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Abstract

We present a new approach to the problems of evaluating and learning personalized
decision policies from observational data of past contexts, decisions, and outcomes.
Only the outcome of the enacted decision is available and the historical policy is
unknown. These problems arise in personalized medicine using electronic health
records and in internet advertising. Existing approaches use inverse propensity
weighting (or, doubly robust versions) to make historical outcome (or, residual)
data look like it were generated by a new policy being evaluated or learned. But this
relies on a plug-in approach that rejects data points with a decision that disagrees
with the new policy, leading to high variance estimates and ineffective learning. We
propose a new, balance-based approach that too makes the data look like the new
policy but does so directly by finding weights that optimize for balance between the
weighted data and the target policy in the given, finite sample, which is equivalent
to minimizing worst-case or posterior conditional mean square error. Our policy
learner proceeds as a two-level optimization problem over policies and weights.
We demonstrate that this approach markedly outperforms existing ones both in
evaluation and learning, which is unsurprising given the wider support of balance-
based weights. We establish extensive theoretical consistency guarantees and regret
bounds that support this empirical success.

1 Introduction

Using observational data with partially observed outcomes to develop new and effective personalized
decision policies has received increased attention recently [1, 7, 8, 13, 23, 29, 41–43, 45]. The
aim is to transform electronic health records to personalized treatment regimes [6], transactional
records to personalized pricing strategies [5], and click- and “like”-streams to personalized advertising
campaigns [8] – problems of great practical significance. Many of the existing methods rely on a
reduction to weighted classification via a rejection and importance sampling technique related to
inverse propensity weighting and to doubly robust estimation. However, inherent in this reduction
are several shortcomings that lead to reduced personalization efficacy: it involves a naïve plug-in
estimation of a denominator nuisance parameter leading either to high variance or scarcely-motivated
stopgaps; it necessarily rejects a significant amount of observations leading to smaller datasets in
effect; and it proceeds in a two-stage approach that is unnatural to the single learning task.

In this paper, we attempt to ameliorate these by using a new approach that directly optimizes for the
balance that is achieved only on average or asymptotically by the rejection and importance sampling
approach. We demonstrate that this new approach provides improved performance and explain why.
And, we provide extensive theory to characterize the behavior of the new methods. The proofs are
given in the supplementary material.

1.1 Setting, Notation, and Problem Description

The problem we consider is how to choose the best of m treatments based on an observation of
covariates x 2 X ✓ Rd (also known as a context). An instance is characterized by the random
variablesX 2 X and Y (1), . . . , Y (m) 2 R, whereX denotes the covariates and Y (t) for t 2 [m] =
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{1, . . . ,m} is the outcome that would be derived from applying treatment t. We always assume that
smaller outcomes are preferable, i.e., Y (t) corresponds to costs or negative rewards.

A policy is a map ⇡ : X ! �m from observations of covariates to a probability vector in the
m-simplex �m = {p 2 Rm

+ :
Pm

t=1 pt = 1}. Given an observation of covariates x, the policy ⇡
specifies that treatment t should be applied with probability ⇡t(x). There are two key tasks of interest:
policy evaluation and policy learning. In policy evaluation, we wish to evaluate the performance of a
given policy based on historical data. This is also known as off -policy evaluation, highlighting the
fact that the historical data was not necessarily generated by the policy in question. In policy learning,
we wish to determine a policy that has good performance.

We consider doing both tasks based on data consisting of n passive, historical observations of covari-
ate, treatment, and outcome: Sn = {(X1, T1, Y1), . . . , (Xn, Tn, Yn)}, where the observed outcome
Yi = Yi(Ti) corresponds only to the treatment Ti historically applied. We use the notation X1:n to
denote the data tuple (X1, . . . , Xn). The data is assumed to be iid. That is, the data is generated by
drawing from a stationary population of instances (X,T, Y (1), . . . , Y (m)) and observing a censored
form of this draw given by (X,T, Y (T )).1 From the (unknown) joint distribution of (X,T ) in the pop-
ulation, we define the (unknown) propensity function 't(x) = P(T = t | X = x) = E[�Tt | X = x],
where �st = I [s = t] is the Kronecker delta. And, from the (unknown) joint distribution of (X,Y (t))
in the population, we define the (unknown) mean-outcome function µt(x) = E[Y (t) | X = x]. We
use the notation '(x) = ('1(x), . . . ,'m(x)) and µ(x) = (µ1(x), . . . , µm(x)).

Apart from being iid, we also assume the data satisfies unconfoundedness:
Assumption 1. For each t 2 [m]: Y (t) is independent of T given X , i.e., Y (t) ?? T | X .

This assumption is equivalent to there being a logging policy ' that generated the data by prescribing
treatment t with probability 't(Xi) to each instance i and recording the outcome Yi = Yi(Ti).
Therefore, especially in the case where the logging policy 't is in fact known to the user, the problem
is often called learning from logged bandit feedback [41, 42].

