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Abstract

A finite set of integers A is a sum-dominant (also called a More Sums Than Differ-
ences or MSTD) set if |A+A| > |A−A|. While almost all subsets of {0, . . . , n} are not
sum-dominant, interestingly a small positive percentage are. We explore sufficient con-
ditions on infinite sets of positive integers such that there are either no sum-dominant
subsets, at most finitely many sum-dominant subsets, or infinitely many sum-dominant
subsets. In particular, we prove no subset of the Fibonacci numbers is a sum-dominant
set, establish conditions such that solutions to a recurrence relation have only finitely
many sum-dominant subsets, and show there are infinitely many sum-dominant subsets
of the primes.

1 Introduction

For any finite set of natural numbers A ⊂ N, we define the sumset

A+ A := {a+ a′ : a, a′ ∈ A} (1)

and the difference set
A− A := {a− a′ : a, a′ ∈ A}; (2)

A is sum-dominant (also called a More Sums Than Differences or MSTD set) if |A+A| > |A−
A| (if the two cardinalities are equal it is called balanced, and otherwise difference-dominant).
As addition is commutative and subtraction is not, it was natural to conjecture that sum-
dominant sets are rare. Conway gave the first example of such a set, {0, 2, 3, 4, 7, 11, 12, 14},
and this is the smallest such set. Later authors constructed infinite families, culminating in
the work of Martin and O’Bryant, which proved a small positive proportion of subsets of
{0, . . . , n} are sum-dominant as n → ∞, and Zhao, who estimated this percentage at around
4.5 · 10−4. See [3, pp. 172–174] and [6, 7, 9, 10, 15, 16, 17, 18, 19, 23] for general overviews,
examples, constructions, bounds on percentages and some generalizations, [11, 13, 12, 21]
for some explicit constructions of infinite families of sum-dominant sets, and [1, 2, 14, 22]
for some extensions to other settings.

Much of the above work looks at finite subsets of the natural numbers, or equivalently
subsets of {0, 1, . . . , n} as n → ∞. We investigate the effect of restricting the initial set
on the existence of sum-dominant subsets. In particular, given an infinite set A = {ak}

∞
=1,

when does A have no sum-dominant subsets, only finitely many sum-dominant subsets, or
infinitely many sum-dominant subsets? We assume throughout the rest of the paper that
every such sequence A is strictly increasing and non-negative.

Our first result shows that if the sequence grows sufficiently rapidly and there are no
‘small’ subsets which are sum-dominant, then there are no sum-dominant subsets.

Theorem 1. Let A = {ak}
∞
k=1 be a strictly increasing sequence of non-negative numbers. If

there exists a positive integer r such that
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1. ak > ak−1 + ak−r for all k ≥ r + 1, and

2. A does not contain any sum-dominant set S with |S| ≤ 2r − 1,

then A contains no sum-dominant set.

We prove this in §2. As the smallest sum-dominant set has 8 elements (see [6]), the
second condition is trivially true if r ≤ 4. In particular, we immediately obtain the following
interesting result.

Corollary 2. No subset of the Fibonacci numbers {0, 1, 2, 3, 5, 8, . . . } is a sum-dominant set.

The proof is trivial, and follows by taking r = 3 and noting

Fk = Fk−1 + Fk−2 > Fk−1 + Fk−3 (3)

for k ≥ 4.
After defining a class of subsets we present a partial result on when there are at most

finitely many sum-dominant subsets.

Definition 3 (Special Sum-Dominant Set). For a sum-dominant set S, we call S a special
sum-dominant set if |S + S| − |S − S| ≥ |S|.

We prove sum-dominant sets exist in §3.1. Note if S is a special sum-dominant set then
if S ′ = S ∪ {x} for any sufficiently large x then S ′ is also a sum-dominant set. We have the
following result about a sequence having at most finitely many sum-dominant sets (see §3
for the proof).

