Trends in Biotechnology

Review

Engineering Biocatalytic and Biosorptive Materials for Environmental Applications

Baotong Zhu, 1,2 Yingying Chen, 1,2 and Na Wei 1,*

The challenges of increasing environmental contamination and scarcity of natural resources require innovative solutions to ensure a sustainable future. Recent breakthroughs in synthetic biology and protein engineering provide promising platform technologies to develop novel engineered biological materials for beneficial applications towards environmental sustainability. In particular, biocatalysis and biosorption are receiving increasing attention as sustainable approaches for environmental remediation and resource recovery from wastes. This review focuses on up-to-date advances in engineering biocatalytic and biosorptive materials that can degrade persistent organic contaminants of emerging concern, remove hazardous metal pollutants, and recover value-added metals. Opportunities and challenges for future research are also discussed.

Emerging Environmental Challenges

The pursuit of environmental sustainability is a key driving force for developing effective technological means to address the formidable challenges regarding the growing environmental pollution and natural resource scarcity. Recent literature has reported widespread detection of **contaminants of emerging concern** (see Glossary) in the environment. These contaminants tend to be persistent or only partially removed by conventional wastewater treatment and remediation processes, and they can pose severe risks to human health and the ecosystem even at trace concentrations. Therefore, there is a crucial need to develop advanced technologies for treating persistent contaminants in environmental remediation. Meanwhile, there is an ongoing paradigm-shift to view wastes as resources rather than economic burdens. Waste-based biorefining is of growing interest, and new technological development to this end is crucially important to recover valuable products while valorizing wastes and meeting environmental quality goals.

Synthetic biology and protein engineering technologies have been exploited for creating bioactive materials in a drive towards green chemistry for biomedical or industrial biotechnology applications, but the promise of these technologies in developing innovative strategies for beneficial environmental applications has only been recognized very recently. Particularly exciting research progress has been made in developing novel biocatalysts for efficient degradation of persistent organic contaminants [1,2]. In addition, engineered biosorptive materials have attracted significant interest as promising and cost-effective alternatives for removing and recovering metals from waste streams [3]. This review article will discuss up-to-date research efforts in engineering biocatalytic and biosorptive materials for environmental remediation and resource recovery applications, as well as some opportunities and challenges in this nascent field.

Engineering Biocatalytic Materials for Contaminant Remediation

Biocatalysis typically proceeds under ambient temperature and pressure, generates few toxic byproducts, has low energy requirements, and is an easier process to control. Notably,

Highlights

Advances in synthetic biology and protein engineering provide promising platform technologies for engineering renewable biomaterials with biocatalytic or biosorptive capabilities to address the crucial challenges of environmental pollution and natural resource scarcity.

Biocatalytic materials that harness the function of various biological enzymes to degrade recalcitrant contaminants to environmentally benign compounds can be developed using molecular biology techniques and physicochemical processes; these materials demonstrate great potential for environmental remediation applications.

Biosorptive materials engineered by decorating microbial cells with specific metal-binding proteins/peptides using genetic engineering can be used for hazardous metal removal and valuable metal recovery with high selectivity and binding efficiency.

¹Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN 46556, USA

²These authors contributed equally to this work

^{*}Correspondence: nwei@nd.edu (N. Wei).

biocatalytic processes have been demonstrated for applications where no efficient synthetic chemical methods are yet to be developed [4]. Given these advantages, biocatalysis has been exploited for beneficial applications such as pharmaceutical synthesis and the production of value-added chemicals and renewable fuels in a drive towards green chemistry [5]. With recent progresses in discovering novel enzymatic functions and advances in technologies for engineering biocatalytic materials, biocatalysis receives increasing attention in environmental remediation. Particularly, among six classes of enzymes, oxidoreductases and hydrolases are of growing interest for degrading toxic compounds to environmentally benign products (Box 1).

Generation and Modification of Enzymes

Recombinant protein expression, where DNA encoding a target protein is cloned into a host organism such that it produces a large amount of the protein, has made it easier to generate enzymes for biotechnology applications. In the traditional approach, the enzyme of interest is purified from its original source such as bacteria, fungi, or plants, but such an approach may not be suitable for large-scale applications owing to low enzyme yield and cumbersome and costly purification procedures. By contrast, recombinant DNA technology facilitates the expression and purification of a desired enzyme in large quantities and allows redesign of a wild-type enzyme to enhance its stability, activity, or specificity through genetic modifications. Recent studies have

Box 1. Enzymes for Contaminant Degradation

Enzymes are highly efficient biological catalysts that can degrade toxic compounds to environmentally benign products, and they are divided into six major classes. Of these classes, oxidoreductases and hydrolases have been most studied for the degradation of toxic compounds to environmentally benign products owing to their high catalytic activity and ability to target a broad range of substrates including xenobiotic organic compounds. Other groups of enzymes also hold promise in the catalysis of contaminant transformation reactions and have demonstrated great potential in industrial and biotechnological applications.

Oxidoreductases catalyze the transfer of electrons from one molecule (the reductant) to another molecule (the oxidant). Oxidoreductases of biotechnological interest typically include laccases, peroxidases, and oxygenases. Laccases, which are multicopper-containing oxidases capable of performing one-electron oxidation of a broad range of substrates using oxygen as the electron acceptor, can transform various persistent organic contaminants such as endocrine disrupting compounds, pesticides, and pharmaceuticals [58]. Peroxidases catalyze oxidative transformation of organic pollutants through a free radical mechanism by using hydrogen peroxide as the electron acceptor. Horseradish peroxidases (HRPs), manganese peroxidases (MnPs), lignin peroxidases, and chloroperoxidases have been reported for remediation applications [59].

Hydrolases are hydrolytic enzymes that use water to catalyze the cleavage of chemical bonds, usually breaking a large molecule into two smaller molecules. Examples of hydrolases of biotechnological interest include esterases, proteases, lipases, amylases, acylases, and phosphatases. Lipases, cellulases, and haloalkane dehalogenases can hydrolytically degrade various persistent contaminants such as petroleum pollutants from oil spills, as well as organophosphates and carbamate insecticides [60].

Transferases catalyze the transfer of specific functional groups such as methyl, hydroxymethyl, phosphate, or sulfate from one molecule to another. Transferases are commonly used in industrial biotechnology for the synthesis of

Ligases catalyze the formation of chemical bonds between two large molecules, usually accompanied by hydrolysis of a pyrophosphate bond in ATP or another high-energy donor. Enzymes that catalyze joining of C-O, C-N, or C-S bonds belong to the class of ligases. An important example is the DNA ligase, an essential reagent for recombinant DNA technology.

Lyases catalyze the breaking of various chemical bonds other than hydrolysis or oxidation. This class of enzymes are often used as biocatalysts for chemical production. Isomerases catalyze the structural rearrangement of a molecule to convert it to its isomer, and are principally used in the manufacture of sugar compounds.

Glossary

Biocatalysis: the use of enzymes or microbial cells to facilitate a chemical transformation process.

Combinatorial library: collections of large numbers of DNA or protein variants that are produced by random mutagenesis in a combinatorial fashion.

Contaminants of emerging concern: synthetic or naturally occurring chemicals that have not been commonly monitored in the environment but that have potential to enter the environment and pose adverse effects to human health and ecosystems.

Curli amyloid fibers: proteinaceous component of the complex extracellular matrix produced by many Enterobacteriaceae that is responsible for surface adhesion, cell aggregation, and biofilm formation. Directed evolution: a laboratory process used in protein engineering by which biological entities with desired traits are created through iterative rounds of genetic diversification and library screening or selection. Specifically, in directed evolution, a collection of random protein variants (a 'library') is generated by introducing multiple mutations into the gene encoding the target protein, and then proteins with improvements in desired properties can be obtained by screening/ selection of the library.

Genetic engineering toolbox: the set of molecular techniques for engineering and manipulating genetic functions to achieve desired biological traits.

Recombinant DNA technology: a method that artificially brings together DNA molecules from two or more different species followed by transformation into a host organism to produce new genetic combinations of interest.

