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ABSTRACT

We study the problem of constructing confidence intervals (CIs) for simulation outputs in the presence

of input uncertainty, where the constructed CIs capture both the statistical noises from the simulation

replications and the input data. We present a simple technique based on sectioning input data that provides

exact asymptotic confidence guarantees. Unlike some existing approaches, our technique bypasses the need

to consistently estimate variances that could be computationally demanding. It can be flexibly applied to

dependent data and to both parametric and nonparametric input models.

1 INTRODUCTION

Stochastic simulation consists of repeated generation of random variates from input models, fed through the

system logic, to estimate system outputs. When the input models are not fully known but estimated from

relevant historical data (the “input data”), valid output analysis needs to account for the input statistical

noise, in addition to the Monte Carlo noise from the random variate generation. This issue, sometimes

known as the input uncertainty, has been actively studied in recent years (see, e.g., the surveys Barton et al.

2002; Henderson 2003; Chick 2006; Barton 2012; Song et al. 2014; Lam 2016).

This paper focuses on a standard output-analytic task of constructing confidence intervals (CIs) for

target performance measures under input uncertainty. When only simulation noise is considered, these CIs

can be constructed by conventional techniques based on, e.g., asymptotic normality (Asmussen and Glynn

2007 Chapter 3). When input noise is substantial, this conventional construction will under-cover the true

measure, and the CIs need correspondingly inflated to retain enough coverage. In the literature, several

approaches have been studied to approximate this inflation. First is to utilize the delta method, which

requires estimating the sensitivities of the performance measure with respect to the input parameters and

combining them with the parameter sampling variance (e.g., Cheng and Holland 2004; Lin et al. 2015).

Second is to bootstrap the input data and use them to drive simulation runs to obtain bootstrapped quantiles

(Barton and Schruben 1993; Barton and Schruben 2001) or variance (Cheng and Holland 1997). The

third approach follows a Bayesian perspective that samples from the posterior distributions of the input

parameters (e.g., Glynn 1986; Chick 2001; Zouaoui and Wilson 2004; Xie et al. 2014; Biller and Corlu

2011). These approaches are closely related and some of them can be integrated with metamodeling to

speed up computation (Barton et al. 2013).

While these methods can be effective in some situations, they face computational challenges in terms of

the required simulation efforts, unless more restrictive assumptions are imposed. The root of these challenges

lies in the need to consistently estimate key quantities in the CI, such as the parameter sensitivities in the delta

method, and the variance or quantile in the bootstrap. This estimation typically requires heavy simulation

effort to “outwash” the Monte Carlo noise from the input noise. Moreover, along this effort comes the
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need to devise simulation allocation rules or procedural tuning, e.g., the distribution of nested simulation

efforts to the resampling of the input data and the simulation replications per resample in the bootstrap,

and the selection of the finite-difference perturbation parameter in the delta method. These procedural

configurations can determine the performance of the CIs in a delicate fashion and are not always easy to

optimize. Approaches that avoid these challenges, on the other hand, are based on additional, parametric

assumptions. These include, e.g., Gaussian assumptions on the response surface in metamodel-assisted

bootstrap and on the simulation outputs in Bayesian approaches.

Motivated by these challenges, this paper proposes a simple alternative to construct CIs under minimal

simulation requirements and structural assumptions. Our method is based on sectioning the input data,

where each input section drives a batch of simulation runs which are then integrated via a t-statistic to

construct the CI. Our distinction is that, since using the involved t-statistic does not hinge on a consistent

estimation of variance, we no longer need an overwhelming simulation effort to deconvolute the Monte

Carlo noise from the input noise. As long as the output estimate in each section is approximately normal

(with a variance including both sources of noise which could be unknown), we can construct a pivotal

t-statistic that leads to a valid CI. This applies to both parametric and nonparametric input regimes, and to

dependent data under suitable mixing conditions.

Sectioning and related techniques (on output samples) have been widely used in simulation output

analysis, such as in steady-state estimation (e.g., Glynn and Iglehart 1990) and estimating nonlinear

performance measures, e.g., quantiles, conditional value-at-risk (Asmussen and Glynn 2007; Muñoz and

Glynn 1997; Nakayama 2014). In the input uncertainty literature, these are related to the so-called direct

resampling in Barton and Schruben (2001) that divides input data and uses the quantiles of the resulting

simulation runs to construct CIs. However, this latter procedure is heuristic and serves to motivate the

bootstrap schemes suggested by the authors.

