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Coagulation and fragmentation (CF) is a fundamental process in
which smaller particles attach to each other to form larger clusters
while existing clusters break up into smaller particles. It is a ubiq-
uitous process that plays important roles in many physical and
biological phenomena. CF is typically a stochastic process that
often occurs in confined spaces with a limited number of avail-
able particles . Here, we study the CF process formulated with
the discrete Chemical Master Equation (dCME). Using the newly
developed Accurate Chemical Master Equation (ACME) method,
we examine calculate the time-dependent behavior of the CF sys-
tem. We investigate the effects of a number of important factors
that influence the overall behavior of the system, including the di-
mensionality, the ratio of attachment to detachment rates among
clusters, and the initial conditions. By comparing CF in one and
three dimensions, we conclude that systems in three dimensions are
more likely to form large clusters. We also demonstrate how the
ratio of the attachment to detachment rates affects the dynamics
and the steady-state of the system. Finally, we demonstrate the
relationship between the formation of large clusters and the initial
condition.

1. Introduction

Coagulation and fragmentation (CF) is a fundamental process in which par-
ticles attach to each other to form larger clusters that can also break down
into smaller ones. The general mechanism presents itself in physical processes
such as spray and aerosol [1–3], and biological processes such as filament for-
mation and capsid protein nucleation [4, 5].
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The CF process also lies at the heart of the blood clotting phenomenon
[6–11]. The full coagulation cascade involves many molecular species and
numerous reactions, often requiring complex models such as the ordinary
differential equation (ODE) model of Hockin et al. (with 34 species and 42
rates) [12], or an even more complex platelet-plasma model of [13]. However,
key steps involving the formation of cluster of fibrin particles can be regarded
as a CF process [14].

The CF problem has been the focus of numerous theoretical and ex-
perimental studies [7, 15–17]. Theoretical approaches include Smolukowski’s
equation and the mass-action based Becker-Döring models [17, 19–21]. Solv-
ing these equations usually requires an assumption of infinite system size.
However, CF often occurs in confined spaces with limited supply of molecules
[17]. The behavior of CF in such small systems is intrinsically stochastic and
the effects of the discreteness in particle and cluster numbers is significant.

The classic Becker-Döring-type models do not incorporate discreteness
and stochasticity of the CF process [17, 22]. Instead, the Chemical Master
Equation (CME) approach has been used to address the issue of discreteness
and stochasticity [23–25]. Solution of the CME consists of a time-evolving
probability landscape in state space, while the discrete form of the CME
(dCME) can account for the finite size effects [26–28].

Monte Carlo (MC) simulation is commonly used to generate the tra-
jectories from the discrete CME [29–32]. Studies based on MC simulations
can incorporate both attachment and detachment reactions, discreteness,
and can account for the stochasticity of the processes. However, they are
limited by efficiency in sampling. To the best of our knowledge, there is no
MC-based approach that can easily simulate the CF across all ranges of the
attachment and detachment rates, in different dimensions, and starting with
different initial conditions.

An alternative approach is to obtain an exact solution to the dCME.
This is made possible by using the newly developed Accurate Chemical
Master Equation (ACME) algorithm [33]. Using ACME, we first enumerate
all the microstates reachable by the CF process from a given initial condition
[34]. The transition matrix connecting these microstates are then calculated,
which will be used to determine the time-evolution and steady-state of the
probability landscape of the system. Using ACME, we examine how dimen-
sionality of the system, the ratio of attachment to detachment rates among
clusters, and the initial conditions affect the CF process.
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2. Method

We first describe the CF process using the discrete Chemical Master Equa-
tion (dCME) [35]. In our system, there exists N molecular species n1, n2, . . . ,
nN and m reactions with reaction rate constants r1, r2, . . . , rm. The k-th re-
action can be written as

(1) c1,kn1 + c2,kn2 + · · ·+ cN,knN
rk−→ c′1,kn1 + c′2,kn2 + · · ·+ c′N,knN

The microstate of the system at time t can be represented by a vector
of the copy number of each species: x(t) = (x1(t), x2(t), . . . , xN (t)) ∈ R

N ,
where xi(t) is the copy number of the ith specie at time t. The union of all
possible microstates of the system across all times forms the state space S.

