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Abstract

A bidirectional ballot sequence (BBS) is a finite binary sequence with the property that
every prefix and suffix contains strictly more ones than zeros. BBS’s were introduced by
Zhao, and independently by Bosquet-Mélou and Ponty as (1, 1)-culminating paths. Both
sets of authors noted the difficulty in counting these objects, and to date research on bidirec-
tional ballot sequences has been concerned with asymptotics. We introduce a continuous
analogue of bidirectional ballot sequences which we call bidirectional gerrymanders, and
show that the set of bidirectional gerrymanders form a convex polytope sitting inside the
unit cube, which we refer to as the bidirectional ballot polytope. We prove that every
(2n — 1)-dimensional unit cube can be partitioned into 2n — 1 isometric copies of the
(2n — 1)-dimensional bidirectional ballot polytope. Furthermore, we show that the vertices
of this polytope are all also vertices of the cube, and that the vertices are in bijection with
BBS’s. An immediate corollary is a geometric explanation of the result of Zhao and of
Bosquet-Mélou and Ponty that the number of BBS’s of length n is ©(2"/n).
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1. Introduction

In [11], Zhao introduced a family of combinatorial objects called bidirectional ballot se-
quences, defined as follows.

Definition 1. A finite 0-1 sequence is a bidirectional ballot sequence (BBS) if every
prefix and every suffix contains strictly more ones than zeros. Let B,, denote the number
of bidirectional ballot sequences of length 7.

Bidirectional ballot sequences have a natural interpretation in terms of lattice paths.
Suppose we start at (0,0) and take a finite number of steps either of the form (1,1) or
(1,—1). We call such a path a standard lattice path. We define the length of the path to
be the number of steps it contains. We define the height of a point in the lattice path to be
its y-coordinate. Bidirectional ballot sequences of length n are in bijection with standard
lattice paths of length n whose unique minimum height is attained at the first point in the
path, and whose unique maximum height is attained at the last point in the path. The
bijection is given by identifying the digit ‘0’ in a BBS with a step of the form (1, —1) and
the digit ‘1’ with a step of the form (1, 1) (for an example of this, see Section 4).

From this perspective, bidirectional ballot sequences were independently introduced by
Bosquet-Mélou and Ponty [2] as a special type of what they call culminating paths. In
particular, an (a, b)-culminating path is a sequence of lattice points starting at (0,0) such
that each step is of the form (1,a) or (1,—b) and such that the unique minimum height
is achieved at the first point and the unique maximum height is achieved at the last point.
Thus bidirectional ballot sequences are in bijection with (1, 1)-culminating paths. In [2]
it is noted that (1, 1)-culminating paths had been used in [5] with connections to theoreti-
cal physics, and general (a, b)-culminating paths had been used in [1], [4], and [10] with
connections to bioinformatics.

In both [11] and [2], it is noted that unlike other easy to define classes of lattice paths
(e.g. Dyck paths), the enumeration of BBS’s is tricky; there is no obvious recursive struc-
ture to such paths. Both authors focused on the asymptotics of B,. In particular, [2]
obtained a generating function in n for the number of (a, b)-culminating paths of length n
with fixed height & (the generating function for the (1, 1) case was found in [5]). Further-
more, they showed that B,, ~ 2™/4n. Independently, [11] showed that B,, = ©(2"/n)
and stated without detailed proof that B,, ~ 2™ /4n. Additionally in [11], the author con-
jectured an even finer asymptotic expression for B,,. This conjecture was later proved by
Hackl, Heuberger, Prodinger and Wagner [6], who refined the asymptotic expression even
further using techniques from analytic combinatorics.

The motivation for the study of culminating paths in [2] was the observation that such
paths had been independently introduced and utilized in disparate contexts (theoretical
physics and bioinformatics) as well as a general interest in understanding subfamilies of
lattice paths. However, the motivation in [11], as well as our original motivation for study-
ing BBS’s, arises from additive combinatorics. Let A C Z be a finite set of integers. We
define the sumset A + A as those elements in Z expressible as a + b with a,b € A. Simi-
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larly, the difference set A — A is those elements expressible as a — b with a, b € A. We say
that A is a more sums than differences (MSTD) set if |A + A| > |A — A|. Because of the
commutativity of addition, one may intuitively expect that in general |A — A| > |A + A|.
This intuition turns out to be correct in some contexts (see [7]), in particular if each el-
ement in [n] := {1,2,...,n} is independently chosen to be in A with some probability
p(n) tending to zero). Let p,, be the proportion of subsets of [n] which are MSTD. In [8],
it was shown that p,, > 2 X 10~7 for n > 15, and in [12] it was shown that lim,,_,c On
converges to a positive number; experimental data suggests this limit to be of order 1074,
Thus, in this sense, a positive proportion of sets are MSTD. However, the techniques in [8]
are probabilistic, and to date no known constant density family of MSTD subsets of [n] as
n — o0 is known.

