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Abstract

Valid causal inference in observational studies often requires controlling for con-
founders. However, in practice measurements of confounders may be noisy, and
can lead to biased estimates of causal effects. We show that we can reduce bias
induced by measurement noise using a large number of noisy measurements of
the underlying confounders. We propose the use of matrix factorization to infer
the confounders from noisy covariates. This flexible and principled framework
adapts to missing values, accommodates a wide variety of data types, and can
enhance a wide variety of causal inference methods. We bound the error for the
induced average treatment effect estimator and show it is consistent in a linear
regression setting, using Exponential Family Matrix Completion preprocessing. We
demonstrate the effectiveness of the proposed procedure in numerical experiments
with both synthetic data and real clinical data.

1 Introduction

Estimating the causal effect of an intervention is a fundamental goal across many domains. Examples
include evaluating the effectiveness of recommender systems [1], identifying the effect of therapies on
patients’ health [2] and understanding the impact of compulsory schooling on earnings [3]. However,
this task is notoriously difficult in observatonal studies due to the presence of confounders: variables
that affect both the intervention and the outcomes. For example, intelligence level can influence both
students’ decisions regarding whether to go to college, and their earnings later on. Students who
choose to go to college may have higher intelligence than those who do not. As a result, the observed
increase in earnings associated with attending college is confounded with the effect of intelligence
and thus cannot faithfully represent the causal effect of college education.

One standard way to avoid such confounding effect is to control for all confounders [4]. However,
this solution poses practical difficulties. On the one hand, an exhaustive list of confounders is not
known a priori, so investigators usually adjust for a large number of covariates for fear of missing
important confounders. On the other hand, measurement noise may abound in the collected data:
some confounder measurements may be contaminated with noise (e.g., data recording error), while
other confounders may not be amenable to direct measurements and instead admit only proxy
measurements. For example, we may use an IQ test score as a proxy for intelligence. It is well
known that using proxies in place of the true confounders leads to biased causal effect estimates
[5, 6, 7]. However, we show in a linear regression setting that the bias due to measurement noise
can be effectively alleviated by using many proxies for the underlying confounders (Section 2.2).
For example, in addition to IQ test score, we may also use coursework grades and other academic
achievements to characterize the intelligence. Intuitively, using more proxies may allow for a more
accurate reconstruction of the confounder and thus may facilitate more accurate causal inference.
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Therefore, collecting a large number of covariates is beneficial for causal inference not only to avoid
confounding effects but also to alleviate bias caused by measurement noise.

Although in the big-data era, collecting myriad covariates is easier than ever before, it is still
challenging to use the collected noisy covariates in causal inference. On the one hand, data is
inevitably contaminated with missing values, especially when we collect many covariates. Inaccurate
imputation of these missing values may aggravate measurement noise. Moreover, missing value
imputation can at most gauge the values of noisy covariates but inferring the latent confounders is the
most critical for accurate causal inference. On the other hand, the large number of covariates may
include heterogeneous data types (e.g., continuous, ordinal, categorical, etc.) that must be handled
appropriately to exploit covariate information.

To address the aforementioned problems, we propose to use low rank matrix factorization as a
principled approach to preprocess covariate matrices for causal inference. This preprocessing step
infers the confounders for subsequent causal inference from partially observed noisy covariates.
Investigators can thus collect more covariates to control for potential confounders and use more proxy
variables to characterize the unmeasured traits of the subjects without being hindered by missing
values. Moreover, matrix factorization preprocessing is a very general framework. It can adapt to a
wide variety of data types and it can be seamlessly integrated with many causal inference techniques,
e.g., regression adjustment, propensity score reweighting, matching [4]. Using matrix factorization as
a preprocessing step makes the whole procedure modular and enables investigators to take advantage
of existing packages for matrix factorization and causal inference.

We rigorously investigate the theoretical implication of the matrix factorization preprocessing with
respect to causal effect estimation. We establish a convergence rate for the induced average treatment
effect (ATE) estimator and show its consistency in a linear regression setting with Exponential
Family Matrix Completion preprocessing [8]. In contrast to traditional applications of matrix
factorization methods with matrix reconstruction as the end goal, our theoretical analysis validates
matrix factorization as a preprocessing step for causal inference.

