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It has recently been shown that nontrivial couplings between a scalar and the Gauss-Bonnet invariant can

give rise to black hole spontaneous scalarization. Theories that exhibit this phenomenon are among the leading

candidates for testing gravity with upcoming black hole observations. All models considered so far have focused

on specific forms for the coupling, neglecting scalar self-interactions. In this work, we take the first steps

towards placing this phenomenon on a more robust theoretical footing by considering the leading-order scalar

self-interactions as well as the scalar-Gauss-Bonnet coupling. Our approach is consistent with the principles of

effective field theory and yields the simplest and most natural model. We find that a mass term for the scalar

alters the threshold for the onset of scalarization, and we study the mass range over which scalarized black hole

solutions exist. We also demonstrate that the quartic self-coupling is sufficient to produce scalarized solutions

that are stable against radial perturbations, without the need to resort to higher-order terms in the Gauss-Bonnet

coupling function. Our model therefore represents a canonical model that can be studied further, with the

ultimate aim of developing falsifiable tests of black hole scalarization.

I. INTRODUCTION

The era of gravitational-wave observations has arrived. For

the first time we can see the universe in gravitational waves as

well as optically, and this new window affords us the opportu-

nity to test gravity in extreme spacetimes for the first time. The

LIGO/Virgo collaboration has already detected ten black hole

(BH) mergers [1, 2] and one neutron star merger [3]. The lat-

ter has proved incredibly powerful for testing and constraining

infrared modifications of gravity [4–10] (if the modifications

are important for the late-time cosmology [11]), but ultravio-

let (UV) modifications are more difficult to test. This is partly

due to the numerical and theoretical challenges that arise when

extending computations of merger events to theories beyond

general relativity (GR), but also due to a theoretical roadblock:

the no-hair theorems [12–14] (see e.g. [15–19] for reviews).

These preclude the existence of nontrivial scalar hair (or scalar

charges) for BHs, and so the dynamics of theories including

new scalar degrees of freedom (i.e. scalar-tensor theories)

is similar to GR. One possible way forward is to instead use

neutron stars as probes of UV modifications of GR [15, 20–

28]. These are far more complicated objects since the equation

of state for nuclear matter is presently unknown, and, unlike

BHs, neutron stars have higher-order multipole moments that
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give rise to strong tidal effects. On the observational side,

LIGO/Virgo has observed more BH mergers than neutron star

mergers [2], and this may well remain the case, even as more

gravitational-wave detectors come online and the existing ones

are upgraded to improved sensitivities.

A. Black hole spontaneous scalarization and effective field

theory

The considerations above have motivated a theoretical effort

to find UV-modifications of GR that can circumvent the no-

hair theorems by violating some of their assumptions. Some of

these theories exhibit spontaneous BH scalarization [29, 30],

a phenomenon where both the GR BH solution and novel

BH solutions with scalar hair can exist. The phenomenon

has been predicted for static [29, 30] and, more recently,

charged [31, 32] BHs. This allows for the possibility that, even

if all LIGO/Virgo detections to date have been compatible with

GR, future detections could be consistent with scalarized BH

solutions.

The fundamental interaction responsible for scalarization is

the coupling between a scalar field φ and the Gauss-Bonnet

invariant G = R2 − 4RabRab
+ RabcdRabcd , so that the action

has the form

S =
1

2

∫

d4x
√−g

[

R

8πG
− 1

2
∇aφ∇aφ + f (φ)G

]

, (1)

where we are using units where ~ = c = 1, so that the Planck

mass MPl = (8πG)−1/2. In subsequent sections we will switch

to units where 8πG = c = 1, which is more suited to (and more

common in) the study of BH solutions. In Eq. (1) we have
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chosen the same normalization and conventions as in Ref. [33]

(modulo an overall sign in the definition of the Riemann tensor)

and in Refs. [30, 34–36], while the scalar field φDY in Refs. [29,

37] has a different normalization: φDY
= φ/2. A canonically

normalized scalar field φcan is such that φcan
= φ/

√
2.

