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Ultralight scalars can extract rotational energy from astrophysical black holes through superradiant instabilities,

forming macroscopic boson clouds. This process is most efficient when the Compton wavelength of the boson

is comparable to the size of the black hole horizon, i.e. when the “gravitational fine structure constant”

α ≡ GµM/~c ∼ 1. If the black hole/cloud system is in a binary, tidal perturbations from the companion can

produce resonant transitions between the energy levels of the cloud, depleting it by an amount that depends on

the nature of the transition and on the parameters of the binary. Previous cloud depletion estimates considered

binaries in circular orbit and made the approximation α ≪ 1. Here we use black hole perturbation theory to

compute instability rates and decay widths for generic values of α, and we show that this leads to much larger

cloud depletion estimates when α & 0.1. We also study eccentric binary orbits. We show that in this case

resonances can occur at all harmonics of the orbital frequency, significantly extending the range of frequencies

where cloud depletion may be observable with gravitational wave interferometers.

I. INTRODUCTION

The observation of gravitational waves (GWs) by the LIGO

and Virgo collaborations [1] marked the beginning of a new

era in astrophysics and fundamental physics [2]. These ob-

servations have already provided crucial information on the

formation of binary compact objects [3], tested general rela-

tivity in the strong, highly dynamical regime [4–8], and led

to new measurements of the cosmological expansion of the

universe [9, 10].

Quite remarkably, GW observations also have the poten-

tial to transform our understanding of particle physics. One

example is the possibility to discover ultralight bosonic par-

ticles, such as axions, through GWs [11–20]. Ultralight

bosons can efficiently extract rotational energy from spinning

black holes (BHs) through superradiant instabilities and form

macroscopic condensates when the Compton wavelength of

the boson is comparable to the characteristic size of the BH

horizon, i.e. when the “gravitational fine structure constant”

α ≡ GµM/~c ∼ 1 [21]. This possibility can shed light on

bosons with masses in the range ∼ [10−19, 10−11] eV, which

have Compton wavelengths comparable to the size of astro-

physical BHs.

The existence and formation of bosonic clouds can be in-

ferred through several observational channels. A first possi-

bility is to look for gaps in the “Regge plane” of astrophysical

BHs: superradiant instabilities could lead to a lack of highly

spinning BHs in a BH mass range that depends on the boson

mass. Measurements of the spin and mass of astrophysical BHs

can then be used to infer or constrain the existence of ultralight
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bosons [11, 14, 22–24]. Even more exciting is the prospect

of direct detection: once formed, boson clouds would slowly

decay through the emission of long-lived, nearly monochro-

matic GWs. This radiation is potentially observable, either

as a continuous, nearly monochromatic signal from individual

sources or as a stochastic background [11, 13–16, 19, 20].

Here we study how bosonic clouds around astrophysical

BHs can affect the dynamics of a binary system, revisiting

and extending the recent, comprehensive analysis of [25]. The

cloud can affect the motion of small compact objects in its

vicinity [26, 27]. The special nature of the axionic cloud

would leave characteristic signatures in the gravitational wave-

forms from extreme mass-ratio inspirals, that are potentially

detectable by LISA [28]. In this work we consider the effect

of a binary companion on the bosonic cloud itself. Under

certain conditions, the perturbations induced by the compan-

ion can lead to resonant transitions between superradiant and

non-superradiant modes, which can, in some cases, deplete

the cloud [11]. Ref. [25] assumed that α ≪ 1 and that the bi-

nary is on a circular, equatorial orbit that can be treated in the

Newtonian limit. We relax the approximation α ≪ 1 (which

is expected to fail precisely when the superradiant instability

is strongest) by using numerical calculations in BH perturba-

tion theory to estimate the decay rate of the non-superradiant

modes, and we point out an error in the calculation of the decay

rate of Ref. [25]. We also extend their analysis to eccentric bi-

naries, showing that multiple resonant depletion episodes can

occur for eccentric BH binaries of interest for LISA.

The plan of the paper is as follows. In Section II we review

the hydrogenic structure of the energy levels of boson clouds

around rotating BHs. In Section III we discuss resonances

in circular and eccentric binary systems, and in Section IV

we present our estimates for cloud depletion. In Section V we

highlight some limitations of our study and point out directions

for future work. To improve readability and to keep this paper

self-contained, we relegate some necessary technicalities to

the Appendices. Appendix A shows (following [29]) how to
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compute instability rates and decay widths for generic values

of α using continued fraction methods. Appendix B deals

with level mixing induced by tidal perturbations and with the

resulting selection rules, summarizing some important results

from [25]. Finally, Appendix C presents an approximate an-

alytical calculation of the occupation numbers of decaying

levels valid for small-eccentricity orbits.

