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Abstract

The study of algorithms to automatically answer visual
questions currently is motivated by visual question answer-
ing (VQA) datasets constructed in artificial VQA settings.
We propose VizWiz, the first goal-oriented VQA dataset
arising from a natural VQA setting. VizWiz consists of over
31,000 visual questions originating from blind people who
each took a picture using a mobile phone and recorded a
spoken question about it, together with 10 crowdsourced
answers per visual question. VizWiz differs from the many
existing VQA datasets because (1) images are captured by
blind photographers and so are often poor quality, (2) ques-
tions are spoken and so are more conversational, and (3)
often visual questions cannot be answered. Evaluation of
modern algorithms for answering visual questions and de-
ciding if a visual question is answerable reveals that VizWiz
is a challenging dataset. We introduce this dataset to en-
courage a larger community to develop more generalized
algorithms that can assist blind people.

1. Introduction

A natural application of computer vision is to assist blind
people, whether that may be to overcome their daily visual
challenges or break down their social accessibility barriers.
For example, modern object recognition tools from private
companies, such as TapTapSee [3] and CamFind [2], al-
ready empower people to snap a picture of an object and
recognize what it is as well as where it can be purchased.
Social media platforms, such as Facebook and Twitter, help
people maintain connections with friends by enabling them
to identify and tag friends in posted images as well as re-
spond to images automatically described to them [27, 42].
A desirable next step for vision applications is to empower
a blind person to directly request in a natural manner what
(s)he would like to know about the surrounding physical
world. This idea relates to the recent explosion of inter-
est in the visual question answering (VQA) problem, which
aims to accurately answer any question about any image.

Over the past three years, many VQA datasets have
emerged in the vision community to catalyze research on
the VQA problem [7, 8, 17, 18, 20, 21, 24, 29, 33, 40, 41,
44, 46]. Historically, progress in the research community on
a computer vision problem is typically preceded by a large-
scale, publicly-shared dataset [13, 26, 31, 34, 43]. However,
a limitation of available VQA datasets is that all come from
artificially created VQA settings. Moreover, none are “goal
oriented” towards the images and questions that come from
blind people. Yet, blind people arguably have been produc-
ing the big data desired to train algorithms. For nearly a
decade, blind people have been both taking pictures [4, 9]
and asking questions about the pictures they take [9, 12, 25].
Moreover, blind people often are early adopters of computer
vision tools to support their real daily needs.

We introduce the first publicly-available vision dataset
originating from blind people, which we call “VizWiz”, in
order to encourage the development of more generalized al-
gorithms that also address the interests of blind people. Our
work builds off previous work [9] which established a mo-
bile phone application that supported blind people to ask
over 70,000 visual questions [11] by taking a photo and
asking a question about it. We begin our work by imple-
menting a rigorous filtering process to remove visual ques-
tions that could compromise the safety or privacy of any
individuals associated with them; e.g., blind people often
willingly share personal information with strangers to over-
come personal obstacles [5]. We then crowdsource answers
to support algorithm training and evaluation. We next con-
duct experiments to characterize the images, questions, and
answers and uncover unique aspects differentiating VizWiz
from existing VQA datasets [7, 8, 17, 18, 20, 21, 24, 29, 33,
40,41, 44, 46]. We finally evaluate numerous algorithms for
predicting answers [18, 23] and predicting if a visual ques-
tion can be answered [28]. Our findings highlight VizWiz
is a difficult dataset for modern vision algorithms and offer
new perspectives about the VQA problem.

It is also useful to understand why VizWiz is challenging
for modern algorithms. Our findings suggest the reasons
stem from the fact VizWiz is the first vision dataset to in-
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Q: Does this foundation Q: What is this?
have any sunscreen? A: 10 euros

Q: What color is this?
A: green

Q: Please can you tell
me what this item is? A: yes

A: yes A: butternut squash

[ ———
Q: Is it sunny outside?  Q: Is this air conditioner on fan,
dehumidifier, or air conditioning?
A: air conditioning

red pepper soup

v

Q: What type of
pills are these?

A: unsuitable image

Q: What type of
soup is this?
A: unsuitable image

A: unanswerable

Q: Who is this mail for?  Q: When is the
expiration date?

A: unanswerable

=

!

