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ABSTRACT

We consider optimization problems with uncertain constraints that need to be satisfied probabilistically.
When data are available, a common method to obtain feasible solutions for such problems is to impose
sampled constraints, following the so-called scenario generation (SG) approach. However, when the data
size is small, the sampled constraints may not support a guarantee on the feasibility of the obtained solution.
This paper studies how to leverage parametric information and the power of Monte Carlo simulation to
obtain feasible solutions even when the data are not sufficient to support the use of SG. Our approach
makes use of a distributionally robust optimization formulation that informs the Monte Carlo sample size
needed to achieve our guarantee.

1 INTRODUCTION

We consider optimization problems in the form

min ch,
xeX CRd (1)

subject to P(x € Z¢) > 1 —¢,

where PP is a probability measure governing the random variable &, and Ze C X is a set depending on E.
Problem (1) enforces a solution x to satisfy x € Z¢ with high probability, namely at least 1 — €. This problem
is often known as a chance-constrained or probabilistically constrained optimization (e.g., Prékopa 2003).
It provides a natural framework for decision-making under stochastic resource capacity or risk tolerance,
and has been applied in various domains such as production planning (Murr and Prékopa 2000), inventory
management (Lejeune and Ruszczynski 2007), reservoir design (Prékopa and Széantai 1978; Prékopa et al.
1978), communications (Shi et al. 2015), and ranking and selection (Hong et al. 2015).

We focus on the situations where P is unknown, but some data, say &;,...,&,, are available. One
common approach to handle (1) in these situations is to use the so-called scenario generation (SG) or
constraint sampling. This replaces the unknown constraint in (1) with x € Z¢,i = 1,...,n, namely, by
considering

min cl'x,
xeZ CR4 (2)
subject to x € Zg, i=1,...,n.

Note that the chance-constrained problem (1) is generally difficult to solve, even when the set Z¢ is
convex and tractable for any given & (Prékopa 2003). Thus, in the latter case, the sampled problem (2)
offers an additional benefit in approximating the intractable problem with a more tractable one.

Our goal is to find a good feasible solution for (1) in the described data-driven context above. Note
that, because of the statistical noise from the data, we can at best find a solution that is feasible with a high
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confidence. Define V (x,P) = P(x ¢ Z¢) to be the violation probability of a solution x for the condition
x € Z¢ under probability measure IP. For any £ that is obtained from finite data, we want to make sure that

Piara(V(£,P) <€) > 1-a, 3)

for a given confidence level 1 — a (e.g., ¢ = 5%), where P,,, denotes the measure generating the data
&,i=1,...,n (and hence %).

As n — o0, one would expect that the space of & is sufficiently populated by the sample and V (£,IP) — 0.
The question is then how many observations are enough to see this behavior. The seminal work of Campi
and Garatti (2008) shows a tight bound on the number of observations, or sampled constraints, needed
to guarantee (3), for given values of € and a. In particular, define y(N,e,d) = Yo (V)e!(1 —e)V~

for positive integers N > d > 1 and 0 < &€ < 1. Under the convexity of 2 and some additional mild
assumptions, Campi and Garatti (2008) proves that an optimal solution obtained from solving (2) satisfies

Pdala(v(an ]P)) > 8) < ’}/(l’l,S,d). (4)

Thus, if we can find n such that y(n,€,d) < a, then we achieve (3).

In this paper, we focus on the small-sample situation, so that our data size n is not enough to support
Y(n,€,d) < a. Note that, in using this result from Campi and Garatti (2008), n can be seen to be linear in
the decision dimension d, and so for high-dimensional problems this small-sample situation can happen
frequently. This dimensional dependence also appears in other sample size bounds (e.g., De Farias and
Van Roy 2004; Luedtke and Ahmed 2008). To overcome this challenge, several recent methods have been
suggested, such as the use of support rank and solution-dependent support constraints (Schildbach et al.
2013; Campi and Garatti 2018), regularization (Campi and Care 2013), and sequential approaches (Care
et al. 2014; Calafiore et al. 2011; Chamanbaz et al. 2016; Calafiore 2017). They aim to alleviate the
dependence on d, and thus substantially extend the scope of applicability of SG.