In the remainder of this paper, we will give an overview of our approach (Section 2), present our main

assumptions to justify a joint central limit theorem that underpins our t-asymptotic (Section 3), and discuss

our main performance guarantees (Section 4). Due to space limit, we only give brief discussion on some

of our results, and leave further details and other generalizations, including a variant of our approach using

“sectioned jackknife”, to a full journal paper.

2 OVERVIEW OF OUR APPROACH

Consider estimating a simulatable performance measure driven by s input models. Notationally, we denote

this performance measure as ψ = ψ(ννν) where ννν = (ν1, . . . ,νs), with ν j each representing the “parameter”

of the j-th input model. Given any ν̃νν , ψ(ν̃νν) can be approximated through simulation runs. As a generic

example, ν1 and ν2 can denote the rates of exponential interarrival and service time distributions respectively,

and ψ(ν1,ν2) the expected average queue length over some time horizon of a queue that can be simulated.

In this example, ννν denote real-valued parameters. However, our framework is equally applicable in the

nonparametric regime, in which case ννν can denote the collection of the whole probability distributions for

the input models, e.g., the interarrival and service time distributions, without restricting to any parametric

family.

We consider the situations where ννν needs to be estimated from input data, say the estimate is ν̂νν .

Assuming ψ is sufficiently smooth, the delta method implies that

ψ(ν̂νν)−ψ(ννν)≈ N

(
0,

σ2

n

)
(1)

where n is some scaling of the overall sample size (the reason for using a “scaling” is that there can be

different sample sizes for different input models). The quantity σ2/n is the variance contributed from all

the input noises.

On top of these input noises, the output bears the Monte Carlo noise incurred in simulating ψ . We denote

ψ̂(ν̂νν) as a simulation-based estimate of ψ(ν̂νν) using input models calibrated with ν̂νν . We focus on the typical
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setting where the simulation replications are conditionally unbiased given ννν , with ψ̂(ν̂νν) = (1/r)∑
r
l=1 ψ̂l(ν̂νν)

and ψ̂l(ν̂νν), l = 1, . . . ,r being r i.i.d. copies of simulation replications. Under a central limit theorem (CLT),

we have

ψ̂(ν̂νν)−ψ(ν̂νν)≈ N

(
0,

τ2

r

)
(2)

where τ2/r is the variance from the simulation noise, using the implicit property that ν̂νν well approximates

ννν in some probabilistic sense.

We then combine (1) and (2) to obtain

ψ̂(ν̂νν)−ψ(ννν)≈ N

(
0,

σ2

n
+

τ2

r

)
(3)

where the variance in the normal approximation is the sum of variances contributed from the input noise

and the simulation noise.

Existing approaches in constructing CIs rely on estimating σ2/n, either by bootstrapping or by direct

estimation (They also estimate τ2/r, which is more straightforward). When using the bootstrap, consistent

estimation of σ2/n typically requires simulation load that is of higher order than n (this can be seen by

tracing the mean square error of the bootstrapped variance using, e.g., the formula in Sun et al. 2011).

Direct estimation of σ2 via the delta method, on the other hand, would require estimating sensitivity

coefficients whose involved effort grows with the number of parameters (e.g., Cheng and Holland 1997),

unless one uses conservative approximations (e.g., Cheng and Holland 2004). The challenge becomes more

substantial in the nonparametric case.

The key of our idea is to bypass the consistent estimation of σ2/n by sectioning the input data. Namely,

we divide the input data into k sections (of equal length). Using each section, we estimate ν̂νν and run

independent simulation replications to obtain an estimate ψ̂(ν̂νν), say they are Y1, . . . ,Yk. We then construct

a pivotal statistic
Ȳ −ψ(ννν)

S/
√

k
(4)

where Ȳ and S2 are the sample mean and variance of Y1, . . . ,Yk. If each section contains enough data and

drives enough simulation replications, the Yi’s are approximately normal according to (3) and moreover

are i.i.d. (exactly if the data are i.i.d., and approximately if the data are serially dependent). Thus, by

using a standard relation of normal variables with t-statistics, (4) is distributed approximately as tk−1, the

t-distribution with degree of freedom k−1. This implies that
[
Ȳ − tk−1,1−α/2

S√
k
,Ȳ + tk−1,1−α/2

S√
k

]

is a (1−α)-level CI, where tk−1,1−α/2 is the (1−α/2)-quantile of tk−1. Constructing this CI does not

require any knowledge about variances σ2/n and τ2/r, because the term σ2/n+ τ2/r is “canceled out”

when forming the pivotal statistic (4).

