = − µ̃ cosh µ̃

r cosh r
c4.

If c3 	= 0, then µ̃ tanh µ̃ = r tanh r .
If c4 	= 0, then tanh µ̃/µ̃ = tanh r/r.
Since x tanh x is strictly increasing on the interval [0,∞) and tanh x/x is strictly decreasing on

[0,∞), there must hold µ̃ = r, which implies that σ = 0. This is a contradiction!
If σ = 0, then the general solution of (32) is

û = c1 sinh rx + c2 cosh rx + x(c3 sinh rx + c4 cosh rx).

By a similar argument we can derive a contradiction. Therefore, in Case (1), there is only a trivial
solution c1 = c2 = c3 = c4 = 0 for (32).

Case (2): r2 + σ/ν = 0.
The general solution of (32) is

û = c1 sinh rx + c2 cosh rx + c3x + c4.

By a similar argument, we can prove that there is only trivial solution c1 = c2 = c3 = c4 = 0 for (32)
for Case (2). Thus the Claim has been proved. Therefore the proof of Proposition 2.1 is completed.
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From Proposition 2.1, we only need to consider the following ODE with µ > 0.

ν(D2 − r2)2û = σ(D2 − r2)û, (35)

and û satisfies the boundary conditions

û(±1) = 0, Dû(±1) = 0. (36)

We notice that σ is actually an eigenvalue and the nonzero function û is the associated eigenfunction
to the boundary value problem (35)–(36).

The general solution of (35) is

û = c1 cosh(rx) + c2 sinh(rx) + c3 cos(µx) + c4 sin(µx).

Therefore,

Dû = c1r sinh(rx) + c2r cosh(rx) − c3µ sin(µx) + c4µ cos(µx).

Applying the boundary conditions (36), we obtain

(

cosh r sinh r
cosh r − sinh r

)(

c1
c2

)

=
(

− cosµ − sinµ

− cosµ sinµ

)(

c3
c4

)

and
(

r sinh r r cosh r
−r sinh r r cosh r

)(

c1
c2

)

=
(

µ sinµ −µ cosµ
−µ sinµ −µ cosµ

)(

c3
c4

)

.

We only discuss the nontrivial solutions. Notice that if c4 = 0 and c3 	= 0, then −µ tanµ = r tanh r;
if c4 	= 0 and c3 = 0, then µ cotµ = r coth r; while c4 	= 0, c3 	= 0 implies a contradiction. Thus, we
have the following conclusion.

Proposition 2.2: The boundary value problem (35)–(36) has only the following two type of nontrivial
solutions for r ≥ 1.

Case 1 (even solution): µ =
√

−r2 − σ/ν satisfies

−µ tanµ = r tanh r,

and the corresponding eigenvalue σ = −ν(µ2 + r2) < 0 and the associated eigenfunction is a constant
multiple of

û = cosµ cosh rx − cosh r cosµx.

Correspondingly,

v̂ = ik

[

cosµ

r
sinh rx + µ cosh r

r2
sinµx

]

,

ŵ = il

[

cosµ

r
sinh rx + µ cosh r

r2
sinµx

]

,

p̂ = −σ cosµ

r
sinh rx.

Case 2 (odd solution): µ =
√

−r2 − σ/ν satisfies

µ cotµ = r coth r,
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and the corresponding eigenvalue σ = −ν(µ2 + r2) < 0 and the associated eigenfunction is a constant
multiple of

û = sinµ sinh rx − sinh r sinµx.

Correspondingly,

v̂ = ik

[

sinµ

r
cosh rx − µ sinh r

r2
cosµx

]

,

ŵ = il

[

sinµ

r
cosh rx − µ sinh r

r2
cosµx

]

,

p̂ = −σ sinµ

r
cosh rx.

Remark 2.3: (1) For given r =
√
k2 + l2 ≥ 1, by a simple analysis we know that on each interval

((π/2) + (k − 1)π , (π/2) + kπ), k = 1, 2, . . ., there is a unique µk such that

−µk tanµk = r tanh r,

and the eigenvalue σk = −ν(µ2
k + r2) < 0, the associated eigenfunction û is denoted by uk.