We evaluate the effectiveness of our proposed procedure on both synthetic datasets and a clinical
dataset involving the mortality of twins born in the USA introduced by Louizos et al. [9]. We
empirically demonstrate that matrix factorization can accurately estimate causal effects by inferring
the latent confounders from a large number of noisy covariates. Moreover, matrix factorization
preprocessing enhances the performance of many causal inference methods and is robust to the
presence of missing values.

Related work. Our paper builds upon low rank matrix completion methods that have been success-
fully applied in many domains to recover data matrices from incomplete and noisy observations
[10, 11, 12]. These methods are not only computationally efficient but also theoretically sound
with provable guarantees [8, 13, 14, 15, 16, 17]. Moreover, matrix completion methods have been
developed to accommodate heterogeneous data types prevalent in empirical studies by using a rich
library of loss functions and penalties [18]. Recently, Athey et al. [19] use matrix completion methods
to impute the unobservable counterfactual outcomes and estimate the ATE for panel data. In contrast,
our paper focuses on measurement noise in the covariate matrix. Measurement noise has been
considered in literature for a long time [5, 6, 20]. Kuroki and Pearl [21] and Miao et al. [22] show
that causal effects are identifiable when the emission probabilities of proxies given confounders are
known and satisfy an invertibility condition. In contrast, our method assumes a simpler proxy model
(Figure 1) and provides a practical approach to carry out the estimation based on matrix factorization.
Louizos et al. recently [9] propose to use Variational Autoencoder as a heuristic way to recover the
latent confounders from multiple proxies. In contrast, matrix factorization methods, despite stronger
parametric assumptions, address the problem of missing values simultaneously, require considerably
less parameter tuning, and have theoretical justifications.

Notation. For two scalars a, b ∈ R, denote a ∨ b = max{a, b} and a ∧ b = min{a, b}. For an
positive integer N , we let [N ] = {1, 2, . . . , N}. For a set Ω, |Ω| is the total number of elements in Ω.
For matrix X ∈ RN×p, denote its singular values as σ1 ≥ σ2 ≥ · · · ≥ σN∧p ≥ 0, and its smallest
singular value as σmin. The spectral norm, nuclear norm, Frobenius norm and max norm of X are
defined as ‖X‖ = σ1, ‖X‖? =

∑N∧p
i=1 σi, ‖X‖F =

√
σ2

1 + · · ·+ σ2
N∧p and ‖X‖max = max

ij
|Xij |

respectively. The projection matrix for X is defined as PX = X(X>X)−1X>. We use col(X) to
denote the column space of X and σ(z) to denote the sigmoid function 1/(1 + exp(−z)).
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Figure 1: Causal graph for the ith individual, i ∈ [N ]. The confounders Ui are unobserved (dashed);
the proxy variables Xi, treatment Ti, and outcome Yi are all observed (solid).

2 Causal inference with low rank matrix factorization

In this section, we first introduce the problem of causal inference under measurement noise and
missing values formally and define notation. We then show that the bias caused by measurement
noise in linear regression is alleviated when more covariates are used. Finally we review low rank
matrix factorization methods and describe the proposed procedure for causal inference.

2.1 Problem formulation

We consider an observational study with N subjects. For subject i, Ti is the treatment variable and we
assume Ti ∈ {0, 1} for simplicity. We use Yi(0), Yi(1) to denote the potential outcomes for subject
i under control and treatment respectively [4]. We can only observe the potential outcome corre-
sponding to the received treatment level, i.e., Yi = Yi(Ti). Assume that {Yi(0), Yi(1), Ti}Ni=1 are
independently and identically distributed (i.i.d). We denote T = [T1, ..., TN ]> and Y = [Y1, ..., YN ]>.
For the ease of exposition, we focus on estimating the average treatment effect (ATE):

τ = E(Yi(1)− Yi(0)).

