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We show that universality limits and other bounds imply pointwise asymptotics for
orthonormal polynomials at the endpoints of the interval of orthonormality. As a
consequence, we show that if i is a regular measure supported on [—1, 1], and in a neigh-
borhood of 1, p is absolutely continuous, while for some « > —1, i/ (t) = h(t) (1 — )¢,
where h (t) — 1 as t — 1—, then the corresponding orthonormal polynomials {p,} satisfy

the asymptotic

2
i Pn(l_%f)_.};;(z)
not pa()  J2(0)

uniformly in compact subsets of the plane. Here J} (z) = J, (2) /z* is the normalized
Bessel function of order «. These are by far the most general conditions for such

endpoint asymptotics.

1 Results

Let u be a finite positive Borel measure with compact support, containing infinitely

many points. Then we may define orthonormal polynomials

n
Pn(X)=ynx +..,¥n>0,
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2 D.S. Lubinsky

n=0,1, 2, ... satisfying the orthonormality conditions
fpnpm dp = dmn.-
We denote the zeros of p,, by
Xnn < Xp—1n < .. < X2n < XIn.
The {p,} satisfy the three-term recurrence relation

XPp_1 (X) = @pPn (X) + bp_1Pn_1 (X) + @Gn_1Pn—2 (%),

where a,, = y"?“ and b,_; € R.

Asymptotics for p, as n — oo are a much studied subject [8], [10], [12], and have
numerous applications [2]. The asymptotic in the interior of the support of u, is quite
different from that at the edges, or in the exterior. In this paper, we focus on asymptotics
at the edges.

The best known such asymptotic is the Mehler-Heine formula for classical
Jacobi polynomials {P&x’ﬁ)}, which are orthogonal with respect to the Jacobi weight

w@P) (x) =1 —x*1+xF,xec(-1,1), (1.1)

and are normalized by

PP (1) = ("’ +°’).
T

It has the form [12, p. 192]

2
Z
Tim n~oP§ (1 - —2n2) =27} (2),

uniformly for z in compact subsets of the plane. Here, J, is the usual Bessel function of
the first kind and order «,

o]

(_l)ﬂ, (th2)2'ﬂ;+a
Ju (2) = Z m, (1.2)

n=0
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Pointwise Asymptotics for Polynomials 3

and J} is the normalized Bessel function

e (D (/2P
J* =Ju =27 _—
f@=Ja@/ HZ:;)an(a—l—n—l—l)

(1.3)

Beyond these and results obtained from the Riemann-Hilbert method, there is not as
much known as inside the support (at the endpoints, approximation by Bernstein-Szego
weights does not work, because of the square root factor /1 — ¢2 in such weights).
There is one beautiful general result, due to A. I. Aptekarev, whose hypotheses
involve the recurrence relation. Recall that the Nevai-Blumenthal class M is the set of

measures for which

1
lim a, = — and lim b, =0.
n—oo 2 n—oo

In particular, Rakhmanov’s theorem [9] asserts that this is true when u is supported on
[-1,11and ' > 0 a.e. on [-1,1].

Theorem A. [1, p. 37] Let u be a measure of class M. Assume that for some « > —1,
we have as n — o0,
1 a+ 3 1
Pnn ) 2tz (_)

pn (1) n n

Then uniformly in compact subsets of the plane
2
. —(C!’-I—%) _Z %
J_Lr_gon Pn (1 _2n2) =J, (2).

To state our results, we need the concept of a regular measure. We say that p is
regular (in the sense of Ullmann, Stahl, and Totik) [11], if

T 1/n 1
im y'" = —,

n—00 cap (supp [u])
where cap denotes logarithmic capacity, and supp[u] denotes the support of wu. In
particular, if the support of u consists of finitely many intervals, and p’ > 0 a.e. in the
support, then u is regular. Following is one of our main results. Recall that we defined

Jacobi weights at (1.1).

Theorem 1.1. Let u be a finite positive Borel measure on (—1, 1) that is regular. Assume
that for some p > 0, u is absolutely continuous in J = [1 — p, 1], and in J, ' = hw@0),

where o > —1 and
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4 D.S. Lubinsky

t]ilfl h() =1. (1.4)
Then uniformly for z in compact subsets of C, we have

2
pnll— Z
lim ( m) _L@ (1.5)
n—00 pn (1) JE(0)

At first this result is surprising, perhaps even suspicious, since one normally
expects pointwise asymptotics of orthonormal polynomials to be associated with
weights in the Szegd class, with additional conditions. The class of regular weights
is far larger than the Szegé class, or even the Nevai-Blumenthal class M. However, on
reflection asymptotics at the endpoints are closer to exterior asymptotics, and moreover,

we are dividing by py (1), which allows for more generality.