(2) For given r ≥ 1, on each interval (kπ , (k + 1)π), k = 1, 2, . . ., there is a unique µ̃k such that

µ̃k cot µ̃k = r coth r,

and the eigenvalue σ̃k = −ν(µ̃2
k + r2) < 0, the associated eigenfunction û is denoted by ũk.

(3) If we define the function space

W2
0 [−1, 1] = {u ∈ H2[−1, 1] : u(±1) = Du(±1) = 0},

then the general operator theory shows that the set of all eigenfunctions {uk, ũk : k = 1, 2, 3, . . .}
forms a basis ofW2

0 [−1, 1] (see [6]).

3. Semidiscrete implicit coupledmethods

In this section, we are seeking normal mode solutions to some semidiscrete equations which are
analogues to the normal mode solutions of the continuous model problem in Section 2. The
corresponding normal modes are of the form

(un(x), vn(x),wn(x), pn(x)) = Kn(ũ(x), ṽ(x), w̃(x), p̃(x)), (37)

whereK is the amplification factor and n denotes the n-th time step. The semidiscrete approximation
is stable if |K| ≤ 1 +O( �t) for all normal modes and is unstable otherwise [6]. The accuracy of
the particular semidiscrete methods can be studied by computing the exponential growth rate σ̃

defined by

Kn = exp(σ̃ n�t), σ̃ = ln K

�t
. (38)

The error σ̃ − σ , where σ is given by (35)–(36), measures the time discretization error.
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3.1. Backward Euler time differencing

If the system (6)–(10) is approximated by the backward Euler time differencing scheme, denoting

r =
√
k2 + l2, then

un+1 − un

�t
= −D pn+1 + ν [D2 − r2] un+1, (39)

un+1 − vn

�t
= −ik pn+1 + ν [D2 − r2] vn+1, (40)

wn+1 − wn

�t
= −il pn+1 + ν [D2 − r2] wn+1, (41)

Dun+1 + ik vn+1 + il wn+1 = 0, (42)

un+1(±1) = vn+1(±1) = wn+1(±1) = 0, (43)

which imply

Dun+1(±1) = 0. (44)

Applying D on (39), we have

Dun+1 − Dun

�t
= −D2pn+1 + ν [D2 − r2] (Dun+1). (45)

Multiplying ik to (40), we see that

ikun+1 − ikvn

�t
= k2pn+1 + ν [D2 − r2] (ik vn+1). (46)

Multiplying il to (41), we have

ilwn+1 − ilwn

�t
= l2pn+1 + ν [D2 − r2] (il wn+1). (47)

Adding (45)–(47) together and applying (42), we obtain

(D2 − r2)pn+1 = 0.

Applying (D2 − r2) on (37), we obtain

(D2 − r2)(un+1 − un)

�t
= −D(D2 − r2) pn+1 + ν (D2 − r2)2 un+1, (48)

(D2 − r2)(un+1 − un)

�t
= ν (D2 − r2)2 un+1, (49)

un+1(±1) = Dun+1(±1) = 0. (50)

Substituting un = Kn ũ , un+1 = Kn+1 ũ into (49), we obtain

K − 1

K�t
(D2 − r2)ũ = ν(D2 − r2)2ũ,

ũ(±1) = Dũ(±1) = 0. (51)
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Let

σ = K − 1

K�t
⇒ K = 1

1 − σ�t
.

We have

σ(D2 − r2)ũ = ν(D2 − r2)2ũ,

which is the same as (35). The time dependance of (un, vn,wn, pn) is proportional to Kn =
exp(σ̃ n�t), where

σ̃ = ln K

�t
= − ln(1 − σ�t)

�t
.

Since

ln (1 − x) = −
∞
∑

n=0

xn+1

n + 1

for small �t, we have

− ln(1 − σ�t) =
∞
∑

n=0

(σ�t)n+1

n + 1
= σ�t + 1

2
σ 2�t2 + 1

3
σ 3�t3 + · · · .

Thus

σ̃ = σ + 1

2
σ 2�t + 1

3
σ 3�t2 + · · · ,

which implies that

σ̃ − σ = O(�t).

So the exponential growth rate σ̃ for the Backward Euler scheme is in error of the order O(�t).
Noting that σ < 0, we have K < 1, and therefore this numerical scheme is unconditionally stable.
Thus, the normal analysis demonstrates the stability property of this implicit semidiscrete scheme.
Moreover, this scheme is convergent if �t → 0.