Reference [30] proved a no-hair theorem for scalar-Gauss-

Bonnet theories under certain conditions. Scalarization may

occur when these conditions are violated. The essential re-

quirement is that the coupling function f (φ) has at least one

stationary point at some φ = φ̄ such that f (φ̄) = 0. GR BHs

correspond to solutions with φ = φ̄, but this configuration

may be unstable for certain BH masses or model parame-

ters. When this is the case, the field rolls away, and the BH

acquires scalar hair. Apart from this requirement, there is

no guiding principle for choosing f (φ). The patent choice

f (φ) = φ2/2M2 [30] (where M is a new mass scale) pro-

duces scalarized BHs that are unstable to radial perturbations

[37]. This can be resolved by including higher-order terms, in

particular f (φ) = φ2/2M2
+cφ4/M4 [35, 36], or by assuming

a more complicated function: for example, exponential cou-

plings f (φ) = exp(βφ2/2M2) with both positive and negative

signs for β have been considered in the literature [29, 38].

These solutions are somewhat unsatisfactory from a theo-

retical perspective. Since we lack a UV-completion for these

models, it would be more appropriate to construct the theory

using the principles of effective field theory (EFT) [39–41].

From this perspective, relying on higher-order corrections to

the coupling function in order to stabilize the BH solutions

implies that higher-dimensional operators are competing with

(supposedly leading) lower-dimensional operators. This sug-

gests that operators that have been omitted can be just as im-

portant, and therefore these solutions are outside the range of

validity of the EFT. Moreover, without any enhanced sym-

metry protecting the form of special choices of the coupling

functions (and the action in general), it is likely that these the-

ories are radiatively unstable. We note that there is currently

no known enhanced symmetry of the exponential or quartic

couplings, though this is by no means a proof that there cannot

be one. Similarly, it is possible that such couplings arise as a

truncation of a UV-complete theory and just appear fine-tuned

from an IR perspective [42].

In the coming decade and beyond, LIGO/Virgo will be up-

graded to higher sensitivities and additional detectors will

come online. Hundreds or thousands of detections are an-

ticipated, and it therefore behooves us to make theoretical pre-

dictions from robust models that are stable from a QFT point

of view. The main purpose of this paper is to take a first step

towards placing the phenomenon of BH spontaneous scalar-

ization on a more robust theoretical foundation by constructing

the theory using EFT principles.

When viewed as an EFT, spontaneous scalarization is a phe-

nomenon occurring in theories where a Z2-symmetric scalar

(i.e. the action is invariant under φ → −φ) is coupled to a

massless spin-2 particle. We should therefore build our ac-

tion out of operators that are invariant under this symmetry.

In particular, the leading-order (relevant and marginal) oper-

ators are not Gauss-Bonnet couplings, but rather a mass term

and a quartic self-interaction1. One should supplement these

with irrelevant operators suppressed by some cut-off scale M,

which will include a quadratic scalar-Gauss-Bonnet coupling

at lowest order. For this reason, we will mainly study the action

S =
1

2

∫

d4x
√−g

[

M2
PlR − 1

2
∇aφ∇aφ (2)

−1

2
µ2φ2 − 1

2
λφ4
+

φ2

2M2
G

]

.

Later on, we will also include the quartic scalar-Gauss-

Bonnet coupling in order to provide a different and well-studied

stable model against which we can compare the effects of the

self-interactions. This coupling is higher order and it will not

give the leading order effect from an EFT perspective, but it

is included for the purpose of comparison with previous stud-

ies [29, 30, 36, 37]. Boson star and BH solutions have recently

been studied in a similar class of theories [43, 44]. Scalar-

tensor theories with a self-interacting potential, but without a

Gauss-Bonnet term, were considered in [45–47].

Of course, there are other operators that one could write

down, such as a term ∝ φ6 in the potential or scalar-curvature

couplings such as φ2R, but in this work we will restrict our

focus to understanding how scalarization works when only the

leading-order operators (including the leading-order scalar-

Gauss-Bonnet coupling) are included, since this is the minimal

input required to produce the phenomenon. We postpone the

more arduous task of determining the unique set of dimension-

six operators that contribute to this theory, and a full explo-

rative study of the resultant parameter space, for future work.

B. Executive summary

In this article we study the existence, stability, and properties

of scalarized BHs in the theory defined by the action (2),

including the subtleties and conceptual issues that arise due to

the inclusion of a mass for the scalar.

We find (as previously noted in [44]) that including a mass

term for the scalar alters the threshold for the onset of scalar-

ization. Most notably, we find that the quartic self-interaction

is sufficient to stabilize some scalarized BHs, and higher-order

scalar-Gauss-Bonnet couplings are not required. For this rea-

son, and because the theory is a robust EFT, the action (2)

represents the leading canonical model with which to study

spontaneous BH scalarization.

The action in Eq. (2) uses units where ~ = c = 1, which are

useful for understanding the theory from an EFT perspective.