Corollary 1.2. Under the hypotheses of Theorem 1.1,

Theorem 1.1 is deduced from a result of the author on universality limits in
random matrices. The latter involve the reproducing kernel
n-1
Kn(x,y) =Y Pk (X) Pk (¥)
k=0

and its normalized cousin
En(x,y) =1/ @0 4/ 0)'* Kn (x,p).

On the set of linear Lebesgue measure where u’ (x) does not exist, we set u' (x) = 0. We

also define the Christoffel function
An (x) = 1/Kp (%, X).

There are different universality limits inside the support of x (the "bulk” of the
spectrum) and at the edges of the support. Kuijlaars and Vanlessen [4] used the Deift—
Zhou Riemann-Hilbert method to establish universality limits for Jacobi-type weights
both inside the support and at the endpoints. Let u be absolutely continuous, and ¢’ =
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Pointwise Asymptotics for Polynomials 5

hw@P (x), where h is positive and analytic in [—1, 1]. At the endpoint 1, they showed
that uniformly for @, b in bounded subsets of (0,00), as n — oo, the limit involves the

Bessel kernel of order a:

- of/2p0/2
LKR (1 __2 1— iz) = Ju (a,b)—i—O(&).
n

2n? 2n2’ 2n
Here if u # v,
.]Ia- (u,v) = Ju (@ ‘/FJQ ( 2V(u__J:v)(‘/F) ‘/l_tJa (@ , (1.6)
while

Ia (u,u)zi{Jg( W) — Jar1 (V) Ja1 (VB)}. (1.7)

We shall also need the normalized Bessel kernel
It (z,v) = Ja (2, V)J{Z“”ZV“”Z}- (1.8)

In [5], we used a comparison method to prove endpoint universality fairly

generally.

Theorem B. [5, p. 283] Let u be a finite positive Borel measure on (—1, 1) that satisfies
the conditions of Theorem 1.1. Then uniformly for a, b in compact subsets of (0, c0), we

have

. 1 - a b
H]LIIC}O mKn (1 oz 1- W) = Jqa (a, b). (1.9)

If « > 0, we may allow compact subsets of [0, co).

In a subsequent paper, we treated more general measures, using a normality

method, and proved equivalence of universality on the diagonal and in general:

Theorem C. [6, p. 5] Let x have compact support, and assume that for some ¢g > 0, the
interval (1,1 + gg) lies outside the support. Assume that for some p > 0, i is absolutely
continuous inJ = [1 — p, 1], and in J, its absolutely continuous component has the form

w = hw'®9, where o > —1 and (1.4) holds. The following are equivalent:
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6 D.S. Lubinsky

(I) For eachreal a

Kn (1 —a%nn, 1 —a*pn) % (a?,a?)

lim = . (1.10)

n—oo Kn(1,1) J& (0,0

(IT) Uniformly for a, b in compact subsets of the complex plane,

Kn (1 —a?ny, 1 — b? J% (a2, b?

Jing Ko (1 =% m) _ Ja (@) (1.11)
Here,
+ 0,0\ /@+D
— ) , (1.12)
Kn(1,1)

Note that for Jacobi weights w@#),

( J7 (0,0

1/(a+1) 1
Kn(l,l)) =2z 1 HoW)

As we shall see Theorem 1.1 is a consequence of Theorems B and C. Theorem 1.1 will be
deduced from a more general result for sequences of measures. Its formulation requires
more notation. For n > 1, let u, be a measure with support on the real line. Ky (¢n, X, ¥)
will denote the nth reproducing kernel for pn, while p, (1, x) denotes the orthonormal
polynomial of degree n for u,. We denote the leading coefficient of py (pn, X) by yn (1tn),
and the zeros of p, (un, x) by

—00 < Xnpnan <Xn-1nn <. < Xinn < 0Q.