Lanthanide binding tags (LBTs): short peptide sequences comprising 15-20 amino acids that are specifically optimized to bind trivalent lanthanide ions (Ln3+) with high affinity and selectivity.

Metal homeostasis and resistance: the ability of organisms to maintain levels of metal ions within physiological limits and detoxify excess metal ions inside the cells.

reported the production of recombinant laccases in various host organisms including bacteria, yeasts, and filamentous fungi [6]. In addition, horseradish peroxidases (HRPs) have been successfully expressed in the yeasts Saccharomyces cerevisiae, Pichia pastoris, and Cryptococcus sp. S-2 [7]. The resulting recombinant HRPs were used to degrade synthetic dyes and estrogens. Production of recombinant hydrolases with great contaminant remediation potential, such as lipases, carboxylesterases and cutinases, has also been demonstrated [8-10].

The advances in protein engineering remarkably enable the development of biocatalytic materials with novel function and improved performance [11]. In general, protein engineering approaches include rational design (e.g., site-directed mutagenesis), random methods (e.g., random mutagenesis), and directed evolution. Rational design is a classical and effective approach when the structure and mechanism of the target protein are well known. For example, a very recent paper reported a novel fungal polyphenol oxidase that was engineered via site-directed mutagenesis to construct enzyme variants with increased activity and altered specificity in bioremediation of different chlorophenols [12]. By contrast, directed evolution can generate a remarkable range of new functional properties such as improved enzyme activity, stability, specificity, and selectivity in the absence of detailed knowledge of protein structure or catalytic mechanism [13]. As a powerful protein engineering technique, directed evolution mimics Darwinian evolution in the test tube to efficiently modify and evolve proteins, leading to the discovery of new reactivity that is extremely challenging to design [14]. Directed evolution has been effectively applied to evolving the microbial enzymes associated with broad-spectrum organophosphorus pesticide degradation, which resulted in a substantial enhancement in both the removal efficiency and stereoselectivity for the more toxic isomers of these compounds [15]. Recently, an ultrahigh-throughput screening method by embedding the enzyme in biomimetic gel-shell beads was developed [16], which considerably facilitated the directed evolution of a pesticide-degrading enzyme phosphotriesterase with 20-fold increase in enzyme activity. The platform technology holds great promise to modify various enzymes for enhancing their performance in environmental applications.

Immobilized Enzyme Materials for Contaminant Degradation

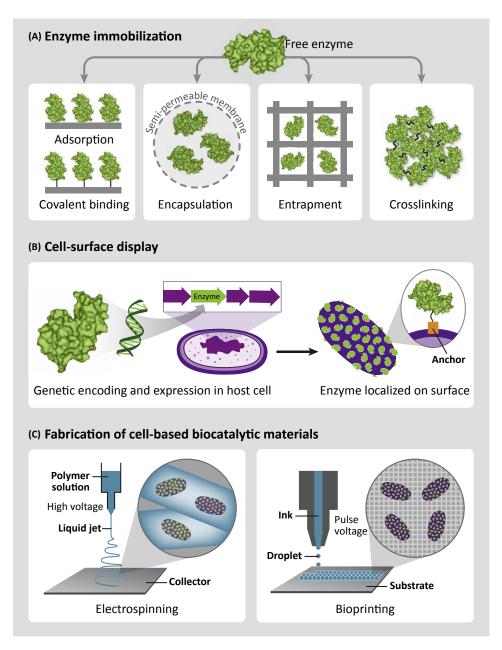
A successful system using enzyme biocatalysis must ensure high catalytic efficiency and enzyme stability while enabling the reuse and recycling of biocatalysts for efficient and cost-effective processes. Using free enzymes in solution for contaminant treatment is not suitable or economical owing to short enzyme lifetimes, non-reusability, and the high cost of single use. Immobilized enzymatic materials have received increasing attention as a strategy to improve enzyme stability and reusability. In general, immobilized enzymatic materials can be constructed by: (i) immobilizing enzymes through adsorption or covalent binding to a supporting matrix (e.g., porous glass beads, alginate-carbon composites, organic gels, and nanoparticles); (ii) entrapping or encapsulating enzymes within gels, fibers or semi-permeable membranes; and (iii) fabricating enzyme aggregates via crosslinking [17]. These strategies are illustrated in Figure 1A. The enzymes immobilized on the solid materials are more stable than free enzymes and can be readily recovered and reused. However, there are still limitations in these conventional immobilization methods, including impairment of enzyme activity owing to denaturation by chemical reagents used in covalent attachment and crosslinking processes, costly and time-consuming protein isolation and preparation, and mass-transfer limitations for entrapment and encapsulation systems.

The selection of proper supporting matrix materials is crucially important for preparing functional and robust immobilized enzyme materials. Desirable characteristics of an ideal supporting material include non-toxicity, high capacity for enzyme loading, mechanical stability and

Metal transporter: proteins associated with uptake and efflux of metal ions across the plasma and organelle membranes.

Metalloregulatory proteins: a battery of regulatory proteins that can selectively recognize and coordinate with specific metal ions to physiologically mediate the metal homeostasis of organisms.

Metallothioneins (MTs): a group of cysteine-rich proteins that are able to bind heavy metal ions with high affinity via cysteine residues in Cys-Cys, Cys-X-Cys or Cys-X-X-Cys


PC synthase: the enzyme that catalyzes the synthesis of phytochelatin.

Phytochelatins (PCs): a family of small glutathione-based oligomers found in many plants which are capable of efficient sequestration of multiple types of metal and metalloid ions. The general structure for natural PCs is (y-Glu-Cys),-Gly and for synthetic PCs is $(\alpha$ -Glu-Cys)_n-Gly.

Rare earth elements (REEs): a set of 17 chemical elements in the periodic table, including 15 lanthanides, scandium, and vttrium. S-layer: 2D monomolecular arrays consisting of one or more (glyco) proteins that are frequently found on the surface of prokaryotic cell envelope.

Trends in Biotechnology

Trends in Biotechnology

Figure 1. Schematic Illustration of Engineering Biocatalytic Materials through (A) Conventional Enzyme Immobilization, (B) Cell-Surface Display, and (C) Cell Immobilization by Electrospinning and Bioprinting.

rigidity, feasibility of regeneration, and economical accessibility. In recent years, various novel supporting materials have been developed for enzyme immobilization, including active membranes, vesicular silica, and nanomaterials (e.g., nanoparticles, nanofibers, nanotubes, and nanocomposites) [18]. These materials can be designed with new functionality to enhance enzyme stability, facilitate recycling, and increase catalytic efficiency. For example, using nanomaterials with superparamagnetic cores could facilitate material recycling via magnetic

separation [19,20]. In addition, enzyme immobilization on TiO₂ nanoparticles could allow synergistic enzymatic biocatalysis and TiO₂-mediated photocatalysis for efficient degradation of recalcitrant contaminants [21]. More examples of recent advances in developing immobilized enzyme biocatalytic materials for contaminant removal are given in Table 1.

Cell Surface-Display Enzyme Materials

Cell surface-display enzymes are a new class of biocatalysts where the target enzyme is expressed and automatically localized on the surface of host cells through engineered biological machinery by using synthetic biology techniques (Figure 1B). Notably, cell surface display, where the host cell serves as the supporting platform for enzyme expression and immobilization, can dramatically enhance enzyme stability and enable reuse while ensuring functionality of the target enzyme. Furthermore, cell surface-display enzyme biocatalysts are superior to conventional immobilized enzyme biocatalysts in the following aspects: (i) the enzymes are produced and automatically immobilized on the cell surface in one step, circumventing timeconsuming and expensive protein purification; (ii) enzyme functionality can be largely reserved because there is no use of harmful chemical reagents; and (iii) the biocatalyst can be easily regenerated through cell cultivation. The most widely used host cells for enzyme surface display include Escherichia coli, Pseudomonas putida, and the yeast S. cerevisiae because these organisms have established **genetic engineering toolboxes** and surface-display systems. The details of the surface-display platform technology have been reviewed well elsewhere [22]. While prior research efforts using the cell-surface display technology have mostly focused on biomedical and industrial biotechnology applications, developing surface-display enzyme biocatalysts for contaminant degradation is an attractive trend of growing interest. Functional enzymes such as diisopropylfluorophosphatase [23], laccase [24], nitrilase [25], and triphenylmethane reductase [26] have been displayed on the cell surface of E. coli, P. putida, or S. cerevisiae. The engineered biocatalysts could effectively degrade persistent contaminants including toxic organophosphorus compounds, chlorpyrifos, herbicides, industrial dyes, pharmaceuticals, and endocrine disrupting compounds.