Theorem 4. Let A = {ak}
∞
k=1 be a strictly increasing sequence of non-negative numbers. If

there exists a positive integer s such that the sequence {ak} satisfies

1. ak > ak−1 + ak−3 for all k ≥ s, and

2. {a1, . . . , a4s+6} has no special sum-dominant subsets,

then A contains at most finitely many sum-dominant sets.

The above results concern situations where there are not many sum-dominant sets; we
end with an example of the opposite behavior.

Theorem 5. There are infinitely many sum-dominant subsets of the primes.

We will see later that this result follows immediately from the Green-Tao Theorem [4],
which asserts that the primes contain arbitrarily long progressions. We also give a conditional
proof in §4. There we assume the Hardy-Littlewood conjecture (see Conjecture 14) holds.
The advantage of such an approach is that we have an explicit formula for the number of
the needed prime tuples up to x, which gives a sense of how many such solutions exist in a
given window.
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2 Subsets with no sum-dominant sets

We prove Theorem 1, establishing a sufficient condition to ensure the non-existence of sum-
dominant subsets.

Proof of Theorem 1. Let S = {s1, s2, . . . , sk} = {ag(1), ag(2), . . . , ag(k)} be a finite subset of
A, where g : Z+ → Z

+ is an increasing function. We show that S is not a sum-dominant set
by strong induction on g(k).

We proceed by induction. We show that if A has no sum-dominant subsets of size k,
then it has no sum-dominant subsets of size k+1; as any sum-dominant set has only finitely
many elements, this completes the proof.

For the Basis Step, we know (see [6]) that all sum-dominant sets have at least 8 elements,
so any subset S of A with exactly k elements is not a sum-dominant set if k ≤ 7; in particular,
S is not a sum-dominant set if g(k) ≤ 7. Thus we may assume for g(k) ≥ 8 that all S ′ of the
form {s1, . . . , sk−1} with sk−1 < ag(k) are not sum-dominant sets. The proof is completed by
showing

S = S ′ ∪ {ag(k)} = {s1, . . . , sk−1, ag(k)} (4)

is not sum-dominant sets for any ag(k).
We now turn to the inductive step. We know that S ′ is not a sum-dominant set by the

inductive assumption. Also, if k ≤ 2r−1 then |S| ≤ 2r−1 and S is not a sum-dominant set
by the second assumption of the theorem. If k ≥ 2r, consider the number of new sums and
differences obtained by adding ag(k). As we have at most k new sums, the proof is completed
by showing there are at least k new differences.

Since k ≥ 2r, we have k − ⌊k+1
2
⌋ ≥ r. Let t = ⌊k+1

2
⌋. Then t ≤ k − r, which implies

st ≤ sk−r. The largest difference in absolute value between elements in S is sk−1 − s1; we
now show that we have added at least k + 1 distinct differences greater than sk−1 − s1 in
absolute value, which will complete the proof. We have

ag(k) − st ≥ ag(k) − sk−r = ag(k) − ag(k−r)

≥ ag(k) − ag(k)−r

> ag(k)−1 − a1 (by the first assumption on {an})

≥ sk−1 − a1 ≥ sk−1 − s1. (5)

Since ag(k) − st ≥ sk−1 − s1, we know that

ag(k) − st, . . . , ag(k) − s2, ag(k) − s1

are t differences greater than the greatest difference in S ′. As we could subtract in the
opposite order, S contains at least

2t = 2

⌊

k + 1

2

⌋

≥ k (6)
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new differences. Thus S + S has at most k more sums than S ′ + S ′ but S − S has at least k
more differences compared to S ′ − S ′. Since S ′ is not a sum-dominant set, we see that S is
not a sum-dominant set.

Remark 6. We thank the referee for the following alternative formulation of our proof. Given
any infinite increasing sequence {ag(i)} that is a subset of a set A satisfying ak > ak1 + ak−r

for all k > r, let Sk = {ag(1), . . . , ag(k)} and ∆k = |Sk − Sk| − |Sk + Sk|. Similar arguments
as above show that {∆k} is increasing for k ≥ 2r.