One standard way to estimate ATE is to adjust for the confounders. Suppose we have access to the
confounders Ui ∈ Rr for subject i, ∀i ∈ [N ]. Then we can employ many standard causal inference
techniques (e.g., regression adjustment, propensity score reweighting, matching, etc.) to estimate
ATE under the following unconfoundedness assumption:
Assumption 1 (Unconfoundedness given unobservables). For each t = 0, 1 and i = 1, ..., N , Yi(t)
is independent of Ti conditionally on Ui: P(Ti = 1 | Yi(t), Ui) = P(Ti = 1 | Ui).

However, in practice we may not observe {Ui}Ni=1 directly. Instead suppose we can only partially
observe covariates Xi ∈ Rp, which is a collection of noisy measurements for the confounders. The
causal graph is given in Figure 1. The covariates Xi can represent various data types by canonical
encoding schemes. For example, Boolean data is encoded using 1 for true and −1 for false. Many
other encoding examples, e.g., categorical data or ordinal data, can be found in Udell et al. [18]. We
concatenate these covariates into X ∈ RN×p. We assume that only entries of X over a subset of
indices Ω ⊂ [N ]× [p] are observed.

We further specify the generative model for individual entries Xij , (i, j) ∈ [N ]× [p]. We assume that
Xij are drawn indepedently from distributions P(Xij | U>i Vj), where Vj ∈ Rp represents loadings
of the jth covariate on confounders. The distribution P(Xij | U>i Vj) models the measurement noise
mechanism for Xij . For example, if Xi1 is a measurement for Ui1 contaminated with standard
Gaussian noise, then P(Xi1 | U>i V1) ∼ N (U>i V1, 1) where V1 = [1, 0, ..., 0]>. This generative
model also accomodates proxy variables. Consider a simplified version of Spearman’s measureable
intelligence theory [23] where multiple kinds of test scores are used to characterize two kinds of
(unobservable) intelligence: quantitative and verbal. Suppose that there are p tests (e.g., Classics,
Math, Music, etc.) which are recorded in Xi1, ..., Xip and the two intelligence are represented by
Ui1 and Ui2. We assume that these proxy variables are noisy realizations of linear combinations
of two intelligence. This can be modelled using the generative model Xij ∼ P(Xij | U>i Vj)
with Vj = [Vi1, Vi2, 0, ..., 0]> for j ∈ [p]. While this linear assumption seems restrictive, it’s
approximately true for a large class of nonlinear latent variable models when many proxies are used
for a small number of latent variables [24].

We aim to estimate ATE based on PΩ(X), Y and T . It is however very challenging for the presence
of measurement noise and missing values. One the one hand, most causal inference techniques cannot
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adapt to missing values directly and appropriate preprocessing is needed. On the other hand, it is
well known that measurement noise can dramatically undermine the unconfoundedness assumption
and lead to biased causal effect estimation [5, 6], i.e., P(Yi(t)|Ti, Xi) 6= P(Yi(t)|Xi) for t = 0, 1.

2.2 Measurement noise and bias

In this subsection, we show that using a large number of noisy covariates can effectively alleviate
the ATE estimation bias resulted from measurement noise in linear regression setting. Suppose there
are no missing values. We consider the linear regression model: ∀i ∈ [N ], Yi = U>i α+ τTi + εi ,
where α ∈ Rr is the coefficient for confounders Ui, τ is the ATE, and εi

i.i.d∼ N (0, σ2). For ∀i ∈ [N ],
Ti are independently and probabilistically assigned according to confounders Ui. Unconfoundedness
(Assumtpion 1) implies that Ti are independent with εi conditionally on Ui.
Proposition 1. Consider the additive noise model: X = UV >+W where {Ui}Ni=1 are i.i.d samples,
W ∈ RN×p contains independent noisy entries with mean 0 and variance σ2

w, and entries in W are
independent with {Ui}Ni=1. Suppose that r, p are fixed and p < N . As N →∞, the asymptotic bias
of least squares estimator in linear regression of Yi on Xi and Ti has the following form:

E(TiUi)E(U>i Ui)
−1[ 1

σ2
w
V >V + E(U>i Ui)

−1]−1α

E(T 2
i )− E(TiUi)[(

1
σ2
w
V >V )−1 + E(U>i Ui)]

−1E(U>i Ti)
(1)

Corollary 1.1. The asymptotic bias (1) diminishes to 0 when σmin(V )→∞.

