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Abstract. An H(div)-conforming finite element method for the Biot’s consolidation mo-
del is developed, with displacements and fluid velocity approximated by elements from
BDM, space. The use of H(div)-conforming elements for flow variables ensures the local
mass conservation. In the H(div)-conforming approximation of displacement, the tan-
gential components are discretised in the interior penalty discontinuous Galerkin frame-
work, and the normal components across the element interfaces are continuous. Having
introduced a spatial discretisation, we develop a semi-discrete scheme and a fully dis-
crete scheme, prove their unique solvability and establish optimal error estimates for
each variable.
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1. Introduction

Poroelasticity [3] attracts more and more attention because of its important role in vari-
ous applications, including carbon sequestration in environment engineering, seismic wave
propagation in earthquake prediction, surface subsidence, evolution of fractured reservoirs
during gas production, and biomechanical descriptions of tissues and bones. The models
describe the interaction of fluid flows and deformable elastic porous media saturated in the
fluid. Here, we deal with the Biot consolidation model, with the motion of fluid in porous
media described by the Darcy’s law and deformations governed by the linear elasticity.

The complexity of the Biot model and geometrical properties of the domain often pre-
vent from finding analytical solutions of the problem so that numerical simulations got very
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popular — cf. Refs. [8,10,16,24-31,35,36]. Since both fluid dynamics and elasticity are
involved, it is important to have effective methods, which could approximate the relevant
physical processes. Unfortunately, various complications in elasticity and fluid mechanics
are often translated into the model approximations — e.g. continuous Galerkin approxima-
tions of the displacements may cause locking or nonphysical pressure oscillation [5,26,29]
in the linear elasticity part. In order to eliminate the locking phenomenon, one can use
a mixed finite element method [22, 35], nonconforming finite elements [34] and discon-
tinuous [29] or weak Galerkin [10, 18,31] methods. On the other hand, in incompressible
fluid flow models, standard Stokes elements such as Taylor-Hood and Mini elements, do
not satisfy the divergence constraints strongly or globally and therefore are not mass con-
servative [12,13,19].

In this work, we follow the strategy in [12, 13,32] and adopt H(div)-conforming fi-
nite elements for displacements with the aim to relax the H'-conformity of displacements.
The advantage of such a discretisation is two-fold: on one hand, the normal components of
displacements across elements are continuous and therefore are locally conservative and
on the other hand the tangential components are discretised via an interior penalty dis-
continuous Galerkin method. This allows us to overcome the locking phenomenon and the
pressure oscillation [19, 30,36]. Note that the use of H(div)-conforming finite elements
in discontinuous Galerkin (DG) method framework is proposed in [12,32] and was ap-
plied to the Navier-Stokes equations of fluid flow in [13]. Later on, the method has been
extended to the Darcy-Stokes interface problems [11,20], to the Brinkman problem [21]
and to a magnetic induction model [9]. In the fluid part of the Biot model, the governing
equation occurs from the Darcy’s law, and if the mixed form of the Darcy’s law is used, it is
natural to employ an H(div)-conforming finite element discretisation of the flow variables,
since it guarantees mass conservation. Here, we adopt the Brezzi-Douglas-Marini (BDM,)
space for both displacements and flow variables. Moreover, the finite element method here
provides a unified approach to flow variables and displacements. This work can be regarded
as a further development of H(div)-conforming finite element methods for Biot’s problems.
Using the approach in [27,28,34,36], we present a detailed analysis of the method. In par-
ticular, for both semi-discrete and fully discrete schemes for the Biot model, we show the
existence and uniqueness of approximate solutions and derive an optimal convergence rate
for each variable.

The rest of this paper is organised as follows. In Section 2, the Biot consolidation model,
functional spaces and corresponding weak formulation are introduced. A spatial semi-
discrete scheme involving H(div)-conforming elements is considered in Section 3. The ex-
istence and uniqueness results are proved and a priori error estimates for the semi-discrete
scheme are derived. Section 4 is devoted to a fully discrete numerical scheme based on the
backward Euler time discretisation. Our conclusions are in Section 5.

2. Biot’s Consolidation Model and Its Weak Formulation

Let Q € R? be a bounded convex polygonal domain with a Lipschitz boundary 9 and
(0, T] a time interval. We consider the following Biot’s consolidation model:
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%(cop+av'u)+v~q=w in Qx(0,T],

q=-KVp in 92x(0,T], @.1)

—V-o=f in Qx(0,T],

where «a is the Biot-Willis constant, u(x, t) the displacement of the solid phase, p(x, t) the
fluid pressure, q(x, t) the Darcy volumetric fluid flux, and

o(x,t) = Atr(e(u)I + 2ue(u) — apl

the total stress tensor with e(u) = 1/2(Vu+ Vu’) and A and u being the Lamé constants
[3]. Besides, ¢y = 0 is a storage coefficient, 1 a source term, f an external force and K(x)
a symmetric and uniformly positive definite tensor, for which there are positive constants
ko and k., such that

kminETE < ETK(x)E < kpaxETE (2.2)

for any 2 x 1-vector &.