We immediately obtain the following.

Corollary 7. Let A = {ak}
∞
k=1 be a strictly increasing sequence of non-negative numbers. If

ak > ak−1 + ak−4 for all k ≥ 5, then A contains no sum-dominant subsets.

Proof. From [6] we know that all sum-dominant sets have at least 8 elements. When r = 4
the second condition of Theorem 1 holds, completing the proof.

For another example, we consider shifted geometric progressions.

Corollary 8. Let A = {ak}
∞
k=1 with ak = cρk + d for all k ≥ 1, where 0 6= c ∈ N, d ∈ N,

and 1 < ρ ∈ N. Then A contains no sum-dominant subsets.

Proof. Without loss of generality we may shift and assume d = 0 and c = 1; the result now
follows immediately from simple algebra.

Remark 9. Note that if ρ is an integer greater than the positive root of x4−x3−1 (the char-
acteristic polynomial associated to ak = ak−1+ak−4 from Theorem 4, which is approximately
1.3803) then the above corollary holds for {cρk + d}.

3 Subsets with finitely many sum-dominant sets

We start with some properties of special sum-dominant sets, and then prove Theorem 4.
The arguments are similar to those used in proving Theorem 1. In this section, in particular
in all the statements of the lemmas, we assume the conditions of Theorem 4 hold. Thus
A = {ak}

∞
k=1 and there is an integer s such that the sequence {ak} satisfies

1. ak > ak−1 + ak−3 for all k ≥ s, and

2. {a1, . . . , a4s+6} has no special sum-dominant subsets.
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3.1 Special sum-dominant sets

Recall a sum-dominant set S is special if |S + S| − |S − S| ≥ |S|. For any x ≥
∑

a∈S a,
adding x creates |S|+ 1 new sums and 2|S| new differences. Let S∗ = S ∪ {x}. Then

|S∗ + S∗| − |S∗ − S∗| ≥ |S|+ (|S|+ 1)− 2|S| = 1, (7)

and S∗ is also a sum-dominant set. Hence, from one special sum-dominant set S ⊂ {an}
∞
n=1 =:

A, we can generate infinitely many sum-dominant sets by adding any large integer in A. We
immediately obtain the following converse.

Lemma 10. If a set S is not a special sum-dominant set, then |S + S| − |S − S| < |S|, and
by adding any large x ≥

∑

a∈S a, S ∪ {x} has at least as many differences as sums. Thus
only finitely many sum-dominant sets can be generated by appending one integer from A to
a non-special sum-dominant set S.

Note that special sum-dominant sets exist. We use the base expansion method (see [6]),
which states that given a set A, for all m sufficiently large if

At =

{

t
∑

i=1

aim
i−1 : ai ∈ A

}

(8)

then
|At ± At| = |A± A|t; (9)

the reason is that for m large the various elements are clustered with different pairs of
clusters yielding well-separated sums. To construct the desired special sum-dominant set,
consider the smallest sum-dominant set S = {0, 2, 3, 4, 7, 11, 12, 14}. Using the method of
base expansion, taking m = 102017 we obtain S3 containing |S3| = 83 = 512 elements such
that |S3 + S3| = |S + S|3 = 263 = 17576 and |S3 − S3| = |S − S|3 = 253 = 15625. Then
|S3 + S3| − |S3 − S3| > |S3|.

3.2 Finitely many sum-dominant sets on a sequence

If a sequence A = {an}
∞
n=1 contains a special sum-dominant set S, then we can get infinitely

many sum-dominant subsets on the sequence just by adding sufficiently large elements of A
to S. Therefore for a sequence A to have at most finitely many sum-dominant subsets, it
is necessary that it has no special sum-dominant sets. Using the result from the previous
subsection, we can prove Theorem 4.