For the purposes of calculating, it is more convenient to use

geometrized units where 8πG = c = 1. Furthermore, we will

1 The leading-order scalar-graviton coupling is φ2R, but this does not lead

to BH scalarization, so we will not include it in this work. This operator

does not contribute to the scalar?s equation of motion on a Ricci-flat GR

solution, which means it cannot alter the threshold for the onset of BH

scalarization. Note however that it can contribute to the effective mass on

a scalarized BH or a neutron star background.
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FIG. 2. Mass and charge of the marginally stable scalarized BH configurations corresponding to the blue dot configurations displayed in Fig. 5.

These represents the minimum mass and maximum charged that stable scalarized BHs can have.

responsible for scalarization is harder to realize.

• Effects of the quartic self-interaction (right panel of

Fig. 1): The quartic self-interaction stabilizes scalarized BH

solutions with respect to radial perturbations. At fixed µ̂,

all scalarized solutions with λ̂ < λ̂crit are unstable, and we

conjecture that gravitational collapse will generally lead to

a Schwarzschild solution since these are always stable for

M̂ > M̂t . This corresponds to the region on the right of

the dotted vertical lines in Fig. 5 below. When λ̂ > λ̂crit, stable

scalarized BH solutions are possible: these are the solid lines

on the left of the dotted vertical lines in Fig. 5, and we conjec-

ture that they are the end-state of gravitational collapse. The

threshold value λ̂crit(µ̂) is shown in the right panel of Fig. 1.

Qualitatively, this can be understood as follows: For scalar-

ized solutions, the effective mass for the scalar [Eq. (9)] is

tachyonic, at least in some region of spacetime, and therefore

the scalar tends to grow from its scalarized value. Introducing

a quartic term in the effective potential (8) bounds the effec-

tive potential from below, so that there is a stable minimum

about which the effective mass (9) is positive and the solu-

tion is globally stable. This is also the reason why a quartic

Gauss-Bonnet coupling can stabilize the scalarized solutions

[35, 36], although in the Gauss-Bonnet case the coefficient of

the ϕ4 term is also spacetime-dependent.

The existence of a global stable minimum should resolve

the concerns raised in reference [48], where it was shown that

quantum fluctuations could trigger the tachyonic instability

during inflation. In our model, the field would begin, and

remain, at the global minimum for the duration of inflation

and play no role in its dynamics (the field’s mass would

be much larger than the Hubble scale so that the field does

not fluctuate). That being said, inflation occurs at energies

far higher than the cut-off of the effective field theory for

spontaneous scalarization (10−20 GeV for scalarized solar

mass BHs), and it is not clear that the range of validity of any

current model exhibiting scalarization can be extended to the

early Universe.

•Mass range for scalarization and maximum scalar charge

(Fig. 2): For any given choice of the theory parameters (µ̂, λ̂),
marginally stable scalarized BH solutions correspond to a min-

imum in the BH mass M̂ and a maximum in the scalar charge

Q̂: cf. again Fig. 5 below. (This maximum charge refers to

stable BHs; unstable BHs can have larger charges, but they are

unphysical.) In the left panel of Fig. 2 we focus on nodeless

solutions, and we plot: (i) the λ̂–independent threshold mass

M̂ = M̂t(µ̂) below which scalarization is possible (thick, gray

line); (ii) the minimum dimensionless mass M̂min(µ̂), below

which both Schwarzschild and scalarized BH solutions are

unstable, for selected values of λ̂. The mass range in which

stable, scalarized BH solutions can exist becomes narrower as

µ̂ increases.

Summarizing: for M̂ > M̂t, the Schwarzschild solution is

stable, while scalarized BH solutions are unstable to radial

perturbations; for M̂min < M̂ < M̂t there is at least one stable

n = 0 scalarized BH, while the Schwarzschild solution (and

the n > 0 scalarized BH solutions) are unstable; finally, for

M̂ < M̂min, all BH solutions are unstable. The existence of

a minimum BH mass is a common feature in theories with

scalar-Gauss-Bonnet coupling (see e.g. the cases of Einstein-

dilaton Gauss-Bonnet gravity [33, 49] and of shift-symmetric

Gauss-Bonnet gravity [50]), although in theories that do not

exhibit scalarization (such as these) the minimum mass is due

to the inability to satisfy a regularity condition at the horizon.