Regarding the assumptions needed in the above derivation, we essentially only need the normal

approximation (3), a property satisfied for a wide range of settings when n and r are sufficiently large,

including cases where the input data are dependent under suitable mixing conditions. We note that

approximation (3) has been used in some previous work (e.g., Cheng and Holland 1997). Since it is the

basis for our sectioning method, we first study in detail the conditions that guarantee such an approximation.

3 CENTRAL LIMIT THEOREM FOR JOINT INPUT AND SIMULATION NOISES

This section presents our assumptions and justifies in more details the central limit theorem (3). We divide

our discussion into parametric and nonparametric regimes, which are conceptually similar but involve

different sets of assumptions/notations.
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We recall that there are s input models. For each input model j, we have an available data set. Our

approach involves dividing each of these data sets into k sections. In other words, letting {X
j

l }l=1,...,kn j

(where X
j

l ∈ X j for some space X j) be the full data set for input model j, we batch the data into

{X
j

l }l=(i−1)n j+1,...,in j , i = 1, . . . ,k each of size n j. We call the collection of data {X
j

l }l=(i−1)n j+1,...,in j , j =
1, . . . ,s the i-th section. Throughout our exposition, we ignore the issue of divisibility and assume for

convenience that the data size for each input model is divisible by k.

3.1 Conditions in the Parametric Regime

We first discuss the parametric case. Assume a parametric family for each input model, with a parameter

vector θ j ∈ R
d j

, j = 1, . . . ,s. Denote d = ∑
s
j=1 d j as the dimension of the concatenated parameter vector.

Consider a simulatable performance measure ψ = ψ(θθθ) where θθθ = (θ 1, . . . ,θ s). We make the following

assumption regarding the parameter estimators:

Assumption 1 (Normality of parameter estimators) We can construct an estimator θ̂θθ i for θθθ using section

i. There is a scaling parameter m for the section sample size such that as m goes to ∞, we have

(
√

m(θ̂θθ i −θθθ))i=1,...,k ⇒ (Wi)i=1,...,k

where Wi
i.i.d.∼ N(0,Σ) for some covariance matrix Σ ∈ R

d .

To get a sense of the meaning of m and the quantity Σ, consider the simple example where each

independent input model j is estimated from i.i.d. data of size kn j = kmp j, so that each section consists

of n j = mp j observations. Suppose each parameter vector θ j ∈ R
d j

is estimated with θ̂
j

i such that√
n j(θ̂ j

i −θ j)⇒ N(0,Σ j). This holds if we use, e.g., maximum likelihood estimator (MLE) under standard

conditions, in which case Σ j is the inverse of the Fisher information matrix (see, e.g., Serfling 2009 Section

4.2.2). In this case, if we fix p j and let m → ∞, Assumption 1 holds with Σ = diag((1/p j)Σ j, j = 1, . . . ,s)

where diag(·) denotes the block diagonal matrix with entries (·). In other words, we have θ̂θθ i
approx.∼

N(θθθ ,diag((1/n j)Σ j, j = 1, . . . ,k)) as n j grow large for all j.

Assumption 1 holds more generally for data exhibiting cross-sectional dependence (where one can

simply think of the collection of input models as a single giant input model), serially dependent data under

stationarity and suitable mixing conditions, and combinations of these aforementioned situations.

Next we make an assumption on the function ψ(·):
Assumption 2 (Parametric smoothness of ψ) The function ψ(·) has a non-zero differential at θθθ .

The differential defined for ψ in Assumption 2 means the function

∇ψ(θθθ)′t, t ∈ R
d

where ∇ψ is the gradient of ψ , given that the partial derivatives of ψ all exist. As a direct consequence

of Serfling (2009) Section 1.12.2, the following is a handy sufficient condition for Assumption 2:

Lemma 3 Suppose all the partial derivatives of ψ exist in a neighborhood of θθθ and are continuous at θθθ .

Moreover, ∇ψ(θθθ) is not a zero vector. Then Assumption 2 holds.