Furthermore, immobilization of cells on solid materials has been explored as a strategy to minimize cell washout and maintain high concentration of the biocatalyst in a bioreactor for efficient contaminant treatment. Immobilization of functionalized cells could also improve the recovery and reuse of the biocatalysts relative to the suspended form. Recent advances in electrospinning and bioprinting technologies have enabled fabrication of biocatalytic materials that immobilize engineered cells on porous substrates (Figure 1C). Electrospinning is a versatile method for fabricating polymer nanofibers with diameters ranging from several micrometers to several tens of nanometers by creating an electrically charged jet of polymer solution at a pendent droplet [27]. The inherently high surface-to-volume ratio of electrospun fibers could enhance cell attachment, loading, and mass transfer properties [27]. As such, electrospinning is attractive as an emerging method for cell immobilization. A recent study demonstrated that yeast surface display of enhanced green fluorescent protein could maintain its viability and correct structural conformation on immobilization within nanofibers via electrospinning [28]. This study provided a powerful method to directly immobilize functionalized cells with potential applications in biocatalysis. Another promising technology for direct cell immobilization is inkjet bioprinting, which allows high-throughput deposition of biological agents at predefined locations [29]. The ability of inkjet printing to deposit droplets with picoliter volumes at micrometerlength accuracy makes it a promising method to immobilize biological agents on supporting substrates in a straightforward and systematic manner. One recent study fabricated novel biocatalytic membranes using inkjet printing and demonstrated their efficient performance in the degradation of emerging contaminants bisphenol A and acetaminophen [30]. The

Table 1. Immobilized Enzyme Materials for Contaminant Remediation

Enzyme	Supporting material	Immobilization method	Contaminants	Proposed degradation mechanism	Refs
Oxidoreductases					_
Laccase from Trametes versicolor	Composite nanofibers	Crosslinking	Crystal violet, triclosan	Crystal violet, N/A ^a ; triclosan oxidation, dechlorination, and oligomerization by interacting with the copper cluster in laccase	[62,63]
Laccase from Trametes versicolor	Magnetic mesoporous silica microbeads	Crosslinking	Acetaminophen and non- phenolic pharmaceuticals such as mefenamic acid, fenofibrate, and indomethacin	Direct oxidation of acetaminophen; the resulting radicals can interact with electron donor groups in non- phenolic pharmaceuticals	[64]
Laccase from Trametes versicolor	Halloysite nanotubes tuned with Fe_3O_4 and functionalized with γ -aminopropyltriethoxysilane (A-M-HNTs)	Covalent binding	Sulfamethoxazole	Oxidation by interacting with a redox mediator of laccase	[65]
Laccase from Trametes versicolor or Cerrena unicolor	Magnetic nanoparticles	Crosslinking	Recalcitrant dyes such as remazol brilliant blue R, tetracycline, and a mixture of 13 selected pharmaceuticals	Dyes, N/A; direct oxidation of tetracycline and pharmaceuticals by laccase	[19,20,66
Laccase from Trametes versicolor or Pleurotus ostreatus	TiO ₂ nanoparticles	Covalent binding	Bisphenol A and carbamazepine	Direct oxidation of bisphenol A; resulting radicals can react with carbamazepine	[67,68]
Laccase from Cerrena sp. HYB07	Alginate, chitosan, carrier- free, or magnetic nanoparticles	Entrapment, covalent binding, crosslinking	Malachite green	Demethylation	[69]
Horseradish peroxidase from <i>Armoracia rusticana</i>	Crosslinked enzyme aggregates	Crosslinking	Recalcitrant dyes including methyl orange dye, indigo, rhodamine B, and rhodamine 6G	N/A	[70]
Horseradish peroxidase	Chitosan-halloysite hybrid nanotubes	Crosslinking	Phenol	N/A	[71]
Horseradish peroxidase	TiO ₂ hollow nanofibers	Encapsulation	2,4-Dichlorophenol	Photochemical/ enzymatic oxidation	[2]
Horseradish peroxidase	Silica-coated magnetic nanoparticles, graphene oxide nanosheets, graphene oxide/Fe ₃ O ₄ , NH ₂ -modified magnetic Fe ₃ O ₄ /SiO ₂	Adsorption	Tetramethylbenzidine, phenol, 2,4-dichlorophenol	Direct oxidation by horseradish peroxidase in the presence of H ₂ O ₂	[72,73]
Soybean peroxidase	Silica-coated magnetic nanoparticles	Crosslinking	Ferulic acid	Oxidation of phenolic compounds in the presence of H ₂ O ₂	[74]
Soybean peroxidase	Poly(styrene-co-maleic anhydride) (SMA) nanofiber	Adsorption	Diclofenac, naproxen, iopamidol, imidacloprid, bisphenol A, and 2,4-dichlorophenol	Photocatalytic and enzymatic oxidation	[75]

Table 1. (continued)

Enzyme	Supporting material	Immobilization method	Contaminants	Proposed degradation mechanism	Refs
Tyrosinase	Graphene oxide	Crosslinking	Phenol and bisphenol A	Hydroxylation of monophenols to o-diphenols and subsequent oxidation of o-diphenols to o-quinines	[76]
Hydrolases					
Organophosphorus hydrolase OpdA	Nonwoven fabrics	Crosslinking	Methyl parathion	Cleave the P–O bond of methyl parathion to generate <i>p</i> -nitrophenol	[77]
Organophosphorus hydrolase	Carbon nanotube paper	Covalent binding	Methyl paraoxon	Cleave the P–O bond of methyl parathion to generate <i>p</i> -nitrophenol	[78]
Lipase from Alcaligenes sp.	Zeolite imidazolate framework-8	Entrapment	p-Nitrophenyl caprylate	Hydrolysis to produce <i>p</i> -nitrophenyl	[79]
Multienzymes					
Cyanase rTI-Cyn and carbonic anhydrase rTI-CA	Magnetic nanoparticles	Crosslinking	Cyanate	Transformation of cyanate to ammonia and carbon dioxide in a bicarbonate-dependent reaction	[80]
Haloalkane dehalogenase and epoxide hydrolase	PVA particles, lentiKats	Encapsulation	1,2,3-Trichloropropane	Dehalogenation and hydrolysis to produce glycerol	[81]
Monooxygenase CphC-I and dioxygenase CphA-I	Fulvic acid-activated montmorillonite	Adsorption	4-Chlorophenol	Oxidative transformation of 4-chlorophenol to hydroxyquinol followed by ring fission of hydroxyquinol	[82]
Laccase from Tinea versicolor and peroxidase from Bjerkandera adusta	Magnetic silica microspheres	Adsorption	Phenolic contaminants in biorefinery wastewater	Breakdown of phenolic ring structures into simpler molecules by free radical chain reactions	[83]
Formate dehydrogenase, NADH oxidase, and peroxidase	Agarose beads	Adsorption	Phenol, 4-aminophenol, 2,4-dichlorophenol, or $\alpha\text{-naphthol}$	H ₂ O ₂ produced from the oxidation of formic acid by formate dehydrogenase and NADH oxidase was used to oxidize phenolic compounds in the presence of peroxidases	[84]

^aN/A, data not available.

biocatalytic membranes developed could be easily recovered from the reaction solution and maintained stability in reuse.