The best density explicit construction of MSTD sets is due to Zhao in [11] using BBS’s.
Let B be a binary sequence of length n. We can associate to B the set A C [n] defined
as A := {i : B; = 1}. For example if B = 01101, then A = {2,3,5}. Those subsets
A of [n] arising from BBS’s have the property that A + A = {i : 2 < ¢ < 2n}, which is
to say that the sumset is as large as possible (similarly it turns out that the difference set is
also as large as possible). Using this property, Zhao was able to translate those subsets of
[n] arising from BBS’s and append extra elements to the fringes to obtain an MSTD set for
each set arising from a BBS. From this, one immediately gets a density ©(1/n) family of
MSTD sets.

Motivated by the use of BBS’s in additive combinatorics, in this paper we study the
natural analgoue of BBS’s in a continuous setting, which we call bidirectional gerryman-
ders; in the related paper [9], we use similar ideas as in this paper to study the analogue of
MSTD sets in a continuous setting.

We first set some notation and then describe our main results. Let I, denote the set of all
subsets of R consisting of exactly n disjoint open intervals such that the leftmost interval
starts at 0. Suppose A € [,,. If we translate A, then the sumset and difference set merely
translate as well. Thus, when studying additive behavior, we do not lose any generality
by restricting our attention to collections of intervals such that the leftmost interval starts
at zero. We can topologize I,, by identifying it with Ri’}fl, the non-negative orthant: let
A=LULU---Ul, €I, with I; to the left of I, fori < j. Suppose I; = (aj,b;).
We then identify A with the vector v4 = [by — a1, a2 — b1, b2 — az, a3 — ba, ..., by — ay).
Thus the first entry is the length of the first interval, the second entry is the size of the gap
between the first and second intervals, the third entry is the length of the second interval,
etc. We shall find it convenient to restrict our attention to the following set: let J,, C I,, be
the set of collections of n non-overlapping intervals such that the leftmost interval starts at
zero, the length of each interval is between O and 1, and the gap between adjacent intervals
is between 0 and 1 (if we scale A € I, by a # 0, then the sumset and difference set
scale by « as well, so a4 has the same essential additive behavior as .A; note that up to
scaling, every element of [, is an element of J,). We can topologize J,, by identifying it
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with Cy,,_1 = [0,1]?"~1, the 2n — 1 dimensional unit cube'. For other ways to topologize
I, and related spaces, see [9].

The bidirectional gerrymanders in J,, form a convex, compact polytope contained in
Cay,—1 which we call the bidirectional ballot polytope, P,,. This polytope has a number
of extraordinary combinatorial features. In Section 2 we formally define this polytope and
show that C5,,_; can be partitioned into 2n — 1 disjoint isometric copies of P,, which
in particular shows that the volume of P, is 1/(2n — 1). In Section 3 we show that the
vertices of P, are vertices of Cs,,_1. Finally in Section 4 we show that the vertices of P,
are in bijection with Bs, 3, and that a particular subset of the vertices are in bijection with
Bs,,—1. From this we are able to immediately rederive geometrically that | B,,| = ©(2"/n),
i.e., there are positive constants o and 8 such that for all n sufficiently large we have
a2™/n < |By| < B2 /n.

2. The Bidirectional Ballot Cone and Polytope

We first set some notation. Let m = 2n — 1 for some n € N.

Definition 2. Let the set of left ballot vectors, L,,, and the set of right ballot vectors, R,
be the following sets of vectors in R™:

L, ={[,-1,0,...,0,[1,-1,1,-1,0,...,0],...,[1,—-1,...,1,=1,0]}, (1)
R, ={[0,...,0,-1,1],[0,...,0,—1,1,—-1,1],...,[0,—1,1,...,—1,1]}.  (2)
We define V,,, the set of ballot vectors, as V,, = L,, U R,,.