In policy evaluation, given a policy ⇡, we wish to estimate its sample-average policy effect (SAPE),
SAPE(⇡) = 1

n

Pn
i=1

Pm
t=1 ⇡t(Xi)µt(Xi),

by an estimator ⌧̂(⇡) = ⌧̂(⇡;X1:n, T1:n, Y1:n) that depends only on the observed data and the policy
⇡. The SAPE quantifies the average outcome that a policy ⇡ would induce in the sample and hence
measures its risk. SAPE is strongly consistent for the population-average policy effect (PAPE):

PAPE(⇡) = E[SAPE(⇡)] = E[
Pm

t=1 ⇡t(X)µt(X)] = E[Y (T̃⇡(X))],

where T̃⇡(x) is defined as ⇡’s random draw of treatment when X = x, T̃⇡(x) ⇠ Multinomial(⇡(x)).
Moreover, if ⇡⇤ is such that ⇡⇤

t (x) > 0 () t 2 argmins2[m] µs(x), then bR(⇡) = SAPE(⇡) �
SAPE(⇡⇤) is the regret of ⇡ [10]. The policy evaluation task is closely related to causal effect
estimation [19] where, for m = 2, one is interested in estimating the sample and population average
treatment effects: SATE = 1

n

Pn
i=1(µ2(Xi)� µ1(Xi)), PATE = E[SATE] = E[Y (2)� Y (1)].

In policy learning, we wish to find a policy ⇡̂ that achieves small outcomes, i.e., small SAPE and
PAPE. The optimal policy ⇡⇤ minimizes both SAPE(⇡) and PAPE(⇡) over all functions X ! �m.

1.2 Existing Approaches and Related Work

The so-called “direct” approach fits regression estimates µ̂t of µt on each dataset {(Xi, Yi) : Ti = t},
t 2 [m]. Given these estimates, it estimates SAPE in a plug-in fashion:

⌧̂ direct(⇡) = 1
n

Pn
i=1

Pm
t=1 ⇡t(Xi)µ̂t(Xi).

A policy is learned either by ⇡̂direct(x) = argmint2[m] µ̂t(x) or by minimizing ⌧̂ direct(⇡) over ⇡ 2 ⇧
[33]. However, direct approaches may not generalize as well as weighting-based approaches [7].

Weighting-based approaches seek weights based on covariate and treatment data W (⇡) =
W (⇡;X1:n, T1:n) that make the outcome data, when reweighted, look as though it were generated by
the policy being evaluated or learned, giving rise to estimators that have the form

⌧̂W = 1
n

Pn
i=1 WiYi.

1Thus, although the data is iid, the t-treated sample {i : Ti = t} may differ systematically from the t0-treated
sample {i : Ti = t

0} for t 6= t
0, i.e., not necessarily just by chance as in a randomized controlled trial (RCT).
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Bottou et al. [8], e.g., propose to use inverse propensity weighting (IPW). Noting that [17, 18]
SAPE(⇡) = E[ 1n

Pn
i=1 Yi ⇥ ⇡Ti(Xi)/'Ti(Xi) | X1:n], one first fits a probabilistic classification

model '̂ to {(Xi, Ti) : i 2 [n]} and then estimates SAPE in an alternate but also plug-in fashion:

⌧̂ IPW(⇡) = ⌧̂W IPW(⇡), W IPW
i (⇡) = ⇡Ti(Xi)/'̂Ti(Xi)

For a deterministic policy, ⇡t(x) 2 {0, 1}, this can be interpreted as a rejection and importance
sampling approach [29, 41]: reject samples where the observed treatment does not match ⇡’s
recommendation and up-weight those that do by the inverse (estimated) propensity. For deterministic
policies ⇡t(x) 2 {0, 1}, we have that ⇡T (X) = �T,T̃⇡(X)

is the complement of 0-1 loss of ⇡(X)

in predicting T . By scaling and constant shifts, one can therefore reduce minimizing ⌧̂ IPW(⇡) over
policies ⇡ 2 ⇧ to minimizing a weighted classification loss over classifiers ⇡ 2 ⇧, providing a
reduction to weighted classification [7, 45].

Given both µ̂(x) and '̂(x) estimates, Dudík et al. [13] propose a weighting-based approach that
combines the direct and IPW approaches by adapting the doubly robust (DR) estimator [11, 34, 35,
38]:

⌧̂DR(⇡) = 1
n

Pn
i=1

Pm
t=1 ⇡t(Xi)µ̂t(Xi) +

1
n

Pn
i=1(Yi � µ̂Ti(Xi))⇡Ti(Xi)/'̂Ti(Xi).

⌧̂DR(⇡) can be understood either as debiasing the direct estimator by via the reweighted residuals
✏̂i = Yi � µ̂Ti(Xi) or as denoising the IPW estimator by subtracting the conditional mean from Yi.
As its bias is multiplicative in the biases of the regression and propensity estimates, the estimator is
consistent so long as one of the estimates is consistent. For policy learning, [1, 13] minimize this
estimator via weighted classification. Athey and Wager [1] provide a tight and favorable analysis of
the corresponding uniform consistency (and hence regret) of the DR approach to policy learning.

Based on the fact that 1 = E[⇡T (X)/'T (X)], a normalized IPW (NIPW) estimator is given by
normalizing the weights so they sum to n, a common practice in causal effect estimation [2, 31]:

⌧̂NIPW(⇡) = ⌧̂WNIPW(⇡), WNIPW
i (⇡) = W IPW

i (⇡)/
Pn

i0=1 W
IPW
i0 (⇡).