Engineering Biosorptive Materials for Removal and Recovery of Metals

Biosorption is a physicochemical process that removes substances from the aqueous phase by biological materials (i.e., biosorbents) based on a range of mechanisms such as absorption,

adsorption, ion exchange, surface complexation, and accumulation. Any biological materials capable of binding target chemical substances into its cellular structure can be used as biosorbents, and these include microbial, plant, and animal biomass, as well as their derived products [31]. Among the various types of biosorbents, microbial cells have been extensively investigated for developing efficient and cost-effective biosorption processes given their availability in large amounts by simple cultivation and the versatile binding sites and functional groups in their cell-wall constituents towards a broad spectrum of target chemicals, especially metal ions [31]. However, the use of natural microbial cells as biosorbents suffers from: (i) poor specificity for target chemicals (e.g., metal ions) in the presence of other coexisting ions; and (ii) relatively low binding capacity owing to the limited number of binding sites on the cell surface [32]. Therefore, there is a growing interest in engineering microbial cells through genetic manipulation to construct innovative biosorbents with improved binding properties for metal removal and recovery.

Biosorptive materials with improved metal ion selectivity and increased binding capacity can be developed by arming microbial cells with metal-binding proteins or peptides. Organisms in nature have evolved diverse systems for regulating metal uptake, transport, storage, and excretion to maintain metal homeostasis and resistance, providing a rich reservoir of biological macromolecules for highly efficient metal binding. Common metal-binding proteins and peptides derived from organisms are summarized in Box 2. Advances in genetic engineering have made it possible to manipulate microbial cells to overexpress desirable metal-binding proteins/peptides in the cytoplasm or on the cell wall. E. coli and S. cerevisiae are the most widely used microorganisms as host cells due to their well-established genetic engineering toolboxes, fast cell growth, and potential to achieve a high level of heterologous protein expression. Figure 2 illustrates the two common strategies for engineering microbial cells as biosorptive materials for metal removal and recovery. Intracellular expression of a specific metal-binding protein/peptide in the cytoplasm is an effective method for removing metal ions that can be readily imported into microbial cells. Extracellular display of a metal-binding protein/peptide on the cell surface is an approach of increasing interest because extracellular expression minimizes disturbance of the intracellular metabolic and biochemical processes while making the binding sites more accessible to metal ions in the external environment. Moreover, as for metal recovery applications, biosorbent cells developed through intracellular protein expression need to be destroyed to release the sequestrated metals, while cells with extracellular protein expression could be reused after desorbing metal ions bound outside the cells (Figure 2). The following sections describe current progress in developing engineered microbial cells as biosorptive materials for removing hazardous metal pollutants and recovering valued metals from waste streams.

Removal of Hazardous Metal Pollutants by Engineered Biosorbents

Recent research efforts have made significant progress in engineering microbial biosorbents for removing hazardous metal pollutants such as heavy metals and radioactive metals in wastewater and aquatic environments. The metallothioneins (MTs), phytochelatins (PCs), and metalloregulatory proteins originating from various organisms including bacteria, fungi, plants, animals, and human have been functionally expressed in host microbial cells to improve the removal of different metal ions, as summarized in Table 2.

Engineering host cells with MTs could considerably increase the binding capacity for a wide range of heavy metal ions. For example, a recent study reported that an engineered S. cerevisiae expressing MTs from Arabidopsis thaliana and Noccaea caerulescens in the inner side of plasma membrane exhibited enhanced uptake and accumulation of Cu²⁺, Zn²⁺, Mn²⁺, Ni²⁺, Co²⁺ and Cd²⁺, by 12-147-fold [33]. Although expressing MTs could provide superior binding capacity, one

Box 2. Metal-Binding Proteins and Peptides Commonly Used in Biosorbent Engineering

Over billions of years, organisms have evolved diverse and sophisticated systems for the uptake, transport, storage, and excretion of different metal ions to control metal homeostasis. In these systems, proteins capable of specifically recognizing and binding metal ions play crucial roles in the assimilation of essential metals and the elimination of toxic metals. Among the proteins associated with metal homeostasis, MTs, PCs, and metalloregulatory proteins are frequently exploited to engineer biosorptive materials with superior selectivity and binding efficiency.

MTs, a family of low molecular weight (6-10 kDa) proteins, are found in a wide range of organisms including humans, animals, plants, and diverse eukaryotic and prokaryotic microorganisms. MTs have a cysteine-rich (~30% of total amino acids) structure that lacks aromatic amino acids and histidine. The main function of MTs in biological systems is to detoxify excess heavy metal ions, protect against oxidative stress, and maintain metal homeostasis. Cys-Cys, Cys-X-Cys, or Cys-X-X-Cys (where X is an amino acid different from cysteine) motifs shared among MTs underlie their outstanding ability to sequester heavy metal ions. All MTs have high binding affinity for a broad spectrum of heavy metals, including Cd, Pb, Zn, Hg, Cu, Ni, As, and Ag [61].

PCs are a family of short cysteine-rich peptides that are responsible for metal sequestration and detoxification to maintain intracellular metal homeostasis in many plant species and in some groups of microorganisms. The general structure of PCs comprises tandem repeats of a Glu-Cys dipeptide terminated by a Gly residue: (γ-Glu-Cys)_n-Gly for natural PCs and $(\alpha$ -Glu-Cys), -Gly for synthetic PCs (i.e., ECs). PCs are capable of binding various heavy metals, such as Cd, Hg, As, and Pb, and display highest affinity for Cd through the formation of thiolate complexes [37].

Metalloregulatory proteins (also known as metal sensor proteins) are specialized regulatory proteins that control the expression of genes associated with metallochaperones, metal importers, and metal efflux transporters that regulate metal bioavailability. In comparison with MTs and PCs, metalloregulatory proteins exhibit high selectivity by specifically recognizing only one or a particular subgroup of metal ions. Furthermore, metalloregulatory proteins are highly sensitive for their target metal ion(s) and their transcriptional responses can be triggered by strikingly low metal concentrations (at the femtomolar level or lower) [39].

major intrinsic shortcoming of using MTs is the lack of high selectivity owing to their low specificity for binding different metal ions. Coexpression of MTs with a specific metal transporter is a way to improve the specificity towards the target metal ion. Such a strategy has been implemented to construct highly selective biosorbents for nickel, mercury and arsenite by overexpressing MTs together with the metal transporter genes nixA (for nickel), merT and merP (for mercury), and glpF (for arsenite), respectively [34]. For example, recombinant E. coli strains expressing pea MT with either the NiCoT (a nickel transporter protein encoded by nixA gene) from Helicobacter pylori or the

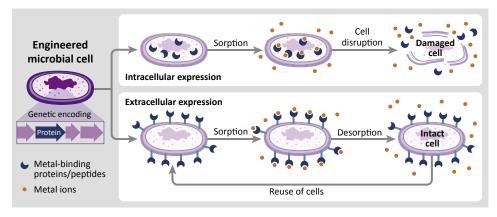


Figure 2. Engineering Microbial Biosorbents with Intracellular Expression or Extracellular Display of Metal-Binding Proteins/Peptides for Metal Removal and Recovery.

