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Abstract

A bidirectional ballot sequence (BBS) is a finite binary sequence with the property that

every prefix and suffix contains strictly more ones than zeros. BBS’s were introduced by

Zhao, and independently by Bosquet-Mélou and Ponty as (1, 1)-culminating paths. Both

sets of authors noted the difficulty in counting these objects, and to date research on bidirec-

tional ballot sequences has been concerned with asymptotics. We introduce a continuous

analogue of bidirectional ballot sequences which we call bidirectional gerrymanders, and

show that the set of bidirectional gerrymanders form a convex polytope sitting inside the

unit cube, which we refer to as the bidirectional ballot polytope. We prove that every

(2n − 1)-dimensional unit cube can be partitioned into 2n − 1 isometric copies of the

(2n−1)-dimensional bidirectional ballot polytope. Furthermore, we show that the vertices

of this polytope are all also vertices of the cube, and that the vertices are in bijection with

BBS’s. An immediate corollary is a geometric explanation of the result of Zhao and of

Bosquet-Mélou and Ponty that the number of BBS’s of length n is Θ(2n/n).

http://arxiv.org/abs/1708.02399v4
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1. Introduction

In [11], Zhao introduced a family of combinatorial objects called bidirectional ballot se-

quences, defined as follows.

Definition 1. A finite 0-1 sequence is a bidirectional ballot sequence (BBS) if every

prefix and every suffix contains strictly more ones than zeros. Let Bn denote the number

of bidirectional ballot sequences of length n.

Bidirectional ballot sequences have a natural interpretation in terms of lattice paths.

Suppose we start at (0, 0) and take a finite number of steps either of the form (1, 1) or

(1,−1). We call such a path a standard lattice path. We define the length of the path to

be the number of steps it contains. We define the height of a point in the lattice path to be

its y-coordinate. Bidirectional ballot sequences of length n are in bijection with standard

lattice paths of length n whose unique minimum height is attained at the first point in the

path, and whose unique maximum height is attained at the last point in the path. The

bijection is given by identifying the digit ‘0’ in a BBS with a step of the form (1,−1) and

the digit ‘1’ with a step of the form (1, 1) (for an example of this, see Section 4).

From this perspective, bidirectional ballot sequences were independently introduced by

Bosquet-Mélou and Ponty [2] as a special type of what they call culminating paths. In

particular, an (a, b)-culminating path is a sequence of lattice points starting at (0, 0) such

that each step is of the form (1, a) or (1,−b) and such that the unique minimum height

is achieved at the first point and the unique maximum height is achieved at the last point.

Thus bidirectional ballot sequences are in bijection with (1, 1)-culminating paths. In [2]

it is noted that (1, 1)-culminating paths had been used in [5] with connections to theoreti-

cal physics, and general (a, b)-culminating paths had been used in [1], [4], and [10] with

connections to bioinformatics.

In both [11] and [2], it is noted that unlike other easy to define classes of lattice paths

(e.g. Dyck paths), the enumeration of BBS’s is tricky; there is no obvious recursive struc-

ture to such paths. Both authors focused on the asymptotics of Bn. In particular, [2]

obtained a generating function in n for the number of (a, b)-culminating paths of length n

with fixed height k (the generating function for the (1, 1) case was found in [5]). Further-

more, they showed that Bn ∼ 2n/4n. Independently, [11] showed that Bn = Θ(2n/n)

and stated without detailed proof that Bn ∼ 2n/4n. Additionally in [11], the author con-

jectured an even finer asymptotic expression for Bn. This conjecture was later proved by

Hackl, Heuberger, Prodinger and Wagner [6], who refined the asymptotic expression even

further using techniques from analytic combinatorics.

The motivation for the study of culminating paths in [2] was the observation that such

paths had been independently introduced and utilized in disparate contexts (theoretical

physics and bioinformatics) as well as a general interest in understanding subfamilies of

lattice paths. However, the motivation in [11], as well as our original motivation for study-

ing BBS’s, arises from additive combinatorics. Let A ⊂ Z be a finite set of integers. We

define the sumset A+ A as those elements in Z expressible as a+ b with a, b ∈ A. Simi-



INTEGERS: 18 (2018) 3

larly, the difference set A−A is those elements expressible as a− b with a, b ∈ A. We say

that A is a more sums than differences (MSTD) set if |A+A| > |A−A|. Because of the

commutativity of addition, one may intuitively expect that in general |A − A| ≥ |A + A|.

This intuition turns out to be correct in some contexts (see [7]), in particular if each el-

ement in [n] := {1, 2, . . . , n} is independently chosen to be in A with some probability

p(n) tending to zero). Let ρn be the proportion of subsets of [n] which are MSTD. In [8],

it was shown that ρn > 2 × 10−7 for n ≥ 15, and in [12] it was shown that limn→∞ ρn
converges to a positive number; experimental data suggests this limit to be of order 10−4.

