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1 Introduction

In traditional search, a group of searchers (modeled as mobile autonomous agents or robots)

may collaboratively search for an exit (or target) placed within a given search domain [1, 2, 20].

Although the searchers may have differing capabilities (communication, perception, mobility,

memory) search algorithms, previously employed, generally make no distinction between

them as they usually play identical roles throughout the execution of the search algorithm

and with respect to the termination time (with the exception of faulty robots, which also do

not contribute to searching). In this work we are motivated by real-life safeguarding-type

situations where a number of agents have the exclusive role to facilitate the execution of the

task by a distinguished entity. More particularly, we introduce and study Priority Evacuation,

a new form of search , under the wireless communication model, in which the search time

of the algorithm is measured by the time it takes a special searcher, called the queen, to

reach the exit. The remaining searchers in the group, called servants, are participating in

the search but are not required to exit.

1.1 Problem Definition of Priority Evacuation (PEn)

A target (exit) is hidden in an unknown location on the unit circle. The exit can be located

by any of the n + 1 robots (searchers) that walks over it (n = 1, 2, 3). Robots share the same

coordinate system, start from the center of the circle, and have maximum speed 1. Among

them there is a distinguished robot, called the queen, and the remaining n robots are referred

to as servants. All servants are known to the queen by their identities. Robots may run

asymmetric algorithms, and can communicate their findings wirelessly and instantaneously

(each message is composed by an identity and a location). Only the queen is required to be

able to receive messages. Feasible solutions to this problem are evacuation algorithms, i.e.

robots’ movements (trajectories) that guarantee the finding of the hidden exit. The cost of

an evacuation algorithm is the evacuation time of the queen, i.e., the worst case total time

until the queen reaches the exit. None of the n servants needs to evacuate.

1.2 Related work

Related to our work is linear search which refers to search in an infinite line. There have been

several interesting studies attempting to optimize the search time which were initiated with

the influential works of Bellman [7] and Beck [6]. A long list of results followed for numerous

variants of the problem, citing which is outside the scope of this work. For a comprehensive

study of seminal search-type problems see [2, 3].
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The problem of searching in the plane by one or more searchers, has been considered by

[4, 5]. The unit disk model considered in our present paper is a form of two-dimensional

search that was initiated in the work of [10]. In this paper the authors obtained evacuation

algorithms in the wireless and face-to-face communication models both for a small number of

robots as well optimal asymptotic results for a large number of robots. Additional evacuation

algorithms in the face-to-face communication model were subsequently analyzed for two

robots in [14] and later in [8]. Other variations of the problem include the case of more than

one exit, see [9] and [19], triangular and square domains in [15], robots with different moving

speeds [18], and evacuation in the presence of crash or byzantine faulty robots [11].

A priority evacuation-type problem has been previously considered in [16, 17] but with

different terminology. Using the jargon of the current paper, an immobile queen is hidden

somewhere on the unit disk, and a number of robots try to locate her, and fetch (evacuate)

her to an exit which is also hidden. The performance of the evacuation algorithm is measured

by the time the queen reaches the exit.

Apart from the results in [16, 17], all relevant previous work in search-type problems

considered the objective of minimizing the time it takes either by the first or the last agent

to reach the hidden target. In contrast, this paper considers an evacuation (search-type)

problem where the completion time is defined with respect to a distinguished mobile agent,

the queen, while the remaining n servants are not required to evacuate. Our current focus

is to design efficient algorithms for n = 1, 2, 3 servants, as well as give strong lower bounds.

Notably, the algorithms we propose significantly improve upon evacuation costs induced

by naive trajectories, and in fact the trajectories we propose are non-trivial. Our main

contribution concerns priority evacuation for each of the cases of n = 1, 2, 3 servants, all of

which require special treatment. Moreover, all our algorithms are characterized by the fact

that the queen does contribute effectively to the search of the hidden item. In sharp contrast,

the independent and concurrent work of [13] studies the same problem for n ≥ 4 servants

where the queen never contributes to the search. More importantly, the proposed algorithms

of [13] admit a unified description and analysis that does not intersect with the current work.

1.3 Our Results & Paper Organization

Section 2 introduces necessary notation and terminology and discusses preliminaries. Section 3

is devoted to upper bounds for PEn for n = 1, 2, 3 servants (see Subsections 3.1, 3.2, and 3.3,

respectively). All our upper bounds are achieved by fixing optimal parameters for families

of parameterized algorithms. In Section 4 we derive lower bounds for PEn, n = 1, 2, 3. An

interesting corollary of our positive results is that priority evacuation with n = 1, 2, 3 servants

(i.e. with n + 1 searchers) can be performed strictly faster than ordinary evacuation with

n + 1 robots where all robots have to evacuate. Indeed, an argument found in [10] can be

adjusted to show that the evacuation problem with n + 1 robots cannot be solved faster than

1 + 4π
3(n+1) +

√
3. Surprisingly, when one needs to evacuate only one designated robot, the

task can provably (due to our upper bounds) be executed faster. All our results, together

with the comparison to the lower bounds of [10], are summarized in Table 1. We conclude

the paper in Section 5 with a discussion of open problems. Whenever we omit proofs, due to

space limitations, we provide an outline of our arguments. The interested reader may consult

the full version of our paper [12] for the missing details.

FUN 2018



16:4 God Save the Queen

Table 1 Upper and lower bounds for priority evacuation.

# of Servants Upper Bounds for PEn Lower Bounds for PEn Lower Bounds for Ordinary Evacuation

n = 1 4.8185 (Theorem 8) 4.3896 (Theorem 17) 4.826445 (see [10])

n = 2 3.8327 (Theorem 10) 3.6307 (Theorem 19) 4.128314 (see [10])

n = 3 3.3738 (Theorem 14) 3.2017 (Theorem 19) 3.779248 (see [10])

2 Notation and Preliminaries

We use n to denote the number of servants, and we set [n] = {1, . . . , n}. Queen and servant

i will be denoted by Q and Si, respectively, where i ∈ [n]. We assume that all robots start

from the origin O = (0, 0) of a unit circle in R
2. As usual, points in A ∈ R

2 will be treated,

when it is convenient, as vectors from O to A, and ‖A‖ will denote the euclidean norm of

that vector.