Roughly speaking, the existence and continuity of partial derivatives in Lemma 3 hold when the input

densities are differentiable with respect to θθθ , and that an exchange of derivative and expectation (appearing

typically in defining ψ) is valid; general conditions of the latter can be found in, e.g., L’Ecuyer (1995).

Assumptions 1 and 2 together imply asymptotic normality via the delta method (see, e.g., Serfling

2009 Section 3.3 Theorem A):

Lemma 4 Under Assumptions 1 and 2, we have

(
√

m(ψ(θ̂θθ i)−ψ(θθθ)))i=1,...,k ⇒ (Zi)i=1,...,k
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where Zi
i.i.d.∼ N(0,σ2) and σ2 = ∇ψ(θθθ)′Σ∇ψ(θθθ), with ∇ψ being the gradient of ψ that exists under

Assumption 2.

Next we state some assumptions about the simulation noise. Let ψ̂l(βββ ) be an unbiased simulation

run (l is used as an index when running multiple replications) so that E[ψ̂l(βββ )|βββ ] = ψ(βββ ). Denote

τ2(βββ ) =Var(ψ̂l(βββ )|βββ ) as the simulation variance for each replication conditional on the input parameter.

Similarly, denote κ3(βββ ) = E[|ψ̂l(βββ )−ψ(βββ )|3|βββ ] as the conditional third-order absolute central moment.

Let Nη(θθθ) = {βββ ∈ R
d : ‖βββ −θθθ‖2 < η} be an η-neighborhood of θθθ .

Assumption 5 (Parametric simulation noise) We have

1. τ2(·) is continuous at θθθ with 0 < τ2(θθθ)< ∞.

2. κ3(βββ ) is uniformly bounded for any βββ ∈ Nη(θθθ) for some η > 0.

Sufficient conditions guaranteeing Assumption 5 are similar to the ones in Lemma 3, but needing a

higher order moment condition on the performance function that guarantees the existence of τ2 and κ3.

3.2 Conditions in the Nonparametric Regime

We now turn to the nonparametric regime. Instead of using/assuming parametric families for the input

distributions, we utilize the empirical distributions of the data as the input estimates. In this case, consider

a performance measure ψ = ψ(F) where F = (F1, . . . ,Fs) denotes the vector of distribution functions, each

for one of the s independent input models.

With collected data divided into k sections each of size n j for model j (like before), we construct

F̂i = (F̂1
i , . . . , F̂

s
i ), the vector of empirical distributions obtained from section i, where

F̂
j

i (·) =
1

n j

in j

∑
l=(i−1)n j+1

δ
X

j
l

(·)

and δ
X

j
l

(·) denotes the delta measure at X
j

l .

For any linear map L = (L1, . . . ,Ls) where L j : X j → R, and any G = (G1, . . . ,Gs) where each

G j : X j → R is a probability distribution, we define

〈L ,G〉=
s

∑
j=1

∫
L jdG j.

Hence we have

〈L , F̂i〉=
s

∑
j=1

1

n j

in j

∑
l=(i−1)n j+1

L j(X j

l ).

In contrast to the parametric case, here in the nonparametric setting we depict local assumptions (i.e.,

differentiability) in a probabilistic way. In other words, instead of separating the input estimation errors

(similar to Assumption 1) and the smoothness property of ψ (similar to Assumption 2), we impose an

assumption that enforces ψ applied on F̂i is linearizable with an error that is statistically small. This is

described as follows:

Assumption 6 (Nonparametric input noise) Assume ψ is differentiable in the sense that

ψ(F̂i) = ψ(F)+ 〈Dψ, F̂i −F〉+ξi

where Dψ is a linear map that could depend on F̂i and F, such that there exists a scaling parameter m with

the property that as m → ∞,
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1.

(
√

m〈Dψ, F̂i −F〉)i=1,...,k ⇒ (Zi)i=1,...,k

where Zi
i.i.d.∼ N(0,σ2) for some σ2 < ∞.

2. √
mξi

p→ 0 for all i = 1, . . . ,k.