II. HYDROGENIC STRUCTURE OF THE BOSON CLOUD

Superradiant instabilities can lead to the formation of ul-

tralight boson clouds around rotating (Kerr) BHs. Consider

a scalar field Ψ of mass µ, described by the Klein-Gordon

equation on a Kerr background:

(
� − µ2

)
Ψ(t, r) = 0, (1)

where � = g
ab∇a∇b is the d’Alembert operator, gab is the

contravariant Kerr metric, and ∇a denotes a covariant deriva-

tive. The angular dependence of the scalar field can be sepa-

rated with the ansatz

Ψ =

∑

ℓ,m

eimφe−iωtSℓm(θ)ψnℓm(r) , (2)

which leads to ordinary differential equations for the radial

eigenfunctions ψnℓm(r), where n is an integer labeling the

discrete eigenfrequencies ω. Modes with angular frequency

ω and azimuthal number m will be superradiantly amplified if

the BH rotates faster than the field’s phase velocity, i.e.

0 < ω < mΩH , (3)

whereΩH =
a

2Mr+
is a function of the Kerr angular momentum

parameter a = J/M (where M and J are the BH mass and

angular momentum), and r+ ≡ M +
√

M2 − a2 denotes the

Boyer-Lindquist horizon radius (here and below we will use

geometrical units, G = c = 1). Let us also define ã = a/M and

r̃+ ≡ r+/M for future use. The mass of the scalar field works

as a potential barrier that confines the superradiant modes,

leading to a continuous extraction of angular momentum from

the BH until the inequality (3) is saturated.

By plugging into Eq. (1) the ansatz

Ψ(t, r) = 1
√

2µ

[
ψ(t, r)e−iµt + ψ∗(t, r)eiµt

]
, (4)

where ψ(t, r) is a complex scalar field and ∗ denotes complex

conjugation, and keeping only terms up to first order in r−1,

we obtain

i
∂

∂t
ψ(t, r) =

[
− 1

2µ
∇2 − α

r

]
ψ(t, r), (5)

where ∇2 is the Laplacian operator and α ≡ Mµ is the equiv-

alent of the fine-structure constant for the hydrogen atom. In

fact, Eq. (5) is formally equivalent to the Schrödinger equa-

tion for the hydrogen atom, and thus the eigenstates ψnℓm(r)

re hydrogenic eigenfunctions with principal and orbital quan-

tum numbers n and ℓ, respectively. Let us remark that we

follow the conventions of [25], which are more convenient to

highlight similarities with the spectrum of the hydrogen atom.

In particular, our principal quantum number n is the same as

ñ = n + ℓ + 1 in Dolan’s notation [29], and the dominant su-

perradiant mode – a nodeless (n = 0) solution with ℓ = m = 1

in Dolan’s notation – corresponds to n = 2 in our conventions.

The eigenfrequencies of these states are [30]

ωnℓm ≃ µ

(
1 − α2

2n2
+ δωnℓm

)
, (6)

where δωnℓm denote higher-order corrections, that (up to fifth-

order in α) are given by [25]

δωnℓm ≃
(
− α4

8n4
+

(2ℓ − 3n + 1)α4

n4(ℓ + 1/2)
+

2ãmα5

n3ℓ(ℓ + 1/2)(ℓ + 1)

)
.

(7)

Finally, the characteristic Bohr radius – i.e., the radius at which

the radial profile of the scalar field achieves its maximum value

– is well approximated by

rBohr ≃
(

n2

α2

)
M . (8)

The eigenstates are not stationary because of dissipation, there-

fore the eigenfrequencies have an imaginary part of the form

iΓnℓm, where the coefficients Γnℓm are the instability rates (de-

cay widths) for unstable (stable) modes, respectively [29, 30].

For generic values of the constant α, the decay width Γnℓm
must be computed numerically, as explained in Appendix A.

However, as first shown by Detweiler [30], in the limit α ≪ 1

these quantities can be computed analytically, with the result:

Γnℓm =
2r+

M
Cnℓm(a, α) (mΩH − ω)α4ℓ+5 , (9)

where

Cnℓm(a, α) :=
24ℓ+1 (n + ℓ)!

n2ℓ+4 (n − ℓ − 1)!

[
ℓ!

(2ℓ)! (2ℓ + 1)!