We establish some notation before turning to the proof in the next subsection. We can
write A as the union of A1 = {a1, . . . , as−1} and A2 = {as, as+1, . . . }. We assume this is
done with an s ≥ 5 so that we can use Corollary 7, which implies that A2 contains no
sum-dominant sets. Thus any sum-dominant set must contain some elements from A1.

We prove a lemma about A2.
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Lemma 11. Let S ′ = {s1, . . . , sk−1} be a subset of A containing at least 3 elements ar1 , ar2 , ar3
in A2, with r3 > r2 > r1. Consider the index g(k) > r3, and let S = S ′ ∪ {ag(k)}. Then
either S is not a sum-dominant set, or S satisfies |S − S| − |S + S| > |S ′ − S ′| − |S ′ + S ′|.
Thus the excess of sums to differences from S is less than the excess from S ′.

Proof. We follow a similar argument as in Theorem 1.
If k ≤ 7, then S is not a sum-dominant set.
If k ≥ 8, then k − ⌊k+3

2
⌋ ≥ 3. Let t = ⌊k+2

2
⌋. Then t ≤ k − 3, and st ≤ sk−3, and

ag(k) − st ≥ ag(k) − sk−3 = ag(k) − ag(k−3)

≥ ag(k) − ag(k)−3

> ag(k)−1 = ag(k)−1 − a1 (by assumption on a)

≥ sk−1 − a1 ≥ sk−1 − s1. (10)

In the set S ′, the greatest difference is sk−1 − s1. Since ag(k) − st ≥ sk−1 − s1, we know that
ag(k) − st, . . . , ag(k) − s2, ag(k) − s1 are all differences greater than the greatest difference in
S ′.

By a similar argument, st − ag(k), . . . , s2 − ag(k), s1 − ag(k) are all differences smaller than
the smallest difference in S ′.

So S contains at least 2t = 2⌊k+3
2
⌋ > 2 · k+1

2
= k+1 new differences compared to S ′, and

S satisfies
|S − S| − |S + S| > |S ′ − S ′| − |S ′ + S ′|, (11)

completing the proof.

3.3 Proof of Theorem 4

Recall that we write A = A1 ∪ A2 with A1 = {a1, . . . , as−1}, A2 = {as, as+1, . . . }, and
by Corollary 7 A2 contains no sum-dominant sets (thus any sum-dominant set must contain
some elements from A1). We first prove a series of useful results which imply the main
theorem.

Our first result classifies the possible sum-dominant subsets of A. Since any such set
must have at least one element of A1 in it but not necessarily any elements of A2, we use
the subscript n below to indicate how many elements of A2 are in our sum-dominant set.

Lemma 12 (Classification of Sum-Dominant Subsets of A). Notation as above, let Kn be a
sum-dominant subset of A = A1 ∪ A2 with n elements in A2. Thus we may write

Kn = S ∪ {ar1 , . . . , arn}

for some
S ⊂ A1 = {a1, . . . , as−1}, s ≤ r1 < r2 < · · · < rn.

Set
d = max

K3

(|K3 +K3| − |K3 −K3|, 1).
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Then n ≤ d+3. In other words, a sum-dominant subset of A can have at most d+3 elements
of A2.

Proof. Let Sm be any subset of A with m elements of A2. Lemma 11 tells us that for any
Sm with m ≥ 3, when we add any new element arm+1

to get Sm+1, either Sm+1 is not a
sum-dominant set, or

|Sm+1 − Sm+1| − |Sm+1 + Sm+1| ≥ |Sm − Sm| − |Sm + Sm|+ 1.

For an n > d + 3, assume there exists a sum-dominant set; if so, denote it by Kn. For
3 ≤ k ≤ n, define Sk as the set obtained by deleting the (n − k) largest elements from Kn

(equivalently, keeping only the k smallest elements from Kn which are in A2). We prove that
each Sk is sum-dominant, and then show that this forces Sn not to be sum-dominant; this
contradiction proves the theorem as Kn = Sn.