Thus, in this sense, a positive proportion of sets are MSTD. However, the techniques in [8]

are probabilistic, and to date no known constant density family of MSTD subsets of [n] as

n → ∞ is known.

The best density explicit construction of MSTD sets is due to Zhao in [11] using BBS’s.

Let B be a binary sequence of length n. We can associate to B the set A ⊆ [n] defined

as A := {i : Bi = 1}. For example if B = 01101, then A = {2, 3, 5}. Those subsets

A of [n] arising from BBS’s have the property that A + A = {i : 2 ≤ i ≤ 2n}, which is

to say that the sumset is as large as possible (similarly it turns out that the difference set is

also as large as possible). Using this property, Zhao was able to translate those subsets of

[n] arising from BBS’s and append extra elements to the fringes to obtain an MSTD set for

each set arising from a BBS. From this, one immediately gets a density Θ(1/n) family of

MSTD sets.

Motivated by the use of BBS’s in additive combinatorics, in this paper we study the

natural analgoue of BBS’s in a continuous setting, which we call bidirectional gerryman-

ders; in the related paper [9], we use similar ideas as in this paper to study the analogue of

MSTD sets in a continuous setting.

We first set some notation and then describe our main results. Let In denote the set of all

subsets of R consisting of exactly n disjoint open intervals such that the leftmost interval

starts at 0. Suppose A ∈ In. If we translate A, then the sumset and difference set merely

translate as well. Thus, when studying additive behavior, we do not lose any generality

by restricting our attention to collections of intervals such that the leftmost interval starts

at zero. We can topologize In by identifying it with R
2n−1
≥0 , the non-negative orthant: let

A = I1 ∪ I2 ∪ · · · ∪ In ∈ In with Ii to the left of Ij for i < j. Suppose Ij = (aj , bj).

We then identify A with the vector vA = [b1 − a1, a2 − b1, b2 − a2, a3 − b2, . . . , bn − an].

Thus the first entry is the length of the first interval, the second entry is the size of the gap

between the first and second intervals, the third entry is the length of the second interval,

etc. We shall find it convenient to restrict our attention to the following set: let Jn ⊂ In be

the set of collections of n non-overlapping intervals such that the leftmost interval starts at

zero, the length of each interval is between 0 and 1, and the gap between adjacent intervals

is between 0 and 1 (if we scale A ∈ In by α 6= 0, then the sumset and difference set

scale by α as well, so αA has the same essential additive behavior as A; note that up to

scaling, every element of In is an element of Jn). We can topologize Jn by identifying it
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with C2n−1 = [0, 1]2n−1, the 2n− 1 dimensional unit cube1. For other ways to topologize

In and related spaces, see [9].

The bidirectional gerrymanders in Jn form a convex, compact polytope contained in

C2n−1 which we call the bidirectional ballot polytope, Pn. This polytope has a number

of extraordinary combinatorial features. In Section 2 we formally define this polytope and

show that C2n−1 can be partitioned into 2n − 1 disjoint isometric copies of Pn, which

in particular shows that the volume of Pn is 1/(2n − 1). In Section 3 we show that the

vertices of Pn are vertices of C2n−1. Finally in Section 4 we show that the vertices of Pn

are in bijection with B2n+3, and that a particular subset of the vertices are in bijection with

B2n−1. From this we are able to immediately rederive geometrically that |Bn| = Θ(2n/n),

i.e., there are positive constants α and β such that for all n sufficiently large we have

α2n/n ≤ |Bn| ≤ β2n/n.

2. The Bidirectional Ballot Cone and Polytope

We first set some notation. Let m = 2n− 1 for some n ∈ N.

Definition 2. Let the set of left ballot vectors, Ln, and the set of right ballot vectors, Rn,

be the following sets of vectors in Rm:

Ln := {[1,−1, 0, . . . , 0], [1,−1, 1,−1, 0, . . . , 0], . . . , [1,−1, . . . , 1,−1, 0]}, (1)

Rn := {[0, . . . , 0,−1, 1], [0, . . . , 0,−1, 1,−1, 1], . . . , [0,−1, 1, . . . ,−1, 1]}. (2)

We define Vn, the set of ballot vectors, as Vn = Ln ∪Rn.

Definition 3. The bidirectional ballot cone, Bn, is the set of x ∈ Rm such that x · w ≥ 0

for all w ∈ Vn. When the value of n is obvious, we simply refer to it as B.

We now define the continuous analogue of BBS’s, and show in Proposition 1 that it is

the right generalization.

Definition 4. Let A ∈ In. We call A a bidirectional gerrymander if vA ∈ B.