Table 2. Recent Advances in Engineering Biosorbents for Hazardous Metal Removal

Host microorganism	Expression site	Metal-binding peptides/proteins	Target metal	Refs
	Intracellular	Phytochelatin from Pyrus calleryana	Cu ²⁺ , Cd ²⁺ , and Hg ²⁺	[35]
	Intracellular	Phytochelatin from Thlaspi caerulescens	Cd ²⁺	[36]
	Intracellular	Corynebacterium glutamicum metallothionein	Pb ²⁺ , Zn ²⁺ , and Cd ²⁺	[85]
	Intracellular	Phytochelatin from Ceratophyllum demersum	Cd ²⁺ , As ³⁺ , and As ⁵⁺	[86]
	Intracellular	Pea metallothionein and Ni/Co transporter (NiCoT) from Helocobacter pylori and Staphylococcus aureus	Ni ²⁺	[34]
	Intracellular	Ni/Co transporter (NiCoT) from Novosphingobium aromaticivorans	Ni ²⁺ , and Co ²⁺	[87]
Escherichia coli	Intracellular	Crab metallothionein	Zn ²⁺ , Cu ²⁺ , and Cd ²⁺	[88]
	Intracellular	Rice metallothionein isoforms fused with glutathione-S-transferase (GST)	Hg ²⁺	[89]
	Cell surface	Full-length and truncated CadR from Pseudomonas putida	Cd ²⁺	[41]
	Cell surface	PbrR from <i>Cupriavidus metallidurans</i> CH34	Pb ²⁺	[42]
	Cell surface	Full-length PbrR and a putative Pb ² +-binding domain (PbBD) derived from PbrR	Pb ²⁺	[43]
	Cell surface	Cadmium-binding motif (cbm) and cadmium-binding β motif (cb β m)	Cd ²⁺	[90]
Rhodopseudomonas palustris	Intracellular	MerP-MerT and pea metallothionein	Hg ²⁺	[91]
	Intracellular	A synthetic phytochelatin analog (EC20)	Cd ²⁺	[38]
Deinococcus radiodurans	Intracellular	Ni/Co transporter proteins	⁶⁰ Co	[49]
Pseudomonas aeruginosa	Cell surface	Cd ²⁺ -responsive transcriptional regulator protein CadR from <i>Pseudomonas</i> syringae	Cd ²⁺	[44]
Pseudomonas putida	Cell surface	Cyanobacterial metallothionein	Cu ²⁺	[92]
Stenotrophomonas sp.	Cell surface	Synthetic phytochelatin	Cd ²⁺	[93]
Sphingobium japonicum	Cell surface	Synthetic phytochelatin	Cd ²⁺	[94]
	Intracellular	Human metallothionein	Cu ²⁺	[95]
	Intracellular	Synthetic phytochelatin	Pb ²⁺ and Cd ²⁺	[96]
	Intracellular	Metallothioneins from <i>Arabidopsis</i> thaliana and <i>Noccaea caerulescens</i>	Cu ²⁺ , Zn ²⁺ , and Cd ²⁺	[33]
	Intracellular	Human hepatic metallothionein	Pb ²⁺	[97]
	Cell surface	Solanum nigrum metallothionein	Cd ²⁺	[98]
Saccharomyces cerevisiae	Cell surface	N- and C-terminal regions of CadR from Pseudomonas putida	Cd ²⁺	[47]
	Cell surface	Mercuric ion resistance operon regulatory protein MerR from <i>Pseudomonas</i> aeruginosa	Hg ²⁺	[40]
	Cell surface	Ni ²⁺ -dependent transcriptional repressor mutant protein	UO ₂ ²⁺	[46]

Trends in Biotechnology

NiCoTs from *Staphylococcus aureus* showed significant increase in Ni²⁺ accumulation in the presence of competitor ions Na⁺, Co²⁺, and Cd²⁺ [34].

Engineered microbial cells that overexpress PCs have also been demonstrated to enhance biosorption of various heavy metals. Recently, recombinant *E. coli* cells that overexpressed the *PcPCS1* gene from *Pyrus calleryana* (which encodes **PC synthase**) was constructed and the increased accumulation of Cd^{2+} , Cu^{2+} , and Hg^{2+} was achieved by using this engineered biosorbent [35]. Functional expression of the PCs from *Thlaspi caerulescens* and *Schizosac-charomyces pombe* in *E. coli* was also reported to enhance specific binding of Cd^{2+} [36]. PCs are usually preferred over MTs as expression targets because their unique structural characteristics (namely the continuously repeating γ -Glu–Cys unit that is responsible for metal binding) enable higher affinity and binding capacity [37]. In addition to natural PCs, synthetic PCs (termed ECs) with desirable binding capacity can be created by tuning the number of metal-binding motifs [i.e., n in $(\alpha$ -Glu–Cys) $_n$ -Gly]. The longest EC ever reported for engineering the microbial cell biosorbent is EC20, namely $(\alpha$ -Glu–Cys) $_{20}$ -Gly, which resulted in superior cadmium-binding capacity [38].

Metalloregulatory proteins are usually used as the expression target when a high specificity for target metal adsorption is required. The unique structures of these metalloregulatory proteins can effectively recognize and bind the target metal ions by complexing the metal ions in specific coordination geometries [39]. Several studies have demonstrated that overexpression of metalloregulatory proteins could considerably improve the host cell selectivity for the metal ions of interest [40-42]. For example, engineered E. coli cells expressing a putative Pb2+binding domain (PbBD) derived from the PbrR (Pb²⁺-sensing transcriptional factor) on the cell surface could selectively adsorb Pb²⁺ in the presence of Cd²⁺ and Zn²⁺ [43]. In addition, MerR, the mercuric ion resistance operon regulatory protein, was recently reported to be displayed on the S. cerevisiae cell surface for the first time, resulting in higher adsorption capacity for Hg²⁺ as well as excellent selectivity against the coexistence of Cd²⁺ and Cu²⁺ [40]. As another example, Pseudomonas aeruginosa cells engineered with CadR, a cadmium-induced regulator protein, on their surface showed improved adsorption of Cd2+, and Ca2+ and Mg2+ ions had no significant effects on the biosorption efficiency [44]. Efforts in engineering biosorbent cells via overexpression of other metalloregulatory proteins, such as CueR, CadR, GolS, and Nik, have also been made to improve the binding capacity and selectivity for the corresponding heavy metals (e.g., Ag+, Cd2+, and Au3+) [41,42,44-48]. In addition to heavy metals, biosorbents engineered with metalloregulatory proteins have also been reported to remove radionuclides. Yeast cells with surface-displayed tandem metal-binding domains of NikRm, a NikR mutant protein that was designed for uranyl ion (UO222+) binding, could selectively remove UO22+ from contaminated water in the presence of other interfering metal ions [46].

Other proteins/peptides in addition to MTs, PCs, and metalloregulatory proteins can also be designed and used for engineering microbial cell biosorbents for metal removal. Metal transporter proteins are one alternative expression target. For example, expression of the Ni/Co transporter proteins (NiCoTs) from *Rhodopseudomonas palustris* and *Novosphingobium aromaticivorans* in *Deinococcus radiodurans* could effectively and selectively remove radioactive cobalt (⁶⁰Co) from a solution containing other metal ions such as Fe²⁺ and Cr³⁺ [49]. Moreover, rational design of metal-binding peptides can be exploited for biosorbent engineering [50,51]. A recent study used a strategy that combined bioinformatics and genetic engineering techniques to design high-affinity metal-binding peptides *in silico* and to engineer *E. coli* cells with these peptides on the cell surface for enhanced Cd²⁺ adsorption. The engineered cells showed greater affinity for Cd²⁺ versus other coexisting metal ions as well [50].

Recovery of Precious Metals and Rare Earth Elements by Engineered Biosorbents

The recovery of precious metals and rare earth elements (REEs) from waste streams is of particular significance to resolve the conflict between their diminishing supplies and growing demands for socioeconomic development. A crucial challenge in metal recovery via biosorption processes is how to distinguish the high-value target metal ion from other coexisting ions in the solution such that it can be selectively separated and recovered with high purity. As such, a major trend of recent research in developing microbial biosorbents for valued metal recovery applications is to focus on the criterion of high selectivity and specificity a well as enhanced binding capacity [52].

Advances in engineering highly selective microbial cell biosorbents for recovering precious metals including gold, silver, and platinum have been reported. For example, expression of GoIB, a putative gold-chaperone from Salmonella that can effectively recognize gold ion, on the cell surface of E. coli enabled selective adsorption of Au³⁺ in the presence of Cu²⁺, Cd²⁺, Zn²⁺, or Ni²⁺. Furthermore, the Au³⁺ adsorbed onto cells could be easily and selectively recovered by cleavage of the cysteine residues on GoIB using papain, a cysteine-specific protease, and the engineered E. coli cell with GolB were readily reusable after regeneration [48]. In addition, expression of the Ag-binding domain of the CueR from P. putida on the S. cerevisiae cell surface achieved enhanced adsorption capacity and higher selectivity towards Ag+ in the presence of other competing metal ions [45].