The linear map Dψ in Assumption 6 can be viewed as a derivative with respect to the collection of

distribution functions (hence the notation). The reason why we use such a probabilistic assumption is to

avoid the introduction of a metric in defining the error in using F̂i to approximate F, which can lead to the

need of more regularity condition on ψ . Note that, in using the latter approach, the error term ξi depends

on both the chosen metric and the continuity of ψ with respect to this metric. When a weak norm is used

then F̂i → F (e.g., the supremum norm, in which case F̂i → F as a consequence of the Glivenko-Cantelli

lemma), but more conditions are needed for the function ψ to be continuous (e.g., if ψ = E[h(X)], then

h needs to have bounded variation). The imposition of a probabilistic statement like Assumption 6 avoids

this dilemma, and in many situations a direct verification of this assumption can be done.

For example, consider a finite-horizon performance measure ψ(F) = EF[h(X
j(t), j = 1, . . . ,s, t =

1, . . . ,T j)] where h is some performance function, T j is the time horizon for each input sequence, X j(t)
are i.i.d. replications generated from independent input model j and EF[·] denotes the expectation under

the collection of input distributions F. Suppose that

E[h(X j(l j
t ), j = 1, . . . ,s, t = 1, . . . ,T j)2]< ∞ (5)

where l
j
t ≥ 1 can be any integers. Suppose also that the data size of each section for model j satisfies

n j = mp j for a scaling parameter m and p j > 0 are fixed constants. Then one can verify directly that

Assumption 6 holds.

Note that the parametric conditions in Section 3.1 can be translated into the nonparametric conditions in

Assumption 6 under appropriate modifications. For instance, if ψ(θθθ) satisfies Assumption 2 and θθθ = θθθ(F)
is differentiable with respect to F in a similar sense as Assumption 6, then ψ also satisfies Assumption 6

when viewed as a function of F.

Next we state some assumptions about the simulation noise. Let ψ̂l(·) be a conditionally unbiased

simulation replication for ψ(·), such that E[ψ̂l(G)|G] = ψ(G). Denote τ2(G) = Var(ψ̂l(G)|G) as the

conditional variance, and for convenience we denote τ2 = τ2(F). Similarly, denote κ3(G) = E[|ψ̂l(G)−
ψ(G)|3|G] as the conditional third-order absolute central moment. We make the following assumption on

the simulation noise:

Assumption 7 (Nonparametric simulation noise) We have

1. τ2(F̂i)
p→ τ2 with 0 < τ2 < ∞.

2. P(κ3(F̂i)≤ M)→ 1 for some fixed M > 0.

Assumption 7 holds for, e.g., the finite-horizon performance measure discussed above under a higher

order moment condition than in (5).

3.3 A Joint Central Limit Theorem

The following proposition describes a CLT held jointly between the input noise and the simulation noise:

Proposition 8 Consider a collection of estimators ν̂νν i, i = 1, . . . ,k for ννν that satisfies

(
√

m(γ(ν̂νν i)− γ(ννν)))i=1,...,k ⇒ (Zi)i=1,...,k
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where Zi
i.i.d.∼ N(0,σ2) for some function γ and σ2 > 0. Consider another (possibly dependent) collection

of estimators ν̂νν ′
u, u = 1, . . . ,v. Let

ψ̂(ν̂νν ′
u) =

1

ru

ru

∑
l=1

ψ̂l(ν̂νν
′
u)

where ru = mqu for some fixed qu > 0, ψ̂l(ν̂νν
′
u) are i.i.d. unbiased simulation runs for ψ(ν̂νν ′

u) given ν̂νν ′
u,

and are conditionally independent across u = 1, . . . ,v. Denote τ2(βββ ) = Var(ψ̂l(βββ )|βββ ) as the conditional

simulation variance for each replication, and for convenience denote τ2 = τ2(ννν). Similarly, denote κ3(βββ ) =

E[|ψ̂l(βββ )−ψ(βββ )|3|βββ ] as the conditional third-order absolute central moment. Assume that τ2(ν̂νν ′
u)

p→ τ2

and P(κ3(ν̂νν
′
u)≤ M)→ 1 for u = 1, . . . ,v, as m → ∞.

Then,

(
(
√

m(γ(ν̂νν i)− γ(ννν))i=1,...,k,(
√

m(ψ̂(ν̂νν ′
u)−ψ(ν̂νν ′

u)))u=1,...,v

)
⇒ ((Zi)i=1,...,k,(Wu)u=1,...,v) (6)

where Zi
i.i.d.∼ N(0,σ2) and Wu

i.i.d.∼ N(0,τ2/qu) are independent.