Any IPW approaches are subject to considerable variance because the plugged-in propensities are in
the denominator so that small errors can have outsize effects on the total estimate. Another stopgap
measure is to clip the propensities [14, 20] resulting in the clipped IPW (CIPW) estimator:

⌧̂M -CIPW(⇡) = ⌧̂WM -CIPW(⇡), WM -CIPW
i (⇡) = ⇡Ti(Xi)/max{M, '̂Ti(Xi)}.

While effective in reducing variance, the practice remains ad-hoc, loses the unbiasedness of IPW (with
true propensities), and requires the tuning ofM . For policy learning, Swaminathan and Joachims [42]
propose to minimizes over ⇡ 2 ⇧ theM -CIPW estimator plus a regularization term of the sample
variance of the estimator, which they term POEM. The sample variance scales with the level of
overlap between ⇡ and T1:n, i.e., the prevalence of ⇡Ti(Xi) > 0. Indeed, when the policy class ⇧ is
very flexible relative to n and if outcomes are nonnegative, then the anti-logging policy ⇡Ti(Xi) = 0
minimizes any of the above estimates. POEM avoids learning the anti-logging policy by regularizing
overlap, reducing variance but limiting novelty of ⇡. A refinement, SNPOEM [43] uses a normalized
and clipped IPW (NCIPW) estimator (and regularizes variance):

⌧̂M -NCIPW(⇡) = ⌧̂WM -NCIPW(⇡), WM -NCIPW
i (⇡) = WM -CIPW

i (⇡)/
Pn

i0=1 W
M -CIPW
i0 (⇡).

Kallus and Zhou [26] generalize the IPW approach to a continuum of treatments. Kallus and Zhou
[25] suggest a minimax approach to perturbations of the weights to account for confounding factors.
Kallus [23] proposes a recursive partitioning approach to policy learning, the Personalization Tree
(PT) and Personalization Forest (PF), that dynamically learns both weights and policy, but still uses
within-partition IPW with dynamically estimated propensities.

1.3 A Balance-Based Approach

Shortcomings in existing approaches. All of the above weighting-based approaches seek to
reweight the historical data so that they look as though they were generated by the policy be-
ing evaluated or learned. Similarly, the DR approach seeks to make the historical residuals look like
those that would be generated under the policy in question so to remove bias from the estimated
regression model of the direct approach. However, the way these methods achieve this through
various forms and versions of inverse propensity weighting, has three critical shortcomings:
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(1) By taking a simple plug-in approach for a nuisance parameter (propensities) that appears in the
denominator, existing weighting-based methods are either subject to very high variance or must
rely on scarcely-motivated stopgap measures such as clipping (see also [27]).

(2) In the case of deterministic policies (such as an optimal policy), existing methods all have weights
that are multiples of ⇡Ti(Xi), which means that one necessarily throws away every data point
Ti that does not agree with the new policy recommendation T̃⇡(Xi). This means that one is
essentially only using a much smaller dataset than is available, leading again to higher variance.2

(3) The existing weighting-based methods all proceed in two stages: first estimate propensities and
then plug these in to a derived estimator (when the logging policy is unknown). On the one hand,
this raises model specification concerns, and on the other, is unsatisfactory when the task at hand
is not inherently two-staged – we wish only to evaluate or learn policies, not to learn propensities.

A new approach. We propose a balance-based approach that, like the existing weighting-based
methods, also reweights the historical data to make it look as though they were generated by the
policy being evaluated or learned and potentially denoises outcomes in a doubly robust fashion, but
rather than doing so circuitously via a plug-in approach, we do it directly by finding weights that
optimize for balance between the weighted data and the target policy in the given, finite sample.

In particular, we formalize balance as a discrepancy between the reweighted historical covariate
distribution and that induced by the target policy and prove that it is directly related to the worst-case
conditional mean square error (CMSE) of any weighting-based estimator. Given a policy ⇡, we
then propose to choose (policy-dependent) weightsW ⇤(⇡) that optimize the worst-case CMSE and
therefore achieve excellent balance while controlling for variance. For evaluation, we use these
optimal weights to evaluate the performance of ⇡ by the estimator ⌧̂W⇤(⇡) as well as a doubly robust
version. For learning, we propose a bilevel optimization problem: minimize over ⇡ 2 ⇧, the estimated
risk ⌧̂W⇤(⇡) (or a doubly robust version thereof and potentially plus a regularization term), given by
the weightsW ⇤(⇡) that minimize the estimation error. Our empirical results show the stark benefit of
this approach while our main theoretical results (Thm. 6, Cor. 7) establish vanishing regret bounds.

2 Balanced Evaluation

2.1 CMSE and Worst-Case CMSE

We begin by presenting the approach in the context of evaluation. Given a policy ⇡, consider any
weights W = W (⇡;X1:n, T1:n) that are based on the covariate and treatment data. Given these
weights we can consider both a simple weighted estimator as well as aW -weighted doubly robust
estimator given a regression estimate µ̂:

⌧̂W = 1
n

Pn
i=1 WiYi, ⌧̂W,µ̂ = 1

n

Pn
i=1

Pm
t=1 ⇡t(Xi)µ̂t(Xi) +

1
n

Pn
i=1 Wi(Yi � µ̂Ti(Xi)).

We can measure the risk of either such estimator as the conditional mean square error (CMSE),
conditioned on all of the data upon which the chosen weights depend:

CMSE(⌧̂ ,⇡) = E[(⌧̂ � SAPE(⇡))2 | X1:n, T1:n].