Attempts have also been made to engineer microbial cell biosorbents for recovering REEs. Particularly, lanthanide binding tags (LBTs), originally developed by combinatorial peptide synthesis and screening together with explicit tactics of peptide design, are of great potential as the expression targets for engineering microbial biosorbents to recover REEs with high affinity and selectivity. Engineered Caulobacter crescentus cells that displayed LBTs at high density on the **S-layer** showed improved biosorption to REEs compared to the control cells without LBTs. The REEs could be recovered with an excellent efficiency (>90%) after treating the cells with citrate as the desorbing agent [53]. A follow-up study constructed a recombinant E. coli strain expressing eight tandem copies of double-LBTs on the cell surface. The engineered E. coli strain exhibited enhanced Tb3+ biosorption capacity which was twofold higher than cells without LBTs. When this engineered strain was applied to recover REEs in leachates from metal-mine tailings and rare earth deposits, it showed enhanced efficiency of REE adsorption from all leachate samples, increased selectivity and specificity for REEs over other interfering metal ions, and greater affinity to REEs with smaller radii (e.g., Tb, Dy, Er, Yb) than those with larger radii (e.g., La, Pr, Ce) [3]. In a more recent study, E. coli cells were genetically modified to express the curli amyloid fibers that displayed LBTs (curli-LBT) [54]. The curli-LBT filter made by immobilizing the curli-LBT onto a polycarbonate membrane could preferentially bind several high-value heavy REEs with high specificity in the presence of other coexisting metals. This type of filter could be potentially used as a rapid, selective, and scalable biosorptive material for recovering REEs.

Concluding Remarks and Future Perspectives

Current progress in synthetic biology and protein engineering is opening up tremendous opportunities to advance the application of biological processes at the molecular level to develop innovative solutions to the emerging problems facing environmental sustainability. These advances have enabled the development of biocatalytic and biosorptive materials with novel functionality, providing a renewable and cost-effective strategy to treat recalcitrant contaminants of emerging concern and to recover valuable products from wastes. Although recent research efforts have made significant and exciting progress towards this end, crucial challenges remain to be resolved before engineered biological materials can be used to solve environmental problems in practice (see Outstanding Questions).

Outstanding Questions

How to improve the robustness of engineered biocatalytic or biosorptive materials under environmentally relevant conditions?

How can biomaterials be engineered and used so as to minimize the potential environmental and ecological risks?

What is the fate, transport, and transformation of engineered biological materials in the environment?

Trends in Biotechnology

First, it is highly desirable that the biocatalytic or biosorptive material is robust under environmentally relevant conditions. Robustness here is collectively referred to as the material functionality and stability against a number of important parameters relevant to complex wastewater and polluted environments (e.g., pH, salinity, biomolecules, natural organic matters, and toxic contaminants). Current research efforts in developing biocatalytic or biosorptive materials normally focus on characterizing the functionality of the material under ideal laboratory conditions, whereas the real-world application-relevant environmental conditions are more complex. Therefore, it will be important to rigorously characterize and enhance the robustness of the engineered material such that it could become a viable option for contaminant treatment. Promising strategies for improving the robustness of engineered biological materials include rational design based on understanding structure—activity relationships at the molecular level, directed evolution to optimize protein stability under environmental conditions of interest, and the **combinatorial library** approach to discover proteins/peptides with distinct properties that can function under anticipated environmental conditions.

In addition, a major concern about using genetically engineered biological materials for environmental applications lies in their potential ecological risks. Concerns primarily arise from possibility of introducing mobile genetic elements and antibiotic resistance marker genes into the environment. These concerns could be addressed by using advanced genome-editing techniques which can create stable and marker-free engineered cells [55]. Designing well-controlled reactor systems and treatment processes is also important to minimize the release of engineered biological materials into the environment. On the other hand, more research will be necessary to advance our understanding of the environmental fate, transport, and transformation of genetically engineered materials. Research to this end will provide a scientific basis for risk management while new technological breakthroughs are being made in developing engineered biological materials to address crucial environmental problems.

Finally, for practical implementation of engineered biocatalytic and biosorptive materials, a crucial factor to consider is the cost. In conventional approaches that immobilize the target protein on supporting matrix, protein extraction and purification are time-consuming and expensive steps. By contrast, engineered cell-based materials with intracellular expression or extracellular display of the target protein would be advantageous in terms of cost-effectiveness because the strategy bypasses the need for protein extraction and purification. In addition, efficient large-scale preparation of the engineered biological materials will be necessary for real-world applications. Cell-based materials hold great promise for scaling up, as evidenced by existing applications in the field of industrial biotechnology where large amounts of host microbial cells (e.g., *E. coli* and *S. cerevisiae*) are cultivated on a routine basis to produce commercial products [56,57]. Future research to address logistic challenges such as generating the engineered biocatalytic/biosorptive materials onsite at scale, or enhancing stability and longevity during transportation and storage, would greatly benefit practical applications.

Acknowledgments

This work was supported by funding from the National Science Foundation (CBET-1653679).

References

- Jahangiri, E. et al. (2018) Characterisation of electron beam irradiation-immobilised laccase for application in wastewater treatment. Sci. Total Environ. 624, 309–322
- Ji, X. et al. (2016) TiO₂-horseradish peroxidase hybrid catalyst based on hollow nanofibers for simultaneous photochemical-
- enzymatic degradation of 2,4-dichlorophenol. ACS Sustain. Chem. Eng. 4, 3634-3640
- Park, D.M. et al. (2017) Recovery of rare earth elements from lowgrade feedstock leachates using engineered bacteria. Environ. Sci. Technol. 51, 13471–13480

- 4. Sheldon, R.A. and Woodley, J.M. (2018) Role of biocatalysis in 28. Canbolat, M.F. et al. (2013) Preservation of cell viability and sustainable chemistry. Chem. Rev. 118, 801-838
- Choi, J.M. et al. (2015) Industrial applications of enzyme biocatalysis: current status and future aspects. Biotechnol. Adv. 33,
- 6. Mate, D.M. and Alcalde, M. (2015) Laccase engineering: from rational design to directed evolution. Biotechnol. Adv. 33, 25-40
- 7. Krainer, F.W. and Glieder, A. (2015) An updated view on horseradish peroxidases: recombinant production and biotechnological applications. Appl. Microbiol. Biotechnol. 99, 1611-1625
- 8. Shah, A.A. et al. (2014) Microbial degradation of aliphatic and aliphatic-aromatic co-polyesters. Appl. Microbiol. Biotechnol. 98, 3437-3447
- 9. Boonyuen, U. et al. (2015) Efficient in vitro refolding and functional characterization of recombinant human liver carboxylesterase (CES1) expressed in E. coli. Protein Expr. Purif. 107, 68-75
- 10. Gamerith, C. et al. (2017) Enzymatic degradation of aromatic and aliphatic polyesters by P. pastoris expressed cutinase 1 from Thermobifida cellulosilytica. Front. Microbiol. 8, 938
- 11. Sheldon, R.A. and Pereira, P.C. (2017) Biocatalysis engineering: the big picture. Chem. Soc. Rev. 46, 2678-2691
- 12. Nikolaivits, E. et al. (2018) Characterization and protein engineering of a novel versatile fungal polyphenol oxidase with chlorophenol bioremediation potential. Appl. Environ. Microbiol. AEM-
- 13. Xiao, H. et al. (2015) High throughput screening and selection methods for directed enzyme evolution. Ind. Eng. Chem. Res. 54, 4011-4020
- 14. Arnold, F.H. (2018) Directed evolution: bringing new chemistry to life. Angew. Chem. Int. Ed. 57, 4143-4148
- 15. Iyer, R. and Iken, B. (2015) Protein engineering of representative hydrolytic enzymes for remediation of organophosphates. Biochem. Eng. J. 94, 134-144
- 16. Fischlechner, M. et al. (2014) Evolution of enzyme catalysts caged in biomimetic gel-shell beads. Nat. Chem. 6, 791-796
- 17. Datta, S. et al. (2013) Enzyme immobilization: an overview on techniques and support materials. 3 Biotech 3, 1-9
- 18. Mohamad, N.R. et al. (2015) An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotechnol. Equip. 29, 205-220
- 19. Yang, J. et al. (2017) Degradation of tetracycline by immobilized laccase and the proposed transformation pathway. J. Hazard. Mater. 322, 525-531
- 20. Kumar, V.V. et al. (2014) Magnetic cross-linked laccase aggregates - bioremediation tool for decolorization of distinct classes of recalcitrant dyes. Sci. Total Environ. 487, 830-839
- 21, Li, G.H. et al. (2017) Laccase-immobilized bacterial cellulose/TiOo functionalized composite membranes: evaluation for photo- and bio-catalytic dye degradation. J. Membr. Sci. 525, 89-98
- 22. Han, L. et al. (2018) Redesigning of microbial cell surface and its application to whole-cell biocatalysis and biosensors. Appl. Biochem. Biotechnol. 185, 396-418
- 23 Latifi A.M. et al. (2015) Efficient surface display of diisopropylfluorophosphatase (DFPase) in E. coli for biodegradation of toxic organophosphorus compounds (DFP and Cp). Appl. Biochem. Biotechnol. 177, 624-636
- 24. Liu. J. et al. (2016) Complete biodegradation of chlorpyrifos by engineered Pseudomonas putida cells expressing surface-immobilized laccases. Chemosphere 157, 200-207
- 25. Detzel, C. et al. (2013) Autodisplay of nitrilase from Klebsiella pneumoniae and whole-cell degradation of oxynil herbicides and related compounds, Appl. Microbiol, Biotechnol, 97, 4887-4896
- 26. Gao, F. et al. (2014) Functional display of triphenylmethane reductase for dve removal on the surface of Escherichia coli using N-terminal domain of ice nucleation protein. Bioresour. Technol. 169, 181-187
- 27. Ahmed, F.E. et al. (2015) A review on electrospinning for membrane fabrication: Challenges and applications, Desalination 356, 15-30