Theorem 1.3. Let A € (—o0,1). For n > 1, let u, be a positive measure with support
in [4, 1] and infinitely many points in its support. Assume that uniformly for z, w in

compact subsets of C, we have

2
I Kn (“"' 1— 7,1~ %f) Ji (22, w?)
1m =

= 1.13
n—oo K]’E (.u’?l! ]'! 1) ‘]]-3' (0' 0) [ }

Then the following are equivalent:
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Pointwise Asymptotics for Polynomials 7

@O

1 « 1
sup— ) — < o0. (1.14)
n>1 n? ng: 1 —Xjnn
(IT)

sup — (1.15)

n>1 n? pn (pn, 1)

(IIT) Foreach R > 0,

‘pn (H»n. 1+ fg)|
sup sup < 00. (1.16)
n=1|z1<k  Pn(Hn, 1)

(IV) Uniformly for z in compact subsets of C, we have

lim DPn (!—Ln; 1- zi,:z) k@

= . 1.17
n—00 Pn (kn. 1) JE(O) ( )

An obvious question is whether we can replace py (1) in (1.5) by some multiple

of n%+7. We prove the following as a small step. [x] denotes the greatest integer < x.

Theorem 1.4. Assume that p is a measure satisfying the hypotheses of Theorem 1.1.

Assume also that i lies in the Nevai-Blumenthal class. Let

pn (1) 1
d, = — . 1.18
" ety 29720 (@ + 1)| (1.18)
Then
lim (lim sup ( inf dj)) =0. (1.19)
r—+1-\ n—oo \[nrl4+lgj=n
In particular,
liminfd, =0. (1.20)
n—0od

We note that when there exists ng such that a, < % and b, < 0 for n = ng;

or ap > % and b, = 0 for n > ng, then one can show that there exists ns such that

{Pn (1}y>n, is either increasing or decreasing, and consequently
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8 D.S. Lubinsky

]jm dn :0.

n—oo

This paper is organized as follows. In the next section, we prove Theorem 1.3.
In Section 3, we deduce Theorem 1.1 and Corollary 1.2. In Section 4, we prove Theorem
1.4. In the sequel C, Ci, Cy, ... denote constants independent of n, x, .... The same symbol

does not necessarily denote the same constant in different occurrences.

2 Proof of Theorem 1.3

We begin with some more notation. For a given «, we denote the positive zeros of J, (and
hence of J}) by

0 <Ju1 <Ja2 <Ja3 < e
The zeros are all simple, so also

J’:f (.}a,k) '_/: Or k Z 1‘

Throughout this section, we assume the hypotheses of Theorem 1.3, and in particular,
the universality limit (1.13). We also abbreviate p, (un,2z) and Ky (un, 2, 2) as pp (2) and
Ky (z) whenever there is no possibility of confusion. The main ideas are contained in
the following lemma. It involves first proving a functional relation, and then deducing
a contradiction between (2.3) and (2.5) if the limit function f does not have the correct

form.

Lemma 2.1. Assume that & is an infinite subsequence of integers such that uniformly

for z in compact subsets of C,

2
Pn (1 _ﬁz’)

1i£:| oD = f(2). (2.1)
(a) Assume u,z, w € C. Then
I (zz,wz) (zz—wz)f(u) =] (uz,zz) (zz—uz)f'(w) (2.2)

+ 1% (Wz, uz) (uz—wz)f (2).
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Pointwise Asymptotics for Polynomials 9
(b) Either f (jo,x) =0forallk>1,orf (jux) #O0forallk>1andforallk, ¢>1,

f(Uak)  Joidd (Juk)

— = —. (2.3)
f(]a,[) Joc,ZJ&H (]a,@)

(c) Let

Cw,u )_f(W) _Jaw)

fw  J5 W
provided f (w) J: (u) # 0. Then for u, z, w € C with f (u) J} (u) f (2) J} (z) # 0,

0=1I¢ (uz,zz) (z2 _ u2) G (w,u) +J* (wz, uz) (u2 _ wz) Gizu. (2.4
(d) Either f (jo,x) =0forallk > 1, orf (jox) #0forallk>1andforallk, ¢>1,

I Gage) _ J& (k)

Flnt) = 77 Gue): (2.5)
(e)
f(2)= j: Eg; (2.6)
Proof.
(a) Now

DPn—1 (Un, 2) _ Pn-1 (Un, W) _ |:pn1 (Un, 2) _ Pn (n, u):|
Pn (n, 2) Pn (Un, W) Pn (n, 2) Pn (n, W)
|:pn—1 (Un,w)  Pn-1(4n, W)]
+ —_ .
Pn (Un, W) Pn (Un, W)