]2

×

ℓ∏

j=1

[
j2

(
1 − ã2

)
+ (ãm − 2r̃+α)2

]
. (10)

One of the main purposes of this paper is to improve over

this small-α approximation, which is significantly inaccurate

when α & 0.1. This is shown in Fig. 1, where – for illustration

– we compare the decay width of the (stable) Γ21−1 mode

computed using continued fractions (CF, solid black line) and

the Detweiler small-α approximation (dashed red line).

When comparing our results with those of Ref. [25] we

found large deviations for α & 0.05. This discrepancy is

caused only in part by the use of the Detweiler approximation,

and we think that it is partly due to the use of an incorrect

equation1 for the decay width Γ21−1. Their equation can be

1 Eq. (3.40) of [25] reads

|Γ(i)
d

| =
B(i)
24

α10

M

(
1 − 4α2

1 + 4α2

)2 (
2

1 + 4α2
+ r̃+

)
. (11)



3

CF

Detweiler

Baumann

0.0 0.1 0.2 0.3 0.4 0.5

10-21

10-16

10-11

10-6

10-1

FIG. 1. Decay width Γ21−1 computed using continued fractions (solid

black), the Detweiler approximation (dashed red) and the calculation

of Ref. [25] (dotted blue).

recovered by using m = 1 in Eq. (10), instead of the correct

value m = −1. As shown in Fig. 1, where the dotted blue line

shows the prediction from Eq. (3.40) of [25], the two formulas

are in good agreement for α ≪ 1, but the use of the incor-

rect estimate for the decay width leads to great discrepancies

against the continued-fraction prediction when α & 0.1.

III. HYPERFINE RESONANCE AND BOHR RESONANCE

A. Circular orbits

At the end of the superradiant process, i.e. when the super-

radiant amplification saturates, the mass and spin of the final

BH are related to the frequency of the dominant superradiant

mode of the cloud by [22]

a

M
=

4mMω

m2
+ 4(Mω)2

. (13)

If the BH that carries the cloud is part of a binary, new cloud

instabilities arise due to the existence of resonant orbits. The

tidal field of the companion will induce perturbations in the

potential of Eq. (5), which in turn induce overlaps between

different states ψnℓm, also known as level mixings. Ref. [25]

studied level mixings for binaries in quasicircular orbits with

orbital frequency

Ω =

√
M + M∗

R3
∗

, (14)

where B(i) is a numerical constant dependent on the transition.

From Eqs. (9) and (10), the correct result for the dominant transitions

should read instead

Γnℓ−1 = −Bn

α10
[
16α4r̃2

+
+ 4α2

(
r̃2
+
+ 4r̃+ + 1

)
+ 1

]

(
4α2
+ 1

)2
, (12)

where B2 = 1/6 and B3 = 128/2187 for the hyperfine and the Bohr mixing,

respectively.

where M∗ and R∗ denote the mass of the companion and the

orbital separation, respectively. Here we briefly summarize

their main results. Defining Φ∗ as the azimuthal angle of M∗
relative to M and setting Ω > 0 without loss of generality,

configurations with Φ∗ = Ωt (Φ∗ = −Ωt) correspond to orbits

corotating (counterrotating) with the cloud.

Let us limit attention to binary separations greater than the

Bohr radius (R∗ > rBohr) to guarantee that the gravitational

influence between the two bodies can be analyzed using a

multipole expansion, and that corrections to the Kerr metric

can be treated perturbatively [25]. If the Bohr radius rBohr

is greater than the Roche radius the gravitational attraction

between the two objects will induce mass transfer from the

cloud to the companion. This critical orbital separation can be

estimated using Eggleton’s fitting formula [31]:

R∗,cr =

[
0.49q−2/3

0.6q−2/3
+ ln

(
1 + q−1/3)

]−1

rBohr, (15)

where q = M∗/M is the ratio between the mass M∗ of the

companion and the mass M of the BH-cloud system. We

restrict our study to the region R∗ > max(rBohr, R∗,cr), so we

can neglect mass transfer.

Let us define τc ≈ 109(M/105M⊙)(0.1/α)15 yr to be the

boson cloud lifetime, estimated assuming that GW emission

is the only dissipative process and that other effect (such as

accretion) are negligible [22]. The merger time for a binary

with orbital frequency Ω0, as estimated from the quadrupole

formula for GW emission for quasicircular orbits [32], is

τ0 =
5

256

Mtot

ν

(
1

MtotΩ0

)8/3
. (16)

If τc > τ0, the merger occurs before the cloud is radiated away.

