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ABSTRACT

We study a statistical method to estimate the optimality gap, as an assessment of the quality, of a given

solution for a stochastic optimization using limited data. Our approach is based on bootstrap aggregating

the resampled optimal values of sample average approximation (SAA), by connecting these SAA values

with the classical notion of symmetric statistics. We discuss how this approach works on general stochastic

optimization problems and is statistically more efficient than some previous methods. We substantiate our

findings with several numerical experiments.

1 INTRODUCTION

Consider a stochastic optimization problem

Z∗ = min
x∈Θ

{Z(x) = EF [h(x,ξ )]} (1)

where ξ ∈ Ξ is generated under some distribution F , and EF [·] denotes its expectation. In many situations,

F is not known, but instead a collection of i.i.d. data for ξ , say ξξξ 1:n = (ξ1, . . . ,ξn), are available. Obtaining

a good solution for (1) under this setting has been under active investigation both from the stochastic

community and the optimization community. Common methods include the sample average approximation

(SAA) (Shapiro et al. 2009), stochastic approximation (SA) or gradient descent (Kushner and Yin 2003;

Nemirovski et al. 2009), and (distributionally) robust optimization (Delage and Ye 2010; Bertsimas et al.

2017). These methods all aim to find a solution that is nearly optimal, or in some way provide a safe

approximation, for the problem (1).

In this paper, we take the view that a (good) solution, say x̂, is given to us. Our goal is to assess the

quality of x̂ using the data we have. This quality is measured by the optimality gap

G (x̂) = Z(x̂)−Z∗ (2)

in the sense that the smaller G (x̂) is, the closer is the solution x̂ to the true optimum in terms of achieved

objective value. More precisely, we are interested in drawing inference on G (x̂), by using potentially

limited data.

This problem is motivated by the fact that many state-of-the-art guarantees of the aforementioned

solution methods can only provide crude, worst-case performance bounds on the optimality guarantees.

For instance, Shapiro and Nemirovski (2005) and Kleywegt et al. (2002) provide large deviations bounds

on the optimality gap of SAA in terms of the diameter or cardinality of the decision space and the maximal

variance of the function h. Nemirovski et al. (2009) and Ghadimi and Lan (2013) provide bounds on

the expected value and deviation probabilities of optimality gaps of the SA iterates in terms of the strong
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convexity parameters, space diameter and maximal variance. These bounds can be refined under additional

structural information (e.g., Shapiro and Homem-de Mello 2000). However, while they are very useful

in understanding the behaviors of the optimization procedures, using them as a precise assessment on the

quality of an obtained solution may be conservative. Because of this, a stream of work Shapiro (2003),

Mak et al. (1999), Bayraksan and Morton (2006), Lan et al. (2012), Stockbridge and Bayraksan (2013),

Bayraksan and Morton (2011) study approaches to validate given solutions. Our investigation in this paper

follows this latter line of work, focusing on situations when data are limited and hence the statistical

efficiency of the validation scheme becomes important.

We discuss more precisely our target quantity. Given x̂, we aim to construct an upper confidence bound

for G (x̂). The reason why we focus on upper bound (instead of lower bound) is that it provides a way

to screen out bad solutions, while the lower bound cannot do so (because a small lower bound does not

translate to a belief of a small gap and a good solution quality). So from a risk perspective, the upper

bound is the more important direction to investigate.

The crux of this problem is the estimation of the optimal value, Z∗, i.e., finding a lower confidence

bound for Z∗, which arises in the second term in (2). Assuming ξξξ 1:n are independent of x̂, then the first

term, namely Z(x̂), can be estimated as a standard population mean since x̂ is assumed fixed (i.e., a 1−α
level confidence interval for Z(x̂) is simply (1/n)Z̄(x̂)± z1−α/2σ(x̂)/

√
n where Z̄(x̂) = ∑

n
i=1 h(x̂,ξi) and

σ2(x̂) = 1/(n−1)∑
n
i=1(h(x̂,ξi)− Z̄(x̂))2 are the sample mean and variance of h evaluated at x̂). On the other

hand, Z∗ involves operations much more complex than taking the mean. Thus the bulk of our discussion

throughout this paper is on estimating Z∗.

