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ABSTRACT. The classic double bubble theorem says that the least-
perimeter way to enclose and separate two prescribed volumes in
RY is the standard double bubble. We seek the optimal double
bubble in RN with density, which we assume to be strictly log-
convex. For N = 1 we show that the solution is sometimes two
contiguous intervals and sometimes three contiguous intervals. In
higher dimensions we think that the solution is sometimes a stan-
dard double bubble and sometimes concentric spheres (e.g. for one
volume small and the other large).
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1. INTRODUCTION

The double bubble theorem (see [M, Chapt. 14]) says
that in RY the standard double bubble of Figure 1, con-
sisting of three spherical caps meeting at 120 degrees, pro-

vides the least-perimeter way to enclose and separate two
1
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given volumes. We want to put density on RY. We focus
on strictly log-convex, C' radial densities, for which the
sphere about the origin is stable and indeed, for C? den-
sities, uniquely the best single bubble by Chambers’ [Ch]
recent proof of the log-convex density conjecture. In R2,
McGillivray [MG] recently extended Chambers’ results to
arbitrary (not necessarily smooth) radial log-convex densi-
ties.

FIGURE 1. The standard double bubble pro-
vides the least-perimeter way to enclose and
separate two given volumes in R? with density
1. We consider more general densities. Im-
age from John M. Sullivan, http://www.math.
uiuc.edu/~jms/Images.

For the case of R! (N = 1), we show that there are two
types of optimal double bubbles, as illustrated in Figure 2.

Proposition 1.1 (Prop. 4.10). On R with a symmetric,
strictly log-convex, C* density, for equal prescribed volumes,
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FIGURE 2. Perimeter-minimizing double bub-
bles in R with strictly log-convex C'! symmetric
density can consist of two or three contiguous
intervals.

the perimeter-minimaizing double bubble is a connected dou-
ble interval, symmetric about the origin.

Proposition 1.2 (Prop. 4.11). On R with symmetric,
strictly log-convex, C1 density f such that (log f)" is un-
bounded, for given Vi > 0, for sufficiently large V5, the
least-perimeter double bubble is a symmetric interval of vol-
ume V1 flanked by two contiguous intervals of volume V3 /2.

Our main result characterizes when the optimal double
bubble transitions from a double interval to a triple inter-
val, for a strictly log-convex density such that the derivative
of the log of the density is unbounded:

Theorem 1.3 (Thm. 4.15). On R with a symmetric, strictly
log-convex, C density f such that (log f) is unbounded, for
given Vi > 0, there is a unique Vo = N(V) such that the

double interval in equilibrium and the triple interval tie.

For Vo > X\(V1), the perimeter-minimizing double bubble is

uniquely the triple interval. For Vo < A(V1), the perimeter-

minimizing double bubble is uniquely the double interval in

equilibrium. Moreover, \ is a strictly increasing C' func-

tion that tends to a positive limit as Vi — 0.

Section 6 studies the growth rate of the tie curve A(17).
Our results imply for example that for Borell density 6“2,
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FIGURE 3. We conjecture that a perimeter-
minimizing double bubble in RY with density

¢ is sometimes a standard double bubble and
sometimes a much smaller bubble inside a bub-
ble. Computed with Brakke’s Surface Evolver

[Br] and Mathematica.

for V; large,
Vi(log V1)!/*75 < A(V1) < 141

(Cors. 6.9, 6.12).

Our numerics indicated to our astonishment that some-
times as the volumes are scaled up, the minimizer changes
from a double interval to a triple interval and then back to
a double interval, as in Figure 4.
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V2

FIGURE 4. This numerically generated plot
shows the tie points of the double and triple
interval in the curve with solid red points for
density ¢ and the curve with the empty green
points for density e*". The solid blue line is
Vo = 10V; and the dashed blue line is V5 = 2V].
Note that the solid blue line intersects the red
curve twice.

In RV, we conjecture and provide some numerical evi-
dence that the solution is a standard double bubble (the
analog of the double interval) when the sizes are compara-
ble and a bubble inside a bubble (the analog of the triple
interval) when one bubble is much larger, as in Figure 3.
For equal volumes in 2D, as the volumes increase, the so-
lution tends to a circle centered at the origin plus diameter
(Fig. 5).