Q: Can you please tell me what
the oven temperature is set to?

A: unanswerable

Q: What is this?
A: unanswerable

Figure 1. Examples of visual questions asked by blind people and corresponding answers agreed upon by crowd workers. The examples
include questions that both can be answered from the image (top row) and cannot be answered from the image (bottom row).

troduce images and questions from blind people as well as
questions that originally were spoken. Unlike existing vi-
sion datasets, images are often poor quality, including due
to poor lighting, focus, and framing of the content of in-
terest. Unlike existing VQA datasets, the questions can be
more conversational or suffer from audio recording imper-
fections such as clipping a question at either end or catching
background audio content. Finally, there is no assurance
that questions can be answered since blind people cannot
verify their images capture the visual content they are ask-
ing about for a plethora of reasons; e.g., blur, inadequate
lighting, finger covering the lens, etc. Several of the afore-
mentioned issues are exemplified in Figure 1.

More broadly, VizWiz is the first goal-driven VQA
dataset to capture real-world interests of real users of a
VQA system. Furthermore, it is the first VQA dataset to
reflect a use case where a person asks questions about the
physical world around himself/herself. This approach is
critical for empowering blind people to overcome their daily
visual-based challenges. Success in developing automated
methods would mitigate concerns about the many undesired
consequences from today’s status quo for blind people of re-
lying on humans to answer visual questions [9, 12, 25]; e.g.,
humans often must be paid (i.e., potentially expensive), can
take minutes to provide an answer (i.e., slow), are not al-
ways available (i.e., potentially not scalable), and pose pri-
vacy issues (e.g., when credit card information is shared).

2. Related Works

VQA for Blind Users. For nearly a decade, human-
powered VQA systems have enabled blind people to over-

come their daily visual challenges quickly [1, 9, 25]. With
such systems, users employ a mobile phone application to
capture a photo (or video), ask a question about it, and then
receive an answer from remotely located paid crowd work-
ers [9, 25] or volunteers [1]. Such VQA systems have been
shown to be valuable for many daily tasks including gro-
cery shopping [9], locating a specific object in a complex
scene [10], and choosing clothes to wear [12]. Yet, these
systems are limited because they rely on humans to pro-
vide answers. An automated solution would be preferred
for reasons such as cost, latency, scalability, and enhanced
privacy. For example, the latency between sending out an
image and getting the answer back may take minutes [9],
disrupting the natural flow of a blind user’s life. Our work
describes the unique challenges for creating public datasets
with data captured in natural settings from real-world users
and, in particular, blind users. Our work also offers the first
dataset for enabling algorithm development on images and
questions coming from blind people, which in turn yields
new vision-based and language-based challenges.

Images in Vision Datasets. When constructing vision
datasets, prior work typically used images gathered from
the web (e.g., [13, 26, 31, 34, 43]) or created artificially
(e.g., [7, 8, 20]). Such images are typically high quality and
safe for public consumption. For example, images curated
from the web intrinsically pass a human quality assessment
of “worthy to upload to the internet” and typically are in-
ternally reviewed by companies hosting the images (e.g.,
Google, Facebook) to ensure the content is appropriate. Al-
ternatively, artificially constructed images come from con-
trolled settings where either computer graphics is employed
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to synthesize images with known objects and scenes [7, 20]
or crowd workers are employed to add pre-defined clipart
objects to pre-defined indoor and outdoor scenes [8]. In
contrast, images collected “in the wild” can contain inap-
propriate or private content, necessitating the need for a re-
view process before releasing the data for public consump-
tion. Moreover, images from blind photographers regularly
are poor quality, since blind people cannot validate the qual-
ity of the pictures they take. Our experiments show these
images pose new challenges for modern vision algorithms.