3.2. Crank–Nicolson time differencing

If the system (6)–(10) is approximated by Crank–Nicolson scheme, then we have

un+1 − un

�t
= −Dpn+

1
2 + 1

2
ν[D2 − r2] (un+1 + un), (52)

vn+1 − vn

�t
= −ik pn+

1
2 + 1

2
ν[D2 − r2] (vn+1 + vn), (53)

wn+1 − wn

�t
= −il pn+

1
2 + 1

2
ν[D2 − r2] (wn+1 + wn), (54)

Dun+1 + ik vn+1 + il wn+1 = 0, (55)
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with

un+1(±1) = vn+1(±1) = wn+1(±1) = 0 . (56)

We will show that this numerical scheme is both unconditionally stable and accurate to the order of
O(�t2). Indeed, we can use a similar method to derive that

(D2 − r2)pn+
1
2 = 0.

Applying (D2 − r2) on (52),we obtain

(D2 − r2)(un+1 − un)

�t
= 1

2
ν(D2 − r2)2(un+1 + un). (57)

Let

un = Knũ, vn = Knṽ, wn = Knw̃,

substituting them into (57), we have

(K − 1)

�t
(D2 − r2)ũ = (K + 1)ν

2
(D2 − r2)2ũ.

Let

σ = 2(K − 1)

�t(K + 1)
,

we have

σ(D2 − r2)ũ = ν(D2 − r2)2ũ,

which is the same as (35) where we have σ < 0. Let

σ = 2(K − 1)

�t(K + 1)
⇒ K = 2 + σ�t

2 − σ�t
= 1 + 1

2σ�t

1 − 1
2σ�t

< 1.

Setting

Kn = exp(σ̃ n�t),

we have

σ̃ = ln K

�t
= ln(1 + 1

2σ�t) − ln(1 − 1
2σ�t)

�t
,

ln(1 + 1

2
σ�t) =

∞
∑

n=0

(−1)n( 12σ�t)n+1

n + 1
,

− ln(1 − 1

2
σ�t) =

∞
∑

n=0

( 12σ�t)n+1

n + 1
,

σ̃ = 1

�t

∞
∑

n=0

[(−1)n + 1]
( 12σ�t)n+1

n + 1

= 2

�t

∞
∑

m=0

σ 2m+1�t2m+1

(2m + 1)22m+1
=

∞
∑

m=0

σ 2m+1�t2m

(2m + 1)22m

= σ + σ 3

12
(�t)2 + σ 5

80
(�t)4 + · · ·· = σ +O(�t2)
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which implies

σ̃ − σ = O(�t2).

Asσ < 0, we see that σ̃ < 0 and |K| < 1. Thus, the exponential growth rate σ̃ for theCrank–Nicolson
scheme is in error of the orderO(�t2) and this scheme is unconditionally stable.

4. Splittingmethod

In this section, we consider the velocity-pressure splitting with the normal velocity boundary
conditions [15, 18]. The time-differencing scheme involves the following two split time steps.

The first step involves solution of the inviscid equation:

u∗ − un

�t
= −Dpn+1, (58)

v∗ − vn

�t
= −ik pn+1, (59)

w∗ − wn

�t
= −il pn+1, (60)

Du∗ + ikv∗ + ilw∗ = 0, (61)

u∗(±1) = v∗(±1) = w∗(±1) = 0. (62)

The second step involves the solution of the viscous equation

un+1 − u∗

�t
= ν(D2 − r2) un+1, (63)

un+1 − v∗

�t
= ν(D2 − r2) vn+1, (64)

wn+1 − w∗

�t
= ν(D2 − r2) wn+1, (65)

un+1(±1) = vn+1(±1) = wn+1(±1) = 0. (66)

Remark: In the above splitting algorithm, (58)–(66), un, vn, wn do not satisfy the incompressibility
constraint, although the intermediate variables u∗, v∗,w∗ do.

4.1. The computation of ũ and ũ∗

To analyze the splittingmethod, we firstly derive the results for the normalmodes of the above system.
The general conclusion then follow from the completeness of the normal modes.