Proposition 1. Suppose A = I1∪· · ·∪In ∈ In with endpoints ordered as before. Suppose

the right endpoint of In is b. Then, A is a bidirectional gerrymander if and only if µ(A ∩

[0, t]) ≥ t/2 and µ(A ∩ [b− t, b]) ≥ t/2 for all t ∈ [0, b].

Proof. Clearly if these measure conditions hold, then A is a bidirectional gerrymander, as

setting t to be left and right endpoints of the Ii yields the nonnegativity conditions of pairing

1Because the endpoints of an open interval cannot be equal, strictly speaking we are taking In to be the set of

all weakly increasing 2n-tuples of points on the real line and identifying these with collections of n intervals by

treating them as endpoints (and correspondingly for Jn). However, in the edge case when aj = bj , we still allow

an ‘empty’ interval at aj , which is included in the data of an element of In. Including these degenerate cases

allows us to indeed identify Jn with the closed unit cube.
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with the ballot vectors. The condition µ(A∩[0, t]) ≥ t/2 is equivalent to the non-negativity

of µ(A∩ [0, t])−µ((R\A)∩ [0, t]). For t ∈ [0, b], µ(A∩ [0, t])−µ((R\A)∩ [0, t]) takes

a local minimum only if t is a left endpoint of an interval Ii. Hence if vA · w ≥ 0 for all

w ∈ Ln, then the function is nonnegative at its minima and so the first measure condition

holds. Similarly, the second measure condition holds as well by the nonnegativity of pairing

with the right ballot vectors.

A BBS in the sense of [11] is a binary sequence for which any subsequence truncated

on the left or right contains more 1’s than 0’s, and Proposition 1 shows that a bidirectional

gerrymander is a subset of R contained in [0, a] for which any subset obtained by truncating

on the left or right contains “more” points (in a measure theoretic sense) in the original set

than points not in this set. It is thus clear that they are a natural analogue, but, as we shall

see, what is surprising is that they can be used to prove results about standard (discrete)

BBS’s.

Definition 5. The bidirectional ballot polytope Pn, is defined as Bn ∩Cm. Equivalently,

it is those vectors vA such that A ∈ Jn is a bidirectional gerrymander. When the value of

n is obvious, we shall refer to it simply as P .

Figure 1: The polytope P2 (red) sitting inside C3. Notice that adding two additional copies

of P2, rotated about the main diagonal of the cube by 2π/3 and 4π/3 respectively, would

result in a partition of C3 (neglecting overlap of boundaries).

Definition 6. Let Zm be the cyclic group of order m with generator ρ. Let Zm act on Rm

by cyclically permuting the entries (e.g. ρ2([0, 1, 2, 3, 4]) = [3, 4, 0, 1, 2]). For a given set



INTEGERS: 18 (2018) 6

of vectors V and σ ∈ Zm, let σ(V ) := {σ(v) : v ∈ V } with σ ∈ Zm. For each σ ∈ Zm,

define Bσ by

Bσ := {v ∈ R
m
≥0 : v · w ≥ 0 for all w ∈ σ(Vn)}, (3)

and Pσ likewise. Note that Bσ = σ−1(B), and that B = BId and P = PId.

Theorem 1. The non-negative orthant, Rm
≥0, is contained in

⋃

σ∈Zm
Bσ. Furthermore, for

σ1 6= σ2, the interiors of Bσ1 and Bσ2 are disjoint.

Proof. Let τ = ρ2 ∈ Zm be the cyclic shift by two places. Because m is odd, τ generates

Zm. In particular, we see that the set of left and right ballot vectors Vn as defined in

Definition 2 is equal to

Vn =

{

k
∑

i=0

τ i(w) : 0 ≤ k ≤ 2n− 3

}

, (4)

where w = [1,−1, 0, . . . , 0]. If ℓ < k ≤ 2n− 3 then

k
∑

i=0

τ i(w) −
ℓ

∑

i=0

τ i(w) =

k
∑

i=ℓ+1

τ i(w) = τ ℓ+1
k−ℓ−1
∑

i=0

τ i(w), (5)

and since
∑2n−2

i=0 τ i(w) = [0, . . . , 0] we have similarly that, for 0 ≤ k ≤ ℓ,

k
∑

i=0

τ i(w) −
ℓ

∑

i=0

τ i(w) = τ ℓ+1

(2n−2)+(k−ℓ)
∑

i=0

τ i(w). (6)

Then for each ℓ we have that
{

k
∑

i=0

τ i(w) −
ℓ

∑

i=0

τ i(w) : 0 ≤ k ≤ 2n− 2, k 6= ℓ

}

= τ ℓ+1(Vn). (7)

Now let wk =
∑k

i=0 τ
i(w), take any v ∈ [0, 1]m, and choose 0 ≤ ℓ ≤ 2n− 2 minimizing

v · wℓ (this ℓ may not be unique). Then

v ·

(

k
∑

i=0

τ i(w) −
ℓ

∑

i=0

τ i(w)

)

≥ 0 (8)

for all 0 ≤ k ≤ 2n − 2. Therefore v · r ≥ 0 for all r ∈ τ ℓ+1(Vn), so v ∈ Bτℓ+1 . This

shows that Rm
≥0 =

⋃

σ∈Zm
Bσ. Intersecting with C gives the corresponding result for P .