Our main contribution in this paper is to study a different path in obtaining guarantee (3) in small-sample
situation, in the settings where PP is assumed a parametric structure. The unknown and estimable quantity is
the set of parameters in IP. We also assume that one can simulate from the parametric model [P using Monte
Carlo (an assumption applied for all common parametric models). We will see how such a capability, which
can be viewed as a way of generating additional synthetic data, can be combined with the relation (4) to
obtain a scheme applicable when n does not support using (4) directly. Unlike some other techniques that
reduce the data size needed for SG, our procedure resembles closely the standard SG (2). The differences
are in the algorithmic parameters and the distribution we sample from in the Monte Carlo scheme.

Our derivation relies on casting the uncertain-parameter problem as a distributionally robust optimization
(DRO) (Delage and Ye 2010; Wiesemann et al. 2014). This approach considers the worst-case situation
among all parameters that lie in a so-called uncertainty set or ambiguity set. In the chance constraint
framework, this entails replacing the chance constraint with unknown distribution with a worst-case chance
constraint within the uncertainty set (Hanasusanto et al. 2015; Zymler et al. 2013; Hanasusanto et al.
2017; Li et al. ; Jiang and Guan 2016; Zhang et al. 2016). The DRO approach has been used in stochastic
simulation, bearing names such as the robust Monte Carlo (Hu et al. 2012; Glasserman and Xu 2014;
Lam 2016; Hu and Hong 2015; Lam 2018; Ghosh and Lam 2018). Our procedure will rely on a suitable
DRO formulation using statistical distances (Petersen et al. 2000; Ben-Tal and Nemirovski 2000; Lim
et al. 2006; Love and Bayraksan 2015), and the particular SG we use has a similar favor as the robust
Monte Carlo considered in Hu et al. (2012) and Glasserman and Xu (2014), as we also utilize a change-
of-measure argument in arriving at our scheme. Lastly, Erdogan and Iyengar (2006) considers an SG for
robust chance-constrained problems that is related to our proposal. Erdogan and Iyengar (2006) considers
uncertainty set based on the Prohorov distance and derives bounds for the required sample size. On the
other hand, our approach uses the class of ¢- or f-divergences, which is readily estimatable especially in
the parametric setting. Moreover, our focus is on utilizing the convexity-based sample size estimate in
Campi and Garatti (2008), in contrast to the Vapnik-Chervonenkis dimension used in Erdogan and Iyengar



Lam and Li

(2006). We will study the required Monte Carlo size in relation to the data size, and the choice of the
Monte Carlo distribution, which are quite different from Erdogan and Iyengar (2006).

2 OUTLINE OF THE METHOD

Recall that we are interested in finding a solution X such that (3) holds, in the case that P is observable
only through data. Suppose that P € 22, the class of all possible probability distributions for & (which we
shall exemplify later). Suppose that given our data, we can find an uncertainty set %, € & such that

IP)az'ata(]P) S %data) 2 1—o. (5)
We then proceed to consider a distributionally robust chance-constrained problem
min ch,
xe X CR4 (6)
subject to inf Q(x€ Z¢) > 1—¢,
€% data

where Q is the probability measure for &. If we can find a solution £ feasible for (6), then this £ is also
feasible for (1) with confidence at least 1 — ¢. This is because if P € %4, then for any x feasible for (6),
P(x € Z¢) > infgeq,,, Qx € Z¢) > 1—¢, and therefore Py (V (£, P) < €) > Py (P € Yaara) > 1 — .

We now consider a Monte Carlo scheme from some “baseline” distribution Py (which can depend on
the data), to obtain a solution that is feasible for (6) with a confidence of, say, 1 — 8. This is achievable by

using a certain Monte Carlo size N. To obtain this number, we find a bound on sup V(%(Py),Q), where
Q€ Xuaata
£(IPy) is obtained from solving (2) using &;’s generated from Py. Call this bound M(Py, Zya1a,V (£(Po),Pp)).

