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Abstract
Divide-and-conquer is a powerful approach for
large and massive data analysis. In the nonparam-
eteric regression setting, although various theoret-
ical frameworks have been established to achieve
optimality in estimation or hypothesis testing,
how to choose the tuning parameter in a practi-
cally effective way is still an open problem. In this
paper, we propose a data-driven procedure based
on divide-and-conquer for selecting the tuning pa-
rameters in kernel ridge regression by modifying
the popular Generalized Cross-validation (GCV,
Wahba, 1990). While the proposed criterion is
computationally scalable for massive data sets, it
is also shown under mild conditions to be asymp-
totically optimal in the sense that minimizing the
proposed distributed-GCV (dGCV) criterion is
equivalent to minimizing the true global condi-
tional empirical loss of the averaged function esti-
mator, extending the existing optimality results of
GCV to the divide-and-conquer framework.

1. Introduction
Massive data made available in various research areas have
imposed new challenges for data scientists. With a large
to massive sample size, many sophisticated statistical tools
are no longer applicable simply due to formidable computa-
tional costs and/or memory requirements. Even when the
computation is possible on more advanced machines, it is
still appealing to develop accurate statistical procedures at
much lower computational costs. The divide-and-conquer
strategy has become a popular tool for regression models.
With carefully designed algorithms, such a strategy has
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proven to be effective in Linear models (Chen & Xie, 2014;
Lu et al., 2016), Partially linear models (Zhao et al., 2016)
and Nonparametric regression models (Zhang et al., 2015;
Lin et al., 2017; Shang & Cheng, 2017; Guo et al., 2017). In
this paper, we shall focus on the divide-and-conquer kernel
ridge regression where the selection of the penalty parameter
is of vital importance but still remains unsettled.

Suppose we have independent and identically distributed
samples {(xi, yi) ∈ X ×R}i=1,...N from a joint probability
measure PY,X . The goal is to study the association between
the covariate xi and the response yi through the following
nonparametric model

yi = f0(xi) + εi, i = 1, . . . , N, (1)

where f0(·) : X → R is the function of interest and εi is a
random error term with mean zero and a common variance
σ2. One popular method to estimate f0(·) is the Kernel
Ridge Regression (Shawe-Taylor & Cristianini, 2004) which
essentially aims at finding a projection of f0(·) into a repro-
ducing kernel Hilbert space (RKHS), denoted as H, with
a norm ‖ · ‖H. Specifically, the kernel ridge regression
estimator is then defined as

f̂ = arg min
f∈H

{
1

N

N∑
i=1

(yi − f(xi))
2 + λ‖f‖H

}
, (2)

where λ ≥ 0 controls trade-off between goodness-of-fit and
smoothness of f .

It is well known that computing f̂ requires O(N3) floating
operations and O(N2) memory; see (5). When N is large,
such requirements can be prohibitive. To overcome this,
Zhang et al. (2015) proposed the following “divide-and-
conquer” algorithm: (i) Randomly divide the entire sample
{(x1, y1), . . . , (xN , yN )} to m disjoint “smaller” subsets,
denoted by S1, . . . , Sm; (ii) For each subset Sk, find f̂k =

arg minf∈H

{
1
nk

∑
i∈Sk

(yi − f(xi))
2 + λ‖f‖H

}
, where

nk is the size of Sk; (iii) The final nonparametric estimator
is given by

f̄(x) =
1

m

m∑
k=1

f̂k(x). (3)
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Such a “divide-and-conquer” strategy reduces computing
time from O(N3) to O(N3/m2) and memory usage from
O(N2) to O(N2/m2). Both savings could be substantial
as m grows. Furthermore, Zhang et al. (2015) shows that
as long as m does not grow too fast, the averaged estimator
f̄ achieves the same minimax optimal estimation rate as
the oracle estimate f̂ , i.e., (2), that uses all data points at
once. In this sense, the divide-and-conquer algorithm is
quite appealing as it achieves an ideal balance between the
computational cost and the statistical efficiency.

However, the aforementioned statistical efficiency depends
critically on a careful choice of tuning parameter λ in all sub-
samples. In this paper, we define a new data-driven criterion
named “distributed generalized cross-validation” (dGCV) to
choose tuning parameters for kernel ridge regression under
the divide-and-conquer framework. The computational cost
of the proposed criterion remains the same as O(N3/m2).
More importantly, we show that the proposed method enjoys
similar theoretical optimality as the well-known GCV crite-
rion (Craven & Wahba, 1978) in the sense that the resulting
divide-and-conquer estimate minimizes the true empirical
loss function asymptotically.