The right panel of Fig. 2 shows the maximum dimensionless

scalar charge Q̂max(µ̂) for selected values of λ̂. The most rele-

vant feature here is that, for all values of λ̂ that we investigated,

Q̂max(µ̂) has a local maximum ∼ 0.15: this near-universal

maximum value of the scalar charge is of phenomenolog-

ical interest, because the dipolar radiation in BH binaries

(which is potentially measurable by gravitational-wave inter-

ferometers) is proportional to the difference between the BH

charges [15, 51, 52].
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C. Plan of the paper

The paper is organized as follows. In section II we present

the equations of motion resulting from the action (3) and ana-

lyze their properties. In section III we investigate the effect of

a nonzero scalar mass on the threshold for the onset of scalar-

ization. We accomplish this by studying the limit in which

the scalar is decoupled from the metric equations of motion,

i.e. we consider the linearized field equations for a scalar field

propagating on a Schwarzschild background. In section IV

we move beyond this “decoupling limit” and solve the coupled

metric-scalar equations numerically in order to confirm the

results of our linear analysis. We also calculate the properties

of the scalarized solutions, including their stability to radial

perturbations. The study of radial perturbations in scalar-

Gauss-Bonnet theories is by now standard (cf. [35–37]), so

we do not rederive the formalism in this work.. In section V

we summarize our results and discuss possible directions for

future work.

II. FIELD EQUATIONS AND SCALARIZED SOLUTIONS

The modified Einstein equations can be obtained by extrem-

izing the action (3) with respect to the metric and the scalar

field, with the result

Gab = T
ϕ

ab
− 1

2
Kab, (10)

�ϕ = V,ϕ − f,ϕG, (11)

where

T
ϕ

ab
=

1

2
∂aϕ∂bϕ −

1

2
gab

[

1

2
(∂cϕ)2 + V(ϕ)

]

, (12)

Kab = 2gc(agb)dǫ
edjg∇h

[∗Rch
jg f ′∇eϕ

]

, (13)

where V(ϕ) is given in equation (4), f (ϕ) = (ηϕ2
+ ζϕ4)/8,

and ∗Rab
cd
= ǫabef Re f cd .

As discussed in [29, 30], Schwarzschild solutions exist in

scalar Gauss-Bonnet theories provided that there is some ϕ̄

such that f ′(ϕ̄) = 0. In our model, ϕ̄ = 0. Allowing for a

nonzero value of the background scalar may have important

phenomenological consequences for gravitational wave astron-

omy, as pointed out in the context of Einstein-Maxwell-dilaton

theory [53], and we plan to revisit this assumption in future

work.

We focus on static, spherically symmetric BHs. In this case

the line element and the scalar field read

ds2
= −A(r)dt2

+ B(r)−1dr2
+ r2dΩ2, (14)

ϕ = ϕ0(r), (15)

where dΩ = dθ2 + sin2 θ dφ2 is the line element on a 2-sphere.

The field equations can be obtained by substituting Eqs. (14)

and (15) into Eqs. (10) and (11). We show the equations in

Appendix A. We also make them available online through a

Mathematica notebook [54].

The field equations must be supplemented by boundary con-

ditions. Spherically symmetric BHs have an event horizon rh
where the functions A and B vanish and the scalar field tends

to a constant:

A(r ≈ rh) ≈ a1(r − rh) + O[(r − rh)2], (16)

B(r ≈ rh) ≈ b1(r − rh) + O[(r − rh)2], (17)

ϕ0(r ≈ rh) ≈ ϕ0h + O[(r − rh)]. (18)

These conditions impose a restriction on the derivative of the

scalar field at the horizon:

dϕ0

dr

�

�

�

�

r=rh

= a−1
(

b + c
√
∆

)

, (19)

where a, b, and c are functions of rh , ϕ0h , and of the parameters

of the theory. The explicit expression of these functions is

given in Appendix A. The important quantity is ∆, which is

given by

∆ = 1 − 6
ϕ0h

r4
h

(

η + ζϕ2
0h

)2
{

1−

− 1

2
ϕ2

0h

(

η + ζϕ2
0h

) (

µ2
+ 2λϕ2

0h

)

−
r2
h

6
ϕ2

0h

(

µ2
+ λϕ2

0h

)

[

1 +
1

16r2
h

(

ηϕ0h + ζϕ
3
0h

)2

×

×
(

−24

r2
h

+ µ2ϕ2
0h + λϕ

4
0h

)]}

. (20)

When ∆ < 0 it is not possible to enforce regularity at the

horizon. Ref. [50] studied this regularity condition for shift-

symmetric scalar-Gauss-Bonnet gravity, showing that there is a

naked singularity when the condition is violated. Thus, ∆ > 0

is a necessary condition for the existence of BH solutions.