Let I; and T, denote, respectively, the Dirichlet and traction boundaries for the elastic
variables, whereas T, and I refer to the pressure Dirichlet and fluid normal flux boundaries.
We assume that

QQ=FdUFt, QQ=FpUFf

and consider the following boundary and initial conditions for the system (2.1):

u=0, on TI;x(0,T],
on=0, on T, x(0,T],
p=0, on T,x(0,T],

2.3
q-n=0, on Ty x(0,T], (2:3)

P('; O) = Do> in Q;
u(,0)=u,, in 9,

where n is the unit outward normal vector.

Let us introduce some notations. As usual, H*(2) is the standard Sobolev space of
functions with regularity exponent s > 0, norm | - [ , and semi-norm |- |; . If s = 0, then
H°(92) = L?(2). Moreover, we write | - ||, for | - s, and the notation | - [|; 5 is also used
for the norm of the space (H*(2))?. The subspace of H'(£) with vanishing trace on T} is
denoted by Hé,rd (Q) —ie.

Hy . (Q):={v e H'(Q): vl = 0}.
We also consider the space

H(div; Q) := {ve (L*(Q))*: V-ve LA(Q)},
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equipped with the graph norm
. 2 2)1/2
IVllaiy == (IVIG + 1V - vI3)
and the subspaces

Hor, (div; ) := {v e H(div; @) : v- n|;, =0},
HO,rd (le; Q) = {V (S H(le; Q) Ve n|rd — 0}.

In order to simplify the notation, we will write & for L2(2), £ for Ho,rf (div; ) and ¥ for

(Hy p, ().

l\iultiplying the Egs. (2.1) by test functions and integrating by parts, we arrive at the
standard mixed weak formulation of this problem: Find (p,q,u) € # x £ x ¥ such that
for all t € (0, T] the equations

CO((P)UW)"'O‘(V'(u)t,W)"‘(v'q,W):(w,W), VWG,@,
(K'q2)—(p,V-2)=0, Vzeg,
a(u,v)—a(p,V-v)=({,v), VYve¥
hold. Here and in what follows, (-, -) is the inner product in L2(),
a(u,v) :=2u(e(u) : e(v))+A(V-u,V-v)

and
2 2
(0' . T) = ZZGUTU
i=1 j=1
the product of tensors o and 7. We also consider functions u : [0, T] — H*(Q2) from the
Bochner space L?(0, T; H*(2)), 1 < p < oo equipped with the norm

T 1/p
lu(OIPde | , if 1<p<oo,
leell Loco, 75ms ) = 0

supo<;< lu(t)ls, if p=oo0.

3. A Semi-Discrete Scheme

We now describe a spatial discretisation and an associated semi-discrete numerical
scheme. Let &, = {K} be a shape-regular triangulation of Q, hy the diameter of K and

h:= max hx. Moreover, considering the set é"}? of the interior edges of the elements in 7,
€I

the set é”}f of the boundary edges on I; and the set é”ht of the boundary edges on TI,, we
introduce the sets

& =8 U UE,

é’f = {e € &le C IK},
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where h, refers to the length of the edge e € &,.
The shape-regularity of the mesh implies that there exits an integer N; > 0, independent
of h, such that
max card (65) < Nj. 3.1

Keg,

This means that the maximum number of edges related to K is uniformly bounded — cf. [14,
Lemma 1.41]. Each edge e € &, is associated with a unit normal n, which coincides with the
exterior unit normal to dQ if e € Q. Lete € é”}? be an interior edge common to elements
K; and K,. If ¢ is a scalar piecewise smooth function such that ¢' = ¢| k;» then the average
and the jump of ¢ on e are, respectively, defined by

1
{¢}:= E(wl +¢%) and [p]:=¢'—¢>
Ifee é’f U &, is a boundary edge, then
{e} =9, [pli=0.
We also consider the sets
2y, :={q € Hor, (div; Q) : qlx € BDM(K)},

Y = {v € Hyr,(div; Q) : v|x € BDM(K)},

P, = {w € L*(Q) : wlg € P (K)},
where BDM;, k > 1 is the H(div)-conforming space introduced by Brezzi et al. [6], and
Pi(K) denotes the set of polynomials on K of degree at most k. Let I, : £ — 2, be the

BDM;, interpolation [6], and P, the L2— projection from L?(2) onto #,. It is well-known [6]
that

(z—Pyz,w)=0, Ywe,

|z —Pyzlox < Chllzl,x, VK€, 0<I<Kk, (3.2)
(V-(v—I,v),w)=0, VYwe®, (3.3)
V=MV, x < ChIVlix, VKE€ZF, s=0,1, 1<1<k+1, (3.4)
V- (v—TV)lsx S Ch™SIV -V x, VKEZF, s=0,1, 0<I<k (3.5)

Here and in what follows, C is a positive generic constant independent of h, At, and
the Lamé constants u and A, which may take different values at different occurrences.
3.1. An H(div)-conforming element method

Multiplying the Eq. (2.1) by v € ¥, integrating by parts over elements K, and summing
the results, we obtain

2uZJe(u):e(v)dx—2u Z J[(e(u)n)-v]ds+AJ V-uV-vdx
K e Q

Ke, ecguS!
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—aJ pV-de—Z (0n)-vds=J fvdx, VYve,. (3.6)

Q Q

Note that we used the continuity of v- n on the interior edges. If n and 7 are unit normal

and tangential vectors to an edge e constituting a right-handed coordinate system, then
v=(v-n)n+(v-7)7T.