Related work The optimal choice of tuning parameter
λ has been well studied for kernel ridge regression when
the entire data set can be fitted at once. Examples include
Mallow’s CP (Mallows, 2000), Generalized cross-validation
(GCV, Craven & Wahba, 1978) and Generalized approxi-
mated cross-validation (Xiang & Wahba, 1996). However,
if we naively apply these traditional tuning methods in each
sub-sample to pick an optimal λk in the above step (ii),
the averaged function estimator f̄ subsequently obtained
using (3) will be sub-optimal. As pointed out by existing lit-
erature (e.g. Zhang et al., 2015; Blanchard & Mücke, 2016;
Chang et al., 2017), the optimal tuning parameter should
be chosen in accordance with the order of the entire sample
size, i.e., N , such that we intentionally allow the result-
ing sub-estimator f̂k to over-fit the sub-sample Sk for each
k = 1, . . . ,m. Based on the order of the optimal choice
of λ, Zhang et al. (2015) proposed a heuristic data-driven
approach to empirically choose an optimal λ. However, the
theoretical properties of this approach remain unclear.

2. Kernel Ridge Regression Estimation
In this section, we briefly review kernel ridge regression
(Shawe-Taylor & Cristianini, 2004). The reproducing kernel
Hilbert space, denoted asH, is a Hilbert space induced by
a symmetric nonnegative definite kernel function K(·, ·) :
X × X → R and an inner product 〈·, ·〉H satisfying

〈g(·),K(x, ·)〉H = g(x) for any g ∈ H.

The kernel function K(·, ·) is called the reproducing kernel
of the Hilbert space H equipped with the norm ‖g‖H =√
〈g(·), g(·)〉H. Using the Mercer’s theorem, under some

regularity conditions, the kernel function K(·, ·) possesses
the expansion K(x, z) =

∑∞
j=1 µjψj(x)ψj(z), where

µ1 ≥ µ2 ≥ . . . is a sequence of decreasing eigenvalues
and {ψ1(·), ψ2(·), . . . } is a family of orthonormal basis
functions of L2(PX). The smoothness of g ∈ H is char-
acterized by the decaying rate of the eigenvalues {µj}∞j=1.
There are three types of estimation considered in this paper,
including smoothing spline (Wahba, 1990) as a special case.

Finite rank: There exists some integer r such that µj = 0
for j > r. For example, with scalars x, z, the polynomial
kernel K(x, z) = (1 + xz)r has a finite rank r + 1, and
induces a space of polynomial functions with degree at most
r. This corresponds to the parametric ridge regression.

Exponentially decaying: There exist some α, r > 0 such
that µj � exp(−αjr). Exponentially decaying kernels
include the Gaussian kernelK(x, z) = exp(−‖x−z‖22/φ2),
where φ > 0 is the scale parameter and ‖·‖2 is the Euclidean
norm.

Polynomially decaying: There exists some r > 0 such
that µj � j−2r. The polynomially decaying class in-
cludes many smoothing spline kernels of the Sobolev space
(Wahba, 1990). For example, kernel function K(x, z) =
1 + min(x, z) induces the Sobolev space of Lipschitz func-
tions with smoothness ν = 1 and has polynomially decaying
eigenvalues.

With observed data, using the representor theorem (Wahba,
1990), it can be shown that the solution to the minimization
problem (2) takes the following form

f̂(x) =

N∑
i=1

βiK(xi, x), (4)

where β1, . . . , βN ∈ R. Furthermore, based on the observed
sample, the parameter vector β = (β1, . . . βN )T can be
estimated by minimizing the following criterion

1

N
(Y − βTK)T (Y − βTK) + λβTKβ, (5)

where Y = (y1, . . . , yN )T and K = [K(xi, xj)]1≤i,j≤N .

We next apply the above idea to sub-estimation. De-
note (y1,x1), . . . , (ym,xm) as a random partition of
the entire data with yk = (yk,1, . . . , yk,nk

)T and
xk = (xk,1, . . . , xk,nk

)T . Define vectors fk =
(f0(xk,1), . . . , f0(xk,nk

))T and εk = yk − fk. Define
the sub-kernel matrices Kkl = [K(xi, xj)]i∈Sk,j∈Sl

for
l, k = 1, . . . ,m. It is straightforward to show that the
minimizer of (5) with K replaced by Kkk is of the form
β̂k = (Kkk + nkλIk)−1yk, and the individual function
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estimator f̂k(x) can be written as

f̂k(x) =
∑
i∈Sk

β̂k,iK(xi, x), (6)

where β̂k,i is the entry of β̂k corresponding to xk,i, k =
1, . . . ,m.