2.1 Problem Reformulation & Solutions’ Description

Robots’ trajectories will be defined by parametric functions F(t) = (f(t), g(t)), where

f, g : R 7→ R are continuous and piecewise differentiable. In particular, search algorithms for

all robots will be given by trajectories

Sn :=
{

Q(t), {Si(t)}i∈[n]

}

,

where Q(t), Si(t) will denote the position of Q and Si, respectively, at time t ≥ 0.

◮ Definition 1 (Feasible Trajectories). We say that trajectories Sn are feasible for PEn if:

(a) Q(0) = Si(0) = O, for all i ∈ [n],

(b) Q(t), {Si(t)}i∈[n] induce speed-1 trajectories for Q, {Si}i∈[n] respectively, and

(c) there is some time t0 ≥ 1, such that each point of the unit circle is visited (searched)

by at least one robot in the time window [0, t0]. We refer to the smallest such t0 as the

search time of the circle.

Note that feasible trajectories do indeed correspond to robots’ movements for PEn in

which, eventually the entire circle is searched, and hence the search time is bounded. We

will describe all our search/evacuation algorithms as feasible trajectories, and we will assume

that once the target is reported, Q will go directly to the location of the exit.

For feasible trajectories Sn with search time t0, and for any trajectory F(t) (either of the

queen or of a servant), we denote by I(F) the subinterval of [0, t0] that contains all x ∈ [0, t0]

such that ‖F(x)‖ = 1 (i.e. the robot is on the the circle) and no other robot has been to

F(x) before. Since robots start from the origin, it is immediate that I(F) ⊆ [1, t0]. With this

notation in mind, note that the exit can be discovered by some robot F , say at time x, only

if x ∈ I(F). In this case, the finding is instantaneously reported, so Q goes directly to the

exit, moving along the corresponding line segment between her current position Q(x) and

the reported position of the exit F(x). Hence, the total time that Q needs to evacuate equals

x + ‖Q(x) − F(x)‖ .

Therefore, the evacuation time of feasible trajectories Sn to PEn is given by expression

max
F∈Sn

sup
x∈I(F)

{x + ‖Q(x) − F(x)‖} .
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Notice that for “non-degenerate” search algorithms for which the last point on the circle is

not searched by Q alone, the previous maximum can be simply computed over the servants,

i.e the evacuation cost will be

max
i∈[n]

sup
x∈I(Si)

{x + ‖Q(x) − Si(x)‖} . (1)

In other words, we can restate PEn as the problem of determining feasible trajectories Sn so

as to minimize (1).

2.2 Useful Trajectories’ Components

Feasible trajectories induce, by definition, robots that are moving at (maximum) speed 1.

The speed restriction will be ensured by the next condition.

◮ Lemma 2. An object following trajectory F(t) = (f(t), g(t)) has unit speed if and only if

(f ′(t))
2

+ (g′(t))
2

= 1, ∀t ≥ 0.

Proof. For any t ≥ 0, the velocity of F is given by F ′(t) = (df(t)/dt, dg(t)/dt), and its speed

is calculated as ‖F ′(t)‖. ◭

Robots’ trajectories will be composed by piecewise smooth parametric functions. In

order to describe them, we introduce some further notation. For any θ ∈ R, we introduce

abbreviation Cθ for point {cos (θ) , sin (θ)}. Next we introduce parametric equations for

moving along the perimeter of a unit circle (Lemma 3), and along a line segment (Lemma 4).

◮ Lemma 3. Let b ∈ [0, 2π) and σ ∈ {−1, 1}. The trajectory of an object moving at speed 1

on the perimeter of a unit circle with initial location Cb is given by the parametric equation

C(b, σt) := (cos (σt + b) , sin (σt + b)).

If σ = 1 the movement is counter-clockwise (ccw), and clockwise (cw) otherwise.

Proof. Clearly, C(b, 0) = Cb. Also, it is easy to see that ‖C(b, t)‖ = 1, i.e. the object is

moving on the perimeter of the unit circle. Lastly,

(

d

dt
cos (σt + b)

)2

+

(

d

dt
sin (σt + b)

)2

= σ2 (− sin (σt + b))
2

+ σ2 (cos (σt + b))
2

= 1,

so the claim follows by Lemma 2. ◭

◮ Lemma 4. Consider distinct points A = (a1, a2), B = (b1, b2) in R
2. The trajectory of a

speed 1 object moving along the line passing through A, B and with initial position A is given

by the parametric equation

L(A, B, t) :=

(

b1 − a1

‖A − B‖ t + a1,
b2 − a2

‖A − B‖ t + a2

)

.

Proof. It is immediate that the parametric equation corresponds to a line. Also, it is easy

to see that L(A, B, 0) = A and L(A, B, ‖A − B‖) = B, i.e. the object starts from A, and

eventually visits B. As for the object’s speed, we calculate

(

d

dt

(

b1 − a1

‖A − B‖ t + a1

))2

+

(

d

dt

(

b2 − a2

‖A − B‖ t + a2

))2

=

(

b1 − a1

‖A − B‖

)2

+

(

b2 − a2

‖A − B‖

)2

= 1

so, by Lemma 2, the speed is indeed 1. ◭
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Figure 1 An illustration of trajectories S(t), Q(t), and their critical angles at some fixed time τ ,

with S(τ) = S, Q(τ) = Q, S ′(τ) = u, Q′(τ) = v.

Robots trajectories will be described in phases. In each phase, robot, say F , will be

moving between two explicit points, and the corresponding trajectory F(t) will be implied by

the previous description, using most of the times Lemma 3 and Lemma 4. We will summarize

the details in tables of the following format.

Robot # Description Trajectory Duration

F 0 F(t) t0

1 F(t) t1

...
...

Phase 0 will usually correspond to the deployment of F from the origin to some point of

the circle. Also, for each phase we will summarize it’s duration. With that in mind, trajectory

F(t) during phase i, with duration ti, will be valid for all t ≥ 0 with |t−(t0+t1+. . . ti−1)| ≤ ti.