Finally, we discuss whether our investigated setting applies when x̂ is constructed using a data set that

is the same or contains some of ξξξ 1:n. In fact, estimating Z∗ can utilize any of the data in constructing x̂,

whereas the data in estimating Z(x̂) need to be independent from those for constructing x̂ to get a valid

upper bound. Then, through a Bonferroni correction, we can obtain a valid lower bound for Z∗ and upper

bound for Z(x̂) simultaneously. From this view, in a typical problem setting, the amount of data available

for inferring Z∗ is at least as much as that for finding x̂.

As our main contribution, we propose a resampling method based on bootstrap aggregating to estimate

a lower confidence bound for Z∗. This approach works for a general class of cost function h and decision

space Θ (e.g., it does not require Lipschitz continuity of h needed in invoking the classical asymptotic

theory of SAA). In particular, it utilizes a general optimistic bound that exchanges the minimization

and the expectation operators for SAA problems, which has been studied and used by, e.g., Mak et al.

(1999) in designing estimation schemes based on data batching. By connecting an SAA problem with the

classical notion of symmetric statistics, we show that simple recycling, i.e., resampling, of data can achieve

greater statistical efficiency asymptotically. We demonstrate how this scheme can be viewed as a bootstrap

aggregating (or so-called bagging, see Breiman 1996) procedure, and explain the mechanism and root of

its efficiency in the estimation of Z∗.

2 USING ASYMPTOTICS OF SAMPLE AVERAGE APPROXIMATION

We first motivate the need for methods beyond the classical theory of SAA. When the cost function h is

well-conditioned, then, in a sense, a central limit theorem (CLT) governs the behavior of the estimated

optimal value in SAA, namely

Theorem 1 (Adopted from Theorem 5.7 in Shapiro et al. 2009) Suppose, a.s. in ξ , h(·,ξ ) is Lipschitz

continuous in the sense

‖h(x,ξ )−h(y,ξ )‖ ≤ L(ξ )‖x− y‖
for any x,y ∈ Θ and L(ξ ) such that E[L(ξ )2]< ∞. Suppose that E[h(x̃,ξ )2]< ∞ for some point x̃ ∈ Θ, Θ

is compact, and there is a unique optimal solution x∗ to problem (1). Given i.i.d. data ξξξ 1:n = (ξ1, . . . ,ξn),
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consider the SAA problem

Ẑn = min
x∈Θ

{
Z̄(x) =

1

n

n

∑
i=1

h(x,ξi)

}
. (3)

The SAA optimal value Ẑn satisfies

√
n(Ẑn −Z∗)⇒ N(0,σ2) (4)

where σ2 =Var(h(x∗,ξ )) and ⇒ denotes convergence in distribution.

Theorem 1 stipulates that, under the depicted conditions, one can use

Ẑn − z1−α/2

σ̂√
n

(5)

as a valid lower confidence bound for Z∗, where σ̂2 = (1/(n−1))∑
n
i=1(h(x̂

∗,ξi)− Ẑn)
2, with x̂∗ being an

optimal solution of (3), is the empirical estimate of σ2.

However, there are several reasons why one would need a method beyond the one offered by Theorem

1. When there are multiple optimal solutions, then the limit in (4) is the infimum of a Gaussian process

instead of merely a Gaussian random variable, making inference on Z∗ more challenging. Moreover, some

common classes of optimization problems (e.g., integer programming) may not satisfy the continuity needed

in the theorem. Ideally, we would like a method that is more general than in using Theorem 1.

3 EXISTING BATCHING PROCEDURES

To circumvent the limitations of Theorem 1, one approach is to use the optimistic bound (Mak et al. 1999;

Shapiro 2003; Glasserman 2013)

E[Ẑn]≤ Z∗ (6)

where E[·] in (6) is taken with respect to the data in constructing the SAA value Ẑn. The bound (6) holds

for any n ≥ 1, a direct consequence from exchanging the expectation and the minimization operator in the

SAA.

The bound (6) offers a simple way to construct a lower bound for Z∗ in much greater generality

than Theorem 1. Note that the left hand side of (6) is a mean of SAA. Thus, if one can “sample” a

collection of SAA values, then a confidence bound for Z∗ can be constructed readily by using the standard

sample-mean-based procedure. To sample SAA values, an approach suggested by Mak et al. (1999) is to

batch the i.i.d. data set ξξξ 1:n into say m batches, each batch consisting of k observations, so that mk = n (we

ignore rounding issues). For each j = 1, . . . ,m, solve an SAA using the k observations in the j-th batch;

call this Ẑ
j

k . Then we can use

Z̃k − z1−α/2

σ̃√
m

(7)

where Z̃k = (1/m)∑
m
j=1 Ẑ

j

k and σ̃2 = (1/(m− 1))∑
m
j=1(Ẑ

j

k − Z̃k)
2 is the sample mean and variance from

Ẑ
j

k , j = 1, . . . ,m. This procedure is shown in Algorithm 1.