3. Tuning Parameter Selection
3.1. Sub-GCV Score: Local Optimality

In this section, we define the GCV score for each sub-
estimation, named as sub-GCV score, and discuss its theo-
retical property. Define the empirical loss function for f̂k as
follows

Lk(λ|xk) =
1

nk

∑
i∈Sk

wi

{
f̂k(xi)− f0(xi)

}2

, (7)

where wi ≥ 0 is some weight assigned to each observation
(yi, xi) and satisfies

∑
i∈Sk

wi = nk. The introduction
of weights in (7) helps reducing computational cost; see
Section 3.4. The tuning parameter λ is referred to as “locally
optimal” if it only minimizes local empirical loss Lk(λ|xk).
When only focused on a single sub-data set, such a “locally-
optimal” choice of tuning parameter λ has been well studied
in (Craven & Wahba, 1978; Li, 1986; Gu, 2013; Wood,
2004; Gu & Ma, 2005; Xu & Huang, 2012), among which
the most popular method remains to be the Generalized
Cross-Validation (Craven & Wahba, 1978).

Using the function estimator f̂k(x), the predicted values
for the vector yk can be written as ŷk = Akk(λ)yk, where
Akk(λ) = Kkk(Kkk+nkλIk)−1. Here the matrix Akk(λ)
is often known as the hat matrix. Using the above notations,
the sub-GCV score is defined as

GCVk(λ) =
n−1
k (ŷk − yk)TWk(ŷk − yk)

{1 + n−1
k tr{Akk(λ)Wk}}2

, (8)

where Wk = diag{wi, i ∈ Sk}, k = 1, . . . ,m. It is well
known that GCVk(λ) enjoys nice asymptotic properties.
For example, under mild conditions, Gu (2013) showed that,
as nk →∞,

GCVk(λ)− Lk(λ|xk)− 1

nk
εTkWkεk = oPε

{Lk(λ|xk)},

k = 1, . . . ,m. This property essentially asserts that, mini-
mizing GCVk(λ) with respect to λ is asymptotically equiva-
lently to minimizing the local “golden criterion” Lk(λ|xk).

3.2. Local-Optimality v.s. Global-Optimality

In this section, we explain why the use of GCVk(λ) in each
subsample does not lead to an optimal averaged estimate f̄ .

We first derive conditional risks for both f̂k and f̄ . For the
former, some basic algebra yields that the conditional risk
Rk(λ|xk) = Eε {Lk(λ|xk)} is of the form

Rk(λ|xk) =
1

nk

∑
i∈Sk

wiVarε
{
f̂k(xi)

}
+

1

nk

∑
i∈Sk

wi

{
Eεf̂k(xi)− f0(xi)

}2

,

(9)

where the expectation is taken with respect to the probability
measure Pε. As for the latter, we first define the empirical
loss function of f̄ as

L̄(λ|X) =
1

N

N∑
i=1

wi{f̄(xi)− f0(xi)}2, (10)

whereX = (x1, . . . ,xm) denotes the collection of all co-
variates and wi ≥ 0 are the associated weights with observa-
tion i such that

∑N
i=1 wi = N . Similarly, the corresponding

conditional risk R̄(λ|X) = Eε{L̄(λ|X)} has the following
form

R̄(λ|X) =
1

N

N∑
i=1

wi

[
1

m

m∑
k=1

{
Eεf̂k(xi)− f0(xi)

}]2

+
1

m2N

m∑
k=1

N∑
i=1

wiVarε
{
f̂k(xi)

}
.

(11)

The form of (9) illustrates that, roughly speaking, a “locally
optimal” choice of λ (that minimizes (7)) tries to strike a
good balance of variance and bias for each sub-estimate
f̂k. On the contrary, a “globally optimal” λ, which is de-
fined to minimize (10), puts much less emphasis on the
variance of f̂k (by a factor of 1/m) than on the bias of f̂k;
see (11). Consequently, to obtain a “globally optimal” f̄ ,
one needs to intentionally choose a “smaller” λ such that
each individual function estimator f̂k overfits data set Sk,
which leads to reduced bias Eεf̂k(xi)− f0(xi) and inflated
variance Varε

{
f̂k(xi)

}
. Then by taking f̄ = 1

m

∑m
j=1 f̂j ,

the variance of f̄ can be effectively reduced by a factor of
1/m while keeping its bias at the same level as those of indi-
vidual f̂j’s. The above risk analysis confirms the heuristics
in Zhang et al. (2015).