Lastly, the following abbreviation will be useful for the exposition of the trajectories. For

any ρ ∈ [0, 1] and θ ∈ [0, 2π), we introduce notation

K(θ, ρ) := (1 − ρ)Cπ−θ + ρC−θ.

In other words, K(θ, ρ) is a convex combination of antipodal points Cπ−θ, C−θ of the unit

circle, i.e. it lies on the diameter of the unit circle passing through these two points. Moreover,

it is easy to see that ‖Cπ−θ − K(θ, ρ)‖ = 2ρ, and hence

‖K(θ, ρ) − C−θ‖ = 2 − 2ρ.

As it will be handy later, we also introduce abbreviation

AK(θ, ρ) := ‖Cπ − K(θ, ρ)‖ .

The choice of the abbreviation is clear, if the reader denotes Cπ = (−1, 0) by A.

2.3 Critical Angles

The following definition introduces a key concept. In what follows, abstract trajectories will

be assumed to be continuous and differentiable, which in particular implies that corresponding

velocities are continuous.

◮ Definition 5 (Critical Angle). Let S(t) ∈ R
2 denote the trajectory of a speed-1 object,

where t ≥ 0. For some point Q ∈ R
2, we define the (S, Q)-critical angle at time t = τ to be

the angle between the velocity vector S ′(τ) and vector
−−−−→S(τ)Q, i.e. the vector from S(τ) to Q.
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We make the following critical observation, see also Figure 1.

◮ Theorem 6. Consider trajectories S(t), Q(t) of two speed-1 objects S, Q, where t ≥ 0.

Let also φ, θ denote the (S, Q(t))-critical angle and the (Q, S(t))-critical angle at time t,

respectively. Then t + ‖Q(t) − S(t)‖ is strictly increasing if cos (φ) + cos (θ) < 1, strictly

decreasing if cos (φ) + cos (θ) > 1, and constant otherwise.

Theorem 6 is an immediate corollary of the following lemma.

◮ Lemma 7. Consider trajectories S(t), Q(t) and their critical angles π, θ, as in the statement

of Theorem 6. Then

d

dt
‖Q(t) − S(t)‖ = cos (φ) + cos (θ) .

Proof. For any fixed t, let d denote D(t), and S, Q denote points S(t), Q(t), respectively.

Denote also by u, v the velocities of S, Q at time t, respectively, i.e. u = S ′(t), v = Q′(t). See

also Figure 1.

With that notation, observe that
∥

∥

∥

−→
SQ

∥

∥

∥
= d. Since ‖u‖ = ‖v‖ = 1, we see that

projSQu =
cos (φ)

d

−→
SQ

and

projSQv =
cos (θ)

d

−→
QS.

Now consider two imaginary objects S, Q, with corresponding velocities S′
(t) = projSQu and

Q′
(t) = projSQv. It is immediate that ‖Q(t) − S(t)‖ =

∥

∥Q(t) − S(t)
∥

∥.

In particular, projSQu − projSQv is the projection of the relative velocities of S, Q on the

line segment connecting S(t), Q(t). As such, the distance between S, Q changes at a rate

determined by velocity

projSQu − projSQv =
cos (φ) + cos (θ)

d

−→
SQ,

where
∥

∥projSQu − projSQv
∥

∥ = |cos (φ) + cos (θ)|. Moreover, projSQu, projSQv are antipar-

allel iff and only if cos (φ) , cos (θ) > 0, in which case the two objects come closer to each

other. ◭

3 Upper Bounds

3.1 Evacuation Algorithm for PE1

This subsection is devoted in proving the following.

◮ Theorem 8. Consider the real function f(x) = x + sin (x), and denote by α0 > 0 the

solution to equation

f(f(α − sin (α))) = sin (α) ,

with α0 ≈ 1.14193. Then PE1 can be solved in time 1 + π − α0 + 2 sin (α0) ≈ 4.81854.
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𝜋𝜋 − 𝛼𝛼 𝛽𝛽𝐶𝐶−𝛼𝛼
𝐶𝐶−𝛼𝛼+𝛽𝛽

𝐶𝐶𝛼𝛼
SEARCH1 𝛼𝛼,𝛽𝛽𝒬𝒬 𝑡𝑡𝒮𝒮1 𝑡𝑡

Figure 2 Algorithm Search1(α, β) depicted for the optimal parameters of the algorithm. In all

subsequent figures, as well as here, the orange points on the perimeter of the disc correspond to the

worst adversarial placements of the treasure, which due to our optimality conditions induce the same

evacuation cost. The orange points in Q’s trajectories correspond to the Q’s positioning when the

treasures are reported, in the worst cost induced cases. The green dashed line depict Q’s trajectory

after Q abandons her trajectory and moves toward the reported exit following a straight line.

The value of α0 is well defined in the statement of Theorem 8. Indeed, by letting

g(x) = f(f(x − sin (x))) − sin (x), we observe that g is continuous, while g(1) ≈ −0.213934

and g(π/2) ≈ 1.00729, hence there exists α0 ∈ (1, π/2) with g(α0) = 0.

In order to prove Theorem 8, and given parameters α, β, we introduce the family of

trajectories Search1(α, β), see also Figure 2.

Algorithm Search1(α, β)

Robot # Description Trajectory Duration

Q 0 Move to point Cπ L(O, Cπ, t) 1

1 Search circle ccw till point C−α C(π, t − 1) π − α

2 Move to point C−α+β , L(C−α, C−α+β , t − (1 + π − α)) 2 sin (β/2)

3 Search circle cw till point C−α C(β − α, 1 + π − α + 2 sin (β/2) − t) β

S1 0 Move to point Cπ L(O, Cπ, t) 1

1 Search circle cw till point Cβ−α C(π, −t + 1) π + α − β

Partitioning the circle clockwise, we see that the arc with endpoints Cπ, Cπ+α−β is
searched by S1, while the remaining of the circle is searched by Q. Therefore, robots’
trajectories in Search1(α, β) are feasible, and it is also easy to see that they are continuous
as well. The search time equals 1 + π + max{α − β, 2 sin (β/2) + β − α}, as well as

I(Q) = [1, 1+π −α]∪ [1+π −α+2 sin (β/2) , 1+π −α+2 sin (β/2)+β], I(S1) = [1, 1+π +α−β].