- protein conformation on immobilization within nanofibers via electrospinning functionalized yeast. ACS Appl. Mater. Interfaces 5, 9349-9354
- 29. Gudapati, H. et al. (2016) A comprehensive review on dropletbased bioprinting; past, present and future, Biomaterials 102, 20-
- 30. Chen, Y. et al. (2018) Biocatalytic membranes prepared by inkjet printing functionalized yeast cells onto microfiltration substrates. J. Membr. Sci. 550, 91-100
- 31, Fomina, M. and Gadd, G.M. (2014) Biosorption: current perspectives on concept, definition and application. Bioresour. Technol. 160, 3-14
- 32. Li, P.S. and Tao, H.C. (2015) Cell surface engineering of microorganisms towards adsorption of heavy metals. Crit. Rev. Microbiol. 41, 140-149
- 33. Ruta, L.L. et al. (2017) Anchoring plant metallothioneins to the inner face of the plasma membrane of Saccharomyces cerevi cells leads to heavy metal accumulation. PLoS One 12, e0178393
- 34. Deng, X. et al. (2013) Comparative study on Ni²⁺-affinity transport of nickel/cobalt permeases (NiCoTs) and the potential of recombinant Escherichia coli for Ni2+ bioaccumulation. Bioresour. Tech-
- 35. Li, H. et al. (2015) Enhanced tolerance and accumulation of heavy metal ions by engineered Escherichia coli expressing Pyrus calleryana phytochelatin synthase. J. Basic Microbiol. 55, 398-405
- 36. Chang, S. and Shu, H. (2014) The construction of an engineered bacterium to remove cadmium from wastewater. Water Sci. Technol. 70, 2015-2021
- 37. Vandenbossche, M. et al. (2015) Remediation of heavy metals by biomolecules: a review. Crit. Rev. Environ. Sci. Technol. 45, 1644-1704
- 38. Chaturvedi, R. and Archana, G. (2014) Cytosolic expression of synthetic phytochelatin and bacterial metallothionein genes in Deinococcus radiodurans R1 for enhanced tolerance and bioaccumulation of cadmium. Biometals 27, 471-482
- 39. Chandrangsu, P. et al. (2017) Metal homeostasis and resistance in bacteria. Nat. Rev. Microbiol. 15, 338
- 40. Wei, Q. et al. (2018) Cell surface display of MerR on Saccharomyces cerevisiae for biosorption of mercury. Mol. Biotechnol. 60, 12-20
- 41, Liu, Q, et al. (2015) Cadmium adsorption by E, coli with surface displayed CadR, RSC Adv. 5, 16089-16092
- 42. Wei, W. et al. (2014) Simple whole-cell biodetection and bioremediation of heavy metals based on an engineered lead-specific operon, Environ, Sci. Technol, 48, 3363-3371
- 43. Hui, C.Y. et al. (2018) Surface display of metal binding domain derived from PbrR on Escherichia coli specifically increases lead (II) adsorption, Biotechnol, Lett. 40, 837-845
- 44, Tang. X. et al. (2018) Chromosomal expression of CadR on Pseudomonas aeruginosa for the removal of Cd(II) from aqueous solutions. Sci. Total Environ. 636, 1355-1361
- 45. Tao, H.C. et al. (2016) Specific adsorption of silver(I) from the aqueous phase by Saccharomyces cerevisiae cells with enhanced displaying CueR protein. J. Environ. Eng. 142, 6
- 46. Kuroda, K. et al. (2014) Enhanced adsorption and recovery of uranyl ions by NikR mutant-displaying yeast. Biomolecules 4,
- 47. Tao, H.C. et al. (2016) Surface-engineered Saccharomyces cerevisiae cells displaying redesigned CadR for enhancement of adsorption of cadmium(II). J. Chem. Technol. Biotechnol. 91,
- 48. Wei, W. et al. (2012) Engineering a gold-specific regulon for cellbased visual detection and recovery of gold. Chem. Sci. 3, 1780-
- 49. Gogada, R. et al. (2015) Engineered Deinococcus radiodurans R1 with NiCoT genes for bioremoval of trace cobalt from spent decontamination solutions of nuclear power reactors. Appl. Microbiol. Biotechnol. 99, 9203-9213