3.3. Distributed Generalized Cross-Validation

The discussions in Section 3.2 motivate the main result of
this paper: distributed GCV score, denoted by dGCV. This
data-driven tool in selecting λ is computationally efficient
for massive data as analyzed in Section 3.4.

Using the solution (6), it is straightforward to show that
the predicted values of all data points yl in the subset Sl
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using f̂k take the form ŷkl = Aklyk, where Akl(λ) =
KT
kl(Kkk + nkλIk)−1. Define the pooled vector of re-

sponses Y = (yT1 , . . . ,y
T
m)T . Then the predicted value of

Y using the averaged estimator f̄ is of the form

Ŷ =

(
1

m

m∑
k=1

ŷTk1, . . . ,
1

m

m∑
k=1

ŷTkm

)T
= Ām(λ)Y ,

where the averaged hat matrix Ām(λ) is defined as follows

Ām(λ) =
1

m


A11(λ) A12(λ) · · · A1m(λ)
A21(λ) A22(λ) · · · A2m(λ)

...
...

. . .
...

Am1(λ) Am2(λ) · · · Amm(λ)

.
Furthermore, the global conditional risk function (11) can
be conveniently re-written as

R̄(λ|X) =
1

N
F T {I− Ām(λ)}TW{I− Ām(λ)}F

+
σ2

N
tr
{
ĀT
m(λ)WĀm(λ)

}
,

(12)

where vector of true values F = (fT1 , . . . ,f
T
m)T and

W = diag{w1, . . . , wN}. Obviously the risk function
above cannot be used to select λ in practice since the vector
F is unknown. Following Gu (2013), we can define an
unbiased estimator of R̄(λ|X) + σ2 as follows

Ū(λ|X) =
1

N
Y T {I− Ām(λ)}TW{I− Ām(λ)}Y

+
2σ2

N
tr
{
Ām(λ)W

}
.

(13)

It is straightforward to show that Eε{Ū(λ|X)} =
R̄(λ|X) + σ2. The above Ū(λ|X) can be viewed as an
extension of the Mallow’s CP (Mallows, 2000) to the divide-
and-conquer scenario.

Similar to Gu (2013); Xu & Huang (2012), the Lemma 1
in Section 4 states that under some mild conditions, mini-
mizing Ū(λ|X) and L̄(λ|X) with respect to λ is asymptot-
ically equivalent. In this sense, the λ chosen by minimizing
Ū(λ|X) is therefore “globally optimal.” However, a major
drawback of Ū(λ|X) is that it utilizes the knowledge of σ2,
which in practice often needs to be estimated. To overcome
this, we propose the following modification of the GCV
score

dGCV(λ|X) =
1
N

∑N
i=1 wi

{
yi − f̄(xi)

}2[
1− 1

Nm

∑m
k=1 tr{Akk(λ)Wk}

]2 , (14)

where Wk = diag{wi, i ∈ Sk}. Intuitively, consider
σ̃2 = N−1

∑N
i=1 wi

{
yi − f̄(xi)

}2
as an estimator of σ2

and use the fact that (1 − x)−2 ≈ 1 + 2x as x → 0, the

Ū(λ|X) defined in (13) essentially can be viewed as the
first order Taylor expansion of the dGCV(λ|X). However,
in the definition of dGCV(λ|X), it does not require any in-
formation of σ2. Note that dGCV incorporates information
across all sub-samples, which explains its superior empir-
ical performance. In fact, Theorem 1 in Section 4 shows
that under some conditions, minimizing dGCV(λ|X) and
the “golden criterion” L̄(λ|X) with respect to λ are also
asymptotically equivalent.

3.4. Computational Complexity of dGCV

The computation of dGCV(λ|X) in (14) for a given λ con-
sists of two parts: the first part involves computing the trace
of individual hat matrices, tr{Akk(λ)Wk}, k = 1, . . . ,m,
which requires O(N3/m2) floating operations and a mem-
ory usage of O(N2/m2); the second part is to evaluate
the predicted value of f̄(xi) for which wi 6= 0, which
costs O(NNw) floating operations and a memory usage
of O(N), where Nw denotes the number of nonzero wi’s.
Hence, the total computation cost of dGCV(λ|X) is of the
order O(N3/m2 +NNw). In most applications, the num-
ber of folds m generally cannot exceed

√
N for f̄ to reach

the optimal convergence rate (Zhang et al., 2015). In such
cases, one can simply use w1 = · · · = wN = 1, which
results in the computational cost of the order O(N3/m2)
for one evaluation of dGCV(λ|X). This is the same as that
of the divide-and-conquer algorithm proposed in Zhang et al.
(2015).