An illustration of the above trajectories for certain values of α, β can be seen in Figure 2.

First we make some observations pertaining to the monotonicity of the evacuation cost.

◮ Lemma 9. Assuming that α > π/3 and that cos (α) + cos (α − β/2) > 1, the evacuation

cost of Search1(α, β) is monotonically increasing if the exit is found by S1 during Q’s phase

1 and monotonically decreasing if the exit is found by S1 during Q’s phase 2.

Proof. Suppose that the exit is found by S1 during Q’s phase 1, i.e. at time x after robots

start searching for the first time, where 0 ≤ x ≤ π −α. It is easy to see that the critical angles
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between Q, S1 are both equal to π − x. But then 2 cos (π − x) ≥ 2 cos (α) > 2 cos (π/3) = 1.

Hence, by Theorem 6, the evacuation cost is decreasing in this case.

Now suppose that the exit is found by S1 during Q’s phase 2, i.e. at time x after Q
starts moving along the chord with endpoints C−α, C−α+β , where 0 ≤ x ≤ 2 sin (β/2). If

φx, θx denote the S1, Q critical angles, then it is easy to see that φ0 = cos (α) and that

θ0 = α − β/2. Since cos (φ0) + cos (θ0) > 1, Theorem 6 implies that the evacuation cost is

initially decreasing in this phase. For the remaining of Q’s phase 2, it is easy to see that both

φx, θx are decreasing in x, hence cos (φx) + cos (θx) is increasing in x, hence, the evacuation

cost will remain decreasing in this phase. ◭

Now we can prove Theorem 8 by fixing certain values for parameters α, β of Search1(α, β).

In particular, we set α0 as in the statement of Theorem 8, and β0 = 2f(α0 − sin (α0)) ≈
0.925793. The trajectories of the robots, for the exact same values of the parameters, can be

seen in Figure 2.

Proof of Theorem 8. Let f, α0 be as in the statement of Theorem, and set β0 = 2f(α0 −
sin (α0)) ≈ 0.925793. We argue that the worst evacuation time of Search1(α0, β0) is

1 + π − α0 + 2 sin (α0). Note that for the given values of the parameters, we have that

α0 > π/3, that α0 − sin (β0/2) ≤ β0, and that cos (α0) + cos (α0 − β0/2) > 1.

First we observe that if the exit if found by Q, then the worst case evacuation time

E0(α0, β0) is incurred when the exit is found just before Q stops searching, that is

E0(α0, β0) = 1 + π − α0 + 2 sin (β0/2) + β0.

Next we examine some cases as to when the exit is found by S1. If the exit is found by

S1 during the 1st phase of Q, then the evacuation time is, due to Lemma 9, given as

E1(α0, β0) = sup
1≤x≤1+π−α0

{x + ‖Q(x) − S1(x)‖} = 1 + π − α0 + 2 sin (α0) .

Recall that cos (α0) + cos (α0 − β0/2) > 1, and so, again by Lemma 9 we may omit the

case that the exit is found by S1 while Q is at phase 2. The end of Q’s phase 2 happens at

time τ := 1+π−α0 +2 sin (β0/2), when have that Q(τ) = C−α+β , and S1(τ) = Cα−2 sin(β0/2),

and both robots are intending to search ccw. Condition α0 − sin (β0/2) ≤ β0 says that S1

will finish searching prior to Q, and this happens when S1 reaches point C−α+β . During this

phase, the distance between Q, S1 stays invariant and equal to 2α0 − β0 − 2 sin (β0/2). We

conclude that the cost in this case would be

E2(α0, β0) = 1 + π + α0 − β0 + 2 sin (α0 − β0/2 − sin (β0/2)) .

Then, we argue that that the choice of α0, β0 guarantees that E0(α0, β0) = E1(α0, β0) =

E2(α0, β0), as wanted.

Indeed, E0(α0, β0) = E1(α0, β0) implies that sin (β0/2) + β0/2 = sin (α0). But then, we

can rewrite E2(α0, β0) as

E2(α0, β0) = 1 + π + α0 − β0 + 2 sin (α0 − sin (α0)) .

Equating the last expression with E1(α0, β0) implies that

β0/2 = α0 − sin (α0) + sin (α0 − sin (α0)) = f(α0 − sin (α0)).

Substituting twice β0/2 in the already derived condition sin (β0/2) + β0/2 = sin (α0) implies

that

f(f(α − sin (α0))) = sin (α0) .
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𝐶𝐶𝜋𝜋−𝛼𝛼

𝐶𝐶−𝛼𝛼/2𝐾𝐾 𝛼𝛼/2, 𝜌𝜌
𝛼𝛼

𝛼𝛼/2

SEARCH2 𝛼𝛼,𝛽𝛽𝒬𝒬 𝑡𝑡𝒮𝒮1 𝑡𝑡𝒮𝒮2 𝑡𝑡

Figure 3 Algorithm Search2(α, β) depicted for the optimal parameters of the algorithm.

Figure 2 depicts the worst placements of the exit, along with the trajectories of the queen

(in dashed green lines) after the exit is reported. ◭

It should be stressed that Q’s Phases 2,3 are essential for achieving the promised bound.

Indeed, had we chosen α = β = 0, the worst case evacuation time would have been

sup
1≤x≤1+π

{x + ‖Q(x) − S1(x)‖} = sup
0≤x≤π

{1 + x + 2 sin (x)} .

The maximum is attained at x0 = 2π/3 (and indeed, both critical angles in this case are π/3

and in particular 2 cos (π/3) = 1), inducing cost 1 + 2π/3 +
√

3 ≈ 4.82645. The latter is the

cost of the evacuation algorithm for two robots without priority of [10].

3.2 Evacuation Algorithm for PE2

In this subsection we prove the following theorem.

◮ Theorem 10. PE2 can be solved in time 3.8327.

Given parameters α, ρ, we introduce the family of trajectories Search2(α, ρ), see also

Figure 3.