This relation can be translated into a bound on the initial orbital

frequency:

Ω0 > 0.042
(1 + q)1/8

(M/M⊙)q3/8α
45/8Hz ≡ Ωc . (17)

For circular orbits, we will only consider initial orbital fre-

quencies greater than the critical frequency Ωc .

The selection rules for transitions induced by the tidal po-

tential of the companion are discussed in Appendix B. Con-

sidering only the dominant growing mode ψ211, two main

resonances are of interest during the orbital evolution of the

binary:

(i) the hyperfine resonance is caused by an overlap between

ψ211 and the decaying states ψ210 and ψ21−1;

(ii) the Bohr resonance is caused by an overlap betweenψ211

and the states ψn10 and ψn1−1, for n ≥ 3.

These resonances occur when the orbital frequency Ω

matches the energy split between two states ψnℓm and ψñℓ̃m̃,

i.e. when Ω ∼ ∆ω/∆m = ǫ , where ∆ω = ωnℓm − ωñℓ̃m̃ and

∆m = m − m̃ [25, 27]. More precisely, the hyperfine and Bohr

resonances will occur when Ω matches the hyperfine splitting
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ǫh or the Bohr splitting |ǫb |, which – at leading order in α,

using Eqs. (6) and (7) – are given by

ǫh =
µ

12
ãα5 , ǫ

(n)
b
= −n2 − 4

16n2
µα2 , (18)

where n ≥ 3. The hyperfine resonance will only occur for

corotating orbits (because ǫh > 0), whereas the Bohr resonance

will only occur for counterrotating orbits (because ǫ
(n)
b

< 0).

For orbital frequencies outside these resonances the mixing

between the modes is perturbatively small and can, in general,

be neglected. For the Bohr mixings, we will only consider the

n = 3 resonance: this is usually dominant because it occurs

earlier in the inspiral, and because the decay width decreases

with n [cf. Eq. (12)].

Let us now define the occupation densities of the modes as

cg(t) for the growing modeψ211, c
(h)
d
(t) for the decaying modes

of the hyperfine resonance, and c
(b)
d

(t) for the decaying modes

of the Bohr resonance. In general we have a three-level system

|ψ(t)〉 = cg(t)|ψg〉 + c
(h)
d
(t)|ψ(h)

d
〉 + c

(b)
d

(t)|ψ(b)
d

〉 , (19)

where the occupation densities satisfy the normalization con-

dition |cg(t)|2 + |c(h)
d
(t)|2 + |c(b)

d
(t)|2 = 1.

Consider first the hyperfine mixing. For quasicircular, co-

rotating equatorial orbits the growing mode ψ211 dominantly

couples to the decaying mode ψ21−1, while the perturbative

coupling to the ψ31−1 mode can be neglected. Therefore the

occupation densities must satisfy the normalization condition

|cg(t)|2 + |c(h)
d
(t)|2 = 1. (20)

Solving the perturbed Schrödinger equation for the coupled

states (see Appendix B) with the initial conditions cg(0) = 1

and c
(h)
d
(0) = 0 yields the following proportionality relation

for the occupation density of the decaying mode:

|c(h)
d
(t)|2 =


1 −

(
ǫh ∓Ω
∆
(h)
R

)2
sin

[∫ t

t0

dt ′∆(h)
R
(t ′)

]
, (21)

where we defined the modified Rabi frequency for the hyper-

fine splitting as

∆
(h)
R
=

√
(9η)2 + (ǫh ∓Ω)2, (22)

where upper sign in ∓ stands for the co-rotating orbits and the

bottom for the counter-rotating ones, and

η = α−3

(
q

R∗

) (
M

R∗

)2

. (23)

The Bohr resonance is important only for counter-rotating

orbits. For equatorial orbits the mode ψ310 decouples, and we

only have to consider the decaying mode ψ31−1 (neglecting all

modes with n > 3). Near Ω ≃ |ǫb |, the phase of the hyperfine

mixing oscillates rapidly with a period of the order η−1. In

this region |c(h)
d
(t)|2 ∼ (η/ǫb) ≪ 1 [25], and the problem

reduces again to a two-level system. Solving the perturbed

Schrödinger equation for the remaining states with the initial

conditions cg(0) = 1 and c
(b)
d

(0) = 0 leads to the following

occupation density for the decaying state:

|c(b)
d

(t)|2 =

1 −

(
ǫ
(3)
b

∓Ω

∆
(b)
R

)2
sin

[∫ t

t0

dt ′∆(b)
R
(t ′)

]
, (24)

where η was given in Eq. (23), and in this case the modified

Rabi frequency reads

∆
(b)
R
=

√

(7.6η)2 +
(
ǫ
(3)
b

∓Ω
)2

. (25)

The addition of modes with n > 3 would require, in general,

the solution of an infinite-dimensional system. We can still

approximate the system as a two-level system, as these reso-

nances occur at different orbital frequencies for each n, and

in the vicinity of each resonance only one mode dominates.