The proposition applies whether ννν is a real-valued parameter vector θθθ (parametric case) or the collection

of probability distributions F (nonparametric case), or a mix of both. To apply Proposition 8 to justify our

sectioning scheme, we will see that the function γ(·) can be taken either as the performance function ψ(·) or its

linearization. The assumption on the simulation replications, namely τ2(ν̂νν ′
u)

p→ τ2 and P(κ3(ν̂νν
′
u)≤ M)→ 1,

can be satisfied by using a law of large numbers under the presented assumptions in the parametric case

and Assumption 7 directly in the nonparametric case.

Note that similar results hold if ru is not of the same order as m. Suppose ru = ω(m), then, under

(otherwise) the same assumptions as Proposition 8, the limit in (6) can be replaced by ((Zi)i=1,...,k,(0)u=1,...,v).
On the other hand, if ru = mpqu where p = o(m), then (6) is replaced by

(
(
√

mp(γ(ν̂νν i)− γ(ννν))i=1,...,k,(
√

mp(ψ̂(ν̂νν ′
u)−ψ(ν̂νν ′

u)))u=1,...,v

)
⇒ ((0)i=1,...,k,(Wu)u=1,...,v).

The sectioning scheme we depict next works for these imbalanced cases with little modification.

4 SECTONING INPUT DATA FOR CONFIDENCE INTERVAL ESTIMATION

This section presents our sectioning approach to construct CIs. Section 4.1 states our procedure and shows

the asymptotic confidence guarantee. Section 4.2 discusses other performance aspects of our proposed

procedure.

4.1 Procedure and Main Guarantee

We revisit our procedure discussed in Section 2 using our introduced notations. To estimate ψ = ψ(ννν)
(where ννν can be θθθ or F), we divide the data set of each input model into k sections of equal length. For

section i that consists of {X
j

l }l=(i−1)n j+1,...,in j , j = 1, . . . ,s, we estimate ν̂νν i (can be θ̂θθ i or F̂i), and then

Yi = ψ̂(ν̂νν i) where

ψ̂(ν̂νν i) =
1

r

r

∑
l=1

ψ̂l(ν̂νν i).

Here ψ̂l(ν̂νν i) are conditionally unbiased i.i.d. simulation replications for ψ(ν̂νν i), and independent across i.

Let Ȳ = (1/k)∑
k
i=1Yi and S2 = (1/(k−1))∑

s
i=1(Yi−Ȳ )2 be the sample mean and variance of the k sectioned

estimates. We propose to use the CI

Isec =

[
Ȳ − tk−1,1−α/2

S√
k
,Ȳ + tk−1,1−α/2

S√
k

]
(7)
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where tk−1,1−α/2 is the (1−α/2)-quantile of the tk−1 distribution. This construction holds as long as k ≥ 2.

We have the following guarantees for (7). For this, we introduce the scaling r = mq, where q is fixed

while m goes to ∞. We have:

Theorem 9 Under either:

1. (parametric case) Assumptions 1, 2 and 5; or

2. (nonparametric case) Assumptions 6 and 7,

we have
Ȳ −ψ

S/
√

k
⇒ tk−1 (8)

for any fixed k ≥ 2. Consequently, Isec is an asymptotically exact (1−α)-level CI for ψ , i.e.,

P(ψ ∈ Isec)→ 1−α as m → ∞.

Proof. We first develop a limit theorem for
√

m(Yi −ψ) for both the parametric and the nonparametric

case. Then we proceed to justify the t-asymptotic (8) and conclude the theorem.

Parametric case: We can write

Yi = ψ +Ui +Vi

where Ui = ψ(θ̂θθ i)−ψ and Vi = ψ̂(θ̂θθ i)−ψ(θ̂θθ i). Under Assumptions 1 and 2, we use Lemma 4 to deduce

that
√

m(Ui)i=1,...,k ⇒ (Qi)i=1,...,k where Qi
i.i.d.∼ N(0,σ2) with σ2 = ∇ψ(θθθ)′Σ∇ψ(θθθ). Using the notations

in Assumption 5, a law of large numbers for θ̂θθ i implied from Assumption 1 and the local properties in

Assumption 5 conclude that τ2(θ̂θθ i)
p→ τ2(θθθ) and P(κ3(θ̂θθ i)≤ M)→ 1 for some M > 0. Hence Proposition

8 implies that
√

m((Ui)i=1,...,k,(Vi)i=1,...,k)⇒ ((Qi)i=1,...,k,(Wi)i=1,...,k) where Wi
i.i.d.∼ N(0,τ2/q) and Qi and

Wi are all independent. Therefore,

√
m(Yi −ψ)i=1,...,k ⇒ (Zi)i=1,...,k

where Zi
i.i.d.∼ N(0,σ2 + τ2/q).