It follows that

(e(w)n) - v=(((e(w)n) -n)n + ((e(w)n) - 7)7) - ((v-m)n + (v~ 7)7)
= ((e(u)n) -n)(v-n) + (e(u)n) - 7)(v- 7).

Using this decomposition, the identity [ab] = [a]{b} + {a}[ b], the regularity of the exact
solution, and the continuity of v- n on interior edges, we obtain

2U Z [(e(u)n)-v]ds =2u Z {(e(un) - T}v-7T]ds.
ecglusl v e ecglusl Ve
Therefore, the Eq. (3.6) can be rewritten as

2u ZJ e(w):e(v)dx—2p Y, {(e(u)n)-r}[v-r]ds+kJ V-uv-vdx
K

ke, ecslusl Ve Q

—aJpV-vdx—Z (an)'vds=Jf-vds, Yve v,
Q Q

tJe
eeé’h

Similar to the usual interior penalty DG methods [1], we add stabilised terms and since
on =0 on [}, the DG approximation of the Eq. (2.1) takes the form

ap(u,v) — aJ pV - -vdx = J fvdx,
Q Q

where

ap(u,v) =2u Z J e(u):e(v)dx —2u Z J{(e(u)n) -t}v-7]ds
K e

ke, ecguUS!

—2u Y ((e(v)n)- 7}[u- v]ds + ¥ S | uenlvevlds

h
0 jed J e € 0, 0d J €
eeé’hué’h eeé”huéfh

+AJ V-uV-vdx. (3.7)
Q



564 Y. Zeng, M. Cai and E Wang

Recalling the definition of functional spaces and a;, we note that the exact solutions of
(2.1) and (2.3) satisfy the equations

CO((p)UW)J’_a(v'(u)UW)+(v'qsw) = (¢5W)5 VWE'@}U (38)
(K_1q5 Z) - (ps V- Z) = Os VZ € Qh} (39)
ap(u,v)—a(p,V-v)=(f,v), Vve. (3.10)

The corresponding H(div)-conforming finite element method for the Egs. (2.1) and (2.3)
can be now formulated as follows: Given the initial conditions p;(0) = P,p, and u,(0) =
[T,uy, find (py, qp, up,) € &, x &, x ¥, such that

Co((ph)t,W)'i‘a(v'(Uh)t,W)'i‘(V'qh,W):('l/),W), vwet@h) (311)
(K 'qy,z)—(pp,V-2)=0, VzeE 2, (3.12)
ap(up, v) —al(py, V-v)=(fv), Vve. (3.13)

3.2. Existence and uniqueness

To show the unique solvability of the Egs. (3.11)-(3.13), we use theory of differential-
algebraic equations (DAEs) from [34]. Thus, employing appropriate finite element basis
functions, one represents the solutions q;(x, t), py(x,t) and u,(x, t) in the form

"q
(6, 0) =D qi()9g; = @n()@q,
J

p
pr(x, ) = > pi(0)¢, ;= Bu(t)e,,
J

My
w(x, ) = > w0y = 00y
J

where
(0 =[a1(6),--+, 0, (D], ¢q=[Pgq1, " Pqn,]"
pr() =[p1(6), P (O @p=[p1 s @pn, 1T
(1) = [uy (6),-++,u,, (0], @y =[Py1, > Pun, ]

The row vectors f,,(t) and 1), (t) are defined analogously. The Egs. (3.11)-(3.13) can be
now rewritten as an equivalent system of DAEs — viz.

Mx/(t) + Nx(t) = L(t), (3.14)
where
0 0 0 gy O a;p
M=| 0 O 0 , N=| 0 agq Ao |>
Aup 0 —App 0 Agp 0

x(t) = [iap(6), @, (0, Pt NIT, L) = [F,(0),0,—pn(6)]"

-
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and ayy, Agq, App> Aup,> Aqp denote the matrices corresponding to the bilinear forms aj (uy, v),
(K1qn,2), co(p,w), a(V -up, w), (V-qp, w), respectively. According to theory of DAEs [34],
the problem (3.14) is uniquely solvable if so is the following saddle point problem:

A((Uh, qh)’ (V) Z)) + B((V) Z): ph) = (f) V): V(V, Z) € /1/h x ‘Qha

3.15
B((wp, @), w) — C(pp w) = —(4p,w),  Vw € B, (315

where

A((u) q)) (V: Z)) = ah(u’ V) + (K_lq’ Z))
B((V,Z),p) = _a(v 'vsp) - (v ' z:p)s
C(p,w) = colp, w).