In some applications where m is much larger than
√
N , the

computational cost of dGCV(λ|X) becomes O(NNw). In
this case, we may want to only choosem∗ out ofm sub-data
sets for saving computational costs. To achieve that, we need
to choose weights wi’s properly. For example, we can set
wi = N/(

∑m∗

k=1 nk) if i ∈ ∪m∗

k=1Sk and wi = 0 otherwise.
Under this setting, the dGCV(λ|X) in (14) becomes

dGCV∗(λ|X) =

1
Nm∗

∑
i∈∪m∗

k=1Sk

{
yi − f̄(xi)

}2[
1− 1

mNm∗

∑m∗

k=1 tr{Akk(λ)}
]2 , (15)

whereNm∗ = n1+· · ·+nm∗ .Using (15) instead of (14), we
only need to evaluate f̄(xi) for xi’s in m∗ subsets and the
computation time is reduced to O(N2m∗/m). We applied
(15) to the Million Song Data set considered in Section 6,
which yields good results in both prediction and computa-
tion time.

Optimization of dGCV(λ|X) or dGCV∗(λ|X) can be
carried out using a simple one-dimensional grid search.
Since the first and second derivatives of dGCV(λ|X) or
dGCV∗(λ|X) can be easily computed using similar argu-
ments in Wood (2004); Xu & Huang (2012), it can also be
optimized using the Newton-Raphson algorithm with the
same computational costs.
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Remark 1. We want to mention that dGCV(λ|X) can also
be used to choose other tuning parameters in the kernel
function. For example, if the Gaussian kernel K(x, z) =
exp(−‖x− z‖22/φ) is used, dGCV is also a function of the
bandwidth parameter φ, and thus can be used to choose the
optimal φ as well.

4. Asymptotic Properties
In this section, we will show that the proposed dGCV cri-
terion in (14) is “globally optimal” under some conditions.
We first introduce some notation. Denote PX , Pε, Pε,X as
the probability measures of covariate X , error process ε
and their joint probability measure. Similarly, Eε and Varε
denote the expectation and variance under the probability
measure Pε. Let λmax(A) and σmax(A) and tr(A) be the
largest eigenvalue and the largest singular value of the ma-
trix A, respectively. We use P−→ to denote the convergence
in probability measure P and OP(·), oP(·) as defined in the
conventional way. For any function f(x) : X → R, let
‖f‖sup = supx∈X |f(x)| and Pf =

∫
X f(x) dP. Finally,

let Pn denote the empirical probability measure based on
i.i.d samples of size n from the probability measure P.

4.1. Asymptotic Optimality of dGCV

The following regularity conditions are needed to show the
optimality of dGCV.

[C1] 1
m

∑m
l=1 λmax

{
(Kll + nlλIl)

−2
(

1
m

∑m
k=1 K

T
klKkl

)}
=

OPX
(1);

[C2] NR̄(λ|X)
PX−−→∞ as N →∞;

[C3] (a) max1≤i≤N wi ≤W for some constant W > 0; (b)
1
Nm

∑m
k=1 tr{Akk(λ)} = oPX

(1).

[C4] [N−1tr{Ām(λ)W}]2

[N−1tr{ĀT
m(λ)WĀm(λ)}]

= oPX
(1).

Intuitively, condition C1 requires that some sim-
ilarities among sub-data sets. If all Kkl’s are
similar to the the matrix Kll, we can expect
λmax

{
(Kll + nlλIl)

−2
(

1
m

∑m
k=1 K

T
klKkl

)}
≤ 1, in

which case C1 holds. In the journal version of this paper,
we shall show that one sufficient condition for C1 to hold is
to ensure that the “maximal marginal degrees of freedom”
d = N max1≤i≤N diag{K(K +NλIN )−1} (Bach, 2013)
is sufficiently small compared to N/m. Condition C2 is
a widely used condition to ensure the optimality of the
GCV to hold, for example, see Craven & Wahba (1978); Li
(1986); Gu & Ma (2005); Xu & Huang (2012). It is a mild
condition for nonparametric regression problems, where the
parametric rate O(N−1) is unattainable for the estimation
risk. For example, for kernel ridge regression models with

polynomially or exponentially decaying kernel functions,
condition C2 holds (Zhang et al., 2015). However, it
does raise a flag for the application of the dGCV when a
finite rank kernel is used, in which case the optimal rate
of R̄(λ|X) is of the order O(N−1) (Zhang et al., 2015).
Nevertheless, without condition C2, it is questionable
whether there exists an asymptotically optimal selection
procedure for the tuning parameter λ (Li, 1986). It turns
out that, under conditions C1-C2, Ū(λ|X) defined in (13)
is “globally optimal.”