Algorithm Search2(α, ρ)

Robot # Description Trajectory Duration

Q 0 Move to point Cπ−α L(O, Cπ−α, t) 1

1 Search the circle ccw till point Cπ C(π − α, t − 1) α

2 Move to point K(α/2, ρ) L(Cπ, K(α/2, ρ), t − (1 + α)) AK(α/2, ρ)

3 Move to point C−α/2 L(K(α/2, ρ), C−α/2) 2 − 2ρ

S1 0 Move to point Cπ−α L(O, Cπ−α) 1

1 Search the circle cw till point C−α/2 C(π − α, −t + 1) π − α/2

S2 0 Move to point Cπ L(O, Cπ) 1

1 Search the circle cw till point C−α/2 C(π, t − 1) π − α/2

Notice that, by definition of Search2(α, ρ), robots’ trajectories are continuous and

feasible, meaning that the entire circle is eventually searched. Indeed, partitioning the circle

clockwise, we see that: the arc with endpoints Cπ, Cπ−α is searched by Q, the arc with

endpoints Cπ−α, C−α/2 is searched by S1, and the arc with endpoints C−α/2, Cπ is searched

by S2.
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It is immediate from the description of the trajectories that the search time is 1 + π − α/2.

Moreover

I(Q) = [1, 1 + α], I(S1) = I(S2) = [1, 1 + π − α/2].

An illustration of the above trajectories for certain values of α, ρ can be seen in Figure 3.

Now we make some observations, in order to calculate the worst case evacuation time.

◮ Lemma 11. Suppose that π − α/2 ≥ α + AK(α/2, ρ) + 2 − 2ρ. Then ‖Q(x) − S1(t)‖ is

continuous and differentiable in the time intervals I1, I2, I3 of Q’s phases 1,2,3, respectively.

Moreover, the worst case evacuation time of Search2(α, ρ) can be computed as

max















1 + α + 2 sin (α) ,

supt∈I2
{t + ‖Q(t) − S1(t)‖}

supt∈I3
{t + ‖Q(t) − S1(t)‖}

1 + π − α/2















where

I2 = [1 + α, 1 + α + AK(α/2, ρ)], I3 = [1 + α + AK(α/2, ρ), 3 − 2ρ + α + AK(α/2, ρ)].

Proof. Note that the line passing through O and C−α/2, call it ǫ, has the property that

each point of it, including K(α/2, ρ) is equidistant from S1, S2. Moreover, in the time

window [1 + α, 1 + α + AK(α/2, ρ)] that only S1, S2 are searching, Q stays below line ǫ. At

time 1 + α + AK(α/2, ρ), Q is, by construction, equidistant from S1, S2, a property that is

preserved for the remaining of the execution of the algorithm. As a result, the evacuation

time of Search2(α, ρ) is given by

sup
1≤t≤1+π−α/2

{t + ‖Q(t) − S1(t)‖}.

Now note that condition π − α/2 ≥ α + AK(α/2, ρ) + 2 − 2ρ guarantees that Q reaches

point C−α/2 no later than S1. Moreover, in each time interval I1, I2, I3, Q’s trajectory is

differentiable (and so is S1’s trajectory). ◭

Now Theorem 10 can be proven by fixing parameters α, ρ for Search2(α, ρ), in particular,

α = 0.6361, ρ = 0.7944. Notably, the performance of Search2(α, ρ) is provably improvable

(slightly) using a technique we will describe in the next section.

3.3 Evacuation Algorithm for PE3

3.3.1 A Simple Algorithm

In this section we prove the following preliminary theorem (to be improved in Section 3.3.2).

◮ Theorem 12. PE3 can be solved in time 3.37882.

Given parameters α, β, ρ, we introduce the family of trajectories Search3(α, β, ρ), cor-

responding to robots Q, S1, S2, S3, see also Figure 4.

FUN 2018



16:12 God Save the Queen

𝐶𝐶𝜋𝜋−𝛼𝛼

𝐶𝐶− 𝛼𝛼−𝛽𝛽 /2
𝐾𝐾 𝛼𝛼 + 𝛽𝛽

2
,𝜌𝜌

𝛼𝛼
(𝛼𝛼 + 𝛽𝛽)/2

𝐶𝐶𝜋𝜋−𝛼𝛼−𝛽𝛽𝛽𝛽 SEARCH3 𝛼𝛼,𝛽𝛽, 𝜌𝜌𝒬𝒬 𝑡𝑡𝒮𝒮1 𝑡𝑡𝒮𝒮2 𝑡𝑡𝒮𝒮3 𝑡𝑡

Figure 4 Algorithm Search3(α, β, ρ) depicted for the optimal parameters of the algorithm.

Algorithm Search3(α, β, ρ)

Robot # Description Trajectory Duration

Q 0 Move to point Cπ−α L(O, Cπ−α, t) 1

1 Search the circle ccw till point Cπ C(π − α, t − 1) α

2 Move to point K( α+β
2

, ρ) L(Cπ, K( α+β
2

, ρ), t − (1 + α)) AK( α+β
2

, ρ)

3 Move to point C
−

α+β

2

L(K( α+β
2

, ρ), C
−

α+β

2

) 2 − 2ρ

S1 0 Move to point Cπ−α−β L(O, Cπ−α−β) 1

1 Search the circle cw till point C
−

α+β

2

C(π − α − β, −t + 1) π − α+β
2

S2 0 Move to point Cπ L(O, Cπ) 1

1 Search the circle ccw till point C
−

α+β

2

C(π, t − 1) π − α+β
2

S3 0 Move to point Cπ−α−β L(O, Cπ−α−β) 1

1 Search the circle ccw till point C−α C(π − α − β, −t + 1) β

As before, it is immediate that, in Search3(α, β, ρ), robots’ trajectories are continuous

and feasible, meaning that the entire circle is eventually searched. In particular, the arc with

endpoints Cπ, Cπ−α is searched by Q, the arc with endpoints Cπ−α−β , C
−

α+β

2

is searched

by S1, the arc with endpoints C−π, C
−

α+β

2

is searched by S2, and the arc with endpoints

Cπ−α, Cπ−α−β is searched by S3. Also, the search time is 1 + π − α+β
2 , and

I(Q) = [1, 1 + α], I(S1) = I(S2) = [1, 1 + π − α + β

2
], I(S3) = [1, 1 + β].