Note that the tightness of the obtained bound in this procedure depends on the choices of m and k. On

one hand, m must be chosen big enough, e.g., > 30, so that one can use the CLT to justify the approximation

(7). Moreover, the larger is m, the smaller magnitude is the standard error in the second term of (7). On

the other hand, the larger is k, the closer E[Ẑ j

k ] is to Z∗ in (6). This is thanks to a monotonicity property in

that E[Ẑn] is non-decreasing in n (Mak et al. 1999), and thus one would expect E[Ẑ j

k ], and hence Z̃k, to be

higher as k increases, leading to a tighter lower bound for Z∗. Therefore, there is a tradeoff between the

statistical accuracy controlled by m (in terms of the validity of the CLT and the magnitude of the standard

error term) and the tightness controlled by k (in terms of the position of E[Ẑ j

k ] in (6)). In the batching or
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Algorithm 1 The Batching Procedure from Mak et al. (1999)

Given n observations ξ1, . . . ,ξn, choose m,k such that mk = n

for j = 1 to m do

From {ξ( j−1)k+1, . . . ,ξ jk}, solve

Ẑ
j

k = min
x∈Θ

1

k

k

∑
i=1

h(x,ξ( j−1)k+i)

end for

Compute Z̃k =
1
m ∑

m
j=1 Ẑ

j

k and σ̃2 = 1
m−1 ∑

m
j=1(Ẑ

j

k − Z̃k)
2

Output Z̃k − z1−α/2
σ̃√
m

the so-called multiple-replication approach of Mak et al. (1999), this tradeoff is confined to the relation

mk = n.

Our proposed procedure that follows next breaks this tradeoff confinement. This procedure can be

compared to the single or double-replication procedure in Bayraksan and Morton (2006), which also does

so by generalizing the use of (5) to problems with multiple optimal solutions. Our procedure is more

general than Bayraksan and Morton (2006) in the aspect of removing the continuity requirement needed in

their scheme. However, to make our scheme fully efficient, we require, instead, smoothness conditions on

h with respect to the sample ξ (instead of the decision x). Our scheme can thus be viewed as “transferring”

the regularity requirement on the decision space to the sample space, and we do so by interpreting the

optimistic bound (6) from a bootstrap aggregating (or so-called bagging) framework. We should also note

that our procedure assumes adequate computing capacity to solve many SAA problems (i.e., the statistical

efficiency, instead of the optimization efficiency, is our main concern).

4 BOOTSTRAP AGGREGATING FOR ESTIAMTING OPTIMAL VALUES

Instead of batching the data into k samples per batch, we resample the data. Specifically, we repeatedly

solve many, say B, SAA problems, where each SAA problem consists of k resampled observations from

ξξξ 1:n. The resampling can be done with or without replacement (and we will discuss some differences in

the arising statistical performances between the two cases). The procedure is summarized in Algorithm 2.

The output of the procedure using Z̃
bag
k is an averaging of many bootstrap resampled SAA, which

resembles the bagging scheme (Breiman 1996). The quantity Ĉov∗(N∗
i , Ẑ

∗
k ) in (9) is the covariance between

the count of a specific observation ξi in a bootstrap resample, denoted N∗
i , and the resulting resampled

SAA value Ẑ∗
k . The quantity σ̃2

IJ = ∑
n
i=1 Ĉov∗(N∗

i , Ẑ
∗
k )

2 is an empirical version of the so-called infinitesimal

jackknife (IJ) estimator (Efron 2014), which has been used in the uncertainty quantification of bagging

schemes, including random forests or tree ensembles in machine learning (Wager et al. 2014). The

additional constant factor (n/(n− k))2 in the second line of (8) is a finite sample correction specific to

resampling without replacement, which has appeared in the context of random forests (Wager and Athey

2018). Although the IJ variance estimator is not affected by this factor in asymptotic sense, we find it

significantly improves finite sample performance of our method.