Minimal CMSE is the target of choosing weights for weighting-based policy evaluation. Basic
manipulations under the unconfoundedness assumption decompose the CMSE of any weighting-
based policy evaluation estimator into its conditional bias and variance:
Theorem 1. Let ✏i = Yi � µTi(Xi) and ⌃ = diag(E[✏21 | X1, T1], . . . ,E[✏2n | Xn, Tn]). Define

Bt(W,⇡t; ft) =
1
n

Pn
i=1(Wi�Tit � ⇡t(Xi))ft(Xi) and B(W,⇡; f) =

Pm
t=1 Bt(W,⇡t; ft)

Then we have that: ⌧̂W � SAPE(⇡) = B(W,⇡;µ) + 1
n

Pn
i=1 Wi✏i.

Moreover, under Asn. 1: CMSE(⌧̂W ,⇡) = B2(W,⇡;µ) + 1
n2WT⌃W.

2 This problem is unique to policy evaluation and learning – in causal effect estimation, the IPW estimator
for SATE has nonzero weights on all of the data points. For policy learning with m = 2, Athey and Wager
[1], Beygelzimer and Langford [7] minimize estimates of the form 1

2 (⌧̂(⇡)� ⌧̂(1(·)�⇡)) with ⌧̂(⇡) = ⌧̂
IPW(⇡)

or = ⌧̂
DR(⇡). This evaluates ⇡ relative to the uniformly random policy and the resulting total weighted sums

over Yi or ✏̂i have nonzero weights whether ⇡Ti(Xi) = 0 or not. While a useful approach for reduction to
weighted classification [7] or invoking semi-parametric theory [1], it only works for m = 2, has no effect on
learning as the centering correction is constant in ⇡, and, for evaluation, is not an estimator for SAPE.
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Figure 1: The setting in Ex. 1

(a)X1:n, T1:n (b) µ1(x) (c) ⇡⇤(x)

Table 1: Policy evaluation performance in Ex. 1

WeightsW Vanilla ⌧̂W Doubly robust ⌧̂W,µ̂ kWk0
RMSE Bias SD RMSE Bias SD

IPW, ' 2.209 �0.005 2.209 4.196 0.435 4.174 13.6± 2.9
IPW, '̂ 0.568 �0.514 0.242 0.428 0.230 0.361 13.6± 2.9
.05-CIPW, ' 0.581 �0.491 0.310 0.520 0.259 0.451 13.6± 2.9
.05-CIPW, '̂ 0.568 �0.514 0.242 0.428 0.230 0.361 13.6± 2.9
NIPW, ' 0.519 �0.181 0.487 0.754 0.408 0.634 13.6± 2.9
NIPW, '̂ 0.463 �0.251 0.390 0.692 0.467 0.511 13.6± 2.9
.05-NCIPW, ' 0.485 �0.250 0.415 0.724 0.471 0.550 13.6± 2.9
.05-NCIPW, '̂ 0.463 �0.251 0.390 0.692 0.467 0.511 13.6± 2.9

Balanced eval 0.280 0.227 0.163 0.251 �0.006 0.251 90.7± 3.2

Corollary 2. Let µ̂ be given such that µ̂ ?? Y1:n | X1:n, T1:n (e.g., trained on a split sample).
Then we have that: ⌧̂W,µ̂ � SAPE(⇡) = B(W,⇡;µ� µ̂) + 1

n

Pn
i=1 Wi✏i.

Moreover, under Asn. 1: CMSE(⌧̂W,µ̂,⇡) = B2(W,⇡;µ� µ̂) + 1
n2WT⌃W.

In Thm. 1 and Cor. 2, B(W,⇡;µ) and B(W,⇡;µ� µ̂) are precisely the conditional bias in evaluating
⇡ for ⌧̂W and ⌧̂W,µ̂, respectively, and 1

n2WT⌃W the conditional variance for both. In particular,
Bt(W,⇡t;µt) or Bt(W,⇡t;µt � µ̂t) is the conditional bias in evaluating the effect on the instances
where ⇡ assigns t. Note that for any function ft, Bt(W,⇡t; ft) corresponds to the discrepancy
between the ft(X)-moments of the measure ⌫t,⇡(A) = 1

n

Pn
i=1 ⇡t(Xi)I [Xi 2 A] on X and the

measure ⌫t,W (A) = 1
n

Pn
i=1 Wi�TitI [Xi 2 A]. The sum B(W,⇡; f) corresponds to the sum of

moment discrepancies over the components of f = (f1, . . . , fm) between these measures. The
moment discrepancy of interest is that of f = µ or f = µ� µ̂, but neither of these are known.

Balanced policy evaluation seeks weights W to minimize a combination of imbalance, given by
the worst-case value of B(W,⇡; f) over functions f , and variance, given by the norm of weights
WT⇤W for a specified positive semidefinite (PSD) matrix ⇤. This follows a general approach
introduced by [22, 24] of finding optimal balancing weights that optimize a given CMSE objective
directly rather than via a plug-in approach. Any choice of k · k gives rise to a worst-case CMSE
objective for policy evaluation:

E2(W,⇡; k · k,⇤) = supkfk1 B
2(W,⇡; f) + 1

n2WT⇤W.