An illustration of the above trajectories for certain values of α, β, ρ can be seen in Figure 4.

Before we prove Theorem 12, we need to make some observation, in order to calculate

the worst case evacuation time.

◮ Lemma 13. Suppose that α ≤ β, α + AK( α+β
2 , ρ) ≥ β, and π − α+β

2 ≥ α + AK( α+β
2 , ρ) +

2 − 2ρ. Then the following functions are continuous and differentiable in each associated

time intervals: ‖Q(x) − S3(t)‖ in I1 = {t ≥ 0 : α ≤ t − 1 ≤ β}, ‖Q(x) − S1(t)‖ in

I2 = {t ≥ 0 : |t−1−α| ≤ AK( α+β
2 , ρ)} and in I3 = {t ≥ 0 : |t−1−α−AK( α+β

2 , ρ)| ≤ 2−2ρ}.

Moreover, the worst case evacuation time of Search3(α, β, ρ) can be computed as

max















supt∈I1
{t + ‖Q(t) − S3(t)‖}

supt∈I2
{t + ‖Q(t) − S1(t)‖}

supt∈I3
{t + ‖Q(t) − S1(t)‖}

1 + π − α+β
2














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Proof. Conditions α ≤ β and α + AK(α+β
2 , ρ) ≥ β mean that Q stops searching no later

than S3, and that when S3 stops searching Q is still in her phase 2, respectively.

The line passing through O and C−(α+β)/2, call it ǫ, has the property that each point

of it, including K(α+β
2 , ρ) is equidistant from S1, S2. Moreover, while S1, S2 are searching,

Q never goes above line ǫ. At time 1 + α + AK( α+β
2 , ρ), Q is, by construction, equidistant

from S1, S2, a property that is preserved for the remaining of the execution of the algorithm.

As a result, S2 can be ignored in the performance analysis, and when it comes to the case

that S1 finds the exit, the evacuation cost is given by the supremum of t + ‖Q(t) − S1(t)‖ in

the time interval I2 or in the interval I3. Note that in both intervals, the evacuation cost is

continuous and differentiable, by construction.

If the exit is reported by S3 then the evacuation cost is t+‖Q(t) − S3(t)‖ for t ∈ [1, 1+β].

However, it is easy to see that the cost is strictly increasing for all t ∈ [1, 1 + α] (in fact it is

linear). Since the evacuation cost is also continuous, we may restrict the analysis in interval

I1.

Lastly, observe that π − α+β
2 ≥ α + AK( α+β

2 , ρ) + 2 − 2ρ implies that S1, S2 reach point

C−(α+β)/2 no earlier than Q. Hence Q waits at C−(α+β)/2 till the search of the circle is over,

which can be easily seen to induce the worse evacuation time after Q reaches C−(α+β)/2. ◭

We prove Theorem 12 by fixing parameters α, β, ρ for Search3(α, β, ρ), in particular

α = 0.26738, β = 1.2949, ρ = 0.70685.

3.3.2 Improved Search Algorithm

In this section we improve the upper bound of Theorem 12 by 0.00495 additive term.

◮ Theorem 14. PE3 can be solved in time 3.37387.

The main idea can be described, at a high level, as a cost preservation technique. By the

analysis of Algorithm Search3(α, β, ρ) for the value of parameters of α, β, ρ as in the proof

of Theorem 12, we know that there are is a critical time window [τ2, τ3] so that the total

evacuation time is the same if the exit is found by S1 either at time τ2 or τ3, and strictly

less for time moments strictly in-between. In fact, during time [τ2, 1 + α + AK( α+β
2 , ρ)] Q is

executing phase 2, and in the time window [1 + α + AK( α+β
2 , ρ), τ3] Q is executing phase 3

of Search3(α, β, ρ).

From the above, it is immediate that we can lower Q’s speed in the time window [τ2, τ3]

so that the evacuation time remains unchanged no matter when S1 finds the exit in the same

time interval (notably, S3 has finished searching prior to τ2 and ‖Q(t) − S1‖ ≥ ‖Q(t) − S2‖).

But this also implies that we must be able to maintain the evacuation time even if we preserve

speed 1 for Q, that will in turn allow us to twist parameters α, β, ρ, hopefully improving the

worst case evacuation time. We show this improvement is possible by using the following

technical observation

◮ Theorem 15. Consider point Q = (q1, q2) ∈ R
2. Let S(t) be the trajectory of an object

S moving at speed 1, where t ≥ 0, and denote by φ the (S, Q)-critical angle at time t = 0.

Assuming that cos (φ) ≥ 0, then there is some τ > 0, and a trajectory Q(t) = (f(t), g(t)) of

a speed-1 object, where t ≥ 0, so that t + ‖Q(t) − S(t)‖ remains constant, for all t ∈ [0, τ ].

Moreover, Q(t) can be determined by solving the system of differential equations

(f ′(t))
2

+ (g′(t))
2

= 1 (2)

t + ‖Q(t) − S(t)‖ = ‖S(0) − Q‖ (3)

(f(0), g(0)) = (q1, q2). (4)
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Proof. An object with trajectory (f(t), g(t)) satisfying (2) and (4) has speed 1 (by Lemma 2),

and starts from point Q = (q1, q2). We need to examine whether we can choose f, g so as to

satisfy (3).

By Lemma 7, such a trajectory Q(t) exists exactly when we can guarantee that cos (φ) +

cos (θ) = 1 over time t. When t = 0 we are given that cos (φ) > 0, hence there exists θ

satisfying cos (φ) + cos (θ) = 1. This uniquely determines the velocity of Q at t = 0.

By continuity of the velocities, there must exist a τ > 0 such that cos (φ) + cos (θ) = 1

admits a solution for θ also as φ changes over time t ∈ [0, τ ], in which time window the cosine

of the (S, Q(t))-critical angle at time t remains non-negative. ◭

Note that condition cos (φ) ≥ 0 of Theorem 15 translates to that ‖S(t) − Q‖ is not

increasing at t = τ , i.e. that S does not move away from point Q.