We multiply by 7’”1—(“’;) and deduce from the Christoffel-Darboux

formula that

Ky (z,w) Ky (u,2) Ky, (w,u)
—— w—-2)=—(u—2)+ —— (W — u).
Pn (Z) pn (W) Pn (Z) pn (W) Pn (W) pn (W)

Here we have returned to our abbreviated notation. Now we replace u, z,

n2’1 - n2’1 - 2n2'

K, (1,1) and each denominator by (p, (1)) and then take limits as n — oo

wbyl-— respectively. Then divide each numerator by
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through S. Assuming f (2) f (u) f (w) # 0, we obtain from (1.13) and (2.1),

Ty (22, w?) (2 —w?)  J; (WP 7%) (2% —u?) T (w? ) (u? —w?)
Fofw Ffofwm | f@mfw

Multiplying by f (u) f (2) f (w) gives (2.2) when these do not vanish. Analytic

continuation gives the result even when they do.

(b) In (2.2), set z = j, x and w = j, ¢ where k, £ are different. The left-hand side

vanishes, so we obtain
0= T2 (w22 x) (72— u?) £ Vo) + 32 (7200 w?) (w2 = 12.) £ (Juke).

Next we note that by manipulating (1.6) and the definition of J, we obtain

w (.2 2\ _ Jo @V (V) —Jy (v)uJy (w)
J“(u'v)_ 2 (u? —v?) :

Then we can simplify the second last identity as
0= — {12 WJakdy (Jaje) } f (Ja) + {Ta W et (Jat) } f (k)

so choosing u such that J* (u) # 0,

.}’a,k'};d (ja,k)f(ja,f) :}’a,EJ;! (ja,ﬁ)f(ja,k)

for all k, £. From this we deduce that if for some ¢, f (ja,¢) =0, then f (jo k) =0
for all k > 1. In the contrary case, where f (j, k) # 0 for all k > 1, we obtain
(2.3).

(c) Dividing by f (u) in (a),

I (22, Wz) (22 — Wz) =] (uz, 22) ( —uz) G(w,u)+J; (Wz, uz) (u2 — WZ)G(Z, u)

5 (12 (o) 0 () () 5

2.7)
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Pointwise Asymptotics for Polynomials 11

Here
J:(uz-zz)(zz— ) g () (- w)

2_]* ( ) [[J* (2) u-} (u) — J; (U)ZJ; (Z)] Ja (w)

+ [J3 () wJy (w) — J% (w) uTy (w)] T3 (2)}

— 1 ¥ *f _ 7* [ 2 ol
= > (-2l @ T (w) + Wi W) T} @) =T (22 w?) (2 - w?).
Thus, after cancelation in (2.7), we obtain (2.4).

(d) We let u = jux and z = jo¢ in (2.4) and use 1'Hospital’s rule to define
G (jo,,k,jo,,g), recall J} has only simple zeros. Assuming that no j, k is a zero

of f, we obtain for all w,
T (w252 ) (72— w?) G (akiJas) = O.

Assume that we choose w # j, x such that J} (szjg,k) # 0. We then obtain
G (JakiJa) =0, s0
.f(ja,k) _ Jy (ja,k)
£ (Jue) T (Jare)
(e) Combining (2.3) and (2.5) gives,

for all k, £, a contradiction. It follows that f must vanish at all j, k. Next, set
w =J,k and u = 01in (2.2). Since f (0) = 1, this gives for all z,

5 (220) (72 =) = 52 (522.0) (F20) F @

S0
(7% @ Jaxdy (Jak)} = {75 0 jaidy (Jak)} f (2
S0
Jx(2)
f2= 750 =
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12 D.S. Lubinsky

We note that taking scaling limits in the usual form of the Christoffel-Darboux

formula does not yield (2.6)—one obtains an indeterminate form oc - 0.

Proof of Theorem 1.3. We start with

(IIT)=(1V)

(IV)=(I1I)
(I)=(111)

(III)=(11)

(IT)=(1)

The normality assumed in (ITI) ensures that from every subsequence of
integers, we can choose another subsequence S for which (2.1) holds. From
Lemma 2.1, we have the limit (2.6). Since the limit is independent of the
subsequence, we obtain the limit for the full sequence of positive integers.

The locally uniform limit (1.17) implies the uniform boundedness in (1.16).