However, as stated above, higher modes are subdominant in

the estimation of the depletion of the cloud, and therefore we

neglect resonances with n > 3.

B. Eccentric orbits

The generalization to eccentric orbits can be done by pro-

moting the orbital phase Φ∗ to Φ∗ = F(Ωt, e), where Ω now

describes the mean orbital frequency of the orbit and 0 ≤ e < 1

is the orbital eccentricity. At the Newtonian level, the mean or-

bital frequencyΩ and the orbital eccentricity e are constants of

motion. To find F(Ωt, e) we use the fact that the true anomaly

v ≡ Φ∗ − Φ0 and the mean anomaly l ≡ Ω(t − t0), where Φ0

and t0 are some initial time and initial orbital phase, are related

through the following Fourier series (see e.g. [33]):

v = l+2

∞∑

j=1

1

j

{

Jj( je) +
∞∑

k=1

βp
[
Jj−k( je) + Jj+k( je)

]
}

sin jl ,

(26)

where Jj(x) denotes the Bessel functions of the first kind and

β = (1 −
√

1 − e2)/e. Without loss of generality we will set

Φ0 = 0 and t0 = 0, so that v = Φ∗ and l ≡ Ωt. For eccentric

orbits, the binary separation will depend on the orbital phase

through the elliptical orbit equation, which at Newtonian order

is given by

R∗ =
aSM(1 − e2)
1 + e cosΦ∗

, (27)

where aSM is the semi-major axis, related to the mean orbital

frequency via Kepler’s third law

aSM =

(
M + M∗
Ω2

)1/3
. (28)

The cosine of the orbital phase can also be expanded in a

Fourier series (see e.g. [34]):

cosΦ∗ = −e +
2

e
(1 − e2)

∞∑

j=1

Jj( je) cos jl . (29)
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FIG. 3. Left: Depletion of the scalar cloud for circular, co-rotating orbits (hyperfine resonances) and for selected values of q and α. Dotted

lines correspond to results from [25], dashed lines use the Detweiler approximation [cf. (9)], and solid lines use data generated numerically

from the CF method. As expected, the differences are more pronounced for higher α (and particularly striking when α = 0.4). Right: same,

but for counterrotating orbits (Bohr resonances).

where Mtot = M + M∗ is the total mass of the system and

ν = M M∗/M2
tot is the symmetric mass ratio.

To compute the equivalent of Eqs. (21) and (24) for eccentric

orbits, we must solve Eq. (34) numerically while evolving the

orbit adiabatically using Eqs. (36) and (37). The calculation

of the occupation numbers can be carried out as follows:

(i) For a given set of fixed initial conditions Ω(t = 0) =
Ω(0) and e(t = 0) = e(0), solve (34) numerically, and

average 2|cd |2 over several orbits, but over time scales

much smaller than the radiation reaction time scale;

(ii) Evolve the orbit using Eqs. (36) and (37) with the initial

conditions Ω(t = 0) = Ω(0) and e(t = 0) = e(0), and

produce a grid of values for e(Ω).

(iii) For each value in the grid, repeat step (i) and construct

|cd |2 as a function of Ω.

For e(0) = 0, this procedure reproduces Eqs. (21) and (24)

without the oscillatory terms. For e(0) , 0, our results are

shown in Fig. 2. The most important conclusion of this cal-

culation is that for eccentric orbits with e(0) , 0, resonances

can occur whenever kΩ = 2|ǫ | (where k ≥ 1 is an integer),

in contrast with the quasi-circular case for which resonances

only occur at Ω = |ǫ |. The existence of resonances with k ≥ 2

implies that significant depletion can occur earlier than in the

quasi-circular case.

IV. CLOUD DEPLETION: NUMERICAL RESULTS

Following [25], we introduce the depletion estimator

A(t, t0), where we can take t0 to be the time for which su-

perradiance has saturated:

A(t, t0) =
∑

n,ℓ

∑

m≤0

|Γnℓm |
∫ t

t0

dt ′ |cnℓm(t ′)|2. (38)

This quantity represents the ratio between the integrated time

that the system spends in the decaying modes and the decay

timescale |Γnℓm |−1, weighted by the occupation density of

each state. The mass of the cloud decays proportionally to

exp (−2A), where the factor of 2 arises from the quadratic

dependence of the stress-energy tensor on the scalar field.