By expanding the field equations for large r we obtain

A(r ≫ rh) ≃ 1 − 2M/r , (21)

B(r ≫ rh) ≃ 1 − 2M/r , (22)

ϕ0(r ≫ rh) ≃ Q e−µr/r , (23)

where M is the ADM mass, Q is an integration constant, and

we have set the cosmological value of the scalar field to zero.

In the µ→ 0 limit, the scalar field decays like ϕ ∼ 1/r , and the

constant in front of 1/r is typically referred to as the “scalar

charge.” Strictly speaking, Q is not a conserved charge (even

when µ = 0), but we will follow conventions and refer to it as

such from here on.

Typically, in scalar-tensor theories one must set the scalar

field’s mass such that the force range is sub-micron (for O(1)
couplings), or else the theory will fail laboratory and solar

system tests of GR [55–63]. Therefore one would expect the

spacetime outside the BH to rapidly approach the Schwarzchild

metric, thereby suppressing any deviations from GR. This

logic follows from scalar-gravity couplings of the form ϕR,

which, in the absence of any screening mechanisms, give rise

to Yukawa forces. The coupling considered in our model ηϕ2G
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is expected to appear at high post-Newtonian order in the weak-

field limit (provided η/M2
⊙ is not too large), and therefore the

theory is compatible with Solar System tests of GR [64, 65].

Furthermore, since it is unlikely that weakly gravitating ob-

jects like the Sun and the Earth are scalarized, gravity in the

Solar System should behave identically to GR. For these rea-

sons, we will not place any restrictions on the mass of the

field in this work. One could imagine completing the EFT by

adding a term proportional to ϕ2R into the action, which is not

forbidden by the symmetries, and which we have ignored in

this work for the sake of simplicity. Such couplings could give

rise to Yukawa-like forces, but (again) only if the Sun or the

Earth is scalarized, which is unlikely to be the case, with the

exception of extreme couplings [66, 67]. The situation would

be different if the asymptotic field value were different from

zero.

III. SCHWARZSCHILD RADIAL STABILITY AND THE

SCALARIZATION THRESHOLD

In Sec. IV we will explore the BH solutions of the theory.

Before doing so, we first wish to understand whether such

solutions can exist as a result of instabilities of the ordinary

Schwarzschild solution to linear perturbations.

The Schwarzschild metric with a vanishing scalar field is a

solution of Eqs. (10) and (11). We can study the radial stability

of the Schwarzschild spacetime by considering perturbations

of the field equations of the form ϕ = εϕ1(r)e−iωt/r , where

ε is a small bookkeeping parameter. From the scalar field

equation (11) we find

d
2ϕ1

dr2
∗
+ (ω2 − Veff)ϕ1 = 0 , (24)

where

Veff =

(

1 − rh

r

)

(

rh

r3
+ µ2 −

3 η r6
h

r6

)

. (25)

This equation involves only the field’s mass µ and the strength

of the Gauss-Bonnet coupling η. Therefore, higher-order terms

in the scalar potential and in the coupling function do not have

any influence on the stability of the Schwarzschild spacetime.

In particular, the threshold for scalarization is independent of

λ.

To investigate the radial stability of the Schwarzschild space-

time, we solve Eq. (24) by requiring that the field vanishes at

the BH horizon and at infinity [36]. Since the equation is

real, the eigenvalue ω2 is also real, and ω2 < 0 corresponds

to unstable modes [36, 37, 68]. The critical threshold value

M̂ = M̂t for which scalarization can occur corresponds to solu-

tions of Eq. (24) with eigenvalue ω = 0, indicating a transition

between stable and unstable states. The condition ω2
= 0 is

satisfied by different values of M̂ , corresponding to scalarized

solutions with n = 0, 1, . . . nodes in the scalar field profile.

We denote the threshold value for the n = 0 solution by M̂t.

In the left panel of Fig. 1 we show M̂t as a function of the

mass µ̂ of the field (we also show the threshold values for

0.30 0.35 0.40 0.45 0.50 0.55 0.60
0.0

0.1

0.2

0.3

0.4

FIG. 3. Frequency of the unstable modes of Schwarzschild BHs in

our theory. The frequency becomes zero at M̂ = M̂t .

0.45 0.50 0.55 0.60 0.65

0.00

0.05

0.10

0.15

0.20

0.25

FIG. 4. Unstable modes of scalarized BHs, compared with the

Schwarzschild case (gray solid line), for the representative case

µ̂ = 0.05.

the n = 1 solution, which, as discussed in the introduction,

is always smaller than the threshold mass M̂t for n = 0).