Conversely, if v ∈ Int(Bτℓ+1) ∩ Int(Bτk+1) and τ ℓ+1 6= τk+1, then (because taking the

interior simply changes the inequalities defining Bτℓ+1 to strict ones) we have both

v ·

(

k
∑

i=0

τ i(w) −
ℓ

∑

i=0

τ i(w)

)

> 0

v ·

(

ℓ
∑

i=0

τ i(w) −
k
∑

i=0

τ i(w)

)

> 0.
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This is a contradiction, so the interiors distinct regions Bτℓ+1 are disjoint, and it follows

immediately that the interiors of distinct regions Pτℓ+1 are disjoint.

Corollary 1. The unit cubeCm equals
⋃

σ∈Zm
Pσ. Furthermore, for σ1 6= σ2, the interiors

of Pσ1 and Pσ2 are disjoint. Consequently, the volume of P is exactly 1/m.

Proof. Intersecting the nonnegative orthant and the translates Bσ with Cm, Theorem 1

yields that Cm is partitioned into m regions produced by permuting the coordinates of

P . Because the matrix representing τ = ρ2 has determinant 1 it leaves volume invariant.

Therefore, Vol(Pσ) = Vol(P) for all σ ∈ Zm, so Vol(P) = 1/m.

Corollary 2. For any vector v ∈ Rm
≥0, there exists σ ∈ Zm such that the vector

v′ = (v′1, v
′
2, . . . , v

′
m) = σ(v) has the following property: For all 1 ≤ k ≤ n,

k
∑

i=1

(v′2i−1 − v′2i) ≥ 0 (9)

and

k
∑

i=1

(v′2n−(2i−1) − v′2n−2i) ≥ 0. (10)

If furthermore these are all positive, then σ is unique.

One interpretation of the above corollary is as follows. Suppose you have a necklace

with an odd number of beads. On each bead you write a non-negative number. Then

there exists some place where you can cut the necklace such that when you lay out the

necklace and think of the sequence of values on the beads as a vector in Rm, this vector

is a bidirectional gerrymander. Furthermore, if the numbers you write on the beads are

“generic”, in the sense that the inequalities corresponding to (9) and (10) are strict, then

there is exactly one such place you can cut the necklace.

1.78

1.55

0.76 2.06

3.21

3.21 1.78 1.55 0.76 2.06

Figure 2: An example “cut” of a necklace as in Corollary 2.
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3. Vertices of the Bidirectional Ballot Polytope are Vertices of the Cube

In this section we show that the vertices of Pn are also vertices of Cm, the unit cube. We

had previously defined Pn as the intersection of the unit cube with the ballot cone, which

is equivalent to the set of vectors [ℓ1, g1, . . . , gn−1, ℓn] satisfying the below inequality:

cube vectors



























left ballot vectors











right ballot vectors





















































1 0 0 0 0 . . . 0 0 0 0 0
−1 0 0 0 0 . . . 0 0 0 0 0
0 1 0 0 0 . . . 0 0 0 0 0
0 −1 0 0 0 . . . 0 0 0 0 0
...

...
...

...
...

. . .
...

...
...

...
...

1 −1 0 0 0 . . . 0 0 0 0 0
1 −1 1 −1 0 . . . 0 0 0 0 0
...

...
...

...
...

. . .
...

...
...

...
...

0 0 0 0 0 . . . 0 0 0 −1 1
0 0 0 0 0 . . . 0 −1 1 −1 1
...

...
...

...
...

. . .
...

...
...

...
...

































































ℓ1
g1
ℓ2
g2
...

gn−1

ℓn























≥











































0
−1
0
−1

...

0
0
...

0
0
...











































.

(11)

The first collection of rows in the above matrix is necessary to ensure that we only deal

with points inside of the unit cube. Thus we call any vector of the form [0, . . . , 0,±1, 0, . . . , 0]

a cube vector.

Before proving the main result of this section, we must review a few concepts related to

convex polytopes. We follow the terminology of [3].

Definition 7. Let P be a polytope in Rn defined by the inequalities aTi x ≥ bi for i ∈
{1, 2, . . . , k}. Let x∗ be such that for some i, aTi x

∗ = bi. Then, we say that the ith

constraint is active at x∗.