The solvability conditions of the problem (3.15) are known — viz. the bilinear forms above
should satisfy certain LBB conditions [7]. Let us define the mesh-dependent norms || - ||,
I 1l and || - ll4,» by

1/2
|||v|||h=(Z2u||e(v)||3,K+ > 2uh;1||[v-r]uaemuv-vué,n) :

Key ecslus

1/2
||V||h=(|||VIII§+ Z 2uhe||{(€(V)n)"v}||§,e) ;

ecguS!
1/2
2 2 —1 2
IVl = ( D2l OV + AV VIR + > 2u; ||[v-r]||0,e) .
KeF, ecglUs!

Using the discrete version of the Korn’s inequality [4], one can show that on the space ¥,
the norms || - |5, | - [, and [| - 4, are equivalent — cf. [2,16].
If e is an edge for K, then there is a constant C > 0 such that for all w € H'(K) the
inequality
Iwl2, < C (it Iwl2 ¢ + Rl Vw2 ¢ )

holds [4]. Therefore, the shape-regularity of the mesh [4,23] yields
hl{(e(w)n) - o312, < C (leW)IZ . +h2 eI ). (3.16)
To estimate the last term in (3.16), a standard inverse inequality can be used, so that
hel{(e(w)n) - o}2, < CleW)I2.  Ywe ¥, (3.17)

where C,, depends only on the polynomial degree k and the shape-regularity of the mesh.
Thus, there exists a constant Cy > 0 such that

vl < Gollvllz, Vv e . (3.18)

Setting ¥ (h) = ¥ + ¥, we arrive at the following lemma.
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Lemma 3.1. There exists a constant C.,,; > 0 independent of u and A such that
ap (W, V) < Ceonc[WlnlIVlin, VW, v e ¥(h). (3.19)

Moreover; if the penalty parameter v is sufficiently large, then there is a constant C.ye, > 0
such that
Clh(V, V) = Ccoer”V”%, Vve Y (3.20)

and C.,e; does not depend on the Lamé constants y and A.

Proof. The estimate (3.19) follows directly from the Cauchy-Schwarz inequality. Let us
consider the inequality (3.20). If € is a positive number, then the Young inequality and the
inequality (3.17) yield

>0 | en) - w}v-vlds

0 d J e
eeé’h Ué’h

< >0 hPI{(en) - o hT VAV Tl

ecslus)
1/2 1/2

s( > hen{(e(v)n)-r}ué,e) ( > h;lntv-r]né,e)

ecguE! ec8lUE!

1/2 1/2

s(ZNactrn(e(v)uaK) ( > h;ln[v-r]né,e)

Kegy ecglUs!

NoCr 2 £ -1 2
STKZ:IIG(V)IIO,K+E >, vl

€ ec8lUE!

with the constants Ny and C,, defined in (3.1) and (3.17), respectively. Using this estimate
in the Eq. (3.7), we obtain

GV 220 > €M +20r Y, V- wlIR, + A1V -V,

Ke7, eeé’,?Ué"hd

2‘U,N3C _
=T S e —2ue D K- <,

Ke7, eeg}?ué"hd
2‘U,N3C _
z(zu—T”) Dl + @uy—2ue) Y. V-T2,
Ke, eeé’,?Uéa,‘li

+AIV VI (3.21)

Set ¢ = 2N, C,, and choose a penalty parameter y so that

2uy —2ue = 2uy —4uNy Cy. > 0.
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Then
ap(v,v) = Ci|Ivll7, VveEH, (3.22)
where
(1 1
0<(C = mln{E,Y—ZNaCtr} < 5

It follow from (3.22) and (3.18) that

Cl
an(v,v) 2 ZHIVIE = CoouelVIE forall ve v,
0

and our considerations show that constant C,,., does not depend on the Lamé constants u
and A. O

Remark 3.1. In order to obtain the inequality (3.20), one can proceed analogously to other
interior penalty DG methods and choose y > yin = N3 C;,. In fact, if

2u—2uNyC;./e>0 and 2uy—2ue>0,
i.e. if y > & > N, C,,, then the inequality (3.21) takes the form
ap(v,v) = C1lIvll;,  Yve

with the constant C; = min{1 —N;C,, /¢,y —¢e} €(0,1). Along with the inequality (3.18),
this leads to the estimate (3.20). The constant y,;, = N;C,, depends on the polynomial
degree k and is proportional to k(k + 2) for two-dimensional triangle elements. More
information concerning the constant C,, can be found in [15,33] and [14, Remark 1.48].
In actual computations, one can set y = 10k2. The choice of y is also discussed in [17,
Remark 2.1].