One can see that the threshold for scalarization M̂t decreases

with increasing µ̂. This can be understood by considering the

effective mass for the scalar given in Eq. (9): larger values

of µ require the product ηG to be larger in order to induce

the tachyonic instability. The instability is therefore harder to

realize for larger scalar masses.

By solving Eq. (24) we can also investigate the instability

time scale as a function of M̂ . In Fig. 3 we show the normalized

frequency for unstable modes, 2MωI , as a function of the

parameter M̂ . The Schwarzschild solution is stable (ωI < 0)

in the region M̂ > M̂t, where M̂t is the value corresponding

to the intersection of 2MωI with the x-axis of this plot. The

three cases studied here correspond to the blue dots in the left

panel of Fig. 1. It is therefore plausible that hairy solutions

should exist in the region M̂ < M̂t, where the Schwarzschild

BH is unstable. This expectation will be confirmed in Sec. IV

below.
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FIG. 5. Charge-mass diagram for scalarized solutions with a quadratic scalar-Gauss-Bonnet coupling (ζ = 0) and the scalar potential of Eq. (4).

The threshold mass M̂t corresponds to the dotted vertical line. For M̂ > M̂t scalarized solutions are radially unstable, while the Schwarzschild

solution is stable. When λ̂ is large enough, we can have solutions with M̂ < M̂t. In this region there are two branches of scalarized BH

solutions: the upper branch (dashed lines) is unstable to radial perturbations, whereas the lower branch (solid lines) is stable. Blue dots mark

solutions with marginal stability, which correspond to the minimum mass, maximally charged scalarized BH for the given (µ̂, λ̂).

IV. SCALARIZED BLACK HOLE SOLUTIONS AND

RADIAL STABILITY

In this section we solve the fully nonlinear equations to

construct scalarized solutions, and check their stability un-

der linear radial scalar and tensor perturbations. This is ac-

complished as follows. First, we integrate the field equations

outwards starting from the horizon, where we impose the con-

ditions (16)–(19). By matching the numerical solutions with

Eqs. (21)–(23) in the far region (r ≫ rh), we can extract the

BH mass M̂ and the scalar charge Q̂. This procedure gives

us the unperturbed solution. Next we check stability. The

linearized field equations for radial perturbations follow from

the ansatz

ϕ = ϕ0 + ε
ϕ1

r
, (26)

ds2
= [A + εFt (t, r)]dt2

+ [B−1
+ εFr (t, r)] + r2dΩ2, (27)

where (A, B, ϕ0) are functions of r which satisfy the zeroth-

order (background) field equations. By inserting Eqs. (26)

and (27) into the field equations (10) and (11) and expanding

up to first order, one can show that the equations for the per-

turbation functions reduce to a single second-order equation

of the form

h(r)∂
2ϕ1

∂t2
− ∂

2ϕ1

∂r2
+ k(r)∂ϕ1

∂r
+ p(r)ϕ1 = 0, (28)

(see Appendix A and the supplemental Mathematica note-

book [54]) where the coefficients (h, k, p) depend only on the

background quantities and on r (cf. [33, 36, 37]). Eq. (28) can

be further manipulated to reduce it to a Schrödinger-like form,

but since this step is not necessary to analyze the stability of

the system, and generates more complicated coefficients, we

prefer not to display it here (see [37] for details). A mode

analysis can be performed by looking for solutions of the form

ϕ1(t, r) = ϕ1(r)e−iωt , and by imposing the requirement that

ϕ1(r) vanishes at the horizon and at infinity when searching

for unstable modes. These requirements (as in Sec. III) result

in an eigenvalue problem for ω2 < 0.

Before applying this process in general, it is instructive to

perform a preliminary comparative study in order to discern

how self-interactions affect the stability of scalarized solutions.

In Fig. 4 we fix µ̂ = 0.05 and we compare the normalized imag-

inary mode for the scalarized solutions with the corresponding

calculation for the Schwarzschild case, as presented in Fig. 3.

When λ̂ ≤ 0.2, both the modes of the scalarized solutions

(dashed red) and the Schwarzschild modes (solid gray) con-

verge to zero when M̂ = M̂t . However, for λ̂ > 0.2 the modes

tend to zero when M̂ = M̂min and Q̂ = Q̂max, and we found

no unstable modes for BHs with M̂ > M̂min and Q̂ < Q̂max.