The rate of the k-th reaction that causes the transition of the system
from the microstate j to the microstate i is defined as

(2) Ak(xi, xj) ≡ rk

N
∏

z=1

(

xz
cz,k

)

The discrete Chemical Master Equation can be written as

(3)
∂p(x, t)

∂t
=

∑

[A(x, x′)p(x′, t)−A(x′, x)p(x, t)]

Here, p(x, t) is the probability to be at the microstate x, and A(x, x′) is the
transition rate from microstate x′ to microstate x. We obtain the probability
p(x, t) from Eq. (3) using the Accurate Chemical Master Equation (ACME)
method [33].

In our finite-sized system, we assume that there is a source reservoir of
particles, with a maximum capacity of M . Individual particles in the system
can be generated through a reaction that produces clusters of size 1. Clusters
of size 1 can also be removed by a degradation reaction, which deposits one
particle back into the source reservoir. Furthermore, a cluster of size i and
a cluster of size j can attach to each other and form a new cluster of size
(i+ j), with the condition that (i+ j) cannot exceed a maximum cluster
size of N . Clusters of size (i+ j) can also degrade into two clusters of size
i and j via detachment reaction (see Fig. 1). Thus, we have four reactions
of attachment, detachment, synthesis, and degradation (Eq. 4–7) in our CF
system.
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Figure 1: Schematic of a CF process illustrating possible steps of cluster
attachment and fragmentation.

Xi +Xj
ai,j

−−→ Xi+j , Aatt,ij =

{

ai.j · ni · (nj − 1)/2, if i = j

ai.j · ni · nj , if i �= j
(4)

Xi+j
di,j

−−→ Xi +Xj , Adet,ij = di.j · ni+j(5)

φ
ks−→ X1 , As = ks(6)

X1
kd−→ φ , Ad = kd · n1(7)

Here, Xi represents a cluster of size i; φ the source of the system; ni the copy
number of clusters of size i; and ai,j/di,j the attachment/detachment rate
constants, respectively. For one-dimensional systems, the clusters are linear
chains of particles. The attachment and detachment of particles occur only
at the ends of the cluster. Thus, the attachment and detachment rates are
independent of the length of the cluster and will be taken to be constants.
However, in two or three dimensions, both the attachment and detachment
rates depend on the size of the clusters involved in the reaction. A simple
model is that these rates depend on the perimeter and surface area of the
clusters: ai,j , di,j ∝ (i · j)1/2 for two-dimensional systems, and ai,j , di,j ∝
(i · j)2/3 for three-dimensional systems [20].

To illustrate, we show a simple example in which we have the maximum
cluster size N = 3 and the maximum total mass of the system M = 4. We
assume that the system starts from the initial condition where there are four
particles in the source and there is no cluster present in the system. In this
simple system, we can have three different types of clusters, those of size 1,
2, and 3, respectively. Thus, each microstate of the system can be indexed
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Figure 2: The state space of a system with a maximum cluster size N = 3
and total mass M = 4.

with four integers, the first indicating the number of particles in the source,
and the second, third, and fourth integers indicating the number of clusters
with size 1, 2, and 3, respectively. Eq. (8–10) are the reactions in this simple
system, and the state space of the system is illustrated in Fig. 2.

φ ←→ X1(8)

2X1 ←→ X2(9)

X1 +X2 ←→ X3(10)

We can then generate the rate matrix and calculate the probability of each
microstate at the steady-state (Table 1). From the probability of each mi-
crostate, we can also find the expected number (Eq. 11) and the probability
of each cluster (Eq. 12)

〈ni〉 =
∑

i

pi · ni(11)

Pni
=

∑

i

pi(ni �= 0)(12)
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State index (i) Prob. (ACME results) State (source, n1, n2, n3)

1 p1 = 1.97× 10−1 (4, 0, 0, 0)

2 p2 = 1.97× 10−1 (3, 1, 0, 0)

3 p3 = 9.84× 10−2 (2, 2, 0, 0)

4 p4 = 3.28× 10−2 (2, 0, 1, 0)