We explain how Algorithm 2 arises and its connection to bagging. In a nutshell, the Z̃
bag
k in Algorithm

acts as a point estimator for E[Ẑk] in (6), whereas σ̃2
IJ captures the standard error in using this point estimator.

Let us introduce a functional viewpoint and write

Wk(F) = EFk [Hk(ξ1, . . . ,ξk)] (10)
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Algorithm 2 Bagging-based Procedure

Given n observations ξξξ 1:n = {ξ1, . . . ,ξn}, select a positive integer k

for b = 1 to B do

Randomly sample ξξξ
b
k = (ξ b

1 , . . . ,ξ
b
k ) uniformly from ξξξ 1:n (with or without replacement), and solve

Ẑb
k = min

x∈Θ

1

k

k

∑
i=1

h(x,ξ b
i )

end for

Compute Z̃
bag
k = 1

B ∑
B
b=1 Ẑb

k and

σ̃2
IJ =

{
∑

n
i=1 Ĉov∗(N∗

i , Ẑ
∗
k )

2, if resampling is with replacement(
n

n−k

)2
∑

n
i=1 Ĉov∗(N∗

i , Ẑ
∗
k )

2, if resampling is without replacement
(8)

where

Ĉov∗(N
∗
i , Ẑ

∗
k ) =

1

B

B

∑
b=1

(Nb
i −

k

n
)(Ẑb

k − Z̃
bag
k ) (9)

and Nb
i is the number of ξi that shows up in the b-th resample

Output Z̃
bag
k − z1−α/2σ̃IJ

where

Hk(ξ1, . . . ,ξk) = min
x∈Θ

1

k

k

∑
i=1

h(x,ξi)

is the SAA value, expressed more explicitly in terms of the underlying data used. Here, the expectation

EFk [·] is generated with respect to i.i.d. variables (ξ1, . . . ,ξk), i.e., Fk denotes the product measure of k

F’s. For convenience, we denote E[·] as the expectation with respect to F or the product measure of F’s

when no confusion arises. Also, we denote Wk =Wk(F).
Under these notations, the optimistic bound (6) can be expressed as

Wk(F)≤ Z∗

with the best bound being W∞ = limk→∞Wk ≤ Z∗ thanks to the monotonicity property discussed before.

Suppose that we have used sampling with replacement in our bootstrap scheme in Algorithm 2. Also

say we use infinitely many bootstrap replications, i.e., B = ∞. Then, the estimator Z̃
bag
k in Algorithm 2

becomes precisely

Z̃
bag
k =Wk(F̂)

where F̂ is the empirical distribution formed by ξξξ 1:n, i.e., F̂(·) = (1/n)∑
n
i=1 δξi

(·) where δξi
(·) is the delta

measure at ξi. If Wk(·) is “smooth” in some sense, then one would expect Wk(F̂) to be close to Wk(F).
Indeed, Wk(F), expressed as the k-fold expectation under F in (10), is Gateaux differentiable from the

theory of von Mises statistical functionals (Serfling 2009). This gives in particular a CLT in approximating

Wk(F) using Wk(F̂).
Note that Wk(F̂) consists exactly of the average of Hk(ξi1 , . . . ,ξik) over all possible combinations of

{ξi1 , . . . ,ξik} drawn with replacement from ξξξ 1:n. This is equivalent to

Vn,k =
1

nk ∑
i j∈{1,...,n}, j=1,...,k

Hk(ξi1 , . . . ,ξik) (11)
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which is the so-called V -statistic. If we have used sampling without replacement in Algorithm 2, we arrive

at the estimator (assuming B = ∞)

Un,k =
1(
n
k

) ∑
(i1,...,ik)∈Ck

Hk(ξi1 , . . . ,ξik) (12)

where Ck denotes the collection of all subsets of size k in {1, . . . ,n}. The quantity (12) is known as the

U-statistic. The estimators (11) and (12) belong to the class of symmetric statistics (Serfling 2009; Van der

Vaart 2000), since the estimator is unchanged by shuffling the ordering of the data ξξξ 1:n. Symmetric statistics

generalize the sample mean, the latter corresponding to the case when k = 1.

When B < ∞, then Vn,k and Un,k above are approximated by a random sampling of the summands on

the right hand side of (11) and (12). These are known as incomplete V and U statistics (Serfling 2009;

Van der Vaart 2000). As B is chosen large enough, Z̃
bag
k will well approximate Vn,k and Un,k.