VQA Datasets. Over the past three years, a plethora of
VQA datasets have been publicly shared to encourage a
larger community to collaborate on developing algorithms
that answer visual questions [7, 8, 17, 18, 20, 21, 24, 29,
33, 40, 41, 44, 46]. While a variety of approaches have
been proposed to assemble VQA datasets, in all cases the
visual questions were contrived. For example, all images
were either taken from an existing vision dataset (e.g.,
MSCOCO [26]) or artificially constructed (e.g., Abstract
Scenes [8], computer graphics [7, 20]). In addition, ques-
tions were generated either automatically [7, 20, 21, 29, 33,
44], from crowd workers [8, 17, 18, 21, 24, 46], or from
in-house participants [21, 41]. We introduce the first VQA
dataset which reflects visual questions asked by people who
were authentically trying to learn about the visual world.
This enables us to uncover the statistical composition of vi-
sual questions that arises in a real-world situation. More-
over, our dataset is the first to reflect how questions appear
when they are spoken (rather than automatically generated
or typed) and when each image and question in a visual
question is created by the same person. These differences
reflect a distinct use case scenario where a person interac-
tively explores and learns about his/her surrounding phys-
ical world. Our experiments show the value of VizWiz as
a difficult dataset for modern VQA algorithms, motivating
future directions for further algorithm improvements.

Answerability Visual Questions. The prevailing as-
sumption when collecting answers to visual questions is
that the questions are answerable from the given images [7,
8, 17, 18, 20, 24, 29, 33, 41, 40, 44, 46]. The differ-
ences when constructing VQA datasets thus often lies in
whether to collect answers from anonymous crowd work-
ers [7, 8, 17, 21, 24], automated methods [20, 29], or in-
house annotators [29, 40, 41]. Yet, in practice, blind people
cannot know whether their questions can be answered from
their images. A question may be unanswerable because an
image suffers from poor focus and lighting or is missing
the content of interest. In VizWiz, ~28% of visual ques-
tions are deemed unanswerable by crowd workers, despite
the availability of several automated systems designed to
assist blind photographers to improve the image focus [3],
lighting [9], or composition [19, 38, 45].

We propose the first VQA dataset which naturally pro-

motes the problem of predicting whether a visual question
is answerable. We construct our dataset by explicitly ask-
ing crowd workers whether a visual question is answer-
able when collecting answers to our visual questions. Our
work relates to recent “relevance” datasets which were ar-
tificially constructed to include irrelevant visual questions
by injecting questions that are unrelated to the contents of
high quality images [21, 28, 32, 37]. Unlike these “rele-
vance” datasets, our dataset also includes questions that are
unrelated because images are too poor in quality (e.g., blur,
over/under-saturation). Experiments demonstrate VizWiz is
a difficult dataset for the only freely-shared algorithm [28]
designed to predict whether a visual question is relevant,
and so motivates the design of improved algorithms.

3. VizWiz: Dataset Creation

We introduce a VQA dataset we call “VizWiz”, which
consists of visual questions asked by blind people who were
seeking answers to their daily visual questions [9, 11]. It
is built off of previous work [9] which accrued 72,205 vi-
sual questions over four years using the VizWiz application,
which is available for iPhone and Android mobile phone
platforms. A person asked a visual question by taking a pic-
ture and then recording a spoken question. The application
was released May 2011, and used by 11,045 users. 48,169
of the collected visual questions were asked by users who
agreed to have their visual questions anonymously shared.
These visual questions serve as the starting point for the de-
velopment of our dataset. We begin this section by compar-
ing the approach for asking visual questions in VizWiz with
approaches employed for many existing VQA datasets. We
then describe how we created the dataset.