Here, we focus on k · k given by the direct product of reproducing kernel Hilbert spaces (RKHS):

kfkp,K1:m,�1:m = (
Pm

t=1 kftk
p
Kt
/�p

t )
1/p,

where k · kKt is the norm of the RKHS given by the PSD kernel Kt(·, ·) : X 2 ! R, i.e., the unique
completion of span(Kt(x, ·) : x 2 X ) endowed with hKt(x, ·),Kt(x0, ·)i = Kt(x, x0) [see 39]. We
say kfkKt = 1 if f is not in the RKHS. One example of a kernel is the Mahalanobis RBF kernel:
Ks(x, x0) = exp(�(x� x0)T Ŝ�1(x� x0)/s2) where Ŝ is the sample covariance of X1:n and s is a
parameter. For such an RKHS product norm, we can decompose the worst-case objective into the
discrepancies in each treatment as well as characterize it as a posterior (rather than worst-case) risk.
Lemma 1. LetB2

t (W,⇡t; k ·kKt) =
Pn

i,j=1(Wi�Tit�⇡t(Xi))(Wj�Tjt�⇡t(Xj))Kt(Xi, Xj) and
1/p+ 1/q = 1. Then

E2(W,⇡; k · kp,K1:m,�1:m ,⇤) = (
Pm

t=1 �
q
tB

q
t (W,⇡t; k · kKt))

2/q + 1
n2WT⇤W.
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Moreover, if p = 2 and µt has a Gaussian process prior [44] with mean ft and covariance �tKt then

CMSE(⌧̂W,f ,⇡) = E2(W,⇡; k · kp,K1:m,�1:m ,⌃),

where the CMSE marginalizes over µ. This gives the CMSE of ⌧̂W for f constant or ⌧̂W,µ̂ for f = µ̂.

The second statement in Lemma 1 suggests that, in practice, model selection of �1:m, ⇤, and kernel
hyperparameters such as s or even Ŝ, can done by the marginal likelihood method [see 44, Ch. 5].

2.2 Evaluation Using Optimal Balancing Weights

Our policy evaluation estimates are given by either the estimator ⌧̂W⇤(⇡;k·k,⇤) or ⌧̂W⇤(⇡;k·k,⇤),µ̂ where
W ⇤(⇡) = W ⇤(⇡; k · k,⇤) is the minimizer of E2(W,⇡; k · k,⇤) over the space of all weightsW that
sum to n,W = {W 2 Rn

+ :
Pn

i=1 Wi = n} = n�n. Specifically,

W ⇤(⇡; k · k,⇤) 2 argminW2W E2(W,⇡; k · k,⇤).

When k · k = k · kp,K1:m,�1:m , this problem is a quadratic program for p = 2 and a second-order cone
program for p = 1,1. Both are efficiently solvable [9]. In practice, we solve these using Gurobi 7.0.

In Lemma 1, Bt(W,⇡t; k · kKt) measures the imbalance between ⌫t,⇡ and ⌫t,W as the worst-case
discrepancy in means over functions in the unit ball of an RKHS. In fact, as a distributional distance
metric, it is the maximum mean discrepancy (MMD) used, for example, for testing whether two
samples come from the same distribution [16]. Thus, minimizing E2(W,⇡; k · kp,K1:m,�1:m ,⇤) is
simply seeking the weightsW that balance ⌫t,⇡ and ⌫t,W subject to variance regularization inW .
Example 1. We demonstrate balanced evaluation with a mixture of m = 5 Gaussians: X |
T ⇠ N (XT , I2⇥2), X1 = (0, 0), Xt = (Re, Im)(ei2⇡(t�2)/(m�1)) for t = 2, . . . ,m, and
T ⇠ Multinomial(1/5, . . . , 1/5). Fix a draw of X1:n, T1:n with n = 100 shown in Fig. 1a (numpy
seed 0). Color denotes Ti and size denotes 'Ti(Xi). The centersXt are marked by a colored number.
Next, we let µt(x) = exp(1 � 1/kx � �tk2) where �t = (Re, Im)(e�i2⇡t/m/

p
2) for t 2 [m],

✏i ⇠ N (0,�), and � = 1. Fig. 1b plots µ1(x). Fig. 1c shows the corresponding optimal policy ⇡⇤.

Next we consider evaluating ⇡⇤. Fixing X1:n as in Fig. 1a, we have SAPE(⇡⇤) = 0.852. With
X1:n fixed, we draw 1000 replications of T1:n, Y1:n from their conditional distribution. For each
replication, we fit '̂ by estimating the (well-specified) Gaussian mixture by maximum likelihood and
fit µ̂ using m separate gradient-boosted tree models (sklearn defaults). We consider evaluating ⇡⇤

either using the vanilla estimator ⌧̂W or the doubly robust estimator ⌧̂W,µ̂ for W either chosen in the
4 different standard ways laid out in Sec. 1.2, using either the true ' or the estimated '̂, or chosen by
the balanced evaluation approach using untuned parameters (rather than fit by marginal likelihood)
using the standard (s = 1) Mahalanobis RBF kernel forKt, kfk2 =

Pm
t=1 kftk2Kt

, and ⇤ = I . (Note
that this misspecifies the outcome model, kµtkKt = 1.) We tabulate the results in Tab. 1.