Definition 8. A vector x∗ ∈ Rn is called a basic solution if out of all of the constraints

that are active at x∗, there is some collection of n of them which is linearly independent.

If x∗ is a basic solution that satisfies all of the constraints, then it is called a basic feasible

solution.

Part of what makes the study of convex polytopes interesting is that there are several

equivalent but strikingly different ways of defining what the vertices of a polytope are. In

particular, one definition is that a point v is a vertex if and only if it is a basic feasible

solution.

The following shorthand will be helpful in the proof of the main theorem of this section.

Definition 9. A matrix/vector is called flat if all of its entries are 0, 1, or -1.

Let Qn denote the set of vertices in the polytope Pn. Let Sn denote the set of vertices

of the unit cube Cm. The main result of this section is the following.
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Theorem 2. All of the vertices of the bidirectional ballot polytope Pn are also vertices of

the unit cube Cm; i.e., Qn ⊂ Sn.

Proof. By the above discussion, we know that we must show that all basic feasible solu-

tions are vertices of the cube. Throughout this proof, we let n be fixed, and let m = 2n−1.

Thus we unambiguously let P = Pn, C = C2n−1, Q = Qn, and S = Sn. Notice that

Zm∩P ⊂ S. From this observation, we now describe the strategy for proving the theorem.

Suppose x∗ is a basic solution whose corresponding constraints are ai1 , . . . , aim . Then x∗

satisfies







—ai1—
...

—aim—






x∗ =







bi1
...

bim






. (12)

Let A be the matrix in (12). Let b∗ be the vector on the right hand side in (12). Thus

x∗ = A−1b∗. Note that b∗ ∈ Zm since it is some subset of the entries in the vector on

the right hand side of (11). If we can show that det(A) = ±1, it will imply that A−1

has integer entries, and thus that A−1b∗ ∈ Zm. From the earlier observation, if x∗ is a

basic feasible solution, then we must have that A−1b∗ = x∗ ∈ S, which would prove the

theorem.

Now we must show that if A is invertible, then it has determinant ±1. In order to

show this, we keep track of what happens to the determinant in the process of carrying out

Gaussian elimination, which converts A into the identity matrix. In particular, we show

that at every step, the determinant changes by a factor of ±1. Since the identity matrix has

determinant 1, we could then conclude that A has determinant ±1. The only elementary

row operation which potentially changes the absolute value of the determinant of a matrix

is multiplying a row by a scalar. Thus it suffices to show that when Gaussian elimination

is performed on A, no row is ever multiplied by a scalar other than ±1. In Gaussian

elimination, a row is multiplied by a scalar to convert some non-zero entry in that row to

a one. If every non-zero entry in that row is ±1, then we would simply need to multiply

by ±1. Thus, we shall instead prove the stronger hypothesis that at every step of Gaussian

elimination, the intermediate matrix is flat, and hence all of its non-zero entries are ±1.

This is the content of Lemma 1.

Before proving Lemma 1, we include an example to illustrate the method. Here we omit

row swapping for clarity, and we obtain a permutation matrix, which has determinant ±1.

At each step, the leading nonzero term in the bolded row is used to clear the corresponding
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column.

A0 :













0 1 0 0 0
0 0 0 0 1
1 −1 0 0 0

0 −1 1 −1 1
0 0 0 −1 1













→ A1 :













0 1 0 0 0

0 0 0 0 1
1 −1 0 0 0
0 −1 1 −1 1
0 0 0 −1 1













→ A2 :













0 1 0 0 0
0 0 0 0 1
1 0 0 0 0
0 0 1 −1 1

0 0 0 −1 1













(13)

→ A3 :













0 1 0 0 0
0 0 0 0 1
1 0 0 0 0
0 0 1 −1 1
0 0 0 −1 1













→ A4 :













0 1 0 0 0
0 0 0 0 1

1 0 0 0 0
0 0 1 0 0
0 0 0 1 −1













→ A5 :













0 1 0 0 0
0 0 0 0 1
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0













.

(14)

Lemma 1. In carrying out Gaussian elimination on the matrix A as in Theorem 2, all

intermediate matrices are flat.

Proof. We proceed by induction. Let Ak denote the matrix resulting from the kth step

of Gaussian elimination (i.e. the matrix obtained after “clearing” the first k columns).

We shall show that for each k, every row of the matrix Ak is of exactly one of six types

depending on the form of the first k entries of that row and the last m − k entries of that

row (in the sequel, we will refer to this as saying that every row is one of the six types with

respect to k).

We now describe these six types. Let αn denote any sequence of length n consisting of

alternating plus ones and minus ones (e.g. α3 = [−1, 1,−1] or α1 = [1]). Let βn denote

the sequence of length n consisting of all zeros. Let γn denote any binary sequence of

length n containing exactly one one (e.g. γ4 = [0, 0, 1, 0]). Let ⊕ refer to the operation of

vector concatenation (e.g. [1, 2, 3]⊕ [4, 5] = [1, 2, 3, 4, 5]). The six types (with respect to

k) are listed in Table 1f.