To discuss further, we make the following assumption:

Assumption 2 We have

E sup
x∈Θ

|h(x,ξ )|2 < ∞.

Assumption 2 implies that EHk(ξ1, . . . ,ξk)
2 < ∞ for any k, since

EHk(ξ1, . . . ,ξk)
2 ≤ 1

k2
E sup

x∈Θ

(
k

∑
i=1

h(x,ξi)

)2

≤ E sup
x∈Θ

|h(x,ξ )|2 < ∞

by the Minkowski inequality.

To state our next assumption, denote gk(ξ ) = E[Hk(ξ1, . . . ,ξk)|ξ1 = ξ ]. Denote Var(·) = VarF(·) as

the variance under F . We make the following assumption on gk:

Assumption 3 We have 0 <Var(gk(ξ ))< ∞.

Then we have the following result regarding the asymptotic of Un,k and Vn,k:

Theorem 4 Suppose k ≥ 1 is fixed, and Assumptions 2 and 3 hold. Then

√
n(Un,k −Wk)⇒ N(0,k2Var(gk(ξ )))

and √
n(Vn,k −Wk)⇒ N(0,k2Var(gk(ξ )))

as n → ∞, where N(0,k2Var(gk(ξ ))) is a normal distribution with mean 0 and variance k2Var(gk(ξ )).

Theorem 4 is a consequence of the classical CLT for symmetric statistics (e.g., Van der Vaart 2000).

The expression kgk(ξ ), as a function defined on the space Θ, is the so-called influence function of Wk(F),
which can be viewed as its functional derivative (Hampel 1974). Alternately, for a U-statistic Un,k, this

is the so-called Hajek projection (Van der Vaart 2000), which is the projection of the statistic onto the

subspace generated by the linear combinations of fi(ξi), i = 1, . . . ,n and any measurable function fi. It turns

out that these two views coincide, and the U- and V -statistics obey the same CLT as depicted in Theorem

4. Finally, the quantity σ̃2
IJ in Algorithm 2, an empirical IJ estimator, can be shown to approximate the

true variance k2Var(gk(ξ )) as n,B → ∞, by borrowing recent results in bagging (Efron 2014; Wager and

Athey 2018).

The discussion above holds for a fixed k, the sample size we use in obtaining the resampled SAA

values. It shows that, at least asymptotically, using with or without replacement does not matter. However,

with a bigger n, intuitively we can afford to use a bigger k without distorting the asymptotic behavior, and

this in turn allows us to get a tighter Wk = E[Ẑk] in the optimistic bound (6). The next section shows that

we could indeed do so to a certain extent.
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5 ASYMPTOTIC BEHAVIOR OF BAGGING-BASED PROCEDURES WITH GROWING RESAMPLE

SIZE

We first make the following strengthened version of Assumption 2:

Assumption 5 (L2+δ -bounded modulus of continuity) We have

E sup
x∈Θ

|h(x,ξ )−h(x,ξ ′)|2+δ < ∞

where ξ ,ξ ′ are i.i.d. generated from F .

We also make the following assumption:

Assumption 6 (Non-degeneracy) We have

P

(
min
x∈Θ

{h(x,ξ )−Z(x)}> 0

)
+P

(
E

[
min
x∈Θ

{h(x,ξ )−h(x,ξ ′)}
∣∣∣ξ ′
]
> 0

)
> 0 (13)

where ξ ,ξ ′ i.i.d.∼ F .

Assumption 5 can be a bit obscure. There are several sufficient conditions for Assumption 5, such as:

Assumption 7 (Uniform boundedness) h(·, ·) is uniformly bounded over Θ×Ξ.

Assumption 8 (Uniform Lipschitz condition) h(x,ξ ) is Lipschitz continuous with respect to ξ , where the

Lipschitz constant is uniformly bounded in x ∈ Θ, i.e.,

|h(x,ξ )−h(x,ξ ′)| ≤ L‖ξ −ξ ′‖

where ‖ · ‖ is some norm in Ξ. Moreover, E‖ξ‖2+δ < ∞.

Assumption 9 (Majorization)

|h(x,ξ )−h(x,ξ ′)| ≤ f (ξ )+ f (ξ ′)

where E f (ξ )2+δ < ∞.