Let

(un, vn,wn, pn) = Kn(ũ, ṽ, w̃, p̃) (67)

and

(u∗, v∗,w∗) = Kn(ũ∗, ṽ∗, w̃∗). (68)

Substituting (67) and (68) into (58)–(66) gives

ũ∗ − ũ = −(K�t)Dp̃, (69)

ṽ∗ − ṽ = −ik (K�t)p̃, (70)

w̃∗ − w̃ = −il(K�t)p̃, (71)
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Dũ∗ + ikṽ∗ + ilw̃∗ = 0, (72)

ũ∗(±1) = ṽ∗(±1) = w̃∗(±1) = 0, (73)

(D2 − r2 − 1

ν�t
) ũ = − 1

Kν�t
ũ∗, (74)

(D2 − r2 − 1

ν�t
) ũ = − 1

Kν�t
ṽ∗, (75)

(D2 − r2 − 1

ν�t
) ũ = − 1

Kν�t
w̃∗, (76)

ũ(±1) = ṽ(±1) = w̃(±1) = 0. (77)

ApplyingD on (69), multiplying ik on (70) and multiplying il on (71), then adding them together, we
have

(K�t)(D2 − r2) p̃ = Dũ + ikṽ + ilw̃. (78)

ApplyingD on (74), multiplying ik on (75) and multiplying il on (76), then adding them together, we
see that

(D2 − r2 − 1

ν�t
)(Dũ + ikṽ + ilw̃) = 0. (79)

(78) and (79) imply that

(D2 − r2)(D2 − r2 − 1

ν�t
) p̃ = 0. (80)

Applying (D2 − r2)(D2 − r2 − 1
ν�t ) on (69) gives

(D2 − r2)

(

D2 − r2 − 1

ν�t

)

ũ∗ = (D2 − r2)

(

D2 − r2 − 1

ν�t

)

ũ = − (D2 − r2)

Kν�t
ũ∗,

(D2 − r2)2ũ∗ = K − 1

Kν�t
(D2 − r2)ũ∗. (81)

(72) and (73) imply

Dũ∗(±1) = ũ∗(±1) = 0. (82)

The characteristic equation of (81)

(m2 − r2)2 = K − 1

Kν�t
(m2 − r2) ⇒ m = ±r,±

√

−r2 − K − 1

Kν�t
.

Let

µ̃ =
(

−r2 − K − 1

Kν�t

)1/2

> 0.

The general solution of Equation (81) can be expressed as

ũ∗ = c1 cosh rx + c2 sinh rx + c3 cos µ̃x + c4 sin µ̃x,

Dũ∗ = c1 r sinh rx + c2 r cosh rx − c3 µ̃ sin µ̃x + c4 µ̃ cos µ̃x,

ũ∗(1) = 0 ⇒ c1 cosh r + c2 sinh r + c3 cos µ̃ + c4 sin µ̃ = 0,

ũ∗(−1) = 0 ⇒ c1 cosh r − c2 sinh r + c3 cos µ̃ − c4 sin µ̃ = 0,

Dũ∗(1) = 0 ⇒ c1 r sinh r + c2 r cosh r − c3 µ̃ sin µ̃ + c4 µ̃ cos µ̃ = 0,

Dũ∗(−1) = 0 ⇒ −c1r sinh r + c2 r cosh r + c3 µ̃ sin µ̃ + c4 µ̃ cos µ̃ = 0,
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which imply that

c1 = − cos µ̃

cosh r
c3, c2 = − sin µ̃

sinh r
c4,

c1 = − µ̃ sin µ̃

r sinh r
c3, c2 = − µ̃ cos µ̃

r cosh r
c4.

By a similar analysis to that in Section 2, we obtain the boundary value problem (81)–(84) has only
the following two types of solutions.
(i) Even solution: The eigenvalue µ̃ satisfies

−µ̃ tan µ̃ = r tanh r,

and the corresponding eigenfunction is a constant multiple of

ũ∗ = cos µ̃ cosh rx − cosh r cos µ̃x.

(ii)Odd solution: The eigenvalue µ̃ satisfies

µ̃ cot µ̃ = r coth r,

and the corresponding eigenfunction is a constant multiple of

ũ∗ = sin µ̃ sinh rx − sinh r sin µ̃x.

Let

σ = K − 1

K�t
,

then (81) becomes

ν(D2 − r2)2ũ∗ = σ(D2 − r2)ũ∗,

which is exactly the same as (35). Since

µ̃ =
(

−r2 − σ

ν

)1/2
= µ,

we see that

K = 1

1 − σ�t
= eσ̃�t .