Corollary 1.1 suggests an important fact: collecting a large number of noisy covariates is an effective
remedy for the bias induced by measurement noise, as long as the noisy covariates are sufficiently
informative about the confounders. The condition σmin(V )→∞ requires that all confounders have
asymptotically infinitely many proxies as p→∞.2 Surprisingly, in this independent additive noise
case, the asymptotic bias (1) is even nearly optimal: it is identical to the optimal asymptotic bias we
would have if we knew the unobservable V (Proposition 2, Appendix A). In the rest of the paper, we
further exploit this fact by using matrix factorization preprocessing which adapts to missing values,
heterogenenous data types and more general noise models.

2.3 Low rank matrix factorization preprocessing

In this paper, we propose to recover the latent confounders {Ui}Ni=1 from noisy and incomplete
observations of X by using low rank matrix factorization methods, which rely on the assumption:
Assumption 2 (Low Rank Matrix). The full matrix X is a noisy realization of a low rank matrix
Φ ∈ RN×p with rank r � min{N, p}.

In the context of causal inference, Assumption 2 corresponds to the surrogate-rich setting where many
proxies are used for a small number of latent confounders. For example, we have access to IQ test
scores, coursework grades, academic achievements and other proxies for the unobserved confounder
intelligence. Under the generative model in section 2.1, Assumption 2 implies that Φ = UV T where
U = [U1, ..., UN ]> is the confounder matrix and V = [V1, ..., Vp]

T is the covariate loading matrix.
Although this assumption is unverifiable, low rank structure is shown to pervade in many domains
such as images [11], customer preferences [10], healthcare [12], etc. The recent work by Udell and
Townsend [24] provides theoretical justifications that low rank structure arises naturally from a large
class of latent variable models.

Moreover, low rank matrix factorization methods usually assume the Missing Completely at Random
(MCAR) setting where the observed entries are sampled uniformly at random [8, 25].
Assumption 3 (MCAR). ∀(i, j) ∈ Ω, i ∼ uniform([N ]) and j ∼ uniform([p]) independently and
the sampling is independent with the measurement noise.

Our paper takes the Exponential Family Matrix Completion (EFMC) as a concrete example, which
further assumes exponential family noise mechanism for the measurement noise [8].

2For example, suppose the number of confounders is r = 2 and V =

[
1 0 0 . . . 0
0 1 1 . . . 1

]>
. Then only

the first covariate is a noisy proxy for the first confounder and σmin(V ) = 1 <∞ for any p.
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Assumption 4 (Natural Exponential Family). Suppose that each entry Xij is drawn independently
from the corresponding natural exponential family with Φij as the natural parameter:

P(Xij |Φij) = h(Xij) exp(XijΦij −G(Φij))

where h : R → R is any function and G : R → R (called the log-partition function) is a strictly
convex analytic function with∇2G(u) ≥ e−η|u| for some η > 0.

Exponential family encompass a wide variety of distributions like Gaussian, Poisson, Bernoulli,
which are extensively used for modelling different data types [26]. For example, if Xij takes binary
values ±1, then we can model it using Bernoulli distribution: P(Xij | Φij) = σ(XijΦij).

EFMC estimates Φ by the following regularized M-estimator:

Φ̂ = min‖Φ‖max≤ α∗√
Np

Np
|Ω| [
∑

(i,j)∈Ω− logP(Xij |Φij)] + λ‖Φ‖? (2)

The estimator in (2) involves solving a convex optimization problem, whose solution can be found
efficiently by many off-the-shelf algorithms [27]. The nuclear norm regularization encourages a
low-rank solution: the larger the tuning parameter λ, the smaller the rank of the solution Φ̂. In
practice, λ is usually selected by cross-validation. Moreover, the constraint ‖Φ‖max ≤ α∗√

Np
appears

merely as an artifact of the proof and it is recommended to drop this constraint in practice [28]. It can
be proved that under Assumptions 2− 4 and some regularity assumptions the relative reconstruction
error of Φ̂ converges to 0 with high probability (Lemma 4, Appendix A). Furthermore, EFMC can be
extended by using a rich library of loss functions and regularization functions [18, 29].