Lemma 1. Under Conditions C1–C2, for a fixed λ, we have
that

Ū(λ|X)− L̄(λ|X)− 1

N
εTWε = oPε,X

{L̄(λ|X)}. (16)

The key of the proof this Lemma is to carefully show that
the variance of the difference in the left-hand side of equa-
tion (16) is of the order o{R̄2(λ|X)} and the difference
L̄(λ|X)− R̄(λ|X) is of the order oPε,X

{R̄2(λ|X)}, both
of which require condition C2. The proof is similar to that
of Theorem 2.1 in Xu & Huang (2012).

Lemma 1 states that when σ2 is known, minimizing Ū(λ|X)
with respect to λ is asymptotically equivalent to minimizing
the empirical true loss function L̄(λ|X). However, it is
rarely the case that one has complete knowledge of σ2. In
this sense, the proposed dGCV is more practical and it can
be shown to be “globally optimal” as well, under some
additional conditions.

Theorem 1. Under Conditions C1–C4, for a fixed λ, we
have that

dGCV(λ|X)− L̄(λ|X)− 1

N
εTWε = oPε,X

{(L̄(λ|x)}. (17)

The proof of Theorem (17) makes use of the similarity
between Ū(λ|X) and dGCV(λ|X), where the former is
very close to the first order Taylor expansion of the latter
using the fact that (1 − x)−2 = 1 + 2x + 3(1 − x∗)−4x2

for some x∗ ∈ (0, x). By carefully bounding the difference
between Ū(λ|X) and dGCV(λ|X) under conditions C1-
C4 and invoking Lemma 1, we can prove Theorem 1.

Similar to Lemma 1, Theorem 1 shows that minimizing
dGCV(λ|X) amounts to minimizing the true conditional
loss function L̄(λ|X), although additional conditions C3-
C4 are needed. Condition C3 is pretty mild in that it essen-
tially requires that sufficient number of wi’s are nonzero
and the effective number of parameters to be negligible
compared to the sample size, which is typically true for
non-parametric function estimators in most settings of in-
terests. In addition, C3 becomes trivial when m → ∞
because by definition we have that tr{Akk(λ)} ≤ nk,
k = 1, . . . ,m. When the entire data set is used at once
(m = 1), condition C4 reduces to the well known condition
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[N−1tr{A(λ)}]2/[N−1tr{A2(λ)}] = o(1) in the literature
(Craven & Wahba, 1978; Li, 1986; Gu & Ma, 2005; Xu
& Huang, 2012). For example, for smoothing splines, we
typically have tr{A(λ)} = O(λ−1/s) and tr{A2(λ)} �
O(λ−1/s) for some s > 1. Then as long as λ−1/s/N → 0,
which covers the most region of practical interests for λ,
we have that [N−1tr{A(λ)}]2/[N−1tr{A2(λ)}] → 0 as
N → ∞. Condition C4 can be viewed as an extension of
this commonly used condition to the divide-and-conquer
regime.

Remark 2. Theoretical proof of whether or not the function
estimator f̄ coupled the optimal λ̂ = argmin dGCV(λ|X)
truly achieves the minimax rate in the literature (e.g. Zhang
et al., 2015) is difficult because λ̂ is a random quantity
depending on various factors. In practice, one way to
ensure minimax rate of f̄ is to search for the optimal
λ by minimizing dGCV(λ|X) within a region guided by
the theoretically optimal rate of λ in the literature for
various kernels. For example, in Section 6, the optimal
rate of λ is O(1/N) for the Gaussin kernel (Zhang et al.,
2015) and we therefore searched for best λ within the set
{0.25, 0.5, 0.75, 1.0, 1.25, 1.5}/N .

Remark 3. One benefit of using high level conditions such
as C1, C2 and C4 is that they do not involve the response
variable and can be computed efficiently using sample data.
To deal with the randomness in covariate X, one can boot-
strap/resample/subsample from the observed data, which is
especially suitable when the sample size under considera-
tion is extremely large. Through this resampling strategy,
one can empirically verify C1, C2 and C4, although rigor-
ous justification of such strategy has not been established
and will be an interesting topic for future research.