If Sk is not a sum-dominant set for any k ≥ 3, by Lemma 11 either Sk+1 is not a sum-
dominant set, or

|Sk+1 − Sk+1| − |Sk+1 + Sk+1| ≥ |Sk − Sk| − |Sk + Sk|+ 1 ≥ 0,

in which case Sk+1 is also not a sum-dominant set (because Sk is not sum-dominant, the set
Sk+1 generates at least as many differences as sums). As we are assuming Kn (which is just
Sn) is a sum-dominant set, we find Sn−1 is sum-dominant. Repeating the argument, we find
that Sn−2 down to S3 must also all be sum-dominant sets, and we have

|Sn − Sn| − |Sn + Sn| ≥ |S3 − S3| − |S3 + S3|+ (n− 3). (12)

Since S3 is one of the K3’s (i.e., it is a sum-dominant subset of A with exactly three elements
of A2), by the definition of d the right hand side above is at least n − 3 − d. As we are
assuming n > d + 3 we see it is positive, and hence Sn is not sum-dominant. As Sn = Kn

we see that Kn is not a sum-dominant set, contradicting our assumption that there is a
sum-dominant set Kn with n > d+ 3, proving the theorem.

Lemma 13. For n ≥ 0, let kn denote the number of subsets Kn ⊂ A which are sum-dominant
and contain exactly n elements from A2. We write

Kn = S ∪ {ar1 , . . . , arn} with S ⊂ A1. (13)

Then

1. kn is finite for all n ≥ 0, and

2. every Kn is not a special sum-dominant set.

Proof. We prove each part by induction. It is easier to do both claims simultaneously as we
induct on n. We break the analysis into n ∈ {0, 1, 2, 3} and n ≥ 4. The proof for n = 0
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is immediate, while n ∈ {1, 2, 3} follow by obtaining bounds on the indices permissible in a
Kn, and then n ≥ 4 follows by induction. We thus must check (1) and (2) for n ≤ 3. While
the arguments for n ≤ 3 are all similar, it is convenient to handle each case differently so we
can control the indices and use earlier results, in particular removing the largest element in
A2 yields a set which is not a special sum-dominant set.

Case n = 0: As A1 is finite, it has finitely many subsets and thus k0, which is the number
of sum-dominant subsets of A1, is finite (it is at most 2|A1|). Further any K0 is a subset of

A1 = {a1, . . . , as−1},

which is a subset of
A′ = {a1, . . . , a4s+6}. (14)

As we have assumed A′ has no special sum-dominant set, no K0 can be a special sum-
dominant set.

Case n = 1: We start by obtaining upper bounds on r1, the index of the smallest (and only)
element in our set coming from A2. Consider the index 4s. We claim that

a4s >
∑

a∈A1

a. (15)

This is because |A1| < s and ak > ak−1 + ak−3 for all k ≥ s, and hence

∑

a∈A1

a < s · as

<
s

2
(as + as+2) <

s

2
· as+3

<
s

4
(as+3 + as+5) <

s

4
· as+6 . . .

<
s

2⌈log2 s⌉
as+3⌈log2(s)⌉

< as+3s = a4s

(by doing the above ⌈log2 s⌉ times we ensure that s/2⌈log2 s⌉ < 1, and since s ≥ 1 we have
3s ≥ 3⌈log2(s)⌉). Therefore for all r1 sufficiently large,

ar1 > a4s >
∑

a∈A1

a. (16)

Clearly there are only finitely many sum-dominant subsets K1 with r1 ≤ 4s; the analysis
is completed by showing there are no sum-dominant sets with r1 > 4s. Imagine there was a
sum-dominant K1 with ar1 > a4s. Then K1 is the union of a set of elements S = {s1, . . . , sm}
in A1 and ar1 in A2. As

∑

s∈S s < ar1 , by Lemma 10 we find K1 is not a sum-dominant set.
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All that remains is to show none of the K1 are special sum-dominant sets. This is imme-
diate, as each sum-dominant K1 is a subset of {a1, . . . , a4s}, which is a subset of A′ (defined
in (14)). As we have assumed A′ has no special sum-dominant set, no K1 can be a special
sum-dominant set.