We endow the space ¥}, x 2; with the discrete norm

1/2
v, 2l = (12 +lzl3,) "

Lemma 3.2. If the penalty parameter y is sufficiently large, then there is a constant C > 0
such that

A((v,2),(v,2)) Z Cll(v, 2)ll1,p,  V(V,2) €V, x 2y,
Proof. It follows from the definition of | - [|; , the inequality (3.20) and the condi-
tions (2.2). O
Lemma 3.3. There exists a constant 3 > 0 such that

B((v,z),w)

> Blwly, VYwe 2. (3.23)
waevx2, 1v2)1n
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Proof. By [5, Lemma 11.2.3], for any w € &, there is z € ¥ such that
Vez=—w, |z]; < Cilwlo. (3.24)
The inequality (3.4) yields that
IThzly < Collzlly, Yz e (H' ()% (3.25)

Setting v = 0 and using (3.24) and (3.25), we obtain the estimate

B((0,z),w)  Iwlg - Iwl 21 Iwli J 1 wl
= > > > o
100, T,2)h,  ITpzllaw — IMpzlly — Co llzlly — C1Cy
and the inequality (3.23) follows. O

Lemmas 3.2 and 3.3 show that for the saddle point problem (3.15) the LBB conditions
are satisfied. Since C(-,-) is a symmetric positive semidefinite bilinear form, the following
theorem is true.

Theorem 3.1. The semidiscrete scheme (3.11)-(3.13) has a unique solution.

Remark 3.2. It was observed in [36] that if ker(azp) = 0, then the spurious pressure os-
cillations arising in the case ¢, = 0 and K — 0, can be removed. However, since we use
the standard mixed finite element spaces ¥}, = {v € Hyr (div; Q) : v|x € BDM(K)} and
@, = {w € L?(Q) : w|x € P_1(K)} for the displacement and the pressure variables, the
condition ker(agp) = 0 holds. Hence, the method above has no spurious pressure oscilla-
tions.

3.3. Error estimates for semi-discrete scheme

In order to evaluate the error in the above method, we consider two cases — viz. ¢y =
Po > 0 and ¢y > 0, starting with the former.

Theorem 3.2. Let ¢y > 3 > 0, (p,q,u) € Z x 2 x ¥ and (py, qQy, W) € P, X &y X ¥}, be,
respectively, the solutions of (2.1) and (3.11)-(3.13) and

uel®(0,T;H* (), u €L%0,T;H*' (), q<L*0,T;H Q).
If the penalty parameter y is sufficiently large, then
k
”u_uh”%w(O,T;Eh) + ”p _ph”%W(O,T;LZ(Q)) + “q_ qh”%Z(O’T;LZ(Q)) < Ch2 > (3.26)

where

”u”L‘X’(O,T;Eh): sup [lu(s)|.
0<s<T
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Proof. Subtracting (3.8) from (3.11), (3.9) from (3.12) and (3.10) from (3.13) yields

CQ((p_ph)t,W)+a(V‘(u_Uh)t,W)+(V‘(q_qh),W):O, vwegh’ (327)
(K_l(q_ qh)) Z) - (p — Ph> V- Z) = 0) VZ € ‘Qha (328)
a,(u—uy,v)—alp—pp, V-v)=0, Yve,. (3.29)

We then write

p—pn=8&p+6,, &, =p—Pwp, 6,=Pp—ps
Q—q=8q+ 0y, Eq=a-1q, 63 =I,9—qy,
u—uw,=&,+6,, &,=u—Iju, 06,=Iu—u,.
The terms &, £, and &, can be estimated by the interpolation error bounds in (3.2) and
(3.4). In order to estimate Qp, Qq and 0,, we use (3.3), (3.5) and rewrite (3.27), (3.28),
(3.29) as
co((0p), W)+ a(V - (0y),w) + (V- 0g,w) =0, YweR,
(K1(6g),2) = (6,,V-2) =—(K '(§g),2), VzE L,
ap(0y,v) —a(6,,V - v) = —ap(&y,v), VVE Y.

Setting w = 0, z = 0, and v = (6,), and using the symmetry of the form a(-,-) leads to
the equations

%co%(ep, 8,)+ (¥ - (82):,6,) +(V - 6,6,) =0, (3.30)

(K_l(eq)) Qq) - (Gp) V- Gq) = _(K_l(gq)) Qq)) (3.31)
e,

12 (@100, 8) — a8, V- (8,),) = —a4(Eus (6, (.32

The initial conditions pj,(0) = P,p, and u,(0) = ITyu, imply that 6,(0) = 0 and 6,,(0) = 0.
Therefore, summing the Egs. (3.30), (3.31) and (3.32) and integrating the result in time
from O to t, t < T, we obtain

t
1 1 _
Eah(eu(t)) 0, (1)) + ECoH@p(t)Il% +f IK™1/264(s)ll5 ds = By + By,
0

where .