In other words, it satisfies

QSl/l/p V(XA(PO),@) < M(IP)(), %dam,V(XA(]P)()),IP())). (7)
€% data

Moreover, suppose we also have that M (P, Zu4,v) is non-decreasing in v > 0. We then find a 6 >0

such that
M(Po, %iata,0) < €. ®)

Then, by using the result in Campi and Garatti (2008) discussed in the introduction, we know that
Puco(V(£(Py),Po) > 0) < ¥(N,8,d) where Pyc is the measure generating N Monte Carlo samples from
[Py to obtain £(Pp), which holds independent of the choice of Py. We find N such that

Y(N,8,d) < B. 9)

This choice of N then gives us, with confidence 1 — B, that V (£(Py),Pp) < andhence sup V(£(Pp),Q) <
QE%dam
€ by (7), (8) and the monotonicity of M. This in turn leads to the conclusion that £(Py) is feasible for (6)

with confidence at least 1 — f3.
Thus, overall, if we choose %44 to satisfy (5) and N to satisfy (8) and (9), our obtained solution £(P)
is feasible for (1) with confidence at least 1 — o — 3. Note that our argument relies crucially on generating

a bound M that translates the ambiguous violation probability sup V(£(PPy), Q) into a quantity depending
Qe%lam
instead on the baseline violation probability V (£(Py),Py). Next section will address how to do so.

2.1 Bounding Ambiguous Violation Probability

We study the bound M (Py, Zgara, V (£(Po),Po)). In fact, we will consider a more general result. Consider
any measurable set &7 C % and set Z C . We will find an M such that

sup Q(& € &) <M(Po, % ,Po(E € &)).
Qew
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For two probability measures P; and [P, that are both dominated by a common measure v on %, with

Radon-Nikodym derivatives ‘gp‘),' and dPQ respectively, we define the y>-distance between P; and P, as

P,  dP;

2
2 o — o) / dPy dP;  ,dP;
PPy = [ ~ W y(dy)= [ (/= —1))=—v(dy).

When P, is absolutely continuous with respect to P;, we have in particular
dP dP
2 2 2 2
P,P) = — —1)"Pi(d —P,(dy) — 1.
POLP) = [ (G- 1DPidy) = [ SEPa(dy)
Suppose that Q is absolutely continuous with respect to ]P’o. We have
sup Q(€ € ) = Po(& € /) + (sup Q& € /) ~Po(& € /)
Qe% Qe

Po(§ € )+ sup [ 1y € }QUdy) — [ 1y € 7 }Boldy)
Qe

Py € )+ sup [ 1{ye o/} <Q - 1) Po(dy)
Qe

1/2 4Q ) 1/2
<PoE € )+ sup ( /@1{y c sz}lP’o(dy)> < /@ (G, ) IP’o(dy)>
=Po(& € ) +Po(& e&zf)“z-(gug 2% (Po, Q)2 (10)

where the inequality follows from the Cauchy-Schwarz inequality. Note that the bound (10) holds if <7
and % are random sets, potentially dependent on each others, but independent from & generated from Q
or Py above. Thus, by plugging in £(IPg) ¢ 2 as § € & and Yyasq as %, we have

sup V(£(Po),Q) < V(£(Po),Po) +V (£(Po),P0)'/*- (_sup x*(Po,Q))"*.
Q€ Xaaa Q€ Xaa

Thus, we have identified

M(Po, Zgara;v) = v+v"/2-( sup x2(Po,Q))"/, (11)
Qe%dam

which is non-decreasing in v.

2.2 Choices of Baseline and Uncertainty Set

Our next step as outlined in the beginning of Section 2 is to find & such that M(Py, Zyaq,0) < €, and
moreover a %4, that satisfies (5). For these, we now make an assumption that [P, the true distribution of
&, is known to lie in a parametric family &2 = {Pg }gcocrr indexed by 6, which has dimension p.