Case n = 2: Consider the index 4s+3. If K2 is a sum-dominant set then it has two elements,
ar1 < ar2 , that are in A2. We show that if r2 ≥ 4s + 3 then there can be no sum-dominant
sets, and thus there are only finitely many K2.

For all r2 ≥ 4s+ 3,

ar2 − ar2−1 > ar2−3 ≥ a4s >
∑

a∈A1

a. (17)

Assume there is a sum-dominant K2 with r2 ≥ 4s + 3. It contains some elements S =
{s1, . . . , sm} in A1 and ar1 , ar2 in A2. We have

ar2 − ar1 ≥ ar2 − ar2−1 >
∑

a∈S

a.

Therefore ar2 >
(
∑

a∈S a
)

+ ar1 , and S ∪ {ar1} is not a special sum-dominant set by the
n = 1 case1. Hence, by Lemma 10 we find K2 = (S ∪ {ar1}) ∪ {ar2} is not a sum-dominant
set.

Finally, as K2 is a subset of {a1, . . . , a4s+1}, which is a subset of A′, by assumption K2 is
not a special sum-dominant set.

Case n = 3: Let K3 be a sum-dominant set with three elements from A2. We show that if
r3 ≥ 4s + 6 then there are no such K3; as there are only finitely many sum-dominant sets
with r3 < 4s+ 6, this completes the counting proof in this case.

Consider the index 4s+ 6. For all r3 ≥ 4s+ 6,

ar3−3 − ar3−4 > ar3−6 ≥ a4s >
∑

a∈A1

a. (18)

Consider any K3 with r3 ≥ 4s + 6. We write K3 as S ∪ {ar1 , ar2 , ar3} and S ⊂ A1. If
|S| < 5, we know that |K3| < 8, and K3 is not a sum-dominant set as such a set has at least
8 elements. We can therefore assume that |S| ≥ 5. We have two cases.

Subcase 1: r2 ≤ r3 − 3: Thus

ar3 − ar2 − ar1 ≥ ar3 − ar3−3 − ar3−4 ≥ ar3−1 − ar3−4 ≥ ar3−2 > ar3−6 >
∑

a∈S

a.

1If S′ = S ∪ {ar1} is sum-dominant then it is not special, while if it is not sum-dominant then clearly it
is not a special sum-dominant set.
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As S ∪ {ar1 , ar2} is not a special sum-dominant set by the n = 2 case2, adding ar3 with

ar3 >

(

∑

s∈S

s

)

+ ar1 + ar2

creates a non-sum-dominant set by Lemma 10.

Subcase 2: r2 > r3 − 3: Using (18) we find

ar3 − ar2 ≥ ar3 − ar3−1 >
∑

a∈S

a

and
ar2 − ar1 > ar3−2 − ar3−3 >

∑

a∈S

a.

Therefore the differences between ar1 , ar2 , ar3 are large relative to the sum of the elements
in S, and our new sums and new differences are well-separated from the old sums and
differences. Explicitly, K3 + K3 consists of S + S, ar1 + S, ar2 + S, ar3 + S, plus at most
6 more elements (from the sums of the ar’s), while K3 −K3 consists of S − S, ±(ar1 − S),
±(ar2 − S), ±(ar3 − S), plus possibly some differences from the differences of the ar’s.

As S is not a special sum-dominant set, we know |S + S| − |S − S| < |S| (if S is not
sum-dominant the claim holds trivially, while if it is sum-dominant it holds because S is not
special). Thus for K3 to be sum-dominant, we must have

0 < |K3 +K3| − |K3 −K3|

≤ (|S + S|+ 3|S|+ 6)− (|S − S|+ 6|S|)

< 6− 2|S|;

as |S| ≥ 5 this is impossible, and thus K3 cannot be sum-dominant.
Finally, as again K3 is a subset of A′ = {a1, . . . , a4s+6}, no K3 is a special sum-dominant

set.