Type First k Last m− k Example (k = 3, m = 7)

1 βk βℓ≥1 ⊕ αj≥1 ⊕ βm−k−ℓ−j≥1 [0, 0, 0
∣

∣ 0, 1,−1, 0]
2 βk αℓ≥1 ⊕ βn−k−ℓ≥0 [0, 0, 0

∣

∣ 1,−1, 1, 0]
3 βk βℓ≥1 ⊕ αm−k−ℓ≥0 [0, 0, 0

∣

∣ 0, 0, 1,−1]
4 γk βℓ≥1 ⊕ αj≥0 ⊕ βm−k−ℓ−j≥1 [0, 1, 0

∣

∣ 0, 0, 0, 0]
5 γk αℓ≥1 ⊕ βn−k−ℓ≥0 [0, 1, 0

∣

∣ 1,−1, 1, 0]
6 γk βℓ≥1 ⊕ αm−k−ℓ≥0 [0, 1, 0

∣

∣ 0, 0, 1,−1]

Table 1: The six types with respect to k

We now go through the inductive argument. For the base case, notice that when k = 0,

the cube vectors are type 1, the left ballot vectors are type 2, and the right ballot vectors are

type 3. Thus the claim is proven in the base case.
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Now for the inductive step, we shall show that if all rows of Ak are of one of the above

types with respect to k, then all rows of Ak+1 are of one of the above types with respect

to k + 1. As described in the proof of Theorem 2, at step k we must first find some row

whose first k entries are zero, and whose k+1 entry is ±1. We see then that we must select

some row of type 2, call it T . We then subtract T from all other rows whose k + 1 entry

is non-zero. Thus the only types we must worry about are types 2 and 5. Notice that when

we subtract T from a row of type 2, we get a row either or type 1, type 2, or type 3 with

respect to k+1. When we subtract T from a row of type 5, we get a row either of type 4, 5,

or 6 with respect to k + 1. All other rows remain the same. Thus when we catalog the new

rows with respect to k + 1, we get that those of type 1 become either type 1 or type 2. As

mentioned before, those of type 2 become those of type 1, 2, or 3, except for row T which

becomes of type 4 or 5. Type 3 becomes type 2 or 3. Type 4 remains type 4 or becomes

type 5. As mentioned before, type 5 becomes type 4, 5, or 6. Lastly, type 6 becomes type 5

or type 6. Thus, by induction, we have proven the desired statement, implying in particular

that the matrix is flat at every step.

4. Vertices of the cube in the ballot region

In this section, we demonstrate that bidirectional ballot sequences of length 2n− 1 corre-

spond in a natural way to Qn, and we rederive the growth rate given in [11] and [2].

Definition 10. A slope vector is a vector λ = [λ1, . . . , λm] ∈ Rm with m ∈ N. To a slope

vector λ, we associate the unique continuous piecewise linear function fλ : [0,m] → R

such that f(0) = 0 and f ′
λ(x) = λi for x ∈ (i − 1, i) for each 1 ≤ i ≤ m.

Given any binary sequence b = b1 · · · bm, we associate to this sequence the graph of the

function fλ where λ = (λ1, . . . , λm) with λi := (−1)bi−1.

Example 1. The bidirectional ballot sequence 11011001111 corresponds to the path
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This is a bijection from binary sequences of length m to graphs of functions fλ with

λ ∈ {±1}m. Recall from Section 1 that the graphs which correspond to bidirectional ballot

sequences are those of functions fλ where fλ(0) < fλ(t) < fλ(m) for all 0 < t < m.

Now we will draw a correspondence between Qn and B2n+3 through these graphs, as

well as a correspondence between a certain subset of Qn and B2n−1, by describing a way

to interpret vectors v ∈ C2n−1 = [0, 1]2n−1 as paths as in the discrete case in such a way

that the vertices of the ballot polytope are realized as exactly the graphs above. Given a

vector v = [v1, . . . , v2n−1] ∈ C2n−1, define the slope vector λv = [λ1, . . . , λ2n−1] by

λi := (−1)i−1(2vi − 1), and associate to v the graph of the function fλv
.

Example 2. The gap-parametrization vector v =
[

3
4 ,

1
3 ,

1
2 ,

2
3 , 1

]

∈ [0, 1]5 gives the slope

vector λv =
[

1
2 ,−

1
3 , 0,

1
3 , 1

]

, which gives the following graph of the function fλv
, where

the values next to the points indicate the distance above the x-axis:

0 1 2 3 4 5

1
2

1
6

1
6

1
2

3
2

Although the function fλv
in Example 2 has the property that it achieves global mini-

mum and maximum values at it left and right endpoints (respectively), we will see that this

is not always the case (see Example 3). We determine this behavior more precisely now.