3.1. Visual Question Collection Analysis

We summarize in Table 1 how the process of collect-
ing visual questions for VizWiz is unlike the processes em-
ployed for 14 existing VQA datasets. A clear distinction
is that VizWiz contains images from blind photographers.
The quality of such images offer challenges not typically
observed in existing datasets, such as significant amounts
of image blur, poor lighting, and poor framing of image
content. Another distinction is that questions are spoken.
Speaking to technology is increasingly becoming a stan-
dard interaction approach for people with technology (e.g.,
Apple’s Siri, Google Now, Amazon’s Alexa) and VizWiz
yields new challenges stemming from this question-asking
modality, such as more conversational language and audio
recording errors. A further distinction is VizWiz is the first
dataset where a person both takes the picture and then asks a
question about it. This reflects a novel use-case scenario in
which visual questions reflect people’s daily interests about
their physical surroundings. VizWiz is also unique because,
in contrast to all other VQA datasets, the people asking the
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Dataset Which Images? Who Asked? How Asked?
DAQUAR [29] NYU Depth V2 [35] In-house participants, Automatically ——
generated (templates)
VQA v1.0: Abstract [8] Abstract Scenes Crowd workers (AMT) Typed
VQA v1.0: Real [8] MSCOCO [26] Crowd workers (AMT) Typed
Visual Madlibs [44] MSCOCO [26] Automatically generated (templates) _
FM-IQA [17] MSCOCO [26] Crowd workers (Baidu) Typed
KB-VQA [41] MSCOCO [26] In-house participants Typed
COCO-QA [33] MSCOCO [26] Automatically generated (captions) _—
VQA v2.0: Real [18] MSCOCO [26] Crowd workers (AMT) Typed
Visual7W [46] MSCOCO [26] Crowd workers (AMT) Typed
CLEVR [20] Synthetic Shapes Automatically generated (templates)  —
SHAPES [7] Synthetic Shapes Automatically generated (templates) S
Visual Genome [24] MSCOCO [26] & YFCC100M [36] Crowd workers (AMT) Typed
FVQA [40] MSCOCO [26] & ImageNet [15] In-house participants Typed
TDIUC [21] MSCOCO [26] & YFCC100M [36] Crowd workers (AMT), In-house par- Typed
ticipants, Automatically generated
Ours - VizWiz Blind people use mobile phones to take a picture and ask question Spoken

Table 1. Comparison of visual questions from 14 existing VQA datasets and our new dataset called VizWiz.

questions could not “see” the images. Consequently, ques-
tions could be unrelated to the images for a variety of rea-
sons that are exemplified in Figure 1.

3.2. Anonymizing and Filtering Visual Questions

We faced many challenges with preparing the dataset for
public use because our visual questions were collected “in
the wild” from real users of a VQA system. The challenges
related to protecting the privacy and safety of the many indi-
viduals involved with the dataset. This is especially impor-
tant for visually impaired people, because they often make
the tradeoff to reveal personal information to a stranger in
exchange for assistance [5]; e.g., credit card numbers and
personal mail. This is also important for those reviewing
the dataset since visual questions can contain “adult-like”
content (e.g., nudity), and so potentially offensive content.
Our key steps to finalize our dataset for public use involved
anonymizing and filtering candidate visual questions.

Anonymization. Our aim was to eliminate clues that
could reveal who asked the visual question. Accordingly,
we removed the person’s voice from the question by em-
ploying crowd workers from Amazon Mechanical Turk to
transcribe the audio recorded questions. We applied a spell-
checker to the transcribed sentences to fix misspellings. We
also re-saved all images using lossless compression in order
to remove any possible meta-data attached to the original
image, such as the person’s location.

Filtering. Our aim also was to remove visual questions
that could make the producers (e.g., askers) or consumers
(e.g., research community) of the dataset vulnerable. Ac-
cordingly, we obtained from two committees that decide

whether proposed research is ethical — the Collaborative In-
stitutional Training Initiative board and Institutional Review
Board — approval to publicly release the filtered dataset.
We initiated this work by developing a taxonomy of vul-
nerabilities (see Supplementary Materials for details). We
identified the following categories that came from erring on
the safe side to protect all people involved with the dataset:

1. Personally-Identifying Information (PII); e.g., any part
of a person’s face, financial statements, prescriptions.

2. Location; e.g., addressed mail, business locations.
3. Indecent Content; e.g., nudity, profanity.

4. Suspicious Complex Scenes: the reviewer suspects PII
may be located in the scene but could not locate it.

5. Suspicious Low Quality Images: the reviewer suspects
image processing to enhance images could reveal PII.

We next performed two rounds of filtering. We first in-
structed AMT crowd workers to identify all images show-
ing PII, as reflected by “any part of a person’s face, anyone’s
full name, anyone’s address, a credit card or bank account
number, or anything else that you think would identify who
the person who took the photo is”. Then, two of the in-
house domain experts who established the vulnerability tax-
onomy jointly reviewed all remaining visual questions and
marked any instances for removal with one of the five vul-
nerability categories or “Other”. This phase also included
removing all instances with a missing question (i.e., 7,477
visual questions with less than two words in the question).