Case n ≥ 4 (inductive step): We proceed by induction. We may assume that kn is finite
for some n ≥ 3, and must show that kn+1 is finite. By the earlier cases we know there is
an integer tn such that if Kn is a sum-dominant subset of A with exactly n elements of A2,
then the largest index rn of an ai ∈ Kn is less than tn.

We claim that if Kn+1 is a sum-dominant subset of A then each index is less than tn+1,
where tn+1 is the smallest index such that if rn+1 ≥ tn+1 then

arn+1
>

∑

i<rn

ai. (19)

2As before, if it is sum-dominant it is not special, while if it is not sum-dominant it cannot be sum-
dominant special; thus we have the needed inequalities concerning the sizes of the sets.
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We write

Kn+1 = S ∪ {ar1 , . . . , arn , arn+1
}, S ⊂ A1, {ar1 , . . . , arn} ⊂ A2.

We show that if rn+1 ≥ tn+1 then Kn+1 is not sum-dominant. Let Sn = Kn+1 \ {arn+1
}. We

have two cases.

• If rn < tn, then by the inductive hypothesis Sn is not a special sum-dominant set. So
adding arn+1

>
∑

x∈Sn

x to Sn gives a non-sum-dominant set by Lemma 10.

• If rn ≥ tn, then by the inductive hypothesis Sn is not a sum-dominant set. So |Sn−Sn|−
|Sn + Sn| ≥ 0. Since n ≥ 3, we can apply Lemma 11, and either Kn+1 = Sn ∪ {arn+1

}
is not a sum-dominant set, or

|Kn+1 −Kn+1| − |Kn+1 +Kn+1| > |Kn −Kn| − |Kn +Kn| > 0,

in which case Sn+1 is still not a sum-dominant set.

We conclude that for all sum-dominant sets Sn+1, we must have rn+1 < tn+1. So kn+1 is
finite.

Consider any sum-dominant set Kn+1 = Sn ∪ {arn+1
}. Applying lemma 11 again, we

have |Kn+1 − Kn+1| − |Kn+1 + Kn+1| > |Sn − Sn| − |Sn + Sn|. We know, from inductive
hypothesis, that Sn is not a special sum-dominant set. Therefore all possible Kn+1 are not
special sum-dominant sets.

By induction, kn is finite for all n ≥ 0, and all Kn are not special sum-dominant sets.

Proof of Theorem 4. By Lemma 12 every sum-dominant subset of A is of the form K0, K1,
K2, . . . , Kd+3 where the Kn are as in (13). By Lemma 13 there are only finitely many sets
of the form Kn for n ≤ d + 3, and thus there are only finitely many sum-dominant subsets
of A.

4 Sum-dominant subsets of the prime numbers

We now investigate sum-dominant subsets of the primes. While Theorem 5 follows imme-
diately from the Green-Tao theorem, we first conditionally prove there are infinitely many
sum-dominant subsets of the primes as this argument gives a better sense of what the ‘truth’
should be (i.e., how far we must go before we find sum-dominant subsets).

4.1 Admissible prime tuples and prime constellations

We first consider the idea of prime m-tuples. A prime m-tuple (b1, b2, . . . , bm) represents a
pattern of differences between prime numbers. An integer n matches this pattern if (b1 +
n, b2 + n, . . . , bm + n) are all primes.
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A primem-tuple (b1, b2, . . . , bm) is called admissible if for all integers k ≥ 2, {b1, b2, . . . , bm}
does not cover all values modulo k. If a prime m-tuple is not admissible, whenever n > k
then at least one of b1 + n, b2 + n, . . . , bm + n is divisible by k and greater than k, so this
cannot be an m-tuple of prime numbers (in this case the only n which can lead to an m-tuple
of primes are n ≤ k, and there are only finitely many of these).