For |z| <R,
Pn (1 + _ZE') n
log ) - = log |1+

< znjlog (1 + 2] )

= 2 .
e n2 (1 — Xjn,n)

n

= T

nt 5 1 —Xjnn

Then (1.14) implies the uniform boundedness in (1.16). Of course, we are also
using that all zeros lie in (4, 1).

The uniform boundedness in compact subsets of { f,}, where

DPn (1+fg)

fn@=—p"0

also implies the uniform boundedness in compact subsets of [ f{t} In

particular, then

sup | f (0)| < oo,

that is,
1 |p, Q1
= Pl _
n“ [pn (1)
We use the identity
pp() 1
pPn(1) N = 1- Xin,n
so (1.14) follows from (1.15). m
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Pointwise Asymptotics for Polynomials 13
3 Proof of Theorem 1.1 and Corollary 1.2

In this section, we assume the hypotheses of Theorem 1.1. We begin by recalling the

following Christoffel function limits and estimates:

Lemma 3.1.

(a) Fora <[0,00),

Tim A (1- %) n2et? = (2241 (a,a))_l. (3.1)

n—00 n

(b) There exists " > 0 and C > 0 such that forrn > 1and x € [1 — 7/, 1],

1

c 1\%z
An (x 3—(1—){—1——2) .
n n

Proof.

(a) From Theorem B, for a > 0,

4o
. 1 a a *
jim (5) %0 (1- g1 ga) =T

which is equivalent to the stated result for a > 0. For a = 0, we proceed as
follows: we use Theorem 2.1 in [5, p. 283]. If xg’"”) denotes the Christoffel
function for the Jacobi weight (1 — x)“, it was shown there that

lim An (1) /299 (1) = 1.
n—o0

Finally, it is known [6, Eqn. (1.10), p.4] that

: (2,0) _T*
jim (40 0) " (5) - =%00
(b) Choose n; such that
f 1 o
pw(x) = E(I_X) , X €[l —m,1l

Define the measure v on [1 — 51, 1] by

V) =>0-x%, xell —n,1l
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14 D. S. Lubinsky

This is a Jacobi weight after translation of the interval and multiplication by a constant.
Using estimates of the Christoffel functions of Jacobi weights [8, p. 108], and translating

the interval, we obtain for any 0 < 5’ < n,

ERNS

1 oty
An (X) = An (v,X) = (1—X+—2) ,xell—7, 11
n

|
Lemma 3.2. There exists ¢> 0 such that for n > 1 and polynomials P of degree < n—1,

1 1
f ) P2 (x) dp (x) < % f P2 (x) du (x) (3.2)
1 -1

—En—

Proof. Using the variational property of Christoffel functions, namely

1
P2 (x) < A;' (%) f 1 P2 (x) dp (x),

and the form of our measure in [1 — p, 1], we have for large enough n,

1 1 1
f 2Pz(:!s() du (x) < (f 2)%1 @) hx (1 —x)* dx)f P? (x) dp (%)
1 1 -1

—En— —En~

1 1
<Cn (f 2(1—;()—% dx)f P2 (x) du (%)
l—en— -1

1
< Ce? f P2 (x) dy (),
~1

by Lemma 3.1, where C is independent of ¢. Choosing ¢ small enough gives the result.
|

Proof of Theorem 1.1. Theorem B and (1.4) give uniformly for a, b in compact subsets
of (0, c0),

. 1 a? b2 .
A ) (1 Tzl m) =l (@b

Next, using Lemma 3.1(a),

F]‘nz(m) Zm(l-l—ﬂ(l))

610z |udy $Z uo Jasn ABojouyoa | jo aynymsu) eibioan) AQ 980ZS61/Z POALI/WWISE0 | 0L/I0P/IoBlSqe-2|DIHE-20UBAPE/WILWIAL0D dno Diwapese/:sdyy Wwoly papeojumo(



Pointwise Asymptotics for Polynomials 15

so the uniform convergence above allows us to deduce (1.10) for each a > 0. It also holds

trivially for @ = 0. Then Theorem C and its uniformity give

a? b?
y Kn (1 — ozl m) % (a2, b?)
n360 Kn(1,1) =72 0,0

uniformly for a, b in compact subsets of C. We thus have the hypothesis (1.13) of

Theorem 1.3. The result follows from Theorem 1.3 if we can show that

1 & 1
sup — < o0. (3.3)
w12 g 1 — Xjn

This can be deduced from results in [13], but we provide a self contained proof. First we

use the extremal property of the largest zero [12, p. 188]

. JNA-0PP@du®
1—x1p= inf i .
deg(P)<n—1 f—l P2 (x) d,LL (%)

By Lemma 3.2, for such polynomials P,

1 1—en—2 1
fle(x) du (x) = ([1 +f1 _Z)Pz(x) du (x)

2

l—en™ 1 1
5[1 Pz(X)d,u(X)nLEfIPz(X)dn(X)

50

2

1 l1—en™
f PP(x) dp(x) <2 f P2 (x) dp ().
-1

Hence,

a

L A-0P e dp) _ en?