We note a few observations on the standard approaches: vanilla IPW with true ' has zero bias but
large SD (standard deviation) and hence RMSE (root mean square error); a DR approach improves
on a vanilla IPW with '̂ by reducing bias; clipping and normalizing IPW reduces SD. The balanced
evaluation approach achieves the best RMSE by a clear margin, with the vanilla estimator beating all
standard vanilla and DR estimators and the DR estimator providing a further improvement by nearly
eliminating bias (but increasing SD). The marked success of the balanced approach is unsurprising
when considering the support kWk0 =

Pn
i=1 I [Wi > 0] of the weights. All standard approaches

use weights that are multiples of ⇡Ti(Xi), limiting support to the overlap between ⇡ and T1:n, which
hovers around 10–16 over replications. The balanced approach uses weights that have significantly
wider support, around 88–94. In light of this, the success of the balanced approach is expected.

2.3 Consistent Evaluation

Next we consider the question of consistent evaluation: under what conditions can we guarantee that
⌧̂W⇤(⇡) � SAPE(⇡) and ⌧̂W⇤(⇡),µ̂ � SAPE(⇡) converge to zero and at what rates.

One key requirement for consistent evaluation is a weak form of overlap between the historical data
and the target policy to be evaluated using this data:
Assumption 2 (Weak overlap). P('t(X) > 0_⇡t(X) = 0) = 1 8t 2 [m], E[⇡2

T (X)/'2
T (X)] < 1.
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Figure 2: Policy learning results in Ex. 2; numbers denote regret

Balanced policy learner .06

IPW .50 Gauss Proc 0.29 IPW-SVM 0.34 SNPOEM 0.28

DR .26 Grad Boost 0.20 DR-SVM 0.18 PF 0.23

This ensures that if ⇡ can assign treatment t toX then the data will have some examples of units with
similar covariates being given treatment t; otherwise, we can never say what the outcome might look
like. Another key requirement is specification. If the mean-outcome function is well-specified in
that it is in the RKHS product used to compute W ⇤(⇡) then convergence at rate 1/

p
n is guaranteed.

Otherwise, for a doubly robust estimator, if the regression estimate is well-specified then consistency
is still guaranteed. In lieu of specification, consistency is also guaranteed if the RKHS product
consists of C0-universal kernels, defined below, such as the RBF kernel [40].
Definition 1. A PSD kernel K on a Hausdorff X (e.g., Rd) is C0-universal if, for any continuous
function g : X ! R with compact support (i.e., for some C compact, {x : g(x) 6= 0} ✓ C) and
⌘ > 0, there existsm,↵1, x1, . . . ,↵m, xm such that supx2X |

Pm
j=1 ↵iK(xj , x)� g(x)|  ⌘.

Theorem 3. Fix ⇡ and let W ⇤
n(⇡) = W ⇤

n(⇡; kfkp,K1:m,�n,1:m ,⇤n) with 0 � I � ⇤n � I ,
0 < �  �n,t  � 8t 2 [m] for each n. Suppose Asns. 1 and 2 hold, Var(Y | X) a.s. bounded,
E[
p

Kt(X,X)] < 1, and E[Kt(X,X)⇡2
T (X)/'2

T (X)] < 1. Then the following two results hold:
(a) If kµtkKt < 1 for all t 2 [m]: ⌧̂W⇤

n(⇡) � SAPE(⇡) = Op(1/
p
n).

(b) If Kt is C0-universal for all t 2 [m]: ⌧̂W⇤
n(⇡) � SAPE(⇡) = op(1).

The key assumptions of Thm. 3 are unconfoundedness, overlap, and bounded variance. The other
conditions simply guide the choice of method parameters. The two conditions on the kernel are trivial
for bounded kernels like the RBF kernel. An analogous result for the DR estimator is a corollary.
Corollary 4. Suppose the assumptions of Thm. 3 hold and. Then
(a) If kµ̂nt � µtkKt = op(1) 8t 2 [m]:

⌧̂W⇤
n(⇡),µ̂n

� SAPE(⇡) = ( 1
n2

Pn
i=1 W

⇤
ni

2 Var(Yi | Xi))1/2 + op(1/
p
n).

(b) If kµ̂n(X)� µ(X)k2 = Op(r(n)), r(n) = ⌦(1/
p
n): ⌧̂W⇤

n(⇡),µ̂n
� SAPE(⇡) = Op(r(n)).

(c) If kµtkKt < 1, kµ̂ntkKt = Op(1) for all t 2 [m]: ⌧̂W⇤
n(⇡),µ̂n

� SAPE(⇡) = Op(1/
p
n).

(d) If Kt is C0-universal for all t 2 [m]: ⌧̂W⇤
n(⇡),µ̂n

� SAPE(⇡) = op(1).

Cor. 4(a) is the case where both the balancing weights and the regression function are well-specified,
in which case the multiplicative bias disappears faster than op(1/

p
n), leaving us only with the

irreducible residual variance, leading to an efficient evaluation. The other cases concern the “doubly
robust” nature of the balanced DR estimator: Cor. 4(b) requires only that the regression be consitent
and Cor. 4(c)-(d) require only the balancing weights to be consistent.