We use the left singular matrix of Φ̂ corresponding to nonzero singular values to estimate the column
space of the confounder matrix U . Although Û has orthonormal columns, the original confounders
are allowed to be correlated (Assumption 5). The estimated confounder space matrix Û is then used
in place of the covariate matrix for subsequent causal inference methods (e.g., regression adjustment,
propensity reweighting, matching, etc.). Admittedly, only the column space of the confounder matrix
U can be identified, and any nonsingular linear transformation of Û is a valid estimator. However,
this suffices for many causal inference techniques. For example, regression adjustment methods
based on linear regression [7], polynomial regression, neural networks trained by backpropagation
[30], propensity reweighting or propensity matching using propensity score estimated by logistic
regressions, and Mahalanobis matching are invariant to nonsingular linear transformations. Moreover,
the invariance to linear transformation and scale-free property is important since the latent confounders
may be abstract without commonly acknowledged scale or units (e.g., intelligence).

3 Theoretical guarantee

In this section, we derive an error bound for the ATE estimator induced by EFMC preprocessing (2)
in linear regression setting. Proofs are deferred to Appendix A.

Consider the linear regression model in Section 2.2. Suppose that we use EFMC preprocessing and
linear regression for causal inference, which leads to the ATE estimator τ̂ . It is well known that the
accuracy of τ̂ relies on how well the estimated column space col(Û) approximates the column space
of true confounder matrix col(U). Ideally, if col(Û) aligns with col(U) perfectly, then τ̂ is identical
to the least squares estimator based on true confounders and is thus consistent. We introduce the
following distance metric between two column spaces [31]:

Definition 1. Consider two matrices M̂ ∈ RN×k and M ∈ RN×r with orthonormal columns, the
principal angle between their column spaces is defined as

∠(M, M̂) =

√
1− σ2

r∧k(M̂>M)

This metric measures the magnitude of the “angle” between two column spaces. For example,
∠(M, M̂) = 0 if col(M) = col(M̂) while ∠(M, M̂) = 1 if they are orthogonal.
Theorem 1. Assume the following assumptions hold:

(a) ‖α‖max ≤ A for a positive constant A;
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(b) 1√
Nr
‖U‖ is bounded above for any N ;

(c) Ui is almost surely not linearly dependent with Ti;

(d) r∠(Û , U)→ 0 as N → 0;

(e) unconfoundedness (Assumption 1).

Then there exists a constant c > 0 such that with probability at least 1− 2 exp(−cN1/2),

|τ̂ − τ∗| ≤
( 2A√

N
‖T‖)( 1√

Nr
‖U‖)(r∠(U, Û))

1
N T
>(I − PU )T − 2

N ‖T‖2∠(U, Û)

N→∞−→ 0 (3)

In the above theorem, assumption (c) rules out multicollinearity between the treatment and the
confounders, which is necessary for identifying ATE. This assumption guarantees that 1

N T
>(I −

PU )T in (3) is bounded away from 0 for any N (Lemma 5, Appendix A). Assumption (d) states that
col(Û) should converge to col(U)with rate faster than 1/r to guarantee consistency of the resulting
ATE estimator. Theorem 1 shows that bounding the ATE estimation error requires bounding ∠(U, Û),
i.e., the error of estimating col(U) in matrix factorization. In the following theorem, we derive an
upper bound on the column space estimation error for EFMC (2).
Theorem 2. Assume that the following assumptions hold:

(a) Assumption 1 - 4 (Unconfoundedness, Low Rank Matrix, Missing Completely at Random,
Natural Exponential Family);

(b) Xij is sub-Exponential conditionally on Ui for any (i, j);

(c) For Φ = UV >, σr(Φ)
σ1(Φ) is bounded away from 0;

(d) Û is estimated by EFMC (2) with λ = 2c0σ
′√Np

√
rN logN
|Ω| , where N = N ∨ p and

|Ω| > c1rN logN for positive constants c0 and c1;

Then the following holds with probability at least 1− 4e−2 log2 N̄ − e−2 log N̄ :

∠(Û , U) ≤
c2αsp(Φ)

√
r3N̄ log N̄
|Ω|

σr(Φ)
σ1(Φ) − c2αsp(Φ)

√
r3N̄ log N̄
|Ω|

∧ 1 (4)

where c2 > 0 is a constant and αsp(Φ) =
√
Np‖Φ‖max

‖Φ‖F is the spikeness ratio of Φ = UV >.