- 50. Eskandari, V. et al. (2013) In silico design and construction of 73. Chang, Q. et al. (2016) Catalytic oxidation of phenol and 2,4metal-binding hybrid proteins for specific removal of cadmium based on CS3 pili display on the surface of Escherichia coli. Biotechnol, Appl. Biochem. 60, 564-572
- 51. Zhou, L. et al. (2014) A protein engineered to bind uranyl selectively and with femtomolar affinity, Nat. Chem. 6, 236
- 52. Chien, M.F. et al. (2017) Construction of a cell surface engineered yeast aims to selectively recover molybdenum, a rare metal. Solid State Phenom. 262, 421-424
- 53. Park, D.M. et al. (2016) Bioadsorption of rare earth elements through cell surface display of lanthanide binding tags. Environ. Sci. Technol. 50, 2735-2742
- 54. Tay, P.K.R. et al. (2018) Repurposing bacterial extracellular matrix for selective and differential abstraction of rare earth elements. Green Chem. 20, 3512-3520
- 55. Hsu, P.D. et al. (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157, 1262-1278
- 56. Huang, C.-J. et al. (2012) Industrial production of recombinant therapeutics in Escherichia coli and its recent advancements. J. Ind. Microbiol. Biotechnol. 39, 383-399
- 57. Nielsen, J. (2013) Production of biopharmaceutical proteins by yeast. Bioengineered 4, 207-211
- 58. Macellaro. G. et al. (2014) Fungal laccases degradation of endocrine disrupting compounds. BioMed Res. Int. 2014, 614038
- 59. Rao. M.A. et al. (2014) Enzymes as useful tools for environmental purposes, Chemosphere 107, 145-162
- 60. Sharma, B. et al. (2018) Contemporary enzyme based technologies for bioremediation: A review. J. Environ. Manage. 210, 10-22
- 61. Cornelia, F.I. and Liliana, R.L. (2017) Metallothioneins, Saccharomyces cerevisiae, and heavy metals: a biotechnology triad? In Old Yeasts-New Questions, InTech
- 62. Li, G.H. et al. (2016) Laccase immobilized on PAN/O-MMT composite nanofibers support for substrate bioremediation: a de novo adsorption and biocatalytic synergy. RSC Adv. 6, 41420-41427
- 63, Xu. R. et al. (2014) Triclosan removal by laccase immobilized on mesoporous nanofibers: strong adsorption and efficient degradation. Chem. Eng. J. 255, 63-70
- 64. Arca-Ramos, A. et al. (2016) Recyclable cross-linked laccase aggregates coupled to magnetic silica microbeads for elimination of pharmaceuticals from municipal wastewater. Environ. Sci. Pollut. Res. Int. 23, 8929-8939
- 65. Kadam, A.A. et al. (2017) Supermagnetically tuned halloysite nanotubes functionalized with aminosilane for covalent laccase immobilization. ACS Appl. Mater. Interfaces 9, 15492-15501
- 66. Kumar, V.V. and Cabana, H. (2016) Towards high potential magnetic biocatalysts for on-demand elimination of pharmaceuicals. Bioresour. Technol. 200, 81-89
- 67. Ji, C. et al. (2017) Direct immobilization of laccase on titania nanoparticles from crude enzyme extracts of P. ostreatus culture for micro-pollutant degradation. Sep. Purif. Technol. 178, 215-
- 68. Hou, J. et al. (2014) Hybrid membrane with TiO2 based biocatalytic nanoparticle suspension system for the degradation of bisphenol-A. Bioresour. Technol. 169, 475-483
- 69. Yang, J. et al. (2017) Immobilized Cerrena sp. laccase: preparation, thermal inactivation, and operational stability in malachite green decolorization. Sci. Rep. 7, 16429
- 70. Bilal, M. et al. (2017) Development of horseradish peroxidasebased cross-linked enzyme aggregates and their environmental exploitation for bioremediation purposes. J. Environ. Manage. 188, 137-143
- 71. 7hai. R. et al. (2013) Chitosan-halloysite hybrid-nanotubes: horseradish peroxidase immobilization and applications in phenol removal. Chem. Eng. J. 214, 304-309
- 72. Kim, S. et al. (2016) High efficient chromogenic catalysis of tetramethylbenzidine with horseradish peroxidase immobilized magnetic nanoparticles. Biochem. Eng. J. 105, 406-411

- dichlorophenol by using horseradish peroxidase immobilized on graphene oxide/Fe₂O₄, Molecules 21, 1044
- 74. Silva, M.C. et al. (2016) Immobilization of soybean peroxidase on silica-coated magnetic particles: a magnetically recoverable biocatalyst for pollutant removal, RSC Adv. 6, 83856-83863
- 75. Sarro, M. et al. (2018) ZnO-based materials and enzymes hybrid systems as highly efficient catalysts for recalcitrant pollutants abatement. Chem. Eng. J. 334, 2530-2538
- 76. Liu, N. et al. (2016) Stabilized magnetic enzyme aggregates on graphene oxide for high performance phenol and bisphenol A removal. Chem. Eng. J. 306, 1026-1034
- 77. Gao, Y. et al. (2014) Bioremediation of pesticide contaminated water using an organophosphate degrading enzyme immobilized on nonwoven polyester textiles. Enzyme Microb. Technol. 54, 38-
- 78. Mechrez, G. et al. (2014) Biocatalytic carbon nanotube paper: a 'one-pot' route for fabrication of enzyme-immobilized membranes for organophosphate bioremediation. J. Mater. Chem.
- 79. He, H. et al. (2016) Construction of thermophilic lipase-embedded metal-organic frameworks via biomimetic mineralization: a biocatalyst for ester hydrolysis and kinetic resolution. ACS Appl. Mater. Interfaces 8, 24517-24524
- 80. Ranjan, B. et al. (2017) A novel strategy for the efficient removal of toxic cyanate by the combinatorial use of recombinant enzymes immobilized on aminosilane modified magnetic nanoparticles. Bioresour. Technol. 253, 105-111
- 81. Dvorak, P. et al. (2014) Immobilized synthetic pathway for biodegradation of toxic recalcitrant pollutant 1,2,3-trichloropropane. Environ. Sci. Technol. 48, 6859-6866
- 82. Kwean, O.S. et al. (2018) 4-Chlorophenol biodegradation facilitator composed of recombinant multi-biocatalysts immobilized onto montmorillonite. Bioresour. Technol. 259, 268-275
- 83. Vishnu, D. et al. (2017) Synergetic integration of laccase and versatile peroxidase with magnetic silica microspheres towards remediation of biorefinery wastewater. Environ. Sci. Pollut. Res.
- 84. Rocha-Martin, J. et al. (2014) Oxidation of phenolic compounds catalyzed by immobilized multi-enzyme systems with integrated hydrogen peroxide production. Green Chem. 16, 303-311
- 85. Jafarian, V. and Ghaffari, F. (2017) A unique metallothioneinengineered in Escherichia coli for biosorption of lead, zinc, and cadmium: absorption or adsorption? Microbiology 86, 73-81
- 86. Shukla, D. et al. (2013) Expression of Ceratophyllum demersum phytochelatin synthase, CdPCS1, in Escherichia coli and Arabidopsis enhances heavy metal(loid)s accumulation. Protoplasma 250, 1263-1272
- 87. Duprey, A. et al. (2014) 'NiCo Buster': engineering E. coli for fast and efficient capture of cobalt and nickel. J. Biol. Eng. 8, 19
- 88. He, Y. et al. (2014) Expression of metallothionein of freshwater crab (Sinopotamon henanense) in Escherichia coli enhances tolerance and accumulation of zinc, copper and cadmium. Ecotoxicology 23, 56-64
- 89. Shahpiri, A. and Mohammadzadeh, A. (2018) Mercury removal by engineered Escherichia coli cells expressing different rice metallothionein isoforms, Ann. Microbiol. 68, 145-152
- 90. Eskandari, V. et al. (2015) Efficient cadmium bioaccumulation by displayed hybrid CS3 Pili: Effect of heavy metal binding motif insertion site on adsorption capacity and selectivity. Appl. Biochem. Biotechnol. 177, 1729-1741
- 91. Deng, X. and Jia, P. (2011) Construction and characterization of a photosynthetic bacterium genetically engineered for Hg²⁺ uptake. Bioresour, Technol, 102, 3083-3088
- 92. Hu, P.G. et al. (2017) Poly-gamma-glutamic acid coupled Pseudomonas putida cells surface-displaying metallothioneins: composited copper(II) biosorption and inducible flocculation in agueous solution. RSC Adv. 7, 18578-18587

- 93. Liu, R. et al. (2014) Engineering chlorpyrifos-degrading Steno- 96. Livia de CF, M. and Benedito, C. (2015) Potential application of trophomonas sp. YC-1 for heavy metal accumulation and enhanced chlorpyrifos degradation. *Biodegradation* 25, 903–910
- 94. Yang, C. et al. (2016) An engineered microorganism can simultaneously detoxify cadmium, chlorpyrifos, and gamma-hexachlorocyclohexane. J. Basic Microbiol. 56, 820-826
- 95. Geva, P. et al. (2016) Increased copper bioremediation ability of 98. Wei, Q. et al. (2016) Cell surface display of four types of Solanum new transgenic and adapted Saccharomyces cerevisiae strains. Environ. Sci. Pollut. Res. Int. 23, 19613-19625
- modified Saccharomyces cerevisiae for removing lead and cadmium. J Biorem. Biodegrad. 6, 313
- 97. Li, M. et al. (2014) Enhanced Pb2+ biosorption by recombinant Saccharomyces cerevisiae expressing human metallothionein. Monatsh. Chem. 145, 235-240
 - nigrum metallothionein on Saccharomyces cerevisiae for biosorption of cadmium. J. Microbiol. Biotechnol. 26, 846-853