We note also that the unstable mode frequencies typically de-

crease as λ̂ increases, implying stability on longer time-scales.

Qualitatively similar conclusions apply to other values of µ̂.

The main results of our integrations are presented in Fig. 5,

where we show scalarized solutions in the (M̂, Q̂) plane for

representative values of µ̂ and λ̂. The dotted vertical line

represents the threshold for the stability of the Schwarzschild

solution, M̂ = M̂t. Solid lines correspond to radially stable

solutions, while dashed lines correspond to radially unstable

solutions. Note that we use different conventions for radial

stability with respect to Refs. [36, 37], where solid and dashed

lines have the opposite meaning.

When λ̂ = 0, all scalarized solutions are in the region

M̂ > M̂t, where the Schwarzschild solution is stable. These

scalarized solutions are radially unstable, and it is plausible

that Schwarzschild BHs will be the end-state of gravitational

collapse. As λ̂ increases, the solutions move into the region

where M̂min < M̂ < M̂t; the minimum mass M̂min corresponds

to the blue dots in Fig. 5. Schwarzschild BHs are unstable

in this region, so the BH can support a nontrivial scalar pro-

vided the scalarized solutions are stable. For M̂ < M̂min, both

Schwarzschild and scalarized BHs are unstable.

Our analysis reveals that the quartic self-interaction can

stabilize scalarized solutions with a quadratic scalar-Gauss-



8

Bonnet coupling up to some maximum scalar charge Q̂, beyond

which the solutions are unstable. Interestingly, it is possible

to have two scalarized solutions (in addition to the unstable

Schwarzschild solution) at fixed M̂ , provided that λ̂ is large

enough. In such cases, the solution with larger Q̂ is unstable,

and is expected to decay to the solution with smaller Q̂, which

is stable.

The main result of this section is that we do not need more

exotic scalar-Gauss-Bonnet couplings to stabilize the scalar-

ized solutions: leading-order scalar self-interactions are suf-

ficient. From an EFT perspective, these models are better-

motivated.

V. DISCUSSION AND CONCLUSIONS

Black hole spontaneous scalarization is so far the only

known mechanism that allows BHs to possess scalar hair only

if their mass is below a certain threshold. Theories that allow

for this phenomenon are prime candidates for modelling de-

viations form GR that have so far avoided detection but can

be tested using current and future gravitational wave obser-

vations. It therefore behooves the theoretical community to

devise robust, stable theories that exhibit BH scalarization.

To date, all studies in the literature are not consistent effec-

tive field theories since they ignored leading-order terms that

are compatible with the underlying symmetries of the theory.

The aim of the present work is to take the first steps towards

realizing the phenomenon within robust and well-motivated

theories.

In this paper, we have presented the simplest model that

exhibits spontaneous scalarization by viewing the theory as

one of a Z2-symmetric scalar and writing down all of the

leading-order (relevant and marginal) operators, as well as

the leading-order coupling of the scalar to the Gauss-Bonnet

invariant required to produce scalarized BHs. In practice, this

is tantamount to including a mass and quartic self-interaction

for the scalar, so that the theory includes a massive scalar with

a φ4-potential and a quadratic coupling of the scalar to the

Gauss-Bonnet invariant.

Our analysis has revealed that spontaneous scalarization

persists in this bottom-up construction. We have demonstrated

that static scalarized solutions exist and, furthermore, that

they are stable to radial perturbations. This model (possibly

augmented by a ϕ2R coupling, and other dimension-six oper-

ators) therefore represents the leading candidate model with

which to explore spontaneous scalarization. In future studies,

we intend to take this program forward by studying rotating

BHs and neutron stars, and by understanding the stability

and dynamics of these compact objects in full generality.

The ultimate aim of this program is to predict theoretically

sound observational signatures that can be used to test GR

in the strong-field regime with upcoming gravitational wave

observations.
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Appendix A: Spherical black holes in scalar Gauss-Bonnet

gravity

From the nontrivial components of the zeroth-order Einstein

equations, we obtain

(t, t) : B
{

(

ϕ′′
0

)2
[

16(B − 1) f,ϕ0ϕ0
− r2

]

+ 16(B − 1)ϕ′′
0

f,ϕ0
− 4

}

− 4B′ [
2(1 − 3B)ϕ′

0
f,ϕ0
+ r

]

− r2V(ϕ0) + 4 = 0, (A1)

(r, r) :
1

4
A

{

B
[

4 − r2
(

ϕ′′
0

)2
]

+ r2V(ϕ0) − 4

}

+ BA′ [
2(1 − 3B)ϕ′

0
f,ϕ0
+ r

]