Theorem 2 shows that the column space estimation error of EFMC depends on two critical quantities:
αsp(Φ) and σr(Φ)

σ1(Φ) . The spikeness ratio αsp(Φ) is a standard measure quantifying the ill-posedness
of matrix factorization problems [8, 32]. Small αsp(Φ) is necessary for accurate matrix estimation
error for matrix factorization, i.e., small ‖Φ̂− Φ‖ (Lemma 6, Appendix A). Moreover, nonvanishing
σr(Φ)
σ1(Φ) means that Φ does not lose information of any direction in col(U), and thus guarantees that

small matrix estimation error ‖Φ̂− Φ‖ translates into small column space estimation error ∠(Û , U)
(Lemma 7, Appendix). Next we introduce some generative assumptions on confounder matrix U and
covariate loading matrix V . Under these assumptions, EFMC accurately estimates the column space
of confounder matrix U such that r∠(U, Û)→ 0, and thus results in accurate ATE estimator.
Assumption 5 (Latent Confounders and Covariate Loadings). U and V satisfy the following for
some positive constants v, v, cV and cL:

(a) For i ∈ [N ], Ui are i.i.d Gaussian samples with covariance matrix Σr×r = LL> for some
full rank matrix L ∈ Rr×r such that 1√

r
‖L‖ < cL;

(b) vp ≤ σ2
r(V L>) ≤ σ2

1(V L>) ≤ vp and maxj ‖Vj‖
‖V ‖F ≤ cV√

p , j = 1, ..., p.
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Assumption 5(a) specifies a Gaussian distribution for latent confounders, which implies assumption
(b) in Theorem 1 with high probability (Lemma 10, Appendix A). It also assumes without loss of
generality that the latent confounders are not perfectly linearly correlated. Moreover, Assumption 5(b)
exludes the case where almost all covariates have vanishing loadings on the latent confounders. 3 In
this case, the collected covariates are not informative enough for recoverying the latent confounders.
Theorem 3. Suppose that r/N → 0 and ∃δ > 0 such that p1+δ/N → 0. Under the Assumption 5,
there exist positive constants c3 − c5 such that

• αsp(Φ) ≤ c3cV
√
r ∨ logN with probability at least 1−N−1/2 − 2 exp(−c4N1/2);

• σr(Φ)
σ1(Φ) ≥

√
v

v+2v with high probability 1− 2 exp(−c5pδ);

If we further assume the assumptions in Theorem 2 and that ‖α‖max ≤ A, then for a constant C > 0,

|τ̂ − τ∗| ≤
2AC

√
r5rN̄ log N̄
|Ω|

1
N T
>(I − PU )T

[√ v
v+2v − Λ(r,N, |Ω|)

]
− 2Λ(r,N, |Ω|)

,

where Λ(r,N, |Ω|) = C
√

r̄r3N logN
|Ω| and r = r ∨ logN .

The assumption that p1+δ/N → 0 appears as an artifact of proof and our simulation shows that
the consistency also holds when N < p (Figure 3, Appendix B). Theorem 3 guarantees that the
ATE estimator induced by EFMC is consistent as long as r5rN logN/|Ω| → 0 when N, p →
∞. This seems much more restrictive than consistent matrix reconstruction that merely requires
rN logN/|Ω| → 0 (Lemma 6, Appendix A). However, this is due to the pessimistic nature of the
error bound. Our simulations in Section 4.1 show that matrix factorization works very well for r = 5,
N = 1500 and p = 1450 such that r6 � N .