The integral in Eq. (38) is more easily performed in the

frequency domain. We can make use of Eqs. (36) and (37) to

write:

A(Ω, Ω0) =
1

νM
5/3
tot

∑

n,l

∑

m≤0

|Γnℓm | ×

∫
Ω

Ω0

dΩ′
Ω

−11/3 5(1 − e2)7/2
96 + 292e2

+ 37e4
|cnℓm(Ω′)|2. (39)

To perform the integral we also need e(Ω). To this end we

use fits for e(Ω) from Ref. [34], which are valid for any initial

eccentricity. In our numerical evaluation of the integral (38)

we ignore the oscillatory terms in Eqs. (21) and (24), following

Ref. [25].

Our Figs. 3 and 4 update the results presented in Figs. 7 and

8 of Ref. [25]. To facilitate comparisons, in Fig. 3 we select

the same examples shown in the lower panels of those figures.

For quasi-circular orbits, we choose the initial frequency to be

Ω0 = Ωc [cf. Eq. (17)], and we truncate the integral at a final

frequency Ω such that our approximations break down, i.e. Ω

corresponds to an orbital radius R = max(rBohr, R∗,cr).
There are three possibilites, depending on the binary’s mass

ratio q and on the gravitational fine structure constant α [25]:

(i) The cloud depletes dramatically during the resonance.

(ii) The cloud undergoes a long period of perturbative de-

pletion.

(iii) The cloud mostly survives during the entire inspiral.

Strong depletion, i.e. cases (i) and (ii), corresponds to re-

gions where A > 0.5, or exp(−2A) < 1/e: these regions
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FIG. 4. Depletion estimator A(Ωf,Ωc) for the co-rotating hyperfine resonances (left panels) and for the counter-rotating Bohr resonances (right

panels). The estimators were computed using decay rates from the CF method (top panels) and the Detweiler approximation (middle panels).

In the bottom row, for comparison, we also show results from Ref. [25]. The thick white lines correspond to Ωc = ǫh (left panels) or Ωc = |ǫb |
(right panels): see the discussion in the main text. Recall that q = M∗/M , so small values of q correspond to extreme mass-ratio inspirals of

the kind discussed in Ref. [28], while large values of q correspond to very massive perturbing companions.
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Appendix A: Continued-fraction method

The decay and growth rate of the scalar field eigenmodes

can be exactly computed by employing a continued-fraction

method [29]. For completeness, here we summarize this

method. The Klein-Gordon equation (1) describing a massive

scalar fieldΦwith mass µ can be separated using the ansatz (2).

When supplemented by appropriate boundary conditions, the

radial and angular equations yield an eigenvalue problem for

the angular separation constantΛℓm and the eigenfrequencyω.

The angular separation constant can be accurately computed

through a series expansion

Λℓm = ℓ(ℓ + 1) +
∞∑

k=1

fk c2k , (A1)

where c2
= a2(ω2 − µ2). Explicit expressions for fk can be

found in [49]. Exact values for Λℓm can also be computed

through a continued-fraction method [49]; however, for the

modes of interest c ≪ 1, and therefore (A1) provides a very

accurate value of the angular eigenvalue. Let us then focus on

the calculation of the radial eigenfrequency ω.

At the event horizon the radial function goes as

lim
r→r+

ψℓm(r) ∼ (r − r+)±iσ , (A2)

where σ = 2r+(ω − mΩH)/(r+ − r−). For ingoing waves at the

horizon only the solution with a negative sign in the exponent

is allowed. At spatial infinity the radial function behaves as

lim
r→∞

ψℓm(r) ∼
r (µ

2−2ω2)/qeqr

r
, (A3)

where q = ±
√
µ2 − ω2. Here we will be interested in the

solutions for which ψℓm(r) is regular at infinity, and therefore

we are interested in the solutions for which Re(q) < 0. These

solutions describe quasibound states.

We therefore look for solutions of the form

ψℓm(r) = (r − r+)−iσ(r − r−)iσ+χ−1eqr
∞∑

n=0

an

(
r − r+

r − r−

)n
,

(A4)

where χ = (µ2 − 2ω2)/q with Re(q) < 0. We note that

choosing Re(q) > 0 one would instead find the quasinormal

modes of the system: modes described by ingoing waves at

the horizon and outgoing waves at infinity.