Definition 3. The bidirectional ballot cone, 53,,, is the set of x € R™ such that z - w > 0
for all w € V,,. When the value of n is obvious, we simply refer to it as 5.

We now define the continuous analogue of BBS’s, and show in Proposition 1 that it is
the right generalization.

Definition 4. Let A € [,,. We call A a bidirectional gerrymander if v4 € B.

Proposition 1. Suppose A = I, U---U1, € L,, with endpoints ordered as before. Suppose
the right endpoint of I, is b. Then, A is a bidirectional gerrymander if and only if u(AN
[0,2]) > t/2 and p(AN [b—t,b]) > t/2forall t € [0,D).

Proof. Clearly if these measure conditions hold, then A is a bidirectional gerrymander, as
setting ¢ to be left and right endpoints of the I; yields the nonnegativity conditions of pairing

Because the endpoints of an open interval cannot be equal, strictly speaking we are taking I, to be the set of
all weakly increasing 2n-tuples of points on the real line and identifying these with collections of n intervals by
treating them as endpoints (and correspondingly for J» ). However, in the edge case when a; = b;, we still allow
an ‘empty’ interval at a;j, which is included in the data of an element of I,. Including these degenerate cases
allows us to indeed identify J, with the closed unit cube.
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with the ballot vectors. The condition p(AN[0, ¢]) > ¢/2 is equivalent to the non-negativity
of u(ANI0,¢t) — u((R\.A)N[0,¢]). Fort € [0, b], u(AN[0,¢]) — u((R\.A) N[0, t]) takes
a local minimum only if ¢ is a left endpoint of an interval I;. Hence if v4 - w > 0 for all
w € Ly, then the function is nonnegative at its minima and so the first measure condition
holds. Similarly, the second measure condition holds as well by the nonnegativity of pairing
with the right ballot vectors. |

A BBS in the sense of [11] is a binary sequence for which any subsequence truncated
on the left or right contains more 1’s than 0’s, and Proposition 1 shows that a bidirectional
gerrymander is a subset of R contained in [0, a] for which any subset obtained by truncating
on the left or right contains “more” points (in a measure theoretic sense) in the original set
than points not in this set. It is thus clear that they are a natural analogue, but, as we shall
see, what is surprising is that they can be used to prove results about standard (discrete)
BBS’s.

Definition 5. The bidirectional ballot polytope P,,, is defined as B,, N C,,,. Equivalently,
it is those vectors v 4 such that A € J,, is a bidirectional gerrymander. When the value of
n is obvious, we shall refer to it simply as P.

Figure 1: The polytope P (red) sitting inside C'3. Notice that adding two additional copies
of P,, rotated about the main diagonal of the cube by 27/3 and 47 /3 respectively, would
result in a partition of C's (neglecting overlap of boundaries).

Definition 6. Let Z,,, be the cyclic group of order m with generator p. Let Z,,, act on R™
by cyclically permuting the entries (e.g. p?([0,1,2,3,4]) = [3,4,0,1,2]). For a given set
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of vectors V and o € Z,,,, let o(V) := {o(v) : v € V} with o € Z,,. Foreach o € Z,,,
define B, by

B, = {v€RYy:v-w>0forallw e o(V;,)}, 3)
and P, likewise. Note that B, = o~ (1), and that B = Biq and P = Pyg.

Theorem 1. The non-negative orthant, RY,,, is contained in U B,. Furthermore, for

01 # 09, the interiors of B,, and B, are disjoint.