5 p5 = 8.20× 10−3 (1, 3, 0, 0)

6 p6 = 4.92× 10−2 (1, 1, 1, 0)

7 p7 = 9.84× 10−2 (1, 0, 0, 1)

8 p8 = 9.84× 10−2 (0, 4, 0, 0)

9 p9 = 9.84× 10−2 (0, 2, 1, 0)

10 p10 = 9.84× 10−2 (0, 0, 2, 0)

11 p11 = 2.46× 10−2 (0, 1, 0, 1)

Table 1: Steady-state probability of each microstate for example shown in
Fig. 2

where i is the microstate index (Table 1), 〈ni〉 the expected number of cluster
of size i, and pni

the probability of observing a cluster of size i.
In our study, we restrict ourselves to a system with total mass of M = 48

and maximum possible cluster size of N = 16, which are much larger than
those in previous studies (M = 32, N = 8) [30]. To describe the CF system,
our state space contains > 700, 000 microstates. For our calculations, we use
a machine with a 20-core Xeon E5-2670 CPU of 2.5GHz, a cache size of
20MB, and 128GB RAM. Computing the steady-state distribution at each
specific ratio of the attachment to detachment rates (ai,j/di,j) takes about
38 minutes. Computing the time-evolving probability distribution takes be-
tween 2,729 minutes and 3,292 minutes. Table 2 provides details on the com-
putational cost.

3. Results

Our results are organized as follows. We first examine the effect of dimen-
sionality on the formation of the largest cluster in the system. We then study
the effect of different ratios r of attachment/detachment rates r = ai,j/di,j
on the formation of clusters and their steady-state distributions. Finally, we
examine the effect of different initial conditions on CF dynamics.
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r = aij/dij Steady-state cost (min) Time-evolving cost (min)

3.0 38 3, 474

4.0 38 3, 292

5.0 38 3, 152

10.0 38 3, 044

20.0 38 2, 913

30.0 38 2, 808

40.0 38 2, 756

50.0 38 2, 729

Table 2: Computational cost for computing the steady-state and time-
evolving probability landscape of the system.

3.1. Effects of dimensionality

For one-dimensional systems, the attachment rate ai,j and the detachment
rate di,j are independent of the size of clusters. For two-dimensional and
three-dimensional systems, we assume ai,j , di,j ∝ (i · j)1/2 and ai,j , di,j ∝ (i ·
j)2/3, respectively [20]. Fig. 3 compares probability of the largest clusters at
different times when r = 1.0 in systems with different dimensionality.

There is a significant difference between the one-dimensional system and
two-dimensional/three-dimensional systems. At long times, the probability
of forming the largest clusters in three-dimensional systems is approximately
twice that in one-dimensional systems. Since the difference in the large-
cluster formation probabilities is negligible between two-dimensional and
three-dimensional systems, we will examine the CF process in three dimen-
sional systems for the rest of this paper.

3.2. Steady-state distributions

Expected number of clusters. Fig. 4A- 4D shows the expected number
of clusters of different sizes for four different values of r= 0.1, 1, 10, and
1, 000 at the steady-state. When r = 0.1, most of clusters are singletons.
When r increases, larger clusters form. When r ≈ 1, 000, all clusters are at
their maximum allowed size. The expected number of all clusters at different
ratios of attachment to detachment rates is shown in Fig. 4E.
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Figure 3: The probability of formation of the largest cluster at different time
in different dimensions when the attachment/detachment rates ratio r is
equal to 1.0. In two-dimensional/three-dimensional systems, this probability
is twice that in one-dimensional systems, while the difference between two
dimensional and three-dimensional systems is negligible.

Probability of forming clusters of different sizes. The formation of
large clusters is an important issue in CF processes. Without loss of gen-
erality, we set a critical probability pθ,max of having the largest cluster to
be 0.3. Fig. 5 shows the steady-state probabilities of different clusters with
different r. When r < 3.0, probability of having largest clusters p16 is less
than pθ,max (Fig. 5A). When this ratio is around 3, the probabilities for all
clusters are almost equal to 0.3. Thus, for the assumed pθ,max, r = 3.0 is the
critical ratio of attachment to detachment rate. Below this value, forming
the largest cluster is unlikely.