After inserting this ansatz into the radial ordinary differen-

tial equation one obtains a three-term recurrence relation for

the coefficients an given by

α0a1 + β0a0 = 0 (A5)

αnan+1 + βnan + γnan−1 = 0, n > 0, n ∈ N, (A6)

where

αn = n2
+ (c0 + 1)n + c0, (A7)

βn = −2n2
+ (c1 + 2)n + c3, (A8)

γn = n2
+ (c2 − 3)n + c4. (A9)

and the constants c0, c1, c2, c3 and c4 can be found in Eqs. (39)–

(43) of [29].

The ratio of the coefficients an satisfy an infinite continued

fraction

an+1

an
= − γn+1

βn+1−
αn+1γn+2

βn+2−
αn+2γn+3

βn+3−
. . . (A10)

This can be further simplified after substituting the n = 0 term

in this expression and noting that a1/a0 = −β0/α0. We then

get

β0 −
α0γ1

β1−
α1γ2

β2−
α2γ3

β3−
. . . = 0. (A11)

The discrete family of complex values of ω for which this

condition is satisfied correspond to the bound state frequencies.

In particular for each choice of ℓ and m there is an infinite tower

of solutions corresponding to the different overtones.

Appendix B: Level-mixing due to gravitational perturbations

As discussed in Ref. [25], the gravitational perturbations

induced by a companion sufficiently far away from the BH-

cloud system can be translated into a shift in the potential of

the Schrödinger equation (5), causing level mixings. At lowest

order in α, the tidal perturbation can be written as [25]

V∗(t, r̄) = −M∗µ

R∗

∑

ℓ∗≥2

∑

|m∗ | ≤ℓ∗

4π

2ℓ∗ + 1
×

(
r̄

R∗

)ℓ∗
Y ∗
ℓ∗m∗

(Θ∗,Φ∗)Yℓ∗m∗ (θ̄, φ̄) , (B1)

where the coordinates R∗(t) ≡ {R∗(t),Θ∗(t),Φ∗(t)} describe

the position of the companion relative to the isolated BH-cloud

system, and r̄ ≡ {r̄, θ̄, φ̄} are comoving Fermi coordinates with

origin at the center of mass of the BH-cloud system.

This gravitational perturbation will induce an overlap be-

tween different modes Ψnℓm given by

〈Ψj |V∗ |Ψi〉 = −M∗µ

R∗

∑

ℓ∗≥2

∑

|m∗ | ≤ℓ∗

4π

2ℓ∗ + 1
×

Y ∗
ℓ∗m∗

(Θ∗,Φ∗)
Rℓ+1
∗

× Ir̄ × I
Ω̄
, (B2)

where

Ir̄ =

∫ ∞

0

dr̄ r̄2+ℓ∗ψn jℓj (r̄)ψniℓi (r̄) , (B3)

I
Ω̄
=

∫
dΩ̄Y ∗

ℓjm j
(θ̄, φ̄)Yℓimi

(θ̄, φ̄)Yℓ∗m∗ (θ̄, φ̄) . (B4)

The angular integral vanishes unless the following selection

rules are satisfied:

(i) −mj + mi + m∗ = 0;

(i) |ℓj − ℓi | ≤ ℓ∗ ≤ ℓi + ℓj ;

(iii) ℓi + ℓj + ℓ∗ = 2p, for p ∈ Z.
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If one considers, for example, a BH-cloud system that in

isolation is only composed of the fastest growing mode

|nℓm〉 = |211〉, then the dominant mixings induced by the

leading-order quadrupolar perturbations ℓ∗ = 2 are with the

modes |210〉, |21 − 1〉, |31 − 1〉 and |310〉. If one further re-

stricts to equatorial orbitsΘ∗ = π/2, the mixing with the modes

|210〉 and |310〉 is forbidden, because 〈211|V∗ |n10〉 = 0 when

Θ∗ = π/2.

Consider, for simplicity, the mixing between a growing

modeΨg and a decaying modeΨd (the addition of more modes

is straightforward [25]). Using perturbation theory one finds

that the expectation value for the Hamiltonian of the field Ψ is

given by

H =

(
Eg 0

0 Ed

)
+

(
〈Ψg |V∗ |Ψg〉 〈Ψg |V∗ |Ψd〉
〈Ψd |V∗ |Ψg〉 〈Ψd |V∗ |Ψd〉

)
, (B5)

where Eg and Ed are the energy eigenvalues of growing and

decaying modes for the unperturbed BH-cloud system. The

Hamiltonian can be separated into diagonal and non-diagonal

parts:

H = H0 + H1 =

(
Eg + 〈Ψg |V∗ |Ψg〉 0

0 Ed + 〈Ψd |V∗ |Ψd〉

)
+

(
0 〈Ψg |V∗ |Ψd〉

〈Ψd |V∗ |Ψg〉 0

)
. (B6)

Since H0 is diagonal, the eigenstates are the same as for the

isolated BH-cloud system, but with shifted energy states due to

the nonzero expectation values 〈Ψg |V∗ |Ψg〉. Calculations are

then more easily performed in the interaction picture, where

the evolution of the state |ΨI 〉 is defined by [25]

|ΨI (t)〉 = eiH0t |Ψ(t)〉 . (B7)

In this picture, one can define the operator H1,I as

H1,I (t) = eiH0tH1(t)e−iH0t, (B8)

such that the Schrödinger equation can now be written as

i
d

dt
|ΨI (t)〉 = H1,I (t)|ΨI (t)〉 . (B9)

The advantage of working in the interaction picture is that H1,I

will, in general, be a purely nondiagonal matrix [cf. Eq. (31)].

In the equations above we have assumed that H0 is time-

independent. Strictly speaking H0 will be time-dependent,

since (i) for generic eccentric orbits R∗ oscillates on a time

scale given by the orbital period, and (ii) the semi-major axis

of the orbit aSM = 〈R∗〉, where 〈R∗〉 denotes a time-average

over several orbits, decreases due to gravitational radiation

reaction. Therefore for eccentric orbits this approximation

is valid if H0 is replaced with 〈H0〉. In addition we assume

that radiation reaction can be treated adiabatically, because

ÛaSM/aSM ≪ Ω. When computing the Hamiltonian we are also

neglecting the slow decay of the decaying modes. This is usu-

ally appropriate since the decay widths are, in general, much

smaller than the frequency eigenvalues, i.e. Γnℓm ≪ ωnℓm.

Appendix C: Occupation numbers to first-order in the

eccentricity

The potential V(t) in Eq. (34) is given by

V(t) =A2η2
+

[ (
ǫ − ÛΦ∗

)2
+ i ÜΦ2

∗

]

+

2η
[
2i Ûη

(
ǫ − ÛΦ∗

)
+ Üη

]
− 3 Ûη2

4η2
. (C1)

Remarkably, for small eccentricities we find that Eq. (34) can

be solved exactly by expanding V(t) up to first order in e. In

particular, at first order in e one finds

V = ∆2
R +

e

2
[±2iΩ (±Ω − 3ǫ) sin(±Ωt)+

(
12∆2

R − 12ǫ2 ± 16ǫΩ − 7Ω2
)

cos(±Ωt)
]
+ O(e2) , (C2)

where we used Eqs. (26), (27) and (29). At zeroth order

in e, the solution satisfying the initial condition C(0) = 0 is

C(t) = A0 sin(∆Rt)+O(e). For solutions valid up to first order

in e we therefore attempt to find a solution of the form

C(t) = A0 sin(∆Rt) + eX(t) + O(e2) , (C3)

where we require that A0 does not depend on e. Requiring the

initial condition cg(0) = 1 and using Eq. (31) to get Ûch(0) we

find

A0 = −i
|A|η0

∆R
, X(0) = 0 , ÛX(0) = −3i |A|η0 , (C4)

Using these initial conditions for X(t) and inserting (C3) in

Eq. (34) we find the rather complicated expression for X(t)

X(t) = cos (∆Rt) [a1 + b1 sin (Ωt) + c1 cos (Ωt)]
+ sin (∆Rt) [a2 + b2 sin (Ωt) + c2 cos (Ωt)] , (C5)

where

a1 =
2iA0∆R(±Ω − 3ǫ)

∆e
, (C6)

b1 =
A0∆R [3∆e − 4(±Ω − ǫ)(±Ω − 3ǫ)]

∆eΩ
, (C7)

c1 = −2iA0∆R(±Ω − 3ǫ)
∆e

, (C8)

a2 =
2A0(±Ω − ǫ)(±Ω − 3ǫ)

∆e
− 3i |A|η0

∆R
− 3A0

2
, (C9)

b2 = − iA0Ω(±Ω − 3ǫ)
∆e

, (C10)

c2 =
2A0(±Ω − ǫ)(±Ω − 3ǫ)

∆e
− 3A0

2
. (C11)

and we introduced the quantity

∆e = 3(±Ω − 2ǫ)(±Ω − 2ǫ/3) + 4(Aη0)2 . (C12)

We find that this solution is in good agreement with numerical

solutions for e . 10−2 but the approximation breaks down

for larger eccentricities, so we do not use it for the results

presented in the main text.
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