By=— J (K E4(s), Bg(s)) ds, Bz=—J a(E4(5), (6,),(s)) ds.
0

0
The term B; is estimated as follows

t
By < f IK™2E ()oK ™/204(s)llo ds
0

t t
1 _ 1 _
SEJ K 2Eg @l ds + 5 J IK/20(5)13 ds.
0 0
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In order to estimate B,, we integrate it by parts, thus obtaining

By = J ap((€u)e(s), Bu(s)) ds — ap(Eu(t), By (1))
0

Since 6,(0) = 0, the inequality (3.19) and the Young inequality show that

B,<C U (€W +164(IZ) ds + IIEu(t)Ili) +ell6,(Oll;
0

with arbitrarily small .
Using the inequalities above and (2.2), (3.20), we obtain

Cover 1 1 (" _
( C;e‘—e) Ileu(t)||%+gcollep(t)H%*EJO IK~1/264(s)I3 ds

t t
SCJ 164()I7 ds + Cf (18I + I(EDIF) ds + 1€ (eI (3.33)
0 0
If we choose 0 < & < Cpper/2, then

C 1 1
Conin =min{ﬂ—e,—co,—} > 0.
2 2% 2%k .

Moreover, if one replaces the left-hand side of (3.33) by

Crin (IIGu(t)II,% +116,(D5 +J ||9q(5)||§d5),
0

the inequality still holds true. Therefore, dividing it by C,,;, and using Gronwall’s lemma
yields

164N + 16,(O15 +J 164()I5ds < € U (18I + I(EW(IF) ds + ||€u(t)||;21) :
0 0

Since this estimate is valid for all 0 < t < T, the approximation properties (3.2), (3.4) of
the projections P;, and IT;, show that

T
sup [|6,()Il; + Sup 16, ()13 + J 164()115 ds
<s< 0

0<s<T

T
<C (hzk (f laCs)IE + Ml (I dS) +h?* sup |||u(8)|||i), (3.34)
0

0<s<T

where
2 2 2
lallly = wlulle,, + AV -ullg.
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The estimate (3.34) can be rewritten as
10 o7, *+ 186 1120y + 1000 120

T
<Ch* (J lalif + lluclIE ds + sup |||u(5)|||i), (3.35)
0

0<s<T

and (3.35) and the interpolation error estimates for &, £q and £, lead to the inequality
(3.26). O

For ¢y = 0, Theorem 3.2 is not true and in order to obtain optimal error estimates in
this case, we will use a weaker norm — viz. the L2(0, T; L2(£2))-norm.
To proceed, let us recall an auxiliary result.

Lemma 3.4 (cf. Phillipset al. [29]). If (p,q,u) € Z x 2 x ¥ and (py, Qn, Up) € Py X Ly x W,
are, respectively, the solutions of (2.1) and (3.11)-(3.13), then there is a constant C,, > 0 such
that

This estimate allows us to obtain the following result.

Theorem 3.3. Under assumptions of Theorem 3.2, the error estimate

”u_uh”%m(O,T;Eh) + ”p _ph”%Z(O,T;LZ(Q)) + ”q_ qh||%2(0,T;L2(Q)) < Chzk (337)
holds.

Proof. Squaring both sides of (3.36) and integrating the result in time from 0 to T yields

16,1 L200,7;12¢0)) < Cla—anll 20, 7:22(02))5 (3.38)

and (3.37) follows from the inequality (3.26) and interpolation estimates. O

4. A Fully Discrete Scheme

4.1. The fully discrete scheme

For simplicity, we apply the backward Euler method as the time discretisation scheme.
Choosing a positive integer N, we set t" = nAt, At = T/N, 1 < n < N and consider the
following fully discrete approximation method: Given the initial conditions pg = Pypo and
u}? = Iuy, for all t = t", find (py, q;,up) € P, x &y, x ¥, such that

pn _pn—l V- (u'— un—l
CO( : Ath ’W)+a( ( hAt : )’W)’L(V"JZ’W):W”’W)’ Ywezy, (4.1
(K_lqz, z) — (p}’:, V- z) =0, Vze g, 4.2)
ay (uZ,v) —a (pZ, \Y4 -v) =(f",v), Vve. (4.3)
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4.2. Unique solvability
We transform (4.1)-(4.3) into equivalent variational equations —viz.
Ay ((uf, @), (v, 2)) + By ((v, 2), p}t) = (£7,v),
By ((w,q}),w) — Gy (pf,w) = —At(p™, w) — (copp ' + aV - u ™, w)
with the bilinear forms
Ap((u1,9),(v,2)) := ap(u,v) + At(K'q,2),

Bh((V) Z)’p) = _a(v . V:p) - At(v : Z)p)a
Cr(p,w) := co(p,w).

4.4)

Similar to the previous considerations, the unique solvability of the saddle point problem
(4.4) will be established, if we show that these bilinear forms satisfy the LBB conditions [ 7].
To do this, we define a discrete time-dependent norm for the space ¥, x 2, — viz.