1 —x1n> inf (3.4)

~ deg(P)<n—-1 9 fa“m_z P2x)dux) 2

One can use a similar variational argument for other zeros, but we instead use the
Markov-Stieltjes inequalities [3, p. 33, Eqn. (5.10)], [12, p. 50, (3.41.3)] in the form

Xj—1,n

An (Xjn) = f dpu (t).

Xj+1,n
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16 D.S. Lubinsky
If ' is as in Lemma 3.1(b), and xj, € [1 — 7/, 1], this gives
Xj-1,n ,
An (Xjn) = f du () < (Xj—l,n _Xj+1,n) sup n(0)

Xjitin [Xj+l,nrxj— l,n]

=cC (Xj—l,n - Xj—l—l,n) sup 1-on*
te[Xs1,nX-1,n]

By Lemma 3.1(b), and this last inequality,

1 . 1 —xjn\*
Xji_1n — Xjy1n = — (1 — Xjn) inf ) -
te[Xjs1,0Xj-1,n]

)]

n

If first for ¢ € [Xjy 10, Xj_1.n] .

- 1 — Xjn - l
1—-¢t — 2
then
Xj_tn—Xjigin>—= (1 —Xp)?>— max (11—t
Jj—1.n J+1.n n2|a|( Jn) T texeimin]
and
1 c
=

L =Xjn = mMaXse[y,, ] (1 =0

Cn (G_1n —Xj4in) fxf_l,,. dt
X

= 3/2 = 3/2°
maX [y (11 / e (1 —1)3
If (3.6) fails, then either
1—x; 1—x 1
- 2o0r ELCER

In the first case,

(3.5)

(3.6)

(3.7)

(3.8)
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Pointwise Asymptotics for Polynomials 17

in view of (3.4). Then

1L _Cn(un—%n) _ . fo—l,n dt 5.9)
L=Xjn = (1-x)"? = Jxu Q-0

In the second case,

Xjn — Xjp1n = (1 = Xjy1,n) — (1 — Xjn)

1 1
> 2 (1 —Xj+l.n) = 2 (1 _Xjn);

50

1 c Xjn 1
= 1/2 3/2 dt
1 _Xjn (]_ _Xjn) an—-pl_r (I—Xjn) (1 - t)

xjn 1
<Cn — dt. (3.10)
Xjtln (1 - t)
Considering (3.8-3.10) above, and adding over j with x;, € [1 — 7/, 1], gives
Xin 1
Z 1% = Cn f 37z At
PP e L o =1
<cn(1—x1m)" Y2 < cn?, (3.11)
by (3.4). Next,
Z 1 . = n,fn’.
J22Kja <1y Xin
Together with (3.4) and (3.11), this gives (3.3). |

Proof of Corollary 1.2. Because of the uniform convergence, we can differentiate the

asymptotic (1.5): uniformly for z in compact subsets of C,

z>
o (1-%2) M@
ntt nlp,(1) | JE(0)

so dividing by z, and recalling that J}' (0) = 0,

1 p,) "0 TI@@+) 1
n—-cconip, (1)  J¥0) 2l (@+2) 2a+2'
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18 D. S. Lubinsky

which gives the result. |

4 Proof of Theorem 1.4

I could not find the following result, though am sure it is well known:
Lemma 4.1. Assume that u is supported on [—1, 1] and lies in M. Then

Pn-1(1)
im — =1
n=o pp (1)

Proof. We first note that p;;(lf)r) is decreasing in (1,c0). Indeed this follows from

the following identity, a consequence of the Lagrange interpolation formula and the

confluent form of the Christoffel-Darboux formula:

Pn-1(X) _ ¥n-1 Zn: M (Xjn) Pp_1 (Xjn)_

Pn (X) N Yn = X — Xjn

Letp(x) =x+ VxZ—1,x e (1,00) . It is known [8, p. 33] that for x € (1, 0c0),

lim Pn11X) x) =g x)~1.
n—00 pp (X)