0E€ELm

Proof. Let T = p? € Z,, be the cyclic shift by two places. Because m is odd, T generates
Zm. In particular, we see that the set of left and right ballot vectors V,, as defined in
Definition 2 is equal to

k
v, = {ZTi(w);ogkgzn—?)}, )
=0

where w = [1,—1,0,...,0]. If £ < k < 2n — 3 then

k ) 4 ) k ) k—£—1 .
YR Y = Y ) = Y w6
=0 i=0 i=4+1 i

-0
and since 325> 7' (w) = [0, . .., 0] we have similarly that, for 0 < k < ¢,

(2n—2)+(k—0)

k ¢
Z T (w) — Z ri(w) = 7t Z 7 (w). (6)

1=0 1=0 =0

Then for each ¢ we have that
k ¢
{Zri(w)—zri(w):0§k§2n—2,k¢£} = 7(W,). 7
i=0 i=0

Now let wy, = Zf:o 7¢(w), take any v € [0,1]™, and choose 0 < ¢ < 2n — 2 minimizing
v - wy (this £ may not be unique). Then

k 4
v- <27i(w)—27'i(w)> >0 8)

i=0 i=0
forall 0 < k < 2n — 2. Therefore v - r > 0 forall r € T“l(Vn), so v € B e+1. This
shows that RZ; =, . 7, Bo. Intersecting with C' gives the corresponding result for P.
Conversely, if v € Int(B,e+1) NInt(B,x+1) and 7+1 # 7541 then (because taking the
interior simply changes the inequalities defining B..¢+1 to strict ones) we have both

k ¢

v (ZTi(w) - ZTi(w)> >0
i=0 i=0

v- (ZH(U}) - ZT%U})) > 0.
i=0 =0
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This is a contradiction, so the interiors distinct regions 53,..+1 are disjoint, and it follows
immediately that the interiors of distinct regions P, ¢+1 are disjoint. O

Corollary 1. The unit cube C,, equals| . 7z, Po. Furthermore, for o1 # o2, the interiors
of Py, and P, are disjoint. Consequently, the volume of P is exactly 1/m.

Proof. Intersecting the nonnegative orthant and the translates B, with C,,, Theorem 1
yields that C,, is partitioned into m regions produced by permuting the coordinates of
P. Because the matrix representing 7 = p? has determinant 1 it leaves volume invariant.
Therefore, Vol(P,) = Vol(P) forall o € Z,,, so Vol(P) = 1/m. O

Corollary 2. For any vector v € RY,, there exists o € Zy, such that the vector
v = (v, vh, ... ul,) = o(v) has the following property: Forall1 <k <mn,

k
Z(Uéi—l — ;) >0 )
=1
and
k
Z(Uén—(zi—l) — U, _9;) > 0. (10)
i—1

If furthermore these are all positive, then o is unique.

One interpretation of the above corollary is as follows. Suppose you have a necklace
with an odd number of beads. On each bead you write a non-negative number. Then
there exists some place where you can cut the necklace such that when you lay out the
necklace and think of the sequence of values on the beads as a vector in R™, this vector
is a bidirectional gerrymander. Furthermore, if the numbers you write on the beads are
“generic”, in the sense that the inequalities corresponding to (9) and (10) are strict, then
there is exactly one such place you can cut the necklace.

%

Figure 2: An example “cut” of a necklace as in Corollary 2.
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3. Vertices of the Bidirectional Ballot Polytope are Vertices of the Cube

In this section we show that the vertices of P,, are also vertices of C,,,, the unit cube. We
had previously defined P, as the intersection of the unit cube with the ballot cone, which

is equivalent to the set of vectors [¢1, g1, .., gn—1, £»] satisfying the below inequality:
M1 0 0 0 O 0 0 0 0 07 [0
-1 0 0 0 O 0 0 0 0 O -1
cube vectors 0 10 0 0 00 0 0 0 2 0
0 -1 0 0 0 00 0 0 O ! -1
. g1
: Ly
1 -1 0 0 O ... 0 0O O O O g2 > 0
left ballot vectors I -1 -0 .. 0 0 0 0 0 : 0
L Gn—1 5
0 0 0 0 0 ... 0 0 0 -1 1| |¢& | 0
right ballot vectors 0 o6 0 0 .. 0-11-11 0
(11

The first collection of rows in the above matrix is necessary to ensure that we only deal
with points inside of the unit cube. Thus we call any vector of the form [0, ..., 0,+1,0,...,0]
a cube vector.

Before proving the main result of this section, we must review a few concepts related to
convex polytopes. We follow the terminology of [3].

Definition 7. Let P be a polytope in R™ defined by the inequalities alz > b; for i €

{1,2,...,k}. Let z* be such that for some i, al z* = b;. Then, we say that the i
constraint is active at z*.

Definition 8. A vector x* € R™ is called a basic solution if out of all of the constraints
that are active at =*, there is some collection of n of them which is linearly independent.
If =* is a basic solution that satisfies all of the constraints, then it is called a basic feasible
solution.