If v = [v1, . . . , v2n−1] ∈ C2n−1, then for 0 ≤ k ≤ 2n− 1 we have

fλv
(k) =

k
∑

j=1

(−1)j−1(2vj − 1) =

{

2
∑k

j=1(−1)j−1vj k is even

−1 + 2
∑k

j=1(−1)j−1vj k is odd,
(15)

and similarly

fλv
(2n− 1− k) =

{

fλv
(2n− 1)− 2

∑k

j=1(−1)j−1v2n−j k is even

fλv
(2n− 1) + 1− 2

∑k

j=1(−1)j−1v2n−j k is odd.
(16)
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One can see now that, even if v ∈ Pn, it is possible for the graph to fail the property stated

above, i.e., to achieve a global maximum or minimum at a point in the interior of its interval

of definition (again, see Example 3 for an explicit example). However, one can also see that

if v ∈ Pn, it cannot fail this property to a great extent; namely, the values at the left and

right endpoints will be within a distance of 1 from the maximum and minimum values,

since the large sums in the RHS of (15) and (16) will be non-negative. Nonetheless, we

would like the graphs of the functions fλv
with v ∈ Qn to match the graphs of bidirectional

ballot sequences in B2n+3, and for that reason we give a way to modify a vector v ∈ Qn

before associating it to a graph. Namely, we will add a sort of buffer to each side of the

vector, so that the left and right endpoints get a leg up.

Definition 11. If v = [v1, . . . , v2n−1] ∈ C2n−1, we define

α(v) := [1, 0, v1, v2, . . . , v2n−2, v2n−1, 0, 1].

We now present two correspondences, the first stated more naturally, and the second

proven more naturally, which are nonetheless very closely related. The first correspondence

is as follows.

Theorem 3. The set Qn is in bijection with B2n+3, induced by the map

v 7→ fλα(v)
. (17)

Before we prove Theorem 3, we give an example of the process that induces the bijec-

tion.

Example 3. Consider the gap-parametrization vector v = [0, 0, 1, 0, 0] ∈ [0, 1]5, an ele-

ment of Q3. We shall obtain a bidirectional ballot sequence from v. We see that v gives

the slope vector λv = [−1, 1, 1, 1,−1]. The graph of fλv
is the following, where the values

next to the points indicate the distance above the x-axis:
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1 2 3 4 5

0

−1

0

1

2

1

This is not the graph of a bidirectional ballot sequence. Namely, the graph passes below the

x-axis and above the line y = fλv
(5). Let’s now consider α(v) = [1, 0, 0, 0, 1, 0, 0, 0, 1] ∈

[0, 1]9, which gives slope vector λα(v) = [1, 1,−1, 1, 1, 1,−1, 1, 1] and leads to the follow-

ing graph of fλα(v)
.

0 1 2 3 4 5 6 7 8 9

1

2

1

2

3

4

3

4

5

The portion of the graph between the vertical dotted lines is simply the graph of fλv

translated in the plane by the vector [2, 2]. This graph does correspond to a bidirectional

ballot sequence, namely 110111011. We now prove that this process gives a bijection as in

the statement of the theorem.
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Proof of Theorem 3. By the correspondence between bidirectional ballot sequences and

graphs of certain functions given in Example 1, it suffices to show that the map of (17) puts

Qn in bijection with

F = {fµ : µ ∈ {±1}2n+3, fµ(0) < fµ(t) < fµ(2n+ 3) for all t ∈ (0, 2n+ 3)}.
(18)

If v ∈ C2n−1 is any gap-parametrization vector, then, in light of (15), (16), and the fact

that fλv
achieves maxima and minima only at integer values, we have that fλv

(0) − 1 ≤

fλv
(t) ≤ fλv

(2n−1)+1 for t ∈ [0, 2n−1] if and only if v is a bidirectional gerrymander.

Furthermore, if v is a vertex of the cubeC2n−1, then α(v) is a vertex of C2n+3 = [0, 1]2n+3

so that fλα(v)
takes integers to integers. Since for any v ∈ C2n−1 we have fλα(v)

(k+2) =

fλv
(k) + 2 for 0 ≤ k ≤ 2n − 1, fλα(v)

(i) = i for i = 0, 1, 2, and fλα(v)
(2n + 1 + i) =

fλα(v)
(2n+1)+ i for i = 1, 2. Thus if v is a vertex of C2n−1 then fλα(v)

(0) < fλα(v)
(t) <

fλα(v)
(2n + 3) for all t ∈ (0, 2n + 3) if and only if v ∈ Qn. It follows then that, since

λα(v) ∈ {±1}2n+3 when v ∈ Qn, we indeed have that fλα(v)
∈ F , and so the map in (17)

does indeed take Qn to graphs of bidirectional ballot sequences in B2n+3.