Then for ¢ > 0,

inf Pn=1 (1+e)

liminf 22t D S 45 —o(1+4e)L

n—co  pp (1) n—oo  pp(l+e)

Letting ¢ — 0+, gives

infpn—l (@) -

m > 1.
n—co  pp (1)

Next, let
T := lim sup pn_—l(l),
n—o00 pn (1)

so that r = 1. We use the recurrence relation in the form

Pn (1) (1 — bp) = any1Pn+1 (1) + @npn-1 (1)
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Pointwise Asymptotics for Polynomials 19

1

2aJJdebn—>{)alsn—>oo,

so since ap —

1 T 1 ]- n— ].
1+0{1):(§+0(l))P+1()+(2 )p 1(1)

Z 4o
Pn () o) 75
Prt (1)

1 - =
Z(E+o{1))(r+0(1)) +(_+0{1)) pn(1)

2

Letting n — oo through an appropriate sequence of integers gives

1>

(r‘l—l—r):)r:l.

M| =

Thus,

1 (1 1 (1
nsoc  Pn (1) n—o0  pp(1) |

Proof of Theorem 1.4. Fixr < (0,1). Let

1

A= Q2a+2)2*J% 0,00 = ——,
(2 +2) 2148 0,0) = o

see [6, p. 4, (1.10)]. Also let

pk(l)) 1
Cr = —_— _— kz]..
x (kﬂ+é VA

We use the confluent Christoffel-Darboux formula in the form

() pp (D) (yk_l)_l Kx (1,1)
() P\ % pr (D) pr_1 (1)

Then adding for k = [nr] + 1, [nr]1 + 2,...,n, gives

P Pian @ _ i (wc_l )“ Kie(1,1)
pn(1)  pmr (1) k1 VK Pk (1) pr—1 (1)
Applying Corollary 1.2, the previous lemma, our asymptotic (3.1) for Christoffel func-
tions at 1, and the fact that u lies in M, so that % — %, gives

n? — 22Fe]7 (0,0) k22
ez (177) o= 3 PZ()(1+0(1)

k=[nr]+1
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20 D.S. Lubinsky

so that

— 72
2

1 1
I+oy==— > (4.1)
k

k=[nr]+1

Next, we use

n
Knpn (1L, =Ky (LD = > pr(1)
k=[nr]+1

and our asymptotics (3.1) to obtain

n
21+ (0, 0) n?+2 (1 _ r2+2a) (1+0(1) = Z pi(l)
k=[nr]+1

1— r2+20t

:24_—2“(14—0(1)):

n ) k 20+1
C — .
>l
k=[nr]+1

S|~

This and (4.1) give

S (20 =)
n(l—r) bt 41 Cky \1n n

B 1 n 1k 1 n ) kZa-’rl 2 n k a+1
T nd-n 2 Zn T na-n > Ck(ﬁ) Tna=n 2. <E>

k=[nrl+1 "k k=[nr]+1 k=[nr]+1
1+r 1—-r¥t2e /1 40(1) 2 !
=~ (1400 - @+l dx (1+o0(1
g o)+ —— <2+2a> 1—r/,X (1+o(l)
1+r 1—r?t2 /1 40(1 1-rt2 /14+0(Q1
o+ o), o)
2 1-—r 2+ 2« l1—r 24+«
SO
1 n 1 [k\1/2 AR
lim limsupl— Z —(—) —ck (—) =0.
r—1-\ nooo n(l-—r) Kt 1 cy \n n
Then also

. : k(1 2%%
lim (limsup inf —(——-cx|— =0.
r—1-— n—00 [nrl+1<k<n N \ Ck n
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Sincer < % < 1lfor[nrl]+1 <k <n, and r — 1— in the limit, we deduce

lim (lim sup( inf (1 — ck)2)) =0. (4.2)

r—1— n—00 [nrj4+-1<k<n

Indeed otherwise we can use the fact that if for some n > 0, x € (0,1 —n) or x ¢

(1 + n,00), then for r close enough to 1, and [nr]+ 1 <k < n,

1 k o 2

-——X|—- =C@m.

x n
The assertion (4.2) is equivalent to the conclusion (1.19) of Theorem 1.4. The assertion
(1.20) about lim inf's also follows. |

Remark. The circle of ideas of this paper is also useful inside the support of the

measure [7].
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