Part of what makes the study of convex polytopes interesting is that there are several
equivalent but strikingly different ways of defining what the vertices of a polytope are. In
particular, one definition is that a point v is a vertex if and only if it is a basic feasible
solution.

The following shorthand will be helpful in the proof of the main theorem of this section.

Definition 9. A matrix/vector is called flat if all of its entries are 0, 1, or -1.

Let O, denote the set of vertices in the polytope P,,. Let S,, denote the set of vertices
of the unit cube C',. The main result of this section is the following.
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Theorem 2. All of the vertices of the bidirectional ballot polytope P, are also vertices of
the unit cube Cp,; i.e., Q. C Sy.

Proof. By the above discussion, we know that we must show that all basic feasible solu-
tions are vertices of the cube. Throughout this proof, we let n be fixed, and let m = 2n — 1.
Thus we unambiguously let P = P, C' = Ca,—1, @ = Qn, and S = S,,. Notice that
Z™ NP C S. From this observation, we now describe the strategy for proving the theorem.

Suppose z* is a basic solution whose corresponding constraints are a;, , . . ., @;,,. Then z*
satisfies
—a;,— bi,
: zt = | . (12)
—0i,, bi,

Let A be the matrix in (12). Let b* be the vector on the right hand side in (12). Thus
z* = A7'b*. Note that b* € Z™ since it is some subset of the entries in the vector on
the right hand side of (11). If we can show that det(A) = +1, it will imply that A1
has integer entries, and thus that A~1b* € Z™. From the earlier observation, if z* is a
basic feasible solution, then we must have that A~'b* = z* € S, which would prove the
theorem.

Now we must show that if A is invertible, then it has determinant +1. In order to
show this, we keep track of what happens to the determinant in the process of carrying out
Gaussian elimination, which converts A into the identity matrix. In particular, we show
that at every step, the determinant changes by a factor of 1. Since the identity matrix has
determinant 1, we could then conclude that A has determinant +1. The only elementary
row operation which potentially changes the absolute value of the determinant of a matrix
is multiplying a row by a scalar. Thus it suffices to show that when Gaussian elimination
is performed on A, no row is ever multiplied by a scalar other than +1. In Gaussian
elimination, a row is multiplied by a scalar to convert some non-zero entry in that row to
a one. If every non-zero entry in that row is &1, then we would simply need to multiply
by +1. Thus, we shall instead prove the stronger hypothesis that at every step of Gaussian
elimination, the intermediate matrix is flat, and hence all of its non-zero entries are +1.
This is the content of Lemma 1. O

Before proving Lemma 1, we include an example to illustrate the method. Here we omit
row swapping for clarity, and we obtain a permutation matrix, which has determinant +1.
At each step, the leading nonzero term in the bolded row is used to clear the corresponding
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column.
0O 1 0 0 O 0O 1 0 0 O 010 0 O
0O 0 0 0 1 0 0 0 0 1 000 0 1
Ag: |1 -1 0 0 Of— A;:|1 -1 0 0 O] = A:|1 0 0O O O
0o -1 1 -1 1 0 -1 1 -1 1 0 0 1 -1 1
0O 0 0 -1 1 0 0 0 -1 1 0 0 0 -1 1
(13)
010 0 O 01 0 0 O 01 0 00
0 00 0 1 0 00 0 1 0 00 01
— A3:1 0 0 0 O] —= A4:(1 0 0 0 O] —= As:1]/1 0 0 0 O
001 -1 1 001 0 O 001 00
0 00 -1 1 0 0 0 1 -1 00 010
(14)

Lemma 1. In carrying out Gaussian elimination on the matrix A as in Theorem 2, all
intermediate matrices are flat.

Proof. We proceed by induction. Let A, denote the matrix resulting from the k™ step
of Gaussian elimination (i.e. the matrix obtained after “clearing” the first k£ columns).
We shall show that for each k, every row of the matrix Ay, is of exactly one of six types
depending on the form of the first k entries of that row and the last m — k entries of that
row (in the sequel, we will refer to this as saying that every row is one of the six types with
respect to k).