Table 2 shows the resulting number of visual questions
tagged for removal in each round of human review, includ-
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Filter # 0of VQs
Crowd Workers 4,626
In-House Experts 2,693
-PII 895

- Location 377

- Indecent Content 55

- Suspicious Complex Scene 725

- Suspicious Low Quality Image 578

- Other 63

Table 2. We report the number of visual questions filtered in our it-
erative review process by crowd workers and then in-house domain
experts (including with respect to each vulnerability category).

ing a breakdown by vulnerability issue. We attribute the
extra thousands of flagged visual questions from domain
experts to their better training on the potential vulnerabil-
ities. For example, location information, such as zip codes
and menus from local restaurants, when augmented with ad-
ditional information (e.g., local libraries have lists of blind
members in the community) could risk exposing a person’s
identity. Also, blurry and/or bright images, when post-
processed, could reveal PII. Additionally, people’s faces can
appear in reflections on monitor screens, window panes, etc.
We do not expect crowd workers to understand such nu-
ances without extensive instructions and training.

In total, ~31% of visual questions (i.e., 14,796) were fil-
tered from the original 48,169 candidate visual questions.
While our taxonomy of vulnerabilities helps guide what vi-
sual questions to filter from real-world VQA datasets, it also
identifies visual questions that would be good to generate
artificially so datasets could address all needs of blind peo-
ple without requiring them to release personal information.

3.3. Collecting Answers

We next collected answers for a final set of 31,173 vi-
sual questions. The original VizWiz application prioritized
providing a person near real-time access to answers and per-
mitted the person to receive answers from crowd workers,
1Q Engines, Facebook, Twitter, or email. Since our aim is
to enable the training and evaluation of algorithms, we col-
lected new answers to all visual questions for this purpose.

To collect answers, we modified the excellent protocol
used for creating VQA 1.0 [8]. As done before, we collected
10 answers per visual question from AMT crowd workers
located in the US by showing crowd workers a question
and associated image and instructing them to return “a brief
phrase and not a complete sentence”. We augmented this
user interface to state that “you will work with images taken
by blind people paired with questions they asked about the
images”. We also added instructions to answer ‘“Unsuit-
able Image” if “an image is too poor in quality to answer

the question (i.e., all white, all black, or too blurry)” or
“Unanswerable” if “the question cannot be answered from
the image”. While both additions to the annotation protocol
indicate a visual question is unanswerable, this annotation
approach enables more fine-grained understanding for why
a visual question is unanswerable. The final set of answers
should represent common sense from sighted people.

4. VizWiz: Dataset Analysis

Our aim in this section is to characterize the visual ques-
tions and answers in VizWiz. We analyze (1) What is the
diversity of natural language questions?, (2) What is the di-
versity of images?, (3) What is the diversity of answers?,
and (4) How often are visual questions unanswerable? A
valuable outcome of this analysis is it enriches our under-
standing of the interests of blind users in a real VQA set-up.

4.1. Analysis of Questions

We first examine the diversity of questions asked by vi-
sualizing the frequency that questions begin with different
words/phrases. Results are shown in a sunburst diagram
in Figure 2. While many existing VQA datasets include a
small set of common initial words (e.g., “What”, “When”,
“Why”, “Is”, “Do”"), we observe from the upper left quad-
rant of Figure 2 that VizWiz often begins with a rare first
word. In fact, the percentage of questions starting with a
first word that occurs for less than 5% of all questions is
27.88% for VizWiz versus 13.4% for VQA 2.0 [8] (based
on random subset of 40,000 VQs). We attribute this finding
partially to the use of more conversational language when
speaking a question; e.g., “Hi”, “Okay”, and “Please”. We
also attribute this finding to the recording of the question
starting after the person has begun speaking the question;
e.g., “Sell by or use by date of this carton of milk” or “oven
set to thanks?”. Despite such questions being incomplete,
it is still reasonable the intended question can be inferred
and so answered; e.g., “What is the oven set to?”. We also
observe in Figure 2 that most questions begin with “What”.
This suggests many visual questions do a poor job in nar-
rowing the scope of plausible answers. In contrast, initial
wordings such as “How many...” and “Is...” often narrow
plausible answers to numbers and “yes/no” respectively.