3.3. Dynamical behavior of the CF system

To understand the time dependence of forming large clusters, we examine
the time a CF system takes to reach the critical probability of pθ,max. Fig. 6A
shows how p16 changes at different ratios of attachment to detachment rates.
When r < 3.0, the probability of forming the largest cluster is less than
pθ,max = 0.3, regardless of how much time has passed. Fig. 6B shows the
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Figure 4: Expected number of clusters for different ai,j/di,j at steady-state:
(A) r = 0.1, (B) r = 1, (C) r = 10, and (D) r = 1000. When r increases, the
expected number of large particles in the system increases. (E) Expected
number of clusters of all sizes in the system.

critical time at which the probability of forming the largest cluster reaches
pθ,max (white region). Before this critical time, formation of large clusters is
unlikely to occur (blue region). A system containing large clusters is more
likely after this critical time (red region). In the extreme cases, when r >
1, 000, it is highly probable that large clusters will form within 40 minutes.
In contrast, when r ≈ 3.0, it takes about 150 minutes acquire an appreciable
probability of > 0.3 of a maximum-size cluster (Fig. 6B).

We examined the convergence behavior in reaching the steady-state dis-
tribution. Table 3 lists the distance to the steady-state measured as |p16(∞)−
p16(t)| at different times and with different r. Larger r leads to faster con-
vergence.

Following [5], we analyzed the elasticity and sensitivity of parameters of
the CF system for a subset of clusters present at different ratios of r. We
use sensitivity to examine the response of the expected number of different
clusters to changes in r. We use elasticity to examine the relative changes in
the expected number of different clusters with respect to the relative changes
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Figure 5: Probability of local clusters with size i at steady-state for different
r = ai,j/di,j . The probability of clusters with size 16 becomes more than the
probability of other clusters when r > 3, while it is less than the probability
of other clusters when r < 3.

in r. Following [5], the sensitivity S and the elasticity E of forming a cluster
of size i are calculated as eq. 13 and eq. 14.

S(t) =
∂〈ni(t)〉

∂r
(13)

E(t) =
r

〈ni(t)〉
·
∂〈ni(t)〉

∂r
(14)

Fig. 7 shows S and E for formation of four clusters of sizes 4, 8, 12, and
16 at three different r of 5, 20, and 50. When r increases, S and E decrease.
In addition, smaller clusters have higher S and E.

3.4. Dependence on initial conditions

In the examples above, we assumed 48 particles are initially in the source
which can be transformed into the system through synthesis reactions. We
now examine the effect of different initial conditions on the formation of the
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Figure 6: Time dependence of the probability to form maximum-size clusters
for different ratios r of the attachment to detachment rates. (A): Probability
of formation of largest cluster grows when r increases. When ai,j/di,j =
3 probability of formation of largest cluster becomes equal to the critical
probability of pθ,max = 0.3, after the system reaches the steady-state. (B):
Critical time (white region) at which the probability of forming the largest
cluster reaches pθ,max. Before this critical time (blue region), formation of
the largest cluster is unlikely and after this critical time (red region), it is
highly probable that the system contains the largest cluster.

maximum-sized clusters and the time it takes for the system to reach the
steady-state.

We start with different initial conditions constrained to the same initial
mean size (IMS) of clusters. Fig. 8 shows the evolutions of the probability of
forming the largest cluster for four different initial conditions: 12 clusters of
size 4 (n4 = 12), 6 clusters of size 3 and 6 clusters of size 5 (n3 = 6, n5 = 6),
6 clusters of size 2 and 6 clusters of size 6 (n2 = 6, n6 = 6), 6 monomers
and 6 clusters of size 7 (n1 = 6, n7 = 6). All these initial conditions have
the same mean cluster size of 4. Overall, these systems with different initial
conditions show very similar dynamics.