We now describe these six types. Let o, denote any sequence of length n consisting of
alternating plus ones and minus ones (e.g. a3 = [—1,1,—1] or @3 = [1]). Let 3,, denote
the sequence of length n consisting of all zeros. Let v, denote any binary sequence of
length n containing exactly one one (e.g. v4 = [0, 0, 1,0]). Let & refer to the operation of
vector concatenation (e.g. [1,2,3] @ [4,5] = [1,2, 3,4, 5]). The six types (with respect to
k) are listed in Table 1f.

Type Firstk Lastm —k Example (k =3, m =17)
1 Bk Bes1 @ aj>1 B PBm—k—e—j>1 [0,0,0]0,1,—1,0]

2 Bk ar>1 @ Bnok—t>0 [0,0,0(1,—1,1,0]

3 Bk Bi>1 B Um—k—r>0 [0,0,00,0,1,—1]

4 Yk Bi>1 ® aj>0 @ Bm—k—t—j>1  [0,1,0]0,0,0,0]

5 Yk ar>1 D Bn_k—e>0 [0,1,0|1,-1,1,0]

6 Vi Be>1 B Um—k—r>0 [0,1,0{0,0,1,—1]

Table 1: The six types with respect to k

We now go through the inductive argument. For the base case, notice that when & = 0,
the cube vectors are type 1, the left ballot vectors are type 2, and the right ballot vectors are
type 3. Thus the claim is proven in the base case.
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Now for the inductive step, we shall show that if all rows of Ay, are of one of the above
types with respect to k, then all rows of Ay 1 are of one of the above types with respect
to k + 1. As described in the proof of Theorem 2, at step £ we must first find some row
whose first k entries are zero, and whose k + 1 entry is +=1. We see then that we must select
some row of type 2, call it 7. We then subtract 7" from all other rows whose k£ + 1 entry
is non-zero. Thus the only types we must worry about are types 2 and 5. Notice that when
we subtract T" from a row of type 2, we get a row either or type 1, type 2, or type 3 with
respect to k£ + 1. When we subtract T" from a row of type 5, we get a row either of type 4, 5,
or 6 with respect to k£ + 1. All other rows remain the same. Thus when we catalog the new
rows with respect to k + 1, we get that those of type 1 become either type 1 or type 2. As
mentioned before, those of type 2 become those of type 1, 2, or 3, except for row 7' which
becomes of type 4 or 5. Type 3 becomes type 2 or 3. Type 4 remains type 4 or becomes
type 5. As mentioned before, type 5 becomes type 4, 5, or 6. Lastly, type 6 becomes type 5
or type 6. Thus, by induction, we have proven the desired statement, implying in particular
that the matrix is flat at every step. |

4. Vertices of the cube in the ballot region

In this section, we demonstrate that bidirectional ballot sequences of length 2n — 1 corre-
spond in a natural way to (),,, and we rederive the growth rate given in [11] and [2].

Definition 10. A slope vector is a vector A = [A1, ..., \;,] € R™ with m € N. To a slope
vector A, we associate the unique continuous piecewise linear function fy : [0,m] — R
such that f(0) = 0 and f{(z) = A, forz € (i —1,%) foreach1 < i < m.

Given any binary sequence b = by - - - b,,,, we associate to this sequence the graph of the
function f) where A = (A1, ..., Ay ) with \; == (—1)% 1,

Example 1. The bidirectional ballot sequence 11011001111 corresponds to the path
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This is a bijection from binary sequences of length m to graphs of functions f) with
A € {£1}™. Recall from Section 1 that the graphs which correspond to bidirectional ballot
sequences are those of functions f where fx(0) < fx(t) < fa(m) forall 0 < ¢t < m.

Now we will draw a correspondence between @,, and Bs,, 13 through these graphs, as
well as a correspondence between a certain subset of (),, and Bs,,_1, by describing a way
to interpret vectors v € Cy,_1 = [0,1]?"~1 as paths as in the discrete case in such a way
that the vertices of the ballot polytope are realized as exactly the graphs above. Given a
vector v = [vg,...,Uzn—1] € Capn_1, define the slope vector A, = [A1,...,Aap—1] by
Ai = (=1)*"1(2v; — 1), and associate to v the graph of the function fy, .