We also analyze question diversity by computing statis-
tics summarizing the number of words in each question.
The median and mean question lengths are five and 6.68
words respectively and 25th and 75th percentile lengths
are four and seven words respectively. This resembles the
statistics found in the existing artificially constructed VQA
datasets, nicely summarized in [14] and [21]. We also ob-
serve three words regularly suffice for a question: “What
is this?”. As observed in Figure 2, this short object recog-
nition question is the most common question. Longer and
multi-sentence questions also occasionally arise, typically
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Figure 2. Distribution of the first six words for all questions in
VizWiz. The innermost ring represents the first word and each
subsequent ring represents a subsequent word. The arc size is pro-
portional to the number of questions with that word/phrase.

because people offer auxiliary information to disambiguate
the desired response; e.g., “Which one of these two bags
would be appropriate for a gift? The small one or the tall
one? Thank you.” Longer questions also can arise when the
audio recording device captures too much content or back-
ground audio content; e.g., “I want to know what this is.
I’m have trouble stopping the recordings.”

4.2. Analysis of Images

We next investigate the diversity of images. We first ad-
dress a concern that our dataset has high quality images
showing a single, iconic object, which is a possibility since
our filtering process erred on removing “suspicious” scene-
based and blurry images and the remaining visual questions
contain many object recognition questions. Following prior
work [15], we computed the average image from all im-
ages in VizWiz. Figure 3 shows the result. As desired
from a diverse dataset, the resulting gray image confirms
our dataset does not conform to a particular structure across
all the images. We also tallied how many images had at least
two crowd workers give the answer “unsuitable image”. We
found 28% of images were labelled as such.

4.3. Analysis of Answers

We next analyze the diversity of the answers. We first vi-
sualize the popularity of different answers in Figure 4 using
a word map (cropped to fit in the paper) which excludes the

Figure 3. The average image created using all images in VizWiz.

== ) e
Figure 4. Popularity of answers in VizWiz, with the text size pro-
portional to the number of times the answer occurs.

answers “Unanswerable” and “Unsuitable Image”. This vi-
sually highlights the fact that there are a large number of
unique answers; i.e., ~58,789. While in absolute terms
this number is an order of magnitude smaller than exist-
ing larger-scale datasets such as VQA 2.0 [8], we find the
answer overlap with existing datasets can be low. For ex-
ample, only 824 out of the top 3,000 answers in VizWiz are
included in the top 3,000 answers in VQA 2.0 [8]. This ob-
servation is used in the next section to explain why existing
prediction systems perform poorly on the VizWiz dataset.

We also tally how often a visual question is unanswer-
able, as indicated by at least half the crowdsourced answers
for a visual question stating the answer is “unanswerable”
or “unsuitable image”. We find 28.63% of visual questions
are not answerable. This finding validates the practical im-
portance of the recent efforts [21, 28, 32, 37] to augment
VQA datasets with irrelevant visual questions. Moreover,
our dataset offers more fine-grained annotations that enable
research to automatically identify whether the answerability
issue is due to inadequate image quality (e.g., “Unsuitable
Image”) or image content (i.e., “Unanswerable”).

We also analyze answer diversity by computing statistics
for the number of words in each answer. The median and
mean answer lengths are 1.0 and 1.66 words respectively.
These statistics resemble what is observed for numerous ar-
tificially constructed VQA datasets, as summarized in [14]
and [21]. We also compute the percentage of answers with
different answer lengths: 67.32% have one word, 20.74%
have two words, 8.24% have three words, 3.52% have four
words, and the remaining 0.01% have more than four words.
Interestingly, our answers are longer on average than ob-
served by Antol et al. [8], who used a similar crowdsourc-
ing system. We attribute this discrepancy in part to many
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VizWiz visual questions asking to read multi-word text.

We finally compute the level of human agreement on an-
swers, using exact string matching. Despite that humans
provided open-ended text as answers, we observe agree-
ment from independent people on the answer for most vi-
sual questions (i.e., 97.7%). More than three people agreed
on the most popular answer for 72.83% of visual questions,
exactly three people agreed for 15.5% of visual questions,
and exactly two people agreed for 9.67% of visual ques-
tions. This agreement level is the lower bound since less
stringent agreement measures (e.g., that resolve synonyms)
may lead to greater agreement.

5. VizWiz Benchmarking

We now investigate the difficulty of the VizWiz dataset
for existing algorithms. We divide the final dataset into
training, validation, and test sets of 20,000, 3,173, and 8,000
visual questions, respectively (i.e, approximately a 65/10/25
split). All results below are reported for the test dataset.