Figs. 9A–9B show the time-dependent behavior of the probability of
forming the largest cluster under initial conditions with different IMS and
r = 3.0 and r = 5.0, respectively. When r = 3.0 and 5.0, the mean size of
clusters at the steady-state is about 8.0 and 9.0, respectively (Fig. 4E).
Fig. 9A–9B also show the time required for reaching the steady-state for
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ai,j/di,j
|p16(∞)− p16(t)| p16(∞)

t=20 t=40 t=60 t=80 t=100 t=120 t=140

2.0 0.244 0.229 0.196 0.160 0.121 0.084 0.050 0.248

3.0 0.292 0.254 0.196 0.135 0.075 0.035 0.012 0.298

4.0 0.321 0.262 0.185 0.110 0.047 0.014 0.000 0.331

5.0 0.343 0.266 0.183 0.095 0.035 0.010 0.000 0.358

10.0 0.402 0.277 0.158 0.056 0.008 0.000 0.000 0.429

20.0 0.453 0.296 0.140 0.034 0.000 0.000 0.000 0.492

30.0 0.115 0.306 0.135 0.023 0.000 0.000 0.000 0.525

40.0 0.125 0.318 0.130 0.019 0.000 0.000 0.000 0.550

50.0 0.136 0.327 0.140 0.019 0.000 0.000 0.000 0.571

Table 3: The convergence behavior of the system at different time steps at
different ratios of the attachment to detachment rates.

different IMSs. Not surprisingly, the time to approach the steady-state dis-
tribution for values of IMSs that are closer to the steady-state mean cluster
sizes is less.

Figs. 9C–9D show the time required for the system to reach the steady-
state for r = 3.0 and r = 5.0, respectively. Our results show that the closer
the mean size of clusters at the initial condition to that of the steady-state,
the less time it takes for the system to approach the stationary distribution.
However, we observe that systems started at IMSs greater than the mean
sizes at steady-state take longer to relax than those started at IMS smaller
than at steady-state.

4. Summary and Conclusions

Coagulation and fragmentation is a fundamental process that plays an im-
portant role in many physical and biological processes. Here we studied the
general properties of the CF process using the Accurate Chemical Master
Equation (ACME) method [33], which can provide accurate solutions to
the discrete Chemical Master Equation (dCME) and can account for the
stochasticity and the discreteness of the CF process.
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Figure 7: Sensitivity and elasticity of formation of clusters of size N =
4, 8, 12, 16 at different ratios of the attachment to detachment rate r =
5, 20, and 50. When the size of clusters increase, sensitivity and elasticity
decrease.

We examined how the dimensionality of the clusters affects their be-
haviors given the same intrinsic attachment and detachment rates. Three-
dimensional systems exhibit faster dynamics compared to systems in one-
dimension or two-dimension. This is because the dimensionality of the clus-
ters affects the effective rates of attachment and detachment.

Steady-state probability distributions of cluster sizes were also studied
under varying attachment/detachment rate ratios. For a given critical prob-
ability of emergence of maximum-sized clusters, we are able to determine
the critical ratio between the attachment and detachment rates. Below this
critical ratio, larger clusters of interest is unlikely to form, regardless of time.
For systems with ratios larger than the critical one, we are able to calculate
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Figure 8: Probability of formation of largest cluster for different initial con-
ditions where initial conditions have same mean cluster size. When IMSs are
the same, different initial conditions show very similar dynamics

the time required for the system to form maximum-sized cluster with high
probability [36, 37].

We further studied how different initial conditions affect the behavior of
the system and find the initial mean size of the clusters is one of the most
important factors that governs the CF dynamics. We find that the dynamics
of systems started with different initial configurations but the same initial
mean cluster sizes are similar. Further investigation shows that the dynamics
towards steady-state are related to the deviation of the mean initial cluster
size from the mean cluster size at steady-state.

Future studies include analysis of various processes of self assembly of
different types of particles that occur in small closed systems, with limited
supplies. Particles with different binding order and binding geometry can be
explored in greater detail. An example is the HIV-1 viral capsid nucleation
process [5]. In addition, critical steps of the blood-clotting processes involv-
ing fibrin and other molecules in the blood-clotting process [14] can also be
studied.
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Figure 9: Probability of forming maximum-sized clusters for different initial
conditions with different initial mean size of cluster. (A): r = 3, (B): r =
5, respectively; Time required for a CF system to reach steady-state for
different initial conditions. (C): r = 3, (D): r = 5.
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