We make a convenient choice for Py and %,,. Namely, we choose Py to be Py, where 0 is the
maximum likelihood estimator for 6 from the data &;,i = 1,...,n. Then we set

2
%dafa—{@e@:x2(P@,@)§’%”’}, (12)

where )(1 a,p 18 the 1 —a-quantile of the x2-distribution with degree of freedom p. By divergence-based
inference (e.g., Pardo 2005), we have that (12) satisfies

hm ]P)data (P S %dam) - 1 —
n—o0
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1/2
v/ L{a’p
, .

) 1/2
Thus, we choose & such that & + 81/2 <Xln‘“’) < g, or equivalently

Moreover, (11) becomes

2
2
XIZ*OC,P _ €. X127(X7p + (XIia’p)

0=c¢
+ 2n n 4n2 7’

13)

and the Monte Carlo size N such that y(N,8,d) < . Using this N number of samples generated from
P4 to construct (2) then guarantees that the obtained solution )?(IP’é) is feasible for (1) with a confidence
1 —o—B+o(1) as n — oo. We note that formula (13) appears in a related context in Proposition 2 in Tseng
et al. (2016), but here we are motivated by the use of SG in very limited data situations and investigate
the joint construction of the uncertainty set and SG with overall statistical guarantees, which is different
from the work of Tseng et al. (2016).

Note that the y2-distance we used above is one of many distances between probability distributions
that can be categorized under the framework of ¢- or f-divergences (Vajda 1972). There are reasons to
believe that y? is close to the best under our discussed framework. First is that absolute continuity between
the true distribution P and the baseline distribution Py to generate Monte Carlo samples is critical for
our approach. Suppose they are not absolutely continuous. One could attempt to form an uncertainty set
U, 44 that contains both P and Py with high probability (this can be done using, e.g., Wasserstein distance;
Esfahani and Kuhn 2015; Blanchet and Kang 2016; Gao and Kleywegt 2016). However, the difference

sup Q(& € &) —Py(§ € o) becomes more difficult to control as it can depend intricately on the set
Qe%datu
&/. On the other hand, one can instead use %, that contains distributions absolutely continuous with

respect to [P or vice versa. But if Py lies outside this set, the difference sup Q(§ € &) —Py(& € ) is
QGQ/data
again hard to control. Therefore, to apply our framework, choosing a set %, that contains distributions

absolutely continuous with respect to Py and also contains P facilitates the error control tremendously.
Next, many other ¢-divergences can work under our framework, since one can find %4, in much the

same way using general divergence-based inference tools. This comes from the fact that these divergences

between two distributions indexed by 8; and 6, have the same expansion up to the second order (Nielsen

and Nock 2014). Then, as long as we can bound the difference sup Q(& € &) —Py(& € o), the same
Qeg//da[a

argument to look for a suitable N will apply. However, it appears that y2-distance can perform better
than other common candidates, including the Kullback-Leibler (KL) divergence, precisely because of this
difference bound. In the KL case, Pinkser’s inequality gives rise to an analog of (10) as

sup Q(€ € o) <Py(E € ) +0.5"2( sup KL(,Q))"2.
Q€ Xiara Q€ Xuata
where KL(Py,Q) denotes the KL divergence between Py and Q, which, using our machinery described
above, is not as tight as using (10) when the ultimate value of § is less than 0.5.

Lastly, note that we have constructed %, that satisfies (5) asymptotically. To provide finite-sample
bound, we can use concentration inequalities regarding the MLE estimators (see Korostelev and Korosteleva
2011). Though we do not go into the details here, we note that our previous discussion is exact for Gaussian
distributions with unknown means.