It is conjectured in [5] that all admissible m-tuples are matched by infinitely many inte-
gers.

Conjecture 14 (Hardy-Littlewood [5]). Let b1, b2, . . . , bm be m distinct integers, vp(b) =
v(p; b1, b2, . . . , bm) the number of distinct residues of b1, b2, . . . bm to the modulus p, and P (x;
b1, b2, . . . , bm) the number of integers 1 ≤ n ≤ x such that every element in {n + b1, n +
b2, . . . , n+bm} is prime. Assume (b1, b2, . . . , bm) is admissible (thus vp(b) 6= p for all p). Then

P (x) ∼ S(b1, b2, . . . , bm)

∫ x

2

du

(log u)m
(20)

when x → ∞, where

S(b1, b2, . . . , bm) =
∏

p≥2

(

(

p

p− 1

)m−1
p− vp(b)

p− 1

)

6= 0.

As (b1, b2, · · · , bm) is an admissible m-tuple, v(p; b1, b2, . . . , bm) is never equal to p and
equals m for p > max{|bi − bj|}. The product S(b1, b2, . . . , bm) thus converges to a positive
number as each factor is non-zero and is 1 + Om(1/p

2). Therefore this conjecture implies
that every admissible m-tuple is matched by infinitely many integers.

4.2 Infinitude of sum-dominant subsets of the primes

We now show the Hardy-Littlewood conjecture implies there are infinitely many subsets of
the primes which are sum-dominant sets.

Theorem 15. If the Hardy-Littlewood conjecture holds for all admissible m-tuples then the
primes have infinitely many sum-dominant subsets.

Proof. Consider the smallest sum-dominant set S = {0, 2, 3, 4, 7, 11, 12, 14}. We know that
{p, p+2s, p+3s, p+4s, p+7s, p+11s, p+12s, p+14s} is a sum-dominant set for all positive
integers p, s. Set s = 30 and let T = (0, 60, 90, 120, 210, 330, 360, 420). We deduce that if
there are infinitely many n such that n+T = (n, n+60, n+90, n+120, n+210, n+330, n+
360, n + 420) is an 8-tuple of prime numbers, then there are infinitely many sum-dominant
sets of prime numbers.

We check that T is an admissible prime 8-tuple. When m > 8, the eight numbers in
T clearly don’t cover all values modulo m. When m ≤ 8, one sees by straightforward
computation that T does not cover all values modulo m.
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By Conjecture 14, there are infinitely many integers p such that every element of {p, p+
60, p + 90, p + 120, p + 210, p + 330, p + 360, p + 420} is prime. These are all sum-dominant
sets, so there are infinitely many sum-dominant sets on primes.

Of course, all we need is that the Hardy-Littlewood conjecture holds for one admissible
m-tuple which has a sum-dominant subset. We may take p = 19, which gives an explicit
sum-dominant subset of the primes: {19, 79, 109, 139, 229, 349, 379, 439} (a natural question
is which sum-dominant subset of the primes has the smallest diameter). If one wishes, one
can use the conjecture to get some lower bounds on the number of sum-dominant subsets of
the primes at most x. The proof of Theorem 5 follows similarly.

Proof of Theorem 5. By the Green-Tao theorem, the primes contain arbitrarily long arith-
metic progressions. Thus for each N ≥ 14 there are infinitely many pairs (p, d) such that

{p, p+ d, p+ 2d, . . . , p+Nd} (21)

are all prime. We can then take subsets as in the proof of Theorem 15.

5 Future work

We list some natural topics for further research.

• Can the conditions in Theorem 1 or 4 be weakened?

• What is the smallest special sum-dominant set by diameter, and by cardinality?

• What is the smallest, in terms of its largest element, set of primes that is sum-
dominant?
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