4 Numerical results

In this section, we show that low rank matrix factorization effectively reduces the ATE estimation
error caused by measurement noise using two experimental settings: 1) synthetic datasets with both
continuous and binary covariates and 2) the twins dataset introduced by Louizos et al. [9]. To
implement matrix factorization, we use the following nonconvex formulation:

Û , V̂ = argmin
U∈RN×k,V ∈Rp×k

∑
(i,j)∈Ω Li,j(Xij , U

>
i Vj) + λ

2 (‖U‖F + ‖V ‖F ) (5)

where Lij is a loss function assessing how well U>i Vj fits the observation Xij for (i, j) ∈ Ω. The
solution Û is an estimator for the confounder space. This nonconvex formulation (5) is proved to
equivalently recover the solution of the convex formulation (2) when log-likelihood loss functions
and sufficient large k are used [18, 28]. Solving the nonconvex formulation (5) approximately is
usually much faster than solving the convex counterpart. In our experiments, we use the the R
package softImpute [33] for continuous covariates and quadratic loss, the R package logisticPCA [34]
for binary covariates and logistic loss, and the Julia package LowRankModels [18] for categorical
variables and multinomial loss. All tuning parameters are chosen via 5-fold cross-validation.

4.1 Synthetic experiment

We generate synthetic samples according to the following linear regression process: Yi | Ui, Ti ∼
N (α>Ui + τTi, 1) where confounder Uij ∼ N (0, 1) and treatment variable Ti | Ui ∼
Bernoulli(σ(β>Ui)) for i ∈ [N ], j ∈ [r]. We consider covariates generated from both in-
depedent Gaussian noise and independent Bernoulli noise: Xij ∼ N (U>i Vj , 5) and Xij ∼

3For example, if only nV noisy covariates have nonvanishing loadings on the confounders, and their loading
vectors have norms of similar order, then ‖V ‖F =

√∑p
j=1 ‖Vj‖2 ≈

√
nV maxj ‖Vj‖, so maxj ‖Vj‖

‖V ‖F
≈ 1√

nV
.

When limp→∞ nV /p→ 0, i.e., almost all covariates have vanishing loading, Assumption 5(b) is violated.
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Figure 2: Estimation error for different ATE estimators with Gaussian and Binary proxy variables .

Bernoulli(σ(U>i Vj)) for Vj ∈ Rr. We set the dimension of the latent confounders r = 5, use
α = [−2, 3,−2,−3,−2] and β = [1, 2, 2, 2, 2], and choose τ = 2 in our example. (But our conclu-
sion is robust to different values of these parameter.) We consider low dimensional case where the
number of covariates p varies from 100 to 1000 and the sample size N = 2p and high dimensional
case where p varies from 150 to 1500 and N = p+50. For each dimensional setting, we compute the
error metrics based on 50 replications of the experiments and we generate entries of V independently
from standard normal distribution with V fixed across the replications.

We compare the root mean squared error (RMSE) scaled by the true ATE in Figure 2 for the following
five ATE estimators in linear regression: the Lasso, Ridge and OLS estimators from regressing
Yi on Ti and noisy covariates Xi, the OLS estimator from regressing Yi on Ti and the estimated
confounders Ûi from matrix factorization (MF), and the OLS estimator from regressing Yi on Ti and
the true confounders Ui (Oracle). The shaded area corresponds to the 2-standard-deviation error band
for the estimated relative RMSE across 50 replications.

Figure 2 shows that OLS leads to accurate ATE estimation for Gaussian additive noise when the
number of covariates is sufficiently large, which is consistent with Corollary 1.1. However, for
high dimensional data, matrix factorization preprocessing dominates all other feasible methods and
its RMSE is very close to the oracle regression for sufficiently large number of covariates. While
all feasible methods tend to have better performance when more covariates are available, matrix
factorization preprocessing is the most effective in exploiting the noisy covariates for accurate causal
inference. Sufficiently many noisy covariates are very important for accurate ATE estimation in the
presence of measurement noise. We can show that the error does not converge when onlyN grows but
p is fixed (Figure 6, Appendix B). With only a few covariates, matrix factorization preprocessing may
have high error because the cross-validation chooses rank smaller than the ground truth. Furthermore,
the gain from using matrix factorization is more dramatic for binary covariates, which demonstrates
the advantage of matrix factorization preprocessing with loss functions adapting to the data types.
More numerical results on different dimensional settings and missing data can be found in Appendix.