Nonparametric case: Under Assumption 6, we write

Yi = ψ +Ui +ξi +Vi

where Ui = 〈Dψ, F̂i−F〉, ξi defined as in Assumption 6, and Vi = ψ̂(F̂i)−ψ(F̂i). Assumption 6 states that

(
√

mUi)i=1,...,k ⇒ (Qi)i=1,...,k where Qi
i.i.d.∼ N(0,σ2) for some σ2 <∞ and

√
mξi

p→ 0 for all i= 1, . . . ,k. Note

that Assumption 7 enforces τ2(F̂i)
p→ τ2(F) and P(κ3(F̂i)≤ M)→ 1 for some M > 0. Hence, Proposition

8 implies that
√

m((Ui)i=1,...,k,(Vi)i=1,...,k)⇒ ((Qi)i=1,...,k,(Wi)i=1,...,k) where Wi
i.i.d.∼ N(0,τ2/q) and Qi and

Wi are all independent. Therefore, by Slutsky’s theorem,

√
m(Yi −ψ)i=1,...,k ⇒ (Zi)i=1,...,k

where Zi
i.i.d.∼ N(0,σ2 + τ2/q).

Finally, in both cases
Ȳ −ψ

S/
√

k
⇒ Z̄√

(1/(k−1))∑
k
i=1(Zi − Z̄)2/k

(9)
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where Z̄ = (1/k)∑
k
i=1 Zi, by the continuous mapping theorem. Note that, since Zi are Gaussian, Z̄ is

independent of Zi − Z̄, and ∑
k
i=1(Zi − Z̄)2 ∼ χ2

k−1 where χ2
k−1 is a χ2 random variable with degree of

freedom k−1. This shows that the limit in (9) is a tk−1 random variable. The last assertion in the theorem

follows by a standard pivotal argument.

4.2 Conservativeness and Variability of the Confidence Intervals

We discuss the performance of our sectioning-based CIs. Ideally, one would use as many sections as

possible, as this would improve the length of the interval (in terms of reducing the average length and also

its variability); in the limiting case, this would give rise to a CI constructed from normality asymptotic,

which can be viewed as the best possible. However, with fixed data and simulation budgets, using more

sections means a smaller data size and simulation replications per section, so that the quality of the Gaussian

approximation within each section, and consequently the performance of the pivotal t-statistic, deteriorates.

The number of sections and the size per section thus result in a tradeoff between desirable half-width

properties and the statistical validity of the CIs.

We use the mean half-width to measure the conservativeness of the CI, and its standard deviation to

measure its variability. In the following, we do a rough-cut analysis on the effect of section numbers on these

two measurements, which reveals the minimal section numbers needed to achieve a certain performance

compared to the benchmark normality CI. A full investigation of the optimal section number, however,

would require analyzing the approximation error of the involved asymptotic t-limit.

Suppose that we use the full data set and all the simulation budget to get an estimate ψ̂(ν̂νν) where ν̂νν is

the input estimate and ψ̂ denotes the average of all simulation runs. Then, under the same assumption as

in Theorem 9 (with k set to 1), we have, asymptotically, ψ̂(ν̂νν)∼ N(ψ,σ2
0 +τ2

0 ) for some σ2
0 and τ2

0 , where

σ2
0 denotes the variance from the input noise and τ2

0 the simulation noise. For convenience, we denote

λ 2 = σ2
0 + τ2

0 , so that ψ̂(ν̂νν) ∼ N(ψ,λ 2) approximately. If we instead divide the data and the simulation

budget into k sections, then for each section i our estimate becomes ψ̂(ν̂νν i), and they are asymptotically
i.i.d.∼ N(ψ,kλ 2).