1/2
Cv, 2Dl = (IVIE + (Ae)zI3,)

Lemma 4.1. If the penalty parameter y is sufficiently large, then there is a constant C > 0
such that

(4.5)

Ap((v,2),(v,2)) = Cl|(v, 211, V(V,2) € Wy X 2y,

Proof. It follows from the definition of the norm || - ||, the inequality (3.20) and
conditions (2.2). O

Lemma 4.2. There is a positive constant 3 > 0 such that

By ((v,z),w
sup 2D S gy, vwe B, (4.6)
(v,2)€Y,x 2, |||(V, Z)”|1,h

Proof. According to [5, Lemma 11.2.3], for any w € &, there is an element z € ¥ such
that

Vez=-w, |zl < Cilwlo. 4.7)
It follows from (3.4) that
ITxzll; < Colizll;. (4.8)
Taking into account (4.7) and (4.8) and setting v = 0, we obtain
B((0, TTyz/A6),w) _ lwll3 - lwll3 - 1 Iwlg - ann
100, 0,z/ A0, 1Mzl — 1Mzl ~ Gy llzlly ~ GGy
and the inequality (4.6) with = 1/(C;C,) follows. O

Lemmas 4.1 and 4.2 show that the saddle point problem (4.4) satisfies the LBB con-
ditions. Since Cy(:,-) is a symmetric positive semidefinite bilinear form, we obtain the
following theorem.

Theorem 4.1. If penalty parameter y is sufficiently large, then forany t =t", 1 < n < N, the
fully discrete numerical scheme (4.1)-(4.3) has a unique solution (p;,qy, u;) € P, X 25 X V.
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4.3. Error estimates

We again consider two cases ¢y = o > 0 and ¢y = 0, starting with the former. If g =
g(t,x) and t" = nAt, n = 1,---,N, we set g" = g(t",x), x € Q and use the Taylor’s
expansions to write

n
n n—1 t

b —p 1 _
—Ar - p; + N ("1 =s)p.(s)ds, (4.9
t”_l
n n—1 t"
— 1
d A‘t‘ =ul+— | ("7 =u ) ds. (4.10)
tnfl

Theorem 4.2. Assume that the penalty parameter y is sufficiently large. If (p,q,u) € & x
2 x ¥ and (py,qy, uy) € Py, x &y X ¥y, are, respectively, the solutions of the problems (2.1)
and (4.1)-(4.3) such that
ue L0, T;H(Q), u € L®(0,T;H(Q), u,, € L*(0, T;H*(Q)),
Veu, € L0, T;13(Q),  pe €L%(0,T;1%(Q)), g€ L0, T; HY(Q)),

then

N

n__ ..nj2 n__ .nj|2 n_qn2 < 2k 2

113135)5\,||u “h||h+1gf§§\,||l’ ppllg+ At El:llq ql2<c(r®*+(a0)?). (41D)
n=

Proof. Let (w,z,v) € &, x 2;, x¥;,. Since the exact solution satisfies the Egs. (3.8)-(3.10)
atany t = t", we can use (4.9) and (4.10) to obtain

e S

At At
‘o : n—1 a : n—1
+ Ar (Ln_l(t —5)pe(s) ds,w) + N (Ln_l(t —5)V -u.(s) ds,w) ,  (4.12)
(K 'q%z)~(p,V-2) =0, (4.13)
ap (u",v) —a(p", Vv -v) = (f',v). (4.14)

Subtracting (4.1) from (4.12), (4.2) from (4.13) and (4.3) from (4.14) yields

o B ) o (W) )

At At

+(V- (qn _q}rll)’W) = Z_Ot (J ) (tn_l —5)pec(s)ds, W)

+ il (J (t" =)V -u,,(s) ds,w) R (4.15)
t
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(K(q"—qp),2) = (p" —p},V-2) =0, (4.16)
ay (u”—uZ,v)—a(p"—pZ,V-v)=0. (4.17)

We then write

pt—py,=&,+0,, & =p"—Pp", 0, =Pp"—py,
Q' —q, =5+, &g=a"—Thq", 67 =1q"—qy,

n n__gn n n__ ,n n n __ n n
u'—uy =& +0;, & =u"-ILu", 6;=ILu"—u,.

The terms EZ, EZ and & can be estimated by the interpolation error bounds. In order to
estimate 9;, 9(’; and 0}, we use (3.3), (3.5) and rewrite (4.15), (4.16), (4.17) as

n__ on—1 n__ on—
NiGEDN +a(v.(w),w)+w,w)

At At

" t"
=2_0t ( J H(t”_l —5)pec(s)ds, w) + Ait ( J H(t"—l —5)V - un(s)ds,w), (4.18)

(05,2) - (05,7 2) =—(1'e.2),
ay (Gg,v) —a (9;, V- v) =—aqy (Eﬁ,v).