That Assumption 7 implies Assumption 5 is straightforward. To see how Assumption 8 implies

Assumption 5, note that, if the former is satisfied, we have

E sup
x∈Θ

|h(x,ξ )−h(x,ξ ′)|2+δ ≤ L2+δ E‖ξ −ξ ′‖2+δ < ∞.

Similarly, Assumption 9 implies Assumption 5 because the former leads to

E sup
x∈Θ

|h(x,ξ )−h(x,ξ ′)|2+δ ≤ E( f (ξ )+ f (ξ ′))2+δ < ∞.

On the other hand, Assumption 6 roughly means that ξ is sufficiently mixed so that the optimal value

of a data-driven optimization problem with only one (or two) data point can deviate away from its mean.

This assumption holds, e.g., when Θ lies in a positive region in the real space that is bounded away from

the origin. The assumption can be somewhat stringent, but it can be relaxed in practical problems. For

example, one can replace Θ in (13) by a smaller region that can possibly contain any candidates of optimal

solutions.

An important consequence of this assumption is that it implies k2Var(gk(ξ )) is bounded away from 0

even as k grows, thus leading to a behavior similar to Assumption 3 for the finite k case.

Lemma 10 Suppose Assumption 2 holds. Assumption 6 implies that k2Var(gk(ξ )) > ε > 0 for some

constant ε , when k is sufficiently large.

We have the following result:
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Theorem 11 Suppose Assumptions 2, 5 and 6 hold. Then, for k = O(nγ) where γ < 1/2, we have

√
n(Un,k −Wk)

k
√

Var(gk(ξ ))
⇒ N(0,1)

and √
n(Vn,k −Wk)

k
√

Var(gk(ξ ))
⇒ N(0,1)

where N(0,1) is the standard normal variable.

Theorem 11 is an analog of Theorem 4 when k → ∞. We discuss its implications. First, there is a limit

in how large k we can take relative to n, which is thresholded at order
√

n (The U-statistic case can be

generalized slight to allow k = o(
√

n) instead of O(nγ) for γ < 1/2). We note that a symmetric statistic as

k → ∞ is known as an infinite-order symmetric statistic (Frees 1989), and Theorem 11 complements the

existing theory in this context, specializing to the case where the kernel, i.e., Hk(·), is precisely the SAA

value.

Next, we have the following result regarding the bias of Un,k and Vn,k:

Theorem 12 Under the same assumptions as Theorem 11, the bias of Un,k in estimating Wk is 0, whereas

the bias of Vn,k in estimating Wk is O((k2/n)l + k/n) where l is any fixed positive integer.

The zero-bias property of Un,k is trivial: Each summand in its definition is an SAA value with distinct

i.i.d. data, and thus has mean exactly Wk. On the other hand, the summands in Vn,k are SAA values

constructed from potentially repeated observations, which induces bias relative to Wk. In this sense, Un,k

is again more advantageous compared to Vn,k as k grows.

6 NUMERICAL EXPERIMENTS

In this section we provide numerical tests to demonstrate the validity of our resampling method and compare

its performance to the batching procedure (Mak et al. 1999) in the case of limited data. The stochastic

optimization problem we solve is the (1−α)-level conditional value at risk (CVaR) of a standard normal

variable ξ

min
x

{
x+

1

α
E[(ξ − x)+]

}

where (·)+ := max{·,0} denotes the positive part. We set α = 0.1, namely, we are solving for the 0.9-level

CVaR of the standard normal, whose true value can be calculated to be 1.755.

We use Algorithm 1, Algorithm 2 without replacement (U-statistic) and Algorithm 2 with replacement

(V -statistic) to compute a lower bound of the true optimal value with 95% confidence level. Specifically,

we first simulate an i.i.d. standard normal data set ξ1, . . . ,ξn, of size n, and then compute a lower bound of

CVaR using each of the three methods under different choices of resample size k. Note that for Algorithm

1, the parameter k refers to the batch size, and the number of batches m is automatically set to n/k once

given n and k. Also, since our main interest is the statistical efficiency, we set B, the number of resamples,

in Algorithm 2 to be sufficiently large (we use B = 5000) to offset the effect of Monte Carlo error in

estimating the covariances, which is in accordance with the assumption of adequate capacity in solving

the optimization problems.

The three methods are tested and compared under data size n = 50 (Table 1) and n = 300 (Table 2).