= 0, (A2)

(θ, θ) : − rBA′′ (r − 4Bϕ′
0

f,ϕ0

)

+ 4rB2 A′ϕ′′
0

f,ϕ0
− 1

2
r2 A

[

Bϕ′2
0
+ V(ϕ0)

]

+

1

2A

[

rBA′2 (

r − 4Bϕ′
0

f,ϕ0

) ]

+ A′
{

rB
[

4Bϕ′2
0

f,ϕ0ϕ0
− 1

]

− 1

2
rB′ (r − 12Bϕ′

0
f,ϕ0

)

}

− r AB′
= 0 , (A3)

where a prime indicates differentiation with respect to r . The equation for the background scalar field is

ABϕ′′
0
+

1

2
ϕ′

0

[

BA′
+ A

(

4B

r
+ B′

)]

+

4

r2

[

(B − 1)BA′′ f,ϕ0

]

− 1

2r2 A

{

4A′ [(B − 1)BA′
+ A(1 − 3B)B′] f,ϕ0

+ r2 A2V,ϕ0

}

= 0. (A4)
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The equations above can be recast as a system of three dif-

ferential equations: two first-order equations for A and B, and

one second-order equation for ϕ0. These are integrated as

explained in Sec. II, in units where rh = 1, changing the pa-

rameters (η, ζ, λ, µ) in each integration. As noted in Ref. [30],

only some values of the parameters allow for scalarized so-

lutions. With these we construct the background solutions

shown in Fig. 5.

Specializing to the quartic coupling and the quartic poten-

tial, the coefficients appearing in the condition on the scalar

field derivative at the horizon of Eq. (19) are given by

a =
ϕ0h

rh

(

η + ζϕ2

0h

) {

−4 + 2ϕ2

0h

(

ζϕ2

0h + η
) (

2λϕ2

0h + µ
2

)

+

ϕ2

0h

r2

h

(

λϕ2

0h + µ
2

)

[

r4

h − ϕ2

0h

(

ζϕ2

0h + η
)2

]

}

, (A5)

b = ϕ2

0hr2

h

(

λϕ2

0h + µ
2

)

− 4, (A6)

c = 4 − ϕ2

0hr2

h

(

λϕ2

0h + µ
2

)

+

3ϕ4

0h

r2

h

(

ζϕ2

0h + η
)2 (

λϕ2

0h + µ
2

)

− 1

4
ϕ6

0h

(

ζϕ2

0h + η
)2 (

λϕ2

0h + µ
2

)2

− 4ϕ2

0h

(

ζϕ2

0h + η
) (

2λϕ2

0h + µ
2

)

. (A7)

The equations describing the perturbations can be obtained

by expanding the Einstein-scalar system up to first order.

The nonzero components of the perturbed Einstein equations

are (t, t), (t, r), (r, r), and (θ, θ). Additionally, we have one

more equation from the first-order expansion of the scalar

field equation. These five equations can be manipulated to

obtain (28) with a procedure similar to the one presented

in [37, 68]. Instead of showing the explicit form of the

differential equations, which are rather lengthy, we provide

a companion Mathematica notebook which shows the

nontrivial components of the first-order Einstein equations

and the procedure to obtain Eq. (28) from these equations [54].

0.560 0.565 0.570 0.575 0.580 0.585 0.590

0.00
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FIG. 6. Charge-mass diagram considering a quartic term in the

coupling function and a quartic self-interacting potential.

Appendix B: Self-interactions within quartic Gauss-Bonnet

coupling

Ref. [36] showed that scalar-Gauss-Bonnet theories with

V = 0 and a quartic coupling term

f (ϕ) = 1

8

(

ηϕ2
+ ζϕ4

)

(B1)

with ζ/η < 0 can also generate stable BH solutions. A natural

question is whether the combined effects—the quartic potential

and the quartic coupling—can work together to stabilize BHs.

While this is out of the scope of the EFT picture, with the

quartic coupling being a sub-leading operator compared with

the quartic self-interaction, here we investigate this issue as a

complement to our main results.

In Fig. 6 we show the scalarized BH solutions considering

(µ̂, λ̂) = (0.05, 0.4) for different values of ζ̂ . As expected, the

quartic term in the coupling still helps to generate stable BH

solutions, even when the self-interaction potential is present.

We note that this case also exhibits a minimum mass M̂min

and a maximum charge Q̂max, unlike theories with V = 0: cf.

Fig. 2 of [36].
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