. _ _ _ _1 . . .
Settingw = 0",z = 9&1, v=(0;—0; ")/At and summing the equations (4.18), we obtain

a, (62,07 + coll 0712 + AtIK 2622 = ay (67,0071 +co (0771, 67)

u’’u u’ ’u
t" t"
+ ¢ (J (¢n ! —3s)p..(s)ds, 9;) +a (f (t" =5V u.(s)(s)ds, 9;)
tn—1 tn—1
—ar (K 0m ) —ay (g2, 07 — 0071, (4.19)

The Eq. (4.19) can be used to evaluate the errors, but we need the following inequalities:
1
ap (62,0071) < 3 (an (071,001 ) +a,(00,01)), (4.20)
_ 1 _
o (0;7,67) < o (10,7 13+ 16712). 4.21)

Noting that 60 = 0 and 91? = 0, we sum the Egs. (4.19) from 1 to m, m < N, and the
inequalities (4.20), (4.21) yield

1 T
5 (an (61, 0) + collO™2) + At > IK V2082 < Ty + Ty + T3 + T,

n=1
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where

m t"
T]. :COZ(J (tn_l—S)ptt(S)dS, 6;)5
t
m t"
T, = aZ (J (t" 1 —5)V -u,,(s)ds, 9;) ,
n=1 tnfl
m
T, =—> At(KE8,00),
n=1

m
Ty=— a (€560 —67").
n=1

The term T; can be estimated as

m t" m t"
Ti=co ), ( J ("1 —$)pe(s)ds, 9;) <c Y. J (" =s)p(s)ds| |07,
n=1 \J 1 n=11lJ 1 0
and since
n o 1/2
‘ J (tn_l —s)pee(s)ds|| < (At)g/z (f ||ptt(5)||§d5) >
tn—1 0 tn—1
we have
m ) t™
T,<C (AtZ o, + (At)ZJ ||ptt(s)||gds).
n=0 0
Analogously,
m 5 t"
T,<C (AtZ ||9;}||0 + (At)ZJ [V - utt(s)l%ds).
n=0 0
Besides, it is easily seen that
m 1 m 2 m 2
- _ -1 2 —1/2
Ty == Ac(kTEg 00) < sacy [k 2og ]+ cac ) g
n=1 n=0 n=1
In order to estimate T,, we consider the representations
m m
D= g = frgm— fOg0— " fr(gh — g L) (4.22)
n=1 n=1
and
1 (¢
gn— gﬁ_l = gﬁt + N J (¢m ! —5)Ey,, (s)ds. (4.23)
tn—1

Noting that 68[ = 0 and using (4.22), (4.23), (3.19) and the Young inequality, we obtain
the inequality

m m
Ty == a0, (E0,60 —007") = —ay (€7, 67) + D jan (€L — €27 607")
n=1

n=1
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<ol e (e r0or [ e ol a
0

2 all2
o))
with arbitrarily small number &.
Taking into account the estimates obtained, conditions (2.2) and the inequality (3.20),
we arrive at the inequality

C, 1 At <
(Som— ez e+ Jllop s 2 3l

(llez,

m
n=0

t™ t™

m
<C (AtZ(||9;||§+ ||9{;||§)+(At)2J ||ptt(s)||3ds+(At)2J IV - u, ()2 ds

= 0 0

rrlno ) ) T m )

racS el lepli oo [t onass sl ) wan
n=1 0 n=0
If 0 < & < Ceoer/2, then
Cminzmin{%—e,%co,ﬁ} > 0.

Moreover, if one replaces the left-hand side of (4.24) by the term

m
o 051+ D 8 33041 )

the inequality still holds true. Since (4.24) is valid for any 1 < m < N, we can use the
discrete Gronwall inequality and some approximation properties to obtain

N
max |63 + max {67, +At; oz

T
<C ((At)2J Ipec()l§ ds + (At)? J
0

0

T
2 2k ny2
IV -u, (s)lgds +h  max llq" (I3

T
+ h% max [[u]|? + k% (A1)? u, ()| ds +h* max [Ju?])? |.
NGO R LOT max [ I}
This inequality and the interpolation error estimates for 5;, 3 Z and &7, lead to the inequality
(4.11). Il
The case ¢, = 0 can be handled analogously to the semi-discrete scheme. One can
derive an optimal error bound for the pressure using a weaker norm.

Theorem 4.3. Let (p,q,u) € P x 2 x ¥ and (py,, qy, u;) € P, x 2y X V), be the solutions of
(2.1) and (4.1)-(4.3), respectively. Then under the assumptions of Theorem 4.2 the following
estimate

N N
max o e o7 pp acD o g < 0 (2 + (402)

1<n<N
n=1 n=1

holds.
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5. Concluding Remarks

We propose an H(div)-conforming finite element method for Biot’s consolidation, where
displacements and fluid velocity are approximated by elements from BDM, space. The use
of H(div)-conforming elements ensures that the normal components of displacements and
fluid velocity are continuous across element interfaces and the method is locally conserva-
tive. The elasticity locking problem has been overcome by implementing a mixed element
method in the discontinuous Galerkin framework. Moreover, a proper selection of finite
element spaces for displacements and pressure prevents the appearance of pressure os-
cillation. Having introduced a spatial discretisation, we develop semi-discrete and fully
discrete schemes, prove their unique solvability and establish optimal error estimates for
each variable.
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