4.2 Twin mortality

We further examine the effectiveness of matrix factorization preprocessing using the twins dataset
introduced by Louizos et al. [9]. This dataset includes information for N = 11984 pairs of twins
of same sex who were born in the USA between 1998-1991 and weighted less than 2kg. For the
ith twin-pair, the treatment variable Ti corresponds to being the heavier twin and the outcomes
Yi(0), Yi(1) are the mortality in the first year after they were born. We have outcome records for both
twins and view them as two potential outcomes for the treatment variable. Therefore, the −2.5%
difference between the average mortality rate of heavier twins and that of ligher twins can be viewed
as the "true" ATE. This dataset also includes other 46 covariates relating to the parents, the pregnancy
and birth for each pair of twins. More details about the dataset can be found in Louizos et al. [9].

To simulate confounders in observational studies, we follow the practice in Louizos et al. [9] and
selectively hide one of the two twins based on one variable highly correlated with the outcome:
GESTAT10, the number of gestation weeks prior to the birth. This is an ordinal variable with values
from 0 to 9 indicating less than 20 gestation weeks, 20− 27 gestation weeks and so on. We simulate
Ti | Ui ∼ Bernoulli(σ(5(Ui/10 − 0.1))), where Ui is the confounder GESTAT10. Then for each
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Figure 3: Left: estimation errors of different ATE estimators with no missing values. Right: estimation
error of ATE estimators based on matrix factorization and imputation methods when each entry of
the proxy variable matrix is missing with probability 30%.

twin-pair, we only observe the lighter twin if Ti = 0 and the heavier twin otherwise. We create noisy
proxies for the confounder as follows: we replicate the GESTAT10 p times and independently perturb
the entries of these p copies with probability 0.5. Each perturbed entry is assigned with a new value
sampled from 0 to 9 uniformly at random. We also consider the presence of missing values: we set
each entry as missing value independently with probability 0.3. We vary p from 5 to 50 and for each
p we repeat the experiments 20 times for computing error metrics.

We compare the performance of different methods for both complete data and missing data in Figure 3.
For complete data, we consider logistic regression (LR), doubly robust estimator (DR), Mahalanobis
matching (Match) and propensity score matching (PS Match) using noisy covariates, and their
counterparts using the estimated confounders from matrix factorization. All propensity scores are
estimated by logistic regression using noisy covariates or estimated confounders accordingly. The
matching methods are implemented via the full match algorithm in the R package optmatch [35]. For
missing data, we consider logistic regression using data output from different preprocessing method:
imputing missing values by column-wise mode, multiple imputation using the R package MICE with
5 repeated imputations [36], and the estimated confounders {Ûi}Ni=1 from matrix factorization. We
also discuss comparisons to [9] in Appendix C.

We can observe that all methods that use matrix factorization clearly outperform their counterparts
that do not, even though the noise mechanism does not obey common noise assumptions in matrix
factorization literature. In particular, the Mahalanobis matching (Match) benefits the most from matrix
factorization that simultaneously alleviates the measurement noise and reduces the dimension. The
effect of solely reducing measurement noise is shown in the result of the propensity score matching
where matching is based on the univariate propensity score and thus dimensionality is not the primary
issue. Our results also demonstrate that matrix factorization preprocessing can augment popular
causal inference methods beyond linear regression. Furthermore, matrix factorization preprocessing is
robust to a considerable amount of missing values and it dominates both the ad-hoc mode imputation
method and the state-of-art multiple imputation method. This suggests that inferring the latent
confounders is more important for causal inference than imputing the noisy covariates.

5 Conclusion

In this paper, we address the problem of measurement noise prevalent in causal inference. We show
that with a large number of noisy proxies, we can reduce the bias resulting from measurement noise by
using matrix factorization preprocessing to infer latent confounders. We guarantee the effectiveness
of this approach in a linear regression setting, and show its effectiveness numerically on both synthetic
and real clinical datasets. These results demonstrate that preprocessing by matrix factorization to
infer latent confounders has a number of advantages: it can accommodate a wide variety of data
types, ensures robustness to missing values, and can improve causal effect estimation when used in
conjunction with a wide variety of causal inference methods. As such, matrix factorization allows
more principled and accurate estimation of causal effects from observational data.
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