The leading behavior σ of the growth rate σ̃ agrees with that of the exact solution:

σ̃ = lnK

�t
= − ln(1 − σ�t)

�t

= σ + 1

2
σ 2�t + 1

3
σ 3�t3 + · · · , (83)

which implies that

σ̃ − σ = O(�t).

Let

λ =
(

r2 + 1

ν�t

)1/2

> 0.

Equation (74) becomes

(D2 − λ2)ũ = − 1

Kν�t
ũ∗,
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ũ(±1) = 0. (84)

We consider two cases:
Case (i):

ũ∗ = cosµ cosh rx − cosh r cosµx

is even.
Noting that r 	= λ and r 	= µ, we see that the general solution of (84) is

ũ = c1 cosh λx + c2 sinh λx + ũp.

Here,

ũp = A cosh rx + B cosµx,

Dũp = Ar sinh rx − Bµ sinµx,

D2ũp = Ar2 cosh rx − Bµ2 cosµx,

(D2 − λ2)ũp = A(r2 − λ2) cosh rx − B(µ2 + λ2) cosµx,

= − cos µ

K ν �t
cosh rx + cosh r

K ν �t
cosµx, (85)

which implies that

A = cosµ

Kν�t(λ2 − r2)
,

B = − cosh r

Kν�t(λ2 + µ2)
,

ũp = cosµ cosh rx

Kν�t(λ2 − r2)
− cosh r cosµx

Kν�t(λ2 + µ2)
.

Noting that

K = 1

1 − σ�t
⇒ K(1 − σ�t) = 1.

Thus,

ũ = c1 cosh λx + c2 sinh λx + cosµ cosh rx

Kν�t(λ2 − r2)
− cosh r cosµx

Kν�t(λ2 + µ2)
.

From

λ2 − r2 = 1

ν�t
, λ2 + µ2 = 1

ν�t
− σ

ν
,

we obtain

ũ = c1 cosh λx + c2 sinh λx + (1 − σ�t) cosµ cosh rx − cosh r cosµx.

Applying the boundary conditions:

ũ(1) = 0 ⇒ c1 cosh λ + c2 sinh λ − σ�t cosµ cosh r = 0,

ũ(−1) = 0 ⇒ c1 cosh λ − c2 sinh λ − σ�t cosµ cosh r = 0,

we have

c1 = σ�t cosµ cosh r

cosh λ
, c2 = 0.
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Thus,

ũ = σ�t cosµ

(

cosh r
cosh λx

cosh λ
− cosh rx

)

+ (cosµ cosh rx − cosh r cosµx)

is also even.
Case (ii): ũ∗ = sinµ sinh rx − sinh r sinµx is odd.

ũ = c1 cosh λx + c2 sinh λ x + ũp,

where

ũp = A sinh rx + B sinµx,

Dũp = Ar cosh rx + Bµ cosµx,

D2ũp = Ar2 sinh rx − Bµ2 sinµx,

(D2 − λ2)ũp = − 1

Kν�t
ũ∗ = − sinµ

Kν�t
sinh rx + sinh r

Kν�t
sinµx,

⇒ A(r2 − λ2) sinh rx − B(µ2 + λ2) sinµx = − sinµ

Kν�t
sinh rx + sinh r

Kν�t
sinµx

⇒ A = sinµ

K
, B = − sinh r.

⇒ ũ = c1 cosh λx + c2 sinh λ x + sinµ sinh rx

K
− sinh r sinµx.

Applying the boundary condition,

ũ(1) = 0 ⇒ c1 cosh λ + c2 sinh λ = − sinµ sinh r

K
+ sinµ sinh r,

ũ(−1) = 0 ⇒ c1 cosh λ − c2 sinh λ = sinµ sinh r

K
− sinh r sinµ.

We have

c1 = 0, c2 = σ�t sinµ sinh r

sinh λ
.

Thus,

ũ = σ�t sinµ

(

sinh r
sinhλx

sinh λ
− sinh rx

)

+ (sinµ sinh rx − sinh r sinµx)

is also odd.
Since ũ∗ is the exact normal mode solution, we can compute the error ũ − ũ∗ as follows.