We draw 1000 realizations of the data, compute a lower confidence bound based on each of them, and then

average the results to estimate coverage probability, mean of the lower bound and standard deviation of the

lower bound. For a more complete comparison, two sets of results are provided for the batching procedure,

one using the critical value of standard normal, and the other (in parentheses) using t-distribution with

m−1 degrees of freedom to enhance finite-sample performances as suggested in Mak et al. (1999).
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The two tables show that for a wide range of resample sizes, from 10 to more than half of the data

size, our bagging-based procedure generates statistically valid lower bounds in the sense that the coverage

probabilities are equal to or above the nominal value 95%. The results also verify the relation between the

resample size k and tightness of the optimistic bound (6). To be specific, in both tables, as the resample

size k grows, the mean of the lower bound gets closer to the true optimal value 1.755. In particular, in the

case of n = 300 both the U-statistic and V -statistic approaches can provide a lower bound as good as 1.55

with coverage probability 97%-98% by using k = 100,150,250. Therefore, with the resampling procedure,

one can obtain a relatively tight bound for the optimal value and in the meantime retain good statistical

accuracy, by using a resample size k that is roughly half the data size. The good performance for such a

large k also hints that the choice of k in Theorem 11 can be pushed larger in this example, likely because

the considered performance function is quite smooth in the decision variable.

On the other hand, such a balance may not be easy to establish for the batching procedure because

of the trade-off discussed in Section 3, especially when the data size is small. When the standard normal

critical value is used, batching procedure either loses statistical accuracy when k is chosen large (coverage

drops to 92% when n = 50, and 86% when n = 300), or generating relatively loose bounds (1.12 versus

1.26 when n = 50) when k is chosen small. As a result, a good choice of k may not be even possible to

have when n is small (e.g., 50); when n is larger, good choices of k can exist, e.g. the case k = 50 in Table

2, but they are in general not known beforehand. The statistical accuracy seems to be improved when the t

critical value is used, as all choices of k now lead to valid coverages under both sample sizes. However, the

bounds get loose when k is chosen to be too small (because of the looseness of the optimistic bound (6)),

and too large as well in this case (because of a small degree of freedom in the considered t-distribution

that results in a large standard error).

Lastly, note that when n = 50 our resampling approaches with k = 25,40 outperform all the cases of

the batching approach, in terms of either statistical accuracy or tightness of the bound. This reveals that

the issue of tightness and statistical accuracy trade-off becomes severer when there are limited data, and

highlights the benefits of our bagging procedures in these situations.

Table 1: n = 50. “mean” and “std.” represent the mean and standard deviation of the confidence bound.

Batching with z-value (t-value) U-statistic V -statistic

k coverage(%) mean std. coverage(%) mean std. coverage(%) mean std.

10 99.0(99.4) 1.12(1.00) 0.27(0.29) 99.4 1.16 0.22 99.7 1.16 0.20

25 92.1(97.1) 1.29(0.36) 0.34(0.96) 98.9 1.23 0.22 99.6 1.23 0.21

40 NA NA NA 98.6 1.26 0.23 98.5 1.26 0.23

Table 2: n = 300. “mean” and “std.” represent the mean and standard deviation of the confidence bound.

Batching with z-value (t-value) U-statistic V -statistic

k coverage(%) mean std. coverage(%) mean std. coverage(%) mean std.

10 100(100) 1.37(1.36) 0.10(0.10) 100 1.38 0.09 100 1.38 0.08

30 98.4(99.1) 1.50(1.48) 0.11(0.11) 99.8 1.50 0.09 99.5 1.51 0.09

50 97.3(97.8) 1.53(1.50) 0.11(0.12) 98.7 1.53 0.10 98.9 1.52 0.10

100 92.6(96.9) 1.58(1.44) 0.13(0.19) 97.9 1.55 0.10 98.0 1.55 0.09

150 86.2(96.1) 1.59(1.20) 0.15(0.42) 98.0 1.55 0.10 97.6 1.55 0.10

250 NA NA NA 96.9 1.55 0.10 98.1 1.56 0.10
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7 CONCLUSION

We have studied a bagging approach to estimate bounds for the optimal value, and consequently also

the optimality gap, for stochastic optimization problems under minimal assumptions. Our motivation is

that for many of these problems classical CLT convergences may fail to hold. Our approach is based on

an established universal optimistic bound for SAA. Previous approaches that use batching to utilize this