Now fix parameters α, β, ρ together with the trajectories of S1, S2, S3 as in the description

of Algorithm Search3(α, β, ρ). The description of our new algorithm N-Search3(α, β, ρ)

will be complete once we fix a new trajectory for Q. Naming specific values for parameters

α, β, ρ will eventually prove Theorem 14. In order to do so, we introduce some further

notation and conditions, denoted below by (Conditions i-iv), that we later make sure are

satisfied.

Consider Q’s trajectory as in Search3(α, β, ρ). Let τ0 denote a local maximum of

t + ‖Q(t) − S1(t)‖

as it reads for t ≥ 0 with |t−1−α| ≤ AK( α+β
2 , ρ) (recall that in this time window, expression

is differentiable by Lemma 13), i.e.

|τ0 − 1 − α| ≤ AK(
α + β

2
, ρ) (Condition i)

Set Q = Q(τ0), and assume that

“The cosine of the (S, Q)-critical angle at time τ0 is non-negative.” (Condition ii)

Then obtain from Theorem 15 trajectory (f(t), g(t)) that has the property that it preserves

τ0 + ‖Q(τ0) − S1(τ0)‖ in the time window [τ0, τ ′]. Assume also that

“There is time τ1 ≤ τ ′ such that point K1 := (f(τ1), g(τ1)) is equidistant from

S1(τ1), S2(τ1),”

(Condition iii)

for the first time after time τ0, such that

τ1 ≤ 1 + π − α + β

2
. (Condition iv)

Then consider the following modification of Search3(α, β, ρ), where the trajectories of

S1, S2, S3 remain unchanged, see also Figure 5.

Algorithm N-Search3(α, β, ρ)

Robot # Description Trajectory Duration

Q 0 Move to point Cπ−α L(O, Cπ−α, t) 1

1 Search the circle ccw till point Cπ C(π − α, t − 1) α

2 Move toward point K( α+β
2

, ρ) L(Cπ, K( α+β
2

, ρ), t − (1 + α)) τ0 − 1 − α

3 Preserve τ0 + ‖Q(τ0) − S1(τ0)‖ (f(t), g(t)) τ1 − τ0

4 Move to point C
−

α+β

2

L(K1, C
−

α+β

2

)
∥

∥

∥
K1 − C

−
α+β

2

∥

∥

∥
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Figure 5 Algorithm Search3(α, β, ρ) depicted for the optimal parameters of the algorithm.

Note that in phase 2, Q is not reaching (necessarily) point K rather it moves toward it

for a certain duration. The search time is still 1 + π − α+β
2 . Trajectories of S1, S2, S3 are

continuous as before, and

I(S1) = I(S2) = [1, 1 + π − α + β

2
], I(S3) = [1, 1 + β],

as well as I(Q) = [1, 1 + α].

Condition i makes sure that while Q is at phase 2, and before it reaches K(α+β
2 , ρ),

there is a time moment τ0 when the rate of change of t + ‖Q(t) − S1(t)‖ is 0. Together with

condition ii, this implies that Theorem 15 applies. In fact, for the corresponding critical

angles φ, θ between S1, Q at time τ0, we have that cos (φ) + cos (θ) = 1 by construction.

Hence trajectory (f(t), g(t)) of phase 3 is well defined, and indeed, Q jumps from phase 2 to

phase 3 while Q is still moving toward point K. Notably, Q’s trajectory is even differentiable

at t = τ0 (but not necessarily at t = τ1). Then, Condition iii says that Q eventually will enter

phase 4, and that this will happen before S1, S2 finish the exploration of the circle. Overall,

we conclude that in N-Search3(α, ρ), robots’ trajectories are continuous and feasible. An

illustration of the above trajectories for certain values of α, β, ρ can be seen in Figure 5.

Now we make some observations, in order to calculate the worst case evacuation time.

◮ Lemma 16. Suppose that α ≤ β, 1 + β ≤ τ0, and 1 + π − α+β
2 ≥ τ1 +

∥

∥

∥
K1 − C

−
α+β

2

∥

∥

∥

as well as Conditions i-iv are satisfied. Then the following functions are continuous and

differentiable in each associated time intervals: ‖Q(x) − S3(t)‖ in I1 = {t ≥ 0 : α ≤ t − 1 ≤ β},

‖Q(x) − S1(t)‖ in I2 = {t ≥ 0 : 1 + α ≤ t ≤ τ0 and in I3 =
{

t ≥ 0 : |t − τ1| ≤

∥

∥

∥
K1 − C

−
α+β

2

∥

∥

∥

}

.

Moreover, the worst case evacuation time of N-Search3(α, β, ρ) can be computed as

max















supt∈I1
{t + ‖Q(t) − S3(t)‖}

supt∈I2
{t + ‖Q(t) − S1(t)‖}

supt∈I3
{t + ‖Q(t) − S1(t)‖}

1 + π − α+β
2















Proof. Conditions α ≤ β and 1 + β ≤ τ0 mean that Q stops searching no later than S3, and

that when Q enters phase 3 after S3 is done searching, respectively.

The line passing through O and C−(α+β)/2, call it ǫ, has the property that each point

of it, including K(α+β
2 , ρ) is equidistant from S1, S2. Moreover, while S1, S2 are searching,
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Figure 6 (Left) The queen must be in region R at time f(s3). Here s3 = E and q3 = F .

Q never goes above line ǫ. Also, while Q is executing phase 3, Q remains equidistant from

S1, S2 and this is preserved for the remainder of the execution of the algorithm. As a result,

S2 can be ignored in the performance analysis, and when it comes to the case that S1 finds

the exit, the evacuation cost is given by the supremum of t + ‖Q(t) − S1(t)‖ in the time

interval I2 or in the interval I3. Note that in both intervals, the evacuation cost is continuous

and differentiable, by construction.

If the exit is reported by S3 then the evacuation cost is t+‖Q(t) − S3(t)‖ for t ∈ [1, 1+β].

However, it is easy to see that the cost is strictly increasing for all t ∈ [1, 1 + α] (in fact it is

linear). Since the evacuation cost is also continuous, we may restrict the analysis in interval

I1.