Example 2. The gap-parametrization vector v = [3, 1, 1,2 1] € [0,1]° gives the slope

vector \, = [%, —%, 0, %, 1] , which gives the following graph of the function f) , where
the values next to the points indicate the distance above the x-axis:

0 1 2 3 4 5

Although the function f, in Example 2 has the property that it achieves global mini-
mum and maximum values at it left and right endpoints (respectively), we will see that this
is not always the case (see Example 3). We determine this behavior more precisely now.

Ifv={[v1,...,02,-1] € Cap_1, then for 0 < k < 2n — 1 we have

{2 Z?Il(—l)j_lvj k is even 15)

k
= N1V (20 — 1) = .
P(k) = Y (=120 - 1) —1423% (1) ey ks odd,

j=1

and similarly

fr,(2n—1)—2 Z?Il(—l)j_lvgn_j k is even

. 16
Fa@n—1)+1-2%" (-1 vy, kisodd. (16)
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One can see now that, even if v € P,, it is possible for the graph to fail the property stated
above, i.e., to achieve a global maximum or minimum at a point in the interior of its interval
of definition (again, see Example 3 for an explicit example). However, one can also see that
if v € P,, it cannot fail this property to a great extent; namely, the values at the left and
right endpoints will be within a distance of 1 from the maximum and minimum values,
since the large sums in the RHS of (15) and (16) will be non-negative. Nonetheless, we
would like the graphs of the functions f, with v € @,, to match the graphs of bidirectional
ballot sequences in Ba, 43, and for that reason we give a way to modify a vector v € @,
before associating it to a graph. Namely, we will add a sort of buffer to each side of the
vector, so that the left and right endpoints get a leg up.

Definition 11. If v = [v1,...,v2,—1] € C2,—1, we define
O[(U) = [15 Ovvla V2,...,V2n-2,V2n—-1, Oa 1]

We now present two correspondences, the first stated more naturally, and the second
proven more naturally, which are nonetheless very closely related. The first correspondence
is as follows.

Theorem 3. The set @y, is in bijection with Ba,, 3, induced by the map

v fi a7

a(v)’

Before we prove Theorem 3, we give an example of the process that induces the bijec-
tion.

Example 3. Consider the gap-parametrization vector v = [0,0,1,0,0] € [0,1]5, an ele-
ment of (J3. We shall obtain a bidirectional ballot sequence from v. We see that v gives
the slope vector A, = [—1,1,1,1,—1]. The graph of fx, is the following, where the values
next to the points indicate the distance above the x-axis:
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This is not the graph of a bidirectional ballot sequence. Namely, the graph passes below the

x-axis and above the line y = fx,(5). Let’s now consider a(v) = [1,0,0,0,1,0,0,0,1] €
[0, 1]°, which gives slope vector Aa) = [1,1,=1,1,1,1, -1, 1, 1] and leads to the follow-
ing graph of fx, .-

0 1 2 3 4 ) 6 7 8 9

The portion of the graph between the vertical dotted lines is simply the graph of f,
translated in the plane by the vector [2,2]. This graph does correspond to a bidirectional
ballot sequence, namely 110111011. We now prove that this process gives a bijection as in
the statement of the theorem.
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Proof of Theorem 3. By the correspondence between bidirectional ballot sequences and
graphs of certain functions given in Example 1, it suffices to show that the map of (17) puts
@, in bijection with

F o= {fu:pe{E1}*13 £.00) < f.(t) < fu(2n+3) forall t € (0,2n+ 3)}.
(18)

If v € Cy,_1 is any gap-parametrization vector, then, in light of (15), (16), and the fact
that fy, achieves maxima and minima only at integer values, we have that fy (0) — 1 <
a () < fa,(2n—1)+1fort € [0,2n — 1] if and only if v is a bidirectional gerrymander.
Furthermore, if v is a vertex of the cube Cy,,_1, then a(v) is a vertex of Cy,, 13 = [0, 1]27+3
so that fy, , takes integers to integers. Since for any v € Co,,—1 we have [y, (k+2)=
(k) +2for0 <k <2n—1, fy,,, (@) =ifori =0,1,2,and fy, (20 +1+1) =
Fra (2n+1) +ifori = 1,2. Thusif vis a vertex of Ca,—1 then fi, ,, (0) < fa,,, () <
Fraey(2n +3) forall t € (0,2n + 3) if and only if v € Q,,. It follows then that, since
Aa(v) € {£1}?"13 when v € Q,, we indeed have that fraqy € F, and so the map in (17)
does indeed take ()., to graphs of bidirectional ballot sequences in By, 3.