3 Balanced Learning

Next we consider a balanced approach to policy learning. Given a policy class ⇧ ⇢ [X ! �m], we
let the balanced policy learner yield the policy ⇡ 2 ⇧ that minimizes the balanced policy evaluation
using either a vanilla or DR estimator plus a potential regularization term in the worst-case/posterior
CMSE of the evaluation. We formulate this as a bilevel optimization problem:

⇡̂bal 2 argmin⇡{⌧̂W +�E(W,⇡; k · k,⇤) : ⇡ 2 ⇧,W 2 argminW2W E2(W,⇡; k · k,⇤)} (1)
⇡̂bal-DR 2 argmin⇡{⌧̂W,µ̂+�E(W,⇡; k · k,⇤) : ⇡ 2 ⇧,W 2 argminW2W E2(W,⇡; k · k,⇤)} (2)
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The regularization term regularizes both the balance (i.e., worst-case/posterior bias) that is achievable
for ⇡ and the variance in evaluating ⇡. We include this regularizer for completeness and motivated by
the results of [42] (which regularize variance), but find that it not necessary to include it in practice.

3.1 Optimizing the Balanced Policy Learner

Unlike [1, 7, 13, 41, 45], our (nonconvex) policy optimization problem does not reduce to weighted
classification precisely because our weights are not multiplies of ⇡Ti(Xi) (but therefore our weights
also lead to better performance). Instead, like [42], we use gradient descent. For that, we need to be
able to differentiate our bilevel optimization problem. We focus on p = 2 for brevity.
Theorem 5. Let k · k = k · k2,K1:m,�1:m . Then 9W ⇤(⇡) 2 argminW2W E2(W,⇡; k · k,⇤) such that

r⇡t(X1),...,⇡t(Xn)⌧̂W⇤(⇡) =
1
nY

T
1:nH̃(I � (A+ (I �A)H̃)�1(I �A)H̃)Jt

r⇡t(X1),...,⇡t(Xn)⌧̂W⇤(⇡),µ̂ = 1
n ✏̂

T
1:nH̃(I � (A+ (I �A)H̃)�1(I �A)H̃)Jt + 1

n µ̂t(X1:n)

r⇡t(X1),...,⇡t(Xn)E(W
⇤(⇡),⇡; k · k,⇤) = �Dt/E(W

⇤(⇡),⇡; k · k,⇤)

where H̃ = �F (FTHF )�1FT , Fij = �ij � �in for i 2 [n], j 2 [n� 1], Aij = �ijI [W ⇤
i (⇡) > 0],

Dti = �2
t

Pn
j=1 Kt(Xi, Xj)(Wj�Tjt � ⇡t(Xj)), Hij = 2

Pm
t=1 �

2
t �Tit�TjtKt(Xi, Xj) + 2⇤, and

Jtij = �2�2
t �TitKt(Xi, Xj).

To leverage this result, we use a parameterized policy class such as ⇧logit = {⇡t(x;�t) / exp(�t0 +
�T
t x)} (or kernelized versions thereof), apply chain rule to differentiate objective in the parameters �,

and use BFGS [15] with random starts. The logistic parametrization allows us to smooth the problem
even while the solution ends up being deterministic (extreme �).

This approach requires solving a quadratic program for each objective gradient evaluation. While this
can be made faster by using the previous solution as warm start, it is still computationally intensive,
especially as the bilevel problem is nonconvex and both it and each quadratic program solved in
“batch” mode. This is a limitation of the current optimization algorithm that we hope to improve on
in the future using specialized methods for bilevel optimization [4, 32, 37].
Example 2. We return to Ex. 1 and consider policy learning. We use the fixed draw shown in Fig. 1a
and set � to 0. We consider a variety of policy learners and plot the policies in Fig. 2 along with their
population regret PAPE(⇡)�PAPE(⇡⇤). The policy learners we consider are: minimizing standard
IPW and DR evaluations over ⇧logit with '̂, µ̂ as in Ex. 1 (versions with combinations of normalized,
clipped, and/or true ', not shown, all have regret 0.26–0.5), the direct method with Gaussian process
regression gradient boosted trees (both sklearn defaults), weighted SVM classification using IPW
and DR weights (details in supplement), SNPOEM [43], PF [23], and our balanced policy learner (1)
with parameters as in Ex. 1, ⇧ = ⇧logit,� = ⇤ = 0 (the DR version (2), not shown, has regret .08).
Example 3. Next, we consider two UCI multi-class classification datasets [30], Glass (n = 214,
d = 9, m = 6) and Ecoli (n = 336, d = 7, m = 8), and use a supervised-to-contextual-bandit
transformation [7, 13, 42] to compare different policy learning algorithms. Given a supervised multi-
class dataset, we draw T as per a multilogit model with random ±1 coefficients in the normalized
covariates X . Further, we set Y to 0 if T matches the label and 1 otherwise. And we split the
data 75-25 into training and test sample. Using 100 replications of this process, we evaluate the
performance of learned linear policies by comparing the linear policy learners as in Ex. 2. For
IPW-based approaches, we estimate '̂ by a multilogit regression (well-specified by construction).
For DR approaches, we estimate µ̂ using gradient boosting trees (sklearn defaults). We compare
these to our balanced policy learner in both vanilla and DR forms with all parameters fit by marginal
likelihood using the RBF kernel with an unspecified length scale after normalizing the data. We
tabulate the results in Tab. 2. They first demonstrate that employing the various stopgap fixes to
IPW-based policy learning as in SNPOEM indeed provides a critical edge. This is further improved
upon by using a balanced approach to policy learning, which gives the best results. In this example,
DR approaches do worse than vanilla ones, suggesting both that XGBoost provided a bad outcome
model and/or that the additional variance of DR was not compensated for by sufficiently less bias.