5. Simulation Studies
In this section, we conduct a simulation study to illustrate
the effectiveness of dGCV(λ) in choosing the optimal λ
for the divide-and-conquer function estimator. The data
were simulated from the model y = f0(x) + ε, where
f0(x) = 2|x − 1/2| for x ∈ [0, 1] and ε ∼ N(0, 0.52).
The covariate xi’s were independently generated from the
uniform distribution over the interval [0, 1]. For each simu-
lation run, we first generated a data set of the size N = mn
and then randomly partition the data sets into m sub-data
sets of equal sizes. The divide-and-conquer estimator f̄ was
obtained as given in (3). The true function f0(x) belongs to
the Sobolev space of Lipschitz functions on [0, 1], hence we
used the reproducing kernel K(x, z) = 1 + min(x, z) and
the associated norm ‖f‖2H = f2(0) +

∫ 1

0
{f ′(x)}2 dx.

In all simulation runs, the tuning parameter λ was selected
by a grid search for log(λ) over 30 equally-spaced grid
points over the interval [−12, 1]. Three approaches were
used for selection of λ: (i) the distributed GCV (dGCV) pro-

posed in (14); (ii) the naive GCV applied to each sub-dataset
(nGCV) which applies the GCV defined in (8) to choose
the best λ for each individual f̂k and then average them
using (3); and (iii) the true conditional loss function (Tru-
eLoss) L̄(λ|X) defined in (10). For all three approaches,
we set the weights wi = 1 for all i = 1, . . . , N . The last
approach is not practically feasible since it requires the
knowledge of the true function f0. Rather, it is served as the
“golden criterion” to show the effectiveness of the other two
approaches. Summary statistics based on 100 simulation
runs were illustrated in Figure 1(a)-(f).
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Figure 1. (a) the logarithm of computational time (in seconds) v.s.
log(N); (b)-(c): scatter plots of true empirical losses of func-
tion estimators; (d) the logarithm of averages of selected λ v.s.
log(m)/ log(N); (e)-(f): the logarithm of true empirical losses v.s.
log(m)/ log(N). Note that in (d)-(f), λ̂opt in the y-axis denotes
one of λ̂dGCV, λ̂nGCV and λ̂TrueLoss for each curve.

Figure 1(a) illustrates the computational complexity of one
evaluation of dGCV(λ) for N = 2i, i = 8, 9, 10, 11, 12
and m = 1, 2, 4, 8, 16, 32. All simulation runs were carried
out in the software R on a cluster of 100 Linux machines
with a total of 100 CPU cores, with each core running at
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approximately 2 GFLOPS. We can clearly see that by using
the divide-and-conquer strategy, the computational time of
the dGCV can be greatly reduced compared to the case
when all data were used at once (when m = 1).

In Figure 1(b)-(c), we give some comparisons of the dGCV
method and the nGCV method. Figure 1(b) shows the scat-
ter plot of true empirical losses, as defined in (10), of the
function estimators obtained by minimizing dGCV(λ) ver-
sus minimizing the unattainable “golden criterion” (10) over
100 simulation runs. As we can see, majority of points are
concentrated around the 45o straight line, which supports
our theoretical findings in Theorem 1. On the contrary, Fig-
ure 1(c) shows that true empirical losses of the function
estimator based on the nGCV approach are generally larger
than the minimum possible true losses, indicating that such
function estimators are indeed only “locally” optimal but
not “globally optimal.”

In Figure 1(d)-(f), we used N = 2i and m = 2j for j =
0, 1, . . . , i− 2 and i = 8, 10, 12 so that there were at least
four data points in each sub-data set. To better understand
the differences between the distributed GCV and the naive
GCV approaches, Figure 1(d) shows how the logarithm
of the averages of selected tuning parameters (over 100

simulation runs), denoted as log(λ̂opt), for each method
changes as m increases. As we can see, when m = 1 they
are identical. However, asm increases, the λ selected by the
naive GCV approach consistently increases whereas the λ
selected by the dGCV method stays about the same until m
gets really large and is always smaller than the λ selected by
the nGCV method. This is consistent with findings in Zhang
et al. (2015) where they argue that the locally optimal rate
of λ for each individual f̂k is of the order O(n−2/3) with
n = N/m whereas the globally optimal rate for λ is of the
order O(N−2/3).