Case (i): ũ∗ = cosµ cosh rx − cosh r cosµ x,

ũ = σ�t cosµ

(

cosh r
cosh λx

cosh λ
− cosh rx

)

+ (cosµ cosh rx − cosh r cosµx),

which implies that

ũ − ũ∗ = σ�t cosµ

(

cosh r
cosh λx

cosh λ
− cosh rx

)

.

Obviously, we have the error estimate:

ũ − ũ∗ = O(�t).
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The error is uniformly bounded with respect to x in [ −1,1] as �t → 0 because

λ =
(

r2 + 1

ν�t

)
1
2

→ ∞ as �t → 0,

|x| < 1 ⇒ cosh λ x

cosh λ
→ 0 as λ → ∞.

Case (ii):ũ∗ = sinµ sinh rx − sinh r sinµ x,

ũ = σ�t sinµ

(

sinh r
sinh λx

sinh λ
− sinh rx

)

+ (sinµ sinh rx − sinh r sinµx),

which implies that

ũ − ũ∗ = O(�t).

The error is uniformly bounded with respect to x in [ −1,1] as �t → 0 because

λ =
(

r2 + 1

ν�t

)
1
2

→ ∞ as �t → 0,

|x| < 1 ⇒ sinh λ x

sinh λ
→ 0 as λ → ∞.

4.2. The Computation of p̃

Case (i): ũ∗ is even.
From (69),

Dp̃ = ũ − ũ∗

K�t
= σ

K

cosµ

cosh λ
[cosh r cosh λ x − cosh λ cosh rx]

⇒ p̃ = σ

K

cosµ

cosh λ

[

cosh r

λ
sinh λ x − cosh λ

r
sinh rx

]

+ c,

where c is a constant. From (81):

(D2 − r2)(D2 − λ2)p̃ = 0.

⇒ p̃ = c1 cosh rx + c2 sinh rx + c3 cosh λ x + c4 sinh λ x.

Thus, we see that c= 0 and

p̃ = σ cosµ

cosh λ

[

cosh r

λ
sinh λ x − cosh λ

r
sinh rx

]

(1 − σ�t).

Notice that

p̂ = −σ cosµ

r
sinh rx,

p̃ − p̂ = σ cosµ

cosh λ

cosh r

λ
sinh λ x − �tσ 2 cosµ

cosh λ

[

cosh r

λ
sinh λ x − cosh λ

r
sinh rx

]

.
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Moreover,

λ =
(

r2 + 1

ν�t

)1/2

= O(�t−(1/2)) ⇒ 1

λ
= O(�t1/2)

Because sinh λ x/cosh λ is uniformly bounded on [−1, 1] as �t → 0, we have

p̃ − p̂ = O(�t1/2).

Case (ii): ũ∗ is odd.

Dp̃ = ũ − ũ∗

K�t
= σ

K
[sinh r sinh λ x − sinh λ sinh rx]

sinµ

sinh λ
.

From (80),

p̃ = c1 cosh rx + c2 sinh rx + c3 cosh λ x + c4 sinh λ x.

Thus,

p̃ = σ sinµ

sinh λ

[

sinh r

λ
cosh λ x − sinh λ

r
cosh rx

]

(1 − σ�t),

p̂ = −σ sinµ

r
cosh rx,

p̃ − p̂ = σ sinµ sinh r

λ

cosh λ

sinh λ
− �tσ 2 sinµ

sinh λ

[

sinh r

λ
cosh λ x − sinh λ

r
cosh rx

]

.

We see that

p̃ − p̂ = O(�t1/2).

Similarly, one can compute ṽ, ṽ∗, w̃, w̃∗. As the derivations are similar, we omit the details.

5. Concluding remarks

In this work, we derive the normal mode solution of a 3D linearized incompressible fluid flowmodel.
Then, we apply the results to analyze some implicit time stepping schemes including the Backward
Euler and the Crank–Nicolson schemes, as well as the splitting method. By using the normal mode
analysis, we rigorously prove that both the Backward Euler scheme and Crank–Nicolson schemes for
the 3DStokes equations are unconditionally stable; The time errors of the Backward Euler scheme and
the Crank–Nicolson scheme are of the order O(�t) and O(�t2), respectively. Moreover, based on
the normal mode analysis, we give the estimates of error orders of each variable and the intermediate
variables for the splitting method.
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