Lastly, observe that 1 + π − α+β
2 ≥ τ1 +

∥

∥

∥
K1 − C

−
α+β

2

∥

∥

∥
implies that S1, S2 reach point

C−(α+β)/2 no earlier than Q. Hence Q waits at C−(α+β)/2 till the search of the circle is over,

which can be easily seen to induce the worse evacuation time after Q reaches C−(α+β)/2. ◭

We can prove now Theorem 14 by fixing parameters α, β, ρ for N-Search3(α, β, ρ), in

particular α = 0.27764, β = 1.29839, ρ = 0.68648.

4 Lower Bounds

In this section we derive lower bounds for evacuation. In Section 4.1 we treat the case of n = 1

(see Theorem 17) and in Section 4.2 we treat the case of n = 2 and 3 (see Theorem 19).

4.1 Lower Bound for PE1

We will derive the lower bound using an adversarial argument placing the exit at an unknown

vertex of a regular hexagon.

◮ Theorem 17. The worst-case evacuation time for PE1 is at least 3 +π/6 +
√

3/2 ≈ 4.3896

Proof. At time 1 + π/6, at most π/3 of the perimeter of the circle can have been explored

by the queen and servant. Thus, there is a regular hexagon, none of whose vertices have

been explored. If the exit is at one of these vertices, by Theorem 18, it takes 2 +
√

3/2 for

the queen to evacuate. The total time is 1 + π/6 + 2 +
√

3/2. ◭

Next we proceed to provide a lower bound on a unit-side hexagon. Label the vertices

of the hexagon V as A, . . . , F as shown in Figure 6. Fix an evacuation algorithm A. For

any vertex v of the hexagon, we call f(v) the time of first visit of the vertex v by either the
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servant or the queen, according to algorithm A. We call q(v) the time that the queen gets to

the vertex v. Clearly, q(v) ≥ f(v), and if the queen arrives at the vertex no later than the

servant, q(v) = f(v).

◮ Theorem 18. For any algorithm A, the evacuation time for the queen when the exit is at

one of the vertices of the hexagon is maxv∈V {q(v)} ≥ 2 +
√

3/2.

Proof. Suppose there is an algorithm in which the queen can always evacuate in time

< 2 +
√

3/2. Consider the trajectories of the servant and the queen. If either the queen

or the servant are the first to visit 4 vertices, then for the fourth such vertex v, we have

f(v) ≥ 3, a contradiction. Therefore, the queen is the first to visit three vertices, and the

servant is the first to visit three vertices. We denote the three vertices visited first by the

servant as s1, s2, s3 (in the order they are visited) and the three vertices visited first by the

queen as q1, q2, q3, and note that they are all distinct.

Notice that neither s3 nor q3 can be visited before time 2, that is, f(s3), f(q3) ≥ 2. If

f(q3) ≤ f(s3), then we place the exit at s3, and the queen needs time at least 1 to get to s3,

which implies that T ≥ q(s3) ≥ f(q3) + 1 ≥ 3, a contradiction. We conclude that at time

f(s3), the queen is yet to visit q3. Since the exit can be at either s3 or q3, at time f(s3), the

queen must be at distance < 2 +
√

3/2 − f(s3) ≤
√

3/2 from both s3 and q3.

Assume without loss of generality that s3 = E (see Figure 6). Since A, B, D are all

at distance at least
√

3 from E, we conclude that q3 is either C or F . Assume without

loss of generality that q3 = F . Let R denote the lens-shaped region that is at distance

< 2 +
√

3/2 − f(s3) from both E and F . Recall that at time f(s3), the queen must be

inside the region R. Notice that if f(s3) ≥ 1.5 +
√

3/2, the region R is empty, yielding a

contradiction. So it must be that 2 ≤ f(s3) < 1.5 +
√

3/2.

We now work backwards to deduce the trajectories of the servant and the queen. Clearly

s2 6= F since q3 = F . If s2 6= C, then f(s3) ≥
√

3 + 1 > 1.5 +
√

3/2, a contradiction.

Therefore, s2 = C. By the same reasoning, s1 = A. Therefore, the queen is the first to visit

D and B. If q1 = D and q2 = B, we place the exit at E; since f(q2) ≥ 1 and dist(B, E) = 2,

we have T ≥ q(E) ≥ 3, a contradiction. Thus, q2 = D and q1 = B.

Consider the location of the queen at time 1. If she is at distance ≥ 1 +
√

3/2 from

C at time 1, then if the exit is at C, q(C) ≥ 2 +
√

3/2. So at time 1, the queen must

be at distance < 1 +
√

3/2 from C and consequently she is at distance ≥ 1 −
√

3/2 from

vertex D. Therefore f(q2) = f(D) ≥ 2 −
√

3/2. Also, f(D) < 1.5 since if the queen reaches

D at or after time 1.5, she cannot reach the region R before time 1.5 +
√

3/2 > f(s3).

So f(D) ≤ f(s3). If the exit is at E = s3, the queen cannot reach the exit before time

f(D) + dist(D, E) ≥ 2 −
√

3/2 +
√

3 = 2 +
√

3, concluding the proof by contradiction. ◭

We remark that the above bound is optimal, and is achieved by the algorithm depicted

in Figure 7.

4.2 Lower Bounds for PE2 and PE3

In the case of n = 2 and n = 3 the proof is rather technical and we will only present a high

level outline as to why the lower bounds hold.

◮ Theorem 19. The worst-case evacuation time for PE2 is at least 3.6307 and for PE3 at

least 3.2017.

Throughout this section we will use T to refer to the evacuation time of an arbitrary

algorithm and use U to refer to the unit circle which must be evacuated.
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5 Conclusion

We considered an evacuation problem concerning priority searching on the perimeter of a

unit disk where only one robot (the queen) needs to find the exit. In addition to the queen,

there are n ≤ 3 other robots (servants) aiding the queen by contributing to the exploration

of the disk but which do not need to evacuate. We proposed evacuation algorithms and

studied non-trivial tradeoffs on the queen evacuation time depending on the number n of

servants. In addition to analyzing tradeoffs and improving the bounds obtained for the

wireless communication model, an interesting open problem would be to investigate other

models with limited communication range, e.g., face-to-face.
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