3.2 Uniform Consistency and Regret Bounds

Next, we establish consistency results uniformly over policy classes. This allows us to bound the
regret of the balanced policy learner. We define the sample and population regret, respectively, as

R⇧(⇡̂) = PAPE(⇡̂)�min⇡2⇧ PAPE(⇡), bR⇧(⇡̂) = SAPE(⇡̂)�min⇡2⇧ SAPE(⇡)
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Table 2: Policy learning results in Ex. 3

IPW DR IPW-SVM DR-SVM POEM SNPOEM Balanced Balanced-DR

Glass 0.726 0.755 0.641 0.731 0.851 0.615 0.584 0.660
Ecoli 0.488 0.501 0.332 0.509 0.431 0.331 0.298 0.371

A key requirement for these to converge is that the best-in-class policy is learnable. We quantify that
using Rademacher complexity [3] and later extend our results to VC dimension. Let us define

bRn(F) = 1
2n

P
⇢i2{�1,+1}n supf2F

1
n

Pn
i=1 ⇢if(Xi), Rn(F) = E[bRn(F)].

E.g., for linear policies bRn(F) = O(1/
p
n) [21]. If F ✓ [X ! Rm] let Ft = {(f(·))t : f 2 F}

and set Rn(F) =
Pm

t=1 Rn(Ft) and same for bRn(F). We also strengthen the overlap assumption.
Assumption 3 (Strong overlap). 9↵ � 1 such that P('t(X) � 1/↵) = 1 8t 2 [m].
Theorem 6. Fix ⇧ ✓ [X ! �m] and let W ⇤

n(⇡) = W ⇤
n(⇡; kfkp,K1:m,�n,1:m ,⇤n) with 0 � I �

⇤n � I , 0 < �  �n,t  � 8t 2 [m] for each n and ⇡ 2 ⇧. Suppose Asns. 1 and 3 hold, |✏i|  B

a.s. bounded, and
p
Kt(x, x)  � 8t 2 [m] for � � 1. Then the following two results hold:

(a) If kµtkKt < 1, 8t 2 [m] then for n sufficiently large (n � 2 log(4m/⌫)/(1/(2↵)�Rn(⇧))2),
we have that, with probability at least 1� ⌫,

sup⇡2⇧ |⌧̂W⇤(⇡) � SAPE(⇡)| 8↵��m(kµk+
p
2 log(4m/⌫)�1B)Rn(⇧)

+ 1p
n

�
2↵kµk+ 12↵�2�mkµk+ 6↵��m�1B log

�
4m
⌫

��

+ 1p
n
(2↵�1B + 12↵�2�m�1B + 3↵��mkµk)

q
2 log

�
4m
⌫

�

(b) If Kt is C0-universal for all t 2 [m] and either Rn(⇧) = o(1) or bRn(⇧) = op(1) then

sup⇡2⇧ |⌧̂W⇤(⇡) � SAPE(⇡)| = op(1).

The proof crucially depends on simultaneously handling the functional complexities of both the
policy class ⇧ and the space of functions {f : kfk < 1} being balanced against. Again, the key
assumptions of Thm. 6 are unconfoundedness, overlap, and bounded residuals. The other conditions
simply guide the choice of method parameters. Regret bounds follow as a corollary.
Corollary 7. Suppose the assumptions of Thm. 6 hold. If ⇡̂bal

n is as in (1) then:
(a) If kµtkKt < 1 for all t 2 [m]: R⇧(⇡̂bal

n ) = Op(Rn(⇧) + 1/
p
n).

(b) If Kt is C0-universal for all t 2 [m]: R⇧(⇡̂bal
n ) = op(1).

If ⇡̂bal-DR
n is as in (2) then:

(c) If kµ̂nt � µtkKt = op(1) for all t 2 [m]: R⇧(⇡̂bal-DR
n ) = Op(Rn(⇧) + 1/

p
n).

(d) If kµ̂n(X)� µ(X)k2 = Op(r(n)): R⇧(⇡̂bal-DR
n ) = Op(r(n) +Rn(⇧) + 1/

p
n).

(e) If kµtkKt < 1, kµ̂ntkKt = Op(1) for all t 2 [m]: R⇧(⇡̂bal-DR
n ) = Op(Rn(⇧) + 1/

p
n).

(f) If Kt is C0-universal for all t 2 [m]: R⇧(⇡̂bal
n ) = op(1).

And, all the same results hold when replacing Rn(⇧) with bRn(⇧) and/or replacing R⇧ with bR⇧.

4 Conclusion

Considering the policy evaluation and learning problems using observational or logged data, we
presented a new method that is based on finding optimal balancing weights that make the data look
like the target policy and that is aimed at ameliorating the shortcomings of existing methods, which
included having to deal with near-zero propensities, using too few positive weights, and using an
awkward two-stage procedure. The new approach showed promising signs of fixing these issues in
some numerical examples. However, the new learning method is more computationally intensive than
existing approaches, solving a QP at each gradient step. Therefore, in future work, we plan to explore
faster algorithms that can implement the balanced policy learner, perhaps using alternating descent,
and use these to investigate comparative numerics in much larger datasets.
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