Lam and Li

3 GENERALIZATIONS AND MIXTURE BASELINE DISTRIBUTIONS

Note that an important element to determine the sample size requirement of our scheme is the quantity

sup )(2(]?0,@) in (11). We have chosen a convenient choice in the last section for this quantity, which
QE%data
involves choosing Py and %;,;,. Within the class of ¢- or f-divergences, the choics: U jara 18 asymptotically

the same. To express this more precisely, we re-parametrize the uncertainty set %, to be over the space
of the parameter 6 € ®, and work with sup x2(Py,Pg) instead. We let
eeo)zdam

2
—— {9 €®:(0-6,)71(6,)(0-6, < %1“”} (14)

n

where / (én) is the estimated Fisher information, and 6, is the MLE in which we highlight the dependence
on n. All divergence-based uncertainty sets %, has an equivalent asymptotic form as (14).

The natural question to ask is which baseline measure Py we should choose to generate the Monte Carlo
sample. For convenience, we denote Py, (Po) = sup x*(Po,Pg). Ideally, we would like to choose P so
GE%dam
that Z;4:4(Po) is computable and also minimized, which then leads to a computable and minimized required
number of sample N. To proceed, suppose further that Py has a density p(y;6) on #%'. Furthermore, we

focus on Py that has a density po(y) in the mixture form

()= [ p(:6)ue),

OZ/zl'ata

where U is a distribution on 8 € Uyarar and for convenience we call this associated class of distributions
P (%yua)- This choice of density is handy to simulate from because we can simply sample 6 ~ 1 (d6)
and then & ~ Py.

To minimize Zy4,(Po), we write

;0 2
Duna®0) = swp [ (P20 1) pyyay
0ctyy, ' Po(Y)
-0 2
_ o [ POO)7
0ctyy,'?  Po(Y)
(p(y:0))?
= sup dy—1. (15)
0y, 'Y S, P(V:0)11(dO)

We define

;6))?
L(u,0 é/ (p(y dy and £ sup L(u,0).
(1.6) Y S, P(V:0)11(d6) Y o) 96%”5,,,,1 (.9

It follows from (15) that minimizing Z;4,(Po) is equivalent to solving:

min  max L(u,0)= min ¢(u). (16)
u€=@(%1atu) 0€Xdata uef@(%duta)

Note that the right hand side of (16) is a convex minimization problem, thanks to the fact that 1/x is
a convex function for x > 0.

However, even though the minimization in (16) is convex, solving it exactly is difficult due to the
inner maximization. Thus we will aim for some heuristic methods to improve the choice of the baseline
distribution. To gain some insights, we first consider the value of @¢(u) in the case where we pick



Lam and Li

u= 59n € L@(“ZZMM), the point mass at the MLE estimator at 5(;”, so that P = P . Now we want to see if

we can find some other y € (%) with a smaller value of ¢ (u). In this way, even if we cannot exactly
solve (16), we can still decrease the value of Zyu(Po). Here, we propose a mixture i, (d0) € P (Ugara)
on the boundary of %4, that is easy to simulate and shows promising practical performance. Specifically,
we define the support of measure U,,(d0) to be

R N . . L X
©(6,) = {6 € Wyara: (6 —6,)71(6,)(6—6,) = %}.

Now, to sample 6 ~ [,,,,(d0), we first sample a random vector 11 € R” uniformly on the surface of

2
the p dimension ball with radius % In particular, this can be achieved by sampling from p number of

2
independent standard normal variables and scale them to have 4/ @ unit of length (see Muller (1959)).
Then, we set @ = , -+ (1(8,))~'/?n. In other words, we have chosen L, such that if @ ~ i,,,(d8), then

A A 2
(1(6,))'/?(6 — 8,) is uniformly distributed on the surface of the p-dimensional ball with radius 1/ x‘;‘”’.
We want to simplify problem (16) by finding 0 < ¢ < 1 that minimizes

¢(1) = (1 —1)85, +ttprop),

using line search or the bisection method. In the case where we have checked ¢(1) < ¢(0), we are certain
to make improvement over using (U as the point mass at 6.
In general, if we cannot directly compute po(y) = [, P(¥;0)Uprop(d0®) and solve for ¢(Lprp),

an alternate is to use Monte Carlo samples of {6;};<s and approximate pog(y) = Yo, p(y,6;)/N =
f%m P(¥:0) Uempricai(AO), where Ueppiricar is the empirical distribution of these 6;’s. Then we try to
calculate ¢((1 —t)5én +tUempriciar) for different 0 <z <1 to see if there is improvement.