5.1. Visual Question Answering

We assess the difficulty of the VizWiz dataset for modern
VQA algorithms and evaluate how well models trained on
VizWiz generalize (more details in Supp. Materials).

Baselines. We benchmark nine methods. Included are
three top-performing VQA methods [6, 18, 23], which we
refer to as Q+1I [23], Q+I+A[18], and Q+I+BUA [6]. These
baselines are trained on the VQA V2.0 dataset [18] to pre-
dict the 3,000 most frequent answers in the training dataset.
[18] relies on image and question information alone, [23]
adds an attention mechanism to specify image regions to
focus on, and [6] combines bottom-up and top-down at-
tention mechanisms to focus on objects and other salient
image regions. We introduce three fine-tuned classifiers
built on the three networks, which we refer to as FT [18],
FT [23], and FT [6]. We also train the three networks from
scratch using the VizWiz data alone, and we refer to these
as VizWiz [18], VizWiz [23], and VizWiz [6].

Evaluation Metrics. We evaluate with respect to four
metrics: Accuracy [8], CIDEr [39], BLEU4 [30], and ME-
TEOR [16]. Accuracy [8] was introduced as a good metric
when most answers are one word. Since nearly half the
answers in VizWiz exceed one word, we also use image de-
scription metrics provided by [13] which are designed for
evaluating longer phrases and/or sentences.

Results. We first analyze how existing prediction mod-
els [6, 18, 23] perform on the VizWiz test set. As ob-
served in the first three rows of Table 3, these models per-
form poorly, as indicated by low values for all metrics; e.g.,
~0.14 accuracy for all algorithms. We attribute the poor
generalization of these algorithms largely to their inability

to predict answers observed in the VizWiz dataset; i.e., only
824 out of the top 3,000 answers in VizWiz are included in
the dataset (i.e., VQA 2.0 [18]) used to train the models.

We observe in Table 3 that fine-tuning (i.e., rows 4-6)
and training from scratch (i.e., rows 7-9) yield significant
performance improvements over relying on the three pre-
diction models [6, 18, 23] as is. We find little performance
difference between fine-tuning and training from scratch for
the three models. While the number of training examples in
VizWiz is relatively small, we hypothesize the size is suffi-
cient for teaching the models to retain knowledge about an-
swer categories that are applicable in this setting. Despite
the improvements, further work is still needed to achieve
human performance (i.e., 0.75 accuracy)'.

We next analyze what predictive cues may lead to algo-
rithm success/failure. We observe models that add the at-
tention mechanism [6, 23] consistently outperform relying
on image and question information alone [18]. Still, the
improvements are relatively small compared to improve-
ments typically observed on VQA datasets. We hypothe-
size this improvement is small in part because many images
in VizWiz include few objects and so do not need to attend
to specific image regions. We also suspect attention mod-
els perform poorly on images coming from blind photogra-
phers since such models were not trained on such images.

We further enrich our analysis by evaluating the nine
algorithms for visual questions that lead to different an-
swer types (their frequencies in VizWiz are shown in paren-
theses): “yes/no” (4.80%), ‘“number” (1.69%), “other”
(58.91%), and “unanswerable” (34.6%). Results are shown
in Table 4. Overall, we observe performance gains by
fine-tuning algorithms (rows 4—6) and training from scratch
(rows 7-9), with the greatest gains for “unanswerable” vi-

IPerformance is measured by partitioning the dataset into 10 sets of one
answer per visual question and then evaluating one answer set against the
remaining nine answer sets for all 10 partitions using the accuracy metric.