The half-width of Isec in (7) is tk−1,1−α/2S/
√

k. Here S2, the sample variance of the ψ̂(ν̂νν i)’s, follows

kλ 2 ·χ2
k−1/(k−1) approximately. Therefore, the half-width H of Isec is

H ≈
tk−1,1−α/2√

k
·

√

kλ 2
χ2

k−1

k−1
= tk−1,1−α/2λ

√
χ2

k−1

k−1
.

Using the fact that E

√
χ2

k−1 =
√

2Γ(k/2)/Γ((k−1)/2), the expected half-width satisfies

EH ≈ tk−1,1−α/2λ
Γ(k/2)

Γ((k−1)/2)

√
2

k−1
.

On the other hand, using Eχ2
k−1 = k−1, the second moment of the half-width satisfies

EH2 ≈ t2
k−1,1−α/2λ 2

so that the variance is

Var(H)≈ t2
k−1,1−α/2λ 2

(
1−
(

Γ(k/2)

Γ((k−1)/2)

)2
2

k−1

)
.

It can be shown that Γ(k/2)/Γ((k − 1)/2)
√

2/(k−1) → 1 as k → ∞. Combined with the fact that

tk−1 ⇒ N(0,1), the approximate EH → z1−α/2λ , where z1−α/2 is the 1−α/2 standard normal quantile,
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and the approximate Var(H)→ 0. For example, when α = 5% (so that we are looking at the 95% CI),

EH/λ ≈ 1.98 at k = 100, compared with z1−α/2 = 1.96. Note that the quantity z1−α/2λ is the half-width

of a normality CI. Therefore, as discussed above, the normality CI can be viewed as the best possible (Of

course, to get this, one would need information about λ , which as discussed in the introduction can be

challenging to obtain in the input uncertainty setting).

The approximate EH, EH2 and Var(H) all monotonically decrease as k increases. Fixing α = 5%,

the decreases of all the considered quantities occur rapidly from k = 2 to 6 (EH/λ ≈ 10.1,3.8,2.9,2.6,2.4

and
√

Var(H)/λ ≈ 7.7,2.0,1.2,0.9,0.8 at k = 2 to 6), continues to decrease at a slower rate from k = 6 to

10 (e.g., EH/λ ≈ 2.2 and
√

Var(H)/λ ≈ 0.5 at k = 10), and afterwards the gain becomes quite negligible

(e.g., EH/λ ≈ 2.0 and
√

Var(H)/λ ≈ 0.2 at k = 50). These numbers suggest that increasing k from 2 to 3

leads to a significant gain, whereas increasing k further to 4 to 6 can improve sensibly further. Depending

on the data/simulation size, a reasonable k could be chosen in the range 3 to 6.

5 A NUMERICAL EXAMPLE

We test our approach with a numerical example of M/M/1 queue. In this queue, the true arrival rate is 1

and service rate is 1.2. We initiate from an empty system. We consider two performance measures: the

expected waiting time averaged over the first 20 customers, denoted as Ewaittime, and the expected time-

averaged queue length over time period [0,5], denoted as Equeuelength. The true values of Ewaittime = 1.53

and Equeuelength = 0.63.

We use a data size 100 on both the interarrival and service times (i.e., these data are sampled from

the exponential distributions with rates 1 and 1.2 respectively). We execute our sectioning scheme to

construct 95% CIs for measures Ewaittime and Equeuelength, using various numbers of sections, but under a

total simulation budget of 100 runs. In each setting, we repeat the calculation 1000 times, where each time

we sample a new set of observations and construct a CI. From these repetitions, we estimate the coverage

probability and the average CI length. We consider the nonparametric setting (i.e., using the empirical

distributions for the interarrival and service times).

Table 1 shows the estimated coverage probabilities (both the point estimate and the 95% confidence

interval) and the average CI lengths in estimating Ewaittime and Equeuelength as the number of sections k varies

(e.g., when k = 2, each section constitutes 50 observations for both the interarrival and service times and

50 replications). The coverages of both performance measures seem to be valid and quite stable until about

k = 14, after which they start to deteriorate from the nominal 95%. This shows, at least in this example,

that the coverage probability is relatively robust to the data size in each section. On the other hand, the

average CI length drops significantly from k = 2 to 3, continues to drop from k = 3 to 6, and afterwards

levels off. This shows a huge gain in reducing conservativeness from 2 to 3 sections, and further gains till

about 6 sections. These observations reconcile with our discussion in Section 4.2.
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