4 NUMERICAL EXPERIMENTS

We present some numerical examples to illustrate the performance of our method. We first focus on the
computational costs for different level of accuracy € and dimension d. Next, we compare with the result
from standard SG. Finally, we demonstrate how choosing an effective baseline distribution Py can reduce
the required sample size and decrease the computational cost.

We will perform experiments on multivariate Gaussian random variables and exponential random
variables on single linear chance constrained programs (CCP) and joint linear CCP.

e For every experiment in each problem, we obtain an optimal solution X by solving SG, and evaluate
the violation probability V (£,P) under the true probability measure Pg, (where 6y denotes the true
parameter value) either through exact calculation by CDF or numerical expeiments of 10000 times.
Then we calculate the value € as the average of violation probability V (£,P) across 1000 cases. In
addition, we compute the 95th quantile of the violation probability and also the avarage of objective
value as “Ave.Obj.Val” in these 1000 cases.

e Inall examples we consider & = 0.05 and 8 = 0.05 for convenience and alternate between different
values of € and d.

e For each € and d, we let N, to be the sample size we need if we can sample from P directly, and
Ngmp be the Monte Carlo size using our method given the data size n. This number varies under
different choices of baseline measure Py. Note that we must have n < No < Nymp-
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4.1 Single Linear Chance Constraints
We consider a single linear CCP

min cI'x,

xeZ CRd
subject to P((a+§)Tx <b)>1-—c¢,

where x € R? is the decision variable, a,c € RY and b € R are constants. The random vector £ € R? follows
N (8,1;) for some unknown . We suitably choose the parameters so that our problem is always feasible.
The true underlying measure has ¥ = 0. We choose a baseline measure Py using 3, the MLE estimator.
The y>-distance in %4, can be explicitly computed in this case. For different levels of £ and d, we
compute N,y and set n < N. Then we compare the values of N,,; and N, to gain insight on the difference
of the computational cost in our method with that of the standard SG. Finally, we report “Ave.Obj.Val”
and & and its 95% quantiles Qys from 1000 experiments. Table 1 shows our results.

Table 1: A Single Linear CCP for Gaussian with unknown mean.

Different levels of € and d
e=0.1 e=0.1 e=0.1 €=0.05 €=0.05 €=0.05

d=5 d=10 d=20 d=5 d=10 d=20
n 60 100 180 100 200 300
Next &9 154 275 181 311 554
Namp 342 585 1010 748 1144 2209
Ave.Obj.Val 0.8086 0.8686 0.9054 0.8037 0.8566 0.8944
& 0.0094 0.0191 0.0221 0.0071 0.0091 0.0097
Qos 0.0203 0.0341 0.0333 0.0137 0.0149 0.0145

Note that the data size is not enough to support a standard SG in all our considered settings. For
comparison, we show the Monte Carlo N,,;, needed in our method, which are quite big compared to Ny,
though one should keep in mind that the Monte Carlo samples are easy to generate. As we can see, the &
from our method are all below the tolerance level, exhibiting the validity of our method.

Next, we explore the case where & ~ exp(A) with some unknown A. We set the true underlying measure
P to have A = 1 and we choose the baseline measure Py to use i,,, the MLE estimator. We consider the
case where € = 0.01, d = 1 and summarize the results in Table 2. Again, the € we obtain is well below
the tolerance level.