The y-axis of Figure 1(e)-(f) is the logarithm of estimation
errors logL(λ̂opt), where L(λ̂opt) stands for the averaged
true conditional loss defined in (10) over 100 simulation
runs using different selection approaches for λ. We can
see from Figure 1(e)-(f) that as long as m is not too large
compare to N , the proposed dGCV(λ) is quite robust in
terms of controlling the estimation error as m grows and is
almost identical to that of using the true loss function, which
is considered as a “golden criterion.” This is consistent with
our Theorem 1. In contrast, estimation errors of the nGCV
approach quickly inflates as m increases, which is expected
according to our discussion in subsection 3.2. Finally, it is
interesting to point out that as the λ selected by the dGCV
method starts to drop in Figure 1(d), the estimation errors
in Figure 1(e)-(f) start to inflate as well.

6. The Million Song Dataset
In this section, we applied the dGCV∗ tuning method to the
Million Song Dataset, which consist of 463, 715 training
examples and 51, 630 testing examples. Each observation is
a song track released between the year 1922 and 2011. The
response variable yi is the year when the song is released
and the covariate xi is a 90-dimensional vector, consists of
timbre information of the song. We refer to Bertin-Mahieux
et al. (2011) for more details on this data set. The goal is to
use the timbre information of the song to predict the year
when the song was released using the kernel ridge regres-
sion. The same dataset has been analyzed by Zhang et al.
(2015), but without addressing the issue of selecting an op-
timal tuning parameter. Our dGCV∗ method demonstrated
significant empirical advantages over theirs.

Following Zhang et al. (2015), the feature vectors were
normalized so that they have mean 0 and standard de-
viation 1 and the Gaussian kernel function K(x, z) =
exp(−‖x − z‖22/φ) was used for the kernel ridge regres-
sion. Seven partitions m ∈ {32, 38, 48, 64, 96, 128, 256}
were used for the divide-and-conquer kernel ridge regres-
sion. Aside from the penalty parameter λ in (2), the band-
width φ is also known to have important impact on the
prediction accuracy. To find the best combination of (λ, φ)
for each partition m, we perform a 2-dimensional search
with λ ∈ {0.25, 0.5, 0.75, 1.0, 1.25, 1.5}/N and φ ∈
{2, 3, 4, 5, 6, 7} by minimizing (15) with K = dm/10e,
where dae is the smallest integer that is greater than a. Note
that in this case, dGCV∗(λ|X) is also a function of φ. The
experiment was conducted in Matlab using a Windows com-
puter with 16GB of memory and a single-threaded 3.5Ghz
CPU. For each (λ, φ) pair, the computation time for (15)
are 1, 058s (m = 32), 840s (m = 38), 577s (m = 48),
476s (m = 96), 453s (m = 128) and 457s (m = 256),
which are reasonable for a data set with almost half-million
observations.

The grid search gave the optimal choice of λ = 0.5/N and
φ = 3 for most of case scenarios. From Figure 2(a)-(b), we
can see that the choice of the bandwidth parameter φ has a
great impacts on the dGCV score as well as the penalty pa-
rameter λ. It seems that the latter provides some additional
small adjustments after a good value of φ is chosen.

In Zhang et al. (2015), the authors used a fixed value
λ = 1/N and a φ = 6 chosen by the cross-validation
for their kernel ridge regression model. In Figure 2(c), we
can see that such a choice leads to a much worse prediction
mean squared error (PMSE) on the testing samples. Using
the proposed dGCV criterion, our choice of λ and φ yields
almost identical prediction accuracy as the minimum possi-
ble PMSE on the testing samples obtained over all 36 grid
points.
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Figure 2. (a) dGCV score v.s. Nλ with m = 32 (the bottommost)
to m = 128 (the uppermost); (b) dGCV score v.s. φ with m = 32
(the bottommost) to m = 256 (the uppermost); (c) The prediction
mean squared errors on the testing samples v.s. log(m).

7. Conclusion
In this paper, we proposed a data-driven criterion named
dGCV that can be used to empirically selecting the criti-
cal tuning parameter λ for divide-and-conquer kernel ridge
regression. Not only the proposed approach is computa-

tionally scalable even for massive data sets, we have also
theoretically shown that it is asymptotically optimal in the
sense that minimizing dGCV is equivalent to minimizing
the true global conditional empirical loss, extending the ex-
isting optimality results of GCV to the divide-and-conquer
framework.

In the future work, we plan to improve the current high-level
conditions listed in C1-C4 to much lower level conditions
that can be readily checked theoretically for various types
of kernel functions as investigated in Zhang et al. (2015).
We conjecture that this is at least possible for polynomially
decaying kernel functions based on the rich literature on
their design and hat matrices. Furthermore, so far we have
presumed a fixed m. Another part of the future work is to
investigate the growth rate of m for some specific kernels
under which Theorem 1 still holds, following the framework
proposed in Shang & Cheng (2017).
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