Injectivity of the map is clear. To show that the map is surjective, we provide an inverse.

For a bidirectional ballot sequence b = b1 · · · b2n+3 of length 2n+ 3, we define the vector

w = [w1, . . . , w2n−1], where

wj :=

{

1 if j ≡ bj+2 (mod 2)

0 if j 6≡ bj+2 (mod 2).
(19)

It is easily verified that the graph of fλα(w)
is the one associated to b. Moreover, the two

statements directly following (18) imply that, since w ∈ {±1}2n−1 and the graph of fλα(w)

is that of a bidirectional ballot sequence, we must have that w ∈ Qn. It is clear that this

map is both a right- and left-inverse of the map given by (17).

We now give the second correspondence. Let In denote the interior of Bn in R2n−1.

Let Tn = In ∩Qn, i.e. those vertices of Pn in the interior of Bn.

Corollary 3. We have Tn is in bijection with B2n−1, induced by the map

v 7→ fλv
. (20)

Proof. The proof here is essentially the same as that of Theorem 3. The point here is

that, when v ∈ Tn, we already have fλv
(0) < fλv

(t) < fλv
(2n − 1), following similar

reasoning as in the statements directly following (18).

Lastly, we use these correspondences along with our previous analysis of Pn and its

translates to obtain the growth rate in [11].

Corollary 4. For ℓ odd,

Bℓ ≥
2ℓ

16(ℓ− 4)
. (21)
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Proof. The inequality is trivial if ℓ ∈ {1, 3}, so assume ℓ ≥ 5. Let m = ℓ − 4; this is

2n − 1 for some n ∈ N. By Theorem 3, we know that the vertices of Pn are in bijection

with Bm+4. From Corollary 1, we know that every vertex of C2n−1 is contained in Pσ for

some σ ∈ Zm. Since there are m such copies of P , we have

mBm+4 ≥ 2m. (22)

By rearrangement we get

Bℓ ≥
2ℓ

16(ℓ− 4)
. (23)

Corollary 5. For ℓ odd,

Bℓ ≤
2ℓ

ℓ
. (24)

Proof. Suppose ℓ = 2n− 1. From Corollary 3, we know that the vertices of Pn which are

in the interior of Bn, namely Tn, are in bijection with Bm. Since the interiors of Bσ1 and

Bσ2 are disjoint if σ1 6= σ2, we have that σ1(Tn) ∩ σ2(Tn) = ∅ for σ1 6= σ2. Therefore,

summing over all the vertices in σ(T ) for each σ ∈ Zℓ, we at most get every vertex of the

cube once. That is,

ℓBℓ ≤ 2ℓ. (25)

Rearranging yields

Bℓ ≤
2ℓ

ℓ
. (26)

Corollary 6. For all ℓ, the growth rate of Bℓ is Θ(2ℓ/ℓ).

Proof. By Corollaries 4 and 5, we know that for ℓ odd, the growth rate is Θ(2ℓ/ℓ). The

only additional insight needed is that for all ℓ, Bℓ+1 ≥ Bℓ. To see this, note that given a

BBS of length ℓ, by appending a 1 to the end of it, we obtain a BBS of length ℓ + 1. Thus

up to fixed constants, the inequalities in Corollaries 4 and 5 are correct for even ℓ as well.

Thus, for all ℓ, Bℓ grows like Θ(2ℓ/ℓ).

5. Conclusion

Our methods reveal a rich combinatorial structure underlying bidirectional ballot sequences.

In previous papers on BBS’s ([11], [2], [6]), analytic techniques were used to obtain asymp-

totics, but our techniques reveal a geometric interpretation for the Θ(2n/n) growth rate.
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Interestingly, in the final section of [11], Zhao states without detailed proof that nBn/2
n

goes to 1/4, but claims his proof is “calculation-heavy”. He then posits that “[t]here should

be some natural, combinatorial explanation, perhaps along the lines of grouping all pos-

sible walks into orbits of size mostly n under some symmetry, so that almost every orbit

contains exactly one walk with the desired property.” Zhao’s statement is strikingly similar

to the ideas presented in our paper. Though we have made some effort, we have not been

able to derive that nBn/2
n → 1/4 using the techniques of our paper, but we feel that there

is hope for such a proof.

The second, more general takeaway from this paper is the potential for the ideas orig-

inally presented in [9]. The ideas in this paper in fact evolved from the ideas in [9]. In

passing to the continuous setting, several additive number theory and combinatorial prob-

lems reveal a rich structure which was not otherwise visible. We believe that there is even

greater potential still in such ideas and techniques.
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