bound can run into a trade-off between tightness and statistical accuracy that is difficult to control when

the sample size is small. We proposed a resampling-based method that views the optimistic bound as a

target quantity estimated by symmetric statistics, which can be cast as bagging procedures and lead to

less sample size requirements than batching. We explained how our method succumbs to a CLT without

any smoothness conditions on the objective function. We also investigated convergences when the batch

size grows relative to the sample size, which requires smoothness assumptions with respect to the sample

space, a property orthogonal to existing approaches that impose smoothness to the decision. Lastly, we

numerically demonstrated the benefits of our approach in improving the overall tightness-accuracy balance,

especially in small-sample situations. Future work includes investigations taking into account computational

considerations and further comparisons with other potential techniques.

ACKNOWLEDGMENTS

We gratefully acknowledge support from the National Science Foundation under grants CMMI-1542020,

CMMI-1523453 and CAREER CMMI-1653339/1834710.

REFERENCES

Bayraksan, G., and D. P. Morton. 2006. “Assessing Solution Quality in Stochastic Programs”. Mathematical

Programming 108(2-3):495–514.

Bayraksan, G., and D. P. Morton. 2011. “A Sequential Sampling Procedure for Stochastic Programming”.

Operations Research 59(4):898–913.

Bertsimas, D., V. Gupta, and N. Kallus. 2017. “Robust Sample Average Approximation”. Mathematical

Programming doi:10.1007/s10107-017-1174-z.

Breiman, L. 1996. “Bagging Predictors”. Machine Learning 24(2):123–140.

Delage, E., and Y. Ye. 2010. “Distributionally Robust Optimization Under Moment Uncertainty with

Application to Data-Driven Problems”. Operations Research 58(3):595–612.

Efron, B. 2014. “Estimation and Accuracy After Model Selection”. Journal of the American Statistical

Association 109(507):991–1007.

Frees, E. W. 1989. “Infinite Order U-Statistics”. Scandinavian Journal of Statistics 16(1):29–45.

Ghadimi, S., and G. Lan. 2013. “Stochastic First- and Zeroth-Order Methods for Nonconvex Stochastic

Programming”. SIAM Journal on Optimization 23(4):2341–2368.

Glasserman, P. 2013. Monte Carlo Methods in Financial Engineering, Volume 53. Springer Science &

Business Media.

Hampel, F. R. 1974. “The Influence Curve and Its Role in Robust Estimation”. Journal of the American

Statistical Association 69(346):383–393.

Kleywegt, A. J., A. Shapiro, and T. Homem-de Mello. 2002. “The Sample Average Approximation Method

for Stochastic Discrete Optimization”. SIAM Journal on Optimization 12(2):479–502.

Kushner, H., and G. G. Yin. 2003. Stochastic Approximation and Recursive Algorithms and Applications,

Volume 35. Springer Science & Business Media.

Lan, G., A. Nemirovski, and A. Shapiro. 2012. “Validation Analysis of Mirror Descent Stochastic Approx-

imation Method”. Mathematical Programming 134(2):425–458.

Mak, W.-K., D. P. Morton, and R. K. Wood. 1999. “Monte Carlo Bounding Techniques for Determining

Solution Quality in Stochastic Programs”. Operations Research Letters 24(1-2):47–56.



Lam and Qian

Nemirovski, A., A. Juditsky, G. Lan, and A. Shapiro. 2009. “Robust Stochastic Approximation Approach

to Stochastic Programming”. SIAM Journal on Optimization 19(4):1574–1609.

Serfling, R. J. 2009. Approximation Theorems of Mathematical Statistics, Volume 162. John Wiley & Sons.

Shapiro, A. 2003. “Monte Carlo Sampling Methods”. In Stochastic Programming, edited by A. Ruszczynski

and A. Shapiro, Volume 10 of Handbooks in Operations Research and Management Science, 353–425.

Elsevier.

Shapiro, A., and T. Homem-de-Mello. 2000. “On the Rate of Convergence of Optimal Solutions of Monte

Carlo Approximations of Stochastic Programs”. SIAM Journal on Optimization 11(1):70–86.

Shapiro, A., and A. Nemirovski. 2005. “On Complexity of Stochastic Programming Problems”. In Continuous

Optimization: Current Trends and Modern Applications, edited by V. Jeyakumar and A. Rubinov, 111–

146. Boston, MA: Springer US.
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