Injectivity of the map is clear. To show that the map is surjective, we provide an inverse.
For a bidirectional ballot sequence b = by - - - ba,,+3 of length 2n + 3, we define the vector
w = [wy,...,Wws,_1], where

1 ifj=5b; d2
oy :_{ if j = bji2  (mod 2)

It is easily verified that the graph of fy_,, is the one associated to b. Moreover, the two
statements directly following (18) imply that, since w € {£1}?"~! and the graph of f,
is that of a bidirectional ballot sequence, we must have that w € @,,. It is clear that this
map is both a right- and left-inverse of the map given by (17). |

a(w)

We now give the second correspondence. Let Z,, denote the interior of B,, in R?"~1,
Let T, = Z,, N @y, i.e. those vertices of P, in the interior of B,,.

Corollary 3. We have T,, is in bijection with Bo,,_1, induced by the map
vV = fM . (20)

Proof. The proof here is essentially the same as that of Theorem 3. The point here is
that, when v € T,,, we already have fy, (0) < f,(¢) < fa,(2n — 1), following similar
reasoning as in the statements directly following (18). (|

Lastly, we use these correspondences along with our previous analysis of P,, and its
translates to obtain the growth rate in [11].

Corollary 4. For ¢ odd,
2@

16(0 —4)° @D
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Proof. The inequality is trivial if £ € {1,3}, so assume ¢ > 5. Let m = ¢ — 4; this is
2n — 1 for some n € N. By Theorem 3, we know that the vertices of P,, are in bijection
with B, +4. From Corollary 1, we know that every vertex of Cs,,_; is contained in P, for
some o € Z,,. Since there are m such copies of P, we have

mBpy,1q4 > 2™ (22)
By rearrangement we get
2@
By > ————. 23
£ = 16(0—4) 23
O
Corollary 5. For { odd,
25
By < 7. 24)

Proof. Suppose ¢ = 2n — 1. From Corollary 3, we know that the vertices of P,, which are
in the interior of B,,, namely T, are in bijection with B,,,. Since the interiors of B,, and
B, are disjoint if o1 # o2, we have that o1(T},) N 2(T},) = () for o1 # o2. Therefore,
summing over all the vertices in o(T') for each o € Z,, we at most get every vertex of the
cube once. That is,

(B, < 2% (25)
Rearranging yields
25
B < & (26)
O

Corollary 6. For all ¢, the growth rate of By is ©(2¢/¥).

Proof. By Corollaries 4 and 5, we know that for ¢ odd, the growth rate is ©(2¢/¢). The
only additional insight needed is that for all ¢, By;1 > By. To see this, note that given a
BBS of length #, by appending a 1 to the end of it, we obtain a BBS of length £ + 1. Thus
up to fixed constants, the inequalities in Corollaries 4 and 5 are correct for even ¢ as well.
Thus, for all £, B, grows like ©(2¢/). O

5. Conclusion

Our methods reveal a rich combinatorial structure underlying bidirectional ballot sequences.
In previous papers on BBS’s ([11], [2], [6]), analytic techniques were used to obtain asymp-
totics, but our techniques reveal a geometric interpretation for the ©(2"/n) growth rate.
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Interestingly, in the final section of [11], Zhao states without detailed proof that nB,, /2"
goes to 1/4, but claims his proof is “calculation-heavy”. He then posits that “[t]here should
be some natural, combinatorial explanation, perhaps along the lines of grouping all pos-
sible walks into orbits of size mostly n under some symmetry, so that almost every orbit
contains exactly one walk with the desired property.” Zhao’s statement is strikingly similar
to the ideas presented in our paper. Though we have made some effort, we have not been
able to derive that nB,,/2™ — 1/4 using the techniques of our paper, but we feel that there
is hope for such a proof.

The second, more general takeaway from this paper is the potential for the ideas orig-
inally presented in [9]. The ideas in this paper in fact evolved from the ideas in [9]. In
passing to the continuous setting, several additive number theory and combinatorial prob-
lems reveal a rich structure which was not otherwise visible. We believe that there is even
greater potential still in such ideas and techniques.
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