Method Acc CIDEr BLEU METEOR

Q+I[18] 0.137 0.224  0.000 0.078
Q+I+A [23] 0.145 0.237  0.000 0.082
Q+I+BUA [6] 0.134 0.226 0.000 0.077

FT [18] 0466 0.675 0314 0.297
FT [23] 0469 0.691 0351 0.299
FT [6] 0475 0713 0359  0.309

VizWiz [18] 0465 0.654 0353 0.298
VizWiz [23] 0469 0.661 0356 0.302
VizWiz [6] 0469 0.675 0.396 0.306

Table 3. Performance of VQA methods on the VizWiz test data
with respect to four metrics. Results are shown for three variants
of three methods [6, 18, 23]: use models as is, fine-tuned (FT), and
trained on only VizWiz data (VizWiz). The methods use different
combinations of image (I), question (Q), and attention (A) models.
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Yes/No Unans Other

Q+I[18] 0.598 0.045 0.070  0.142
Q+I+A [23] 0.605 0.068 0.071  0.155

Number

Q+I+BUA [6] 0.582 0.071 0.060 0.143
FT [18] 0.675 0.220 0.781  0.275
FT [23] 0.681 0.213 0.770  0.287
FT [6] 0.669 0.220 0.776  0.294

VizWiz [18] 0.597 0.262 0.805 0.264
VizWiz [23] 0.608 0.218 0.802 0.274
VizWiz [6] 0.596 0.210 0.805 0.273

Table 4. Accuracy of nine VQA algorithms for visual questions
that lead to different answer types.

sual questions and smallest gains for “number” and “other”
visual questions. Exemplar failures include when asking
for text to be read (e.g., captchas, cooking directions) and
things to be described (e.g., clothes).

Finally, we evaluate how well algorithms trained on
VizWiz predict answers for the VQA 2.0 test dataset [18].
The six models that are fine-tuned and trained from scratch
for the three models [6, 18, 23] do not generalize well; i.e.,
accuracy scores range from 0.218 to 0.318. This result sug-
gests that VizWiz provides a domain shift to a different, dif-
ficult VQA environment compared to existing datasets.

5.2. Visual Question Answerability

We next turn to the question of how accurately an algo-
rithm can classify a visual question as answerable.

Baselines. We benchmark eight methods. We use the
only publicly-available method for predicting when a ques-
tion is not relevant for an image [28]. This method uses
NeuralTalk2 [22] pre-trained on the MSCOCO captions
dataset [26] to generate a caption for each image. The
algorithm then measures the similarity between the pro-
posed caption and the question to predict a relevance score.
The model is trained on the QRPE dataset [28]. We use
the model as is (i.e., Q+C [28]), fine-tuned to the VizWiz
data (i.e., F'T [28]), and trained from scratch on the VizWiz
data only (i.e., VizWiz [28]). We also employ our top-
performing VQA algorithm by using its output probability
that the predicted answer is “unanswerable” (VQA [18]). We
enrich our analysis by further investigating the influence of
different features on the predictions: question alone (i.e., Q),
caption alone (i.e., C), image alone using ResNet-152 CNN
features (i.e., I), and the question with image (i.e., Q+I).

Evaluation Metrics. We report the performance of each
method to predict if a visual question is not answerable us-
ing a precision-recall curve. We also report the average pre-
cision (AP); i.e., area under a precision-recall curve.

Results. Figure 5 shows the precision-recall curves. As
observed, all methods outperform the status quo approach

— Q+C[28] (30.6)

FT [28] (56.1)
09 VizWiz [28] (60.5)
VQA (56.0)
0.8 — Q (48.9)
(o] (46.4)

0.7 (64.0)

(71.7)

0.6

Precision

0.3
0.2
0.1

0
0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1
Recall
Figure 5. Precision-recall curves and average precision scores for
the answerability models tested on the VizWiz test dataset.

by 25% to 41%; i.e., AP score of 30.6 for [28] versus 71.7
for Q+I. We hypothesize this large discrepancy arises be-
cause the irrelevance between a question and image arises
for more reasons in VizWiz than for QRPE; e.g., low quality
images and fingers blocking the camera view. When com-
paring the predictive features, we find the image provides
the greatest predictive power (i.e., AP = 64) and is solidly
improved by adding the question information (i.e., AP =
71.7). Again, we attribute this finding to low quality images
often leading visual questions to be unanswerable.

6. Conclusions

We introduced VizWiz, a VQA dataset which orig-
inates from a natural use case where blind people took
images and then asked questions about them. Our analysis
demonstrates this dataset is difficult for modern algorithms.
Improving algorithms on VizWiz can simultaneously edu-
cate people about the technological needs of blind people
while providing an exciting new opportunity for researchers
to develop assistive technologies that eliminate accessibility
barriers for blind people. We share the dataset and code to
facilitate future work (http://vizwiz.org/data/).
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