Table 2: A Single Linear CCP for Exponential with unknown mean.

n Nexact Namb Ave.Obj.Val 3 Qos
Value 100 299 1761 0.3644 0.00036 0.0014

Finally, we consider the case where & € .4'(1,X) with both parameters unknown. In such cases, we use
the Wilks’ theorem and construct a joint confidence region for both © and X based on the x2-distribution
(Greene 2008; Arnold and Shavelle 1998). Specifically, We show the results for d = 1, € = 0.01 for
demonstration. We set the true underlying measure PP to have © = 0, 6> = 1 and we choose the baseline
measure Py to use (1§n, 6,,), the MLE estimator. We summarize the results in Table 3, which show similar
patterns as the previous cases.
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Table 3: A Single Linear CCP for Gaussian with unknown mean and unknown variance.

n Ngxdcz Namb AVEOb_]VCll é Q95
Value 200 299 1426 0.5207 0.0011 0.0044

4.2 Joint Linear Chance Constraints
We consider a joint linear CCP

min ch,

xeZ CRd

subject to P((A+&E) x<b)>1—¢,
where x € R? is the decision variable and ¢ € R?,b € R! and A € R¥*! are constants. The random vector
& € R satisfies vec(E) ~ A (0,X) where £ € R¥*? is some non-identity positive definite matrix. Again,
we suitably choose the parameters so that our problem is always feasible. Also, we choose different values
of d,l and € to demonstrate the results. We summarize the results in Table 4.

Table 4: A Joint Linear CCP.

Different levels of d,l and €

e=0.1 e=0.1 €=0.05 €=0.05
d=5 d=10 d=5 d=10
[=10 d=15 [=10 [=15
n 60 100 100 200
Neys 89 154 181 311
Namp 342 585 748 1144
Ave.Obj.Val 0.6388 0.6563 0.6387 0.6669
€ 0.0017 0.0024 0.0017 0.0044
Qos 0.0041 0.0052 0.0037 0.0091

In this joint CCP case, the number of samples N, can grow quickly when € decreases. Our € are
still well below the tolerance level, thus showing the validity of our approach. However, to reduce the
computational costs, we should consider choosing a more efficient Py. We will address this question in
the following subsection.

4.3 Different Choices of the Baseline Distribution

We investigate different choices of Py, motivated from results in the last subsection that using Py at the
MLE estimator 6, may lead to a large N,,,;,. For demonstration, we consider the case where the parametric
family is Gaussian with unknown mean and unit variance. We propose different choices of the mixture
distribution p(d6), compute po(y) = [, p(y;8)1d6 and solve directly for Zyuq(Po) to compute § and
Namp- Note that, in the case & ~ 4 (9,1) and a = 0.05, the uncertainty set U jara is simply the interval
[, — 120 3§, + 1267,

n n

We compare 4 types of mixture on %,,. We denote i, to be the point mass 5(;”, U to be the mixture

of two equal point mass at the two points that split the interval %, into three equal-distance pieces.
Then, we set 3 to be the uniform distribution on the entire interval %, Finally, [, is the uniform
distribution on the boundary of %, which is just two equal point masses at two end points. We set
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€ = 0.05. We summarize the results in Table 5. As, we can see, in this example, U,,, has the best
performance as it gives the lowest number of required Monte Carlo samples.

Table 5: A Comparison among four choices of P for single CCP.

@data (PO) 0 Namb
59" 0.46837 0.0153 195
153 0.42611 0.0164 182
Us 0.36702 0.0182 164
Mprop 0.28765 0.0215 138

We also demonstrate the case of multivariate Gaussian with unknown mean. In this case, we can still
explicitly compute the po(y) under i, using the hypergeometric function defined in Nath (1951). We
show the comparisons in Table 6. We again set € = 0.05, d =2 and n = 80. In this case Ny = 93. Our
choice of U, gives a much smaller N, than using u set as the point mass at 6,,. Moreover, the small
value of € shows that our solution statistically satisfies feasibility for the CCP, which demonstrates that
this choice of ), is valid for our method.

Table 6: A Comparison among two choices of Py for joint CCP.

gdata (Po) 1) Namb Ave.Obj.Val € Q95
59)1 0.0155 0.0153 305 0.9126 0.0016 0.0080
Uprop 0.00543 0.0360 130 0.9211 0.0153 0.0402
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