We conjecture that the smoothness assumption of The-
orem 4.15 can be omitted. By smoothing, any symmetric
strictly log-convex density on R is a limit of smooth densi-
ties. It follows that Proposition 4.10 holds for any symmet-
ric strictly log-convex density. But this argument does not
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J

FIGURE 5. For increasing equal volumes (0.01,
0.1, 10 and 1000) the double bubble ap-
proaches a circle plus diameter. Computed
with Brakke’s Surface Evolver.

work in general: in Proposition 4.11, the threshold for the
“sufficiently large V5" condition could go to infinity in the
limit. Nevertheless, we think that one may be able to ob-
tain the same results by directly working with non-smooth
densities via one-sided derivatives.

The triple bubble problem on the real line can be stud-
ied with techniques similar to those used in this paper. In
fact, we have made some progress, showing that for a sym-
metric, strictly log-convex density, there are four possible
combinatorial types of perimeter-minimizing triple bubbles.
Our results on this problem can be found in our report
[Sol]. However, the triple bubble problem is much more



DOUBLE BUBBLES ON THE REAL LINE WITH LOG-CONVEX DENSITY 7

complicated than the double one. The transition bound-
ary is likely many surfaces in R? stitched together, making
it more difficult to study. Moreover, in the double bubble
problem, it happens that there is a single kind of transi-
tion (from double to triple intervals) that occurs for every
density. We suspect that, in the triple bubble case, there
may be different kinds of transitions depending on the den-
sity. In particular, we conjecture that only three types of
perimeter minimizers occur for some densities and four for
others.

The single bubble problem with density was previously
studied by Bobkov and Houdré [BH| and Bayle [Ba]. There
are results in the literature on double bubbles in the sphere
SY. hyperbolic space HY, flat tori T? and T?, and Gauss
space (Buclidean space with density e ""); see [M, Chapt.
19]. Recently, Milman and Neeman [MN] proved the Gauss-
ian double bubble conjecture, which states that the solution
is three halfspaces meeting at 120 degrees.

Outline of proofs. First we show that a perimeter-minimizing
double bubble consists of two or three contiguous inter-
vals, by sliding and rearrangement arguments (Prop. 4.6).
Moreover, for fixed Vi, as V5 increases from Vj, it transi-
tions from double to triple (Thm. 4.15). Our most difficult
analysis describes how the transition point A\(V}) increases

as Vj increases (Props. 6.5 and 6.11).

Outline of paper. Section 2 defines bubbles and densi-
ties. Section 3 provides our results on n-bubbles on the
real line. Section 4 provides our main results on the double
bubbles on the real line with strictly log-convex densities.
Section 5 examines some non-strict log-convex densities on
the real line. Section 6 gives lower and upper bounds on
the tie curve given in Theorem 4.15. Section 7 uses numer-
ical techniques to compute the surface areas of conjectured

double bubbles in R? and R? with Borell density e
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2. DENSITIES AND BUBBLES

Definition 2.1. A density on RY is just a positive function,
used to weight volume and perimeter. A bubble in RY is a
region of prescribed (weighted) volume and perhaps many
components. An n-bubble consists of n bubbles with dis-
joint interiors, which may or may not share boundaries. A
2-bubble is also called a double bubble. Fach shared bound-
ary is counted only once in the perimeter. An n-bubble
that minimizes perimeter for its enclosed volumes is called
perimeter minimizing or isoperimetric.

3. n-BUBBLES ON THE REAL LINE

We consider R with density f. If f is bounded below
and an n-bubble has finite weighted perimeter, then each
region consists of finitely many intervals. The boundary
points divide R into closed intervals (which may be infinite
on one side) called blocks. A block may be a component of
a bubble, or its interior may not intersect any bubble.

This section contains results on existence (Prop. 3.1),
equilibrium (Cor. 3.3), and regularity (Prop. 3.5) for
n-bubbles on the real line with density. Proposition 3.6
identifies the optimal single bubble as a symmetric inter-
val. Proposition 3.8 proves that a perimeter-minimizing
n-bubble has at most 2n — 1 components.
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Proposition 3.1. On R with continuous density f going
to infinity in both directions, given n finite volumes V; >
0, a perimeter-minimizing n-bubble exists and consists of
finitely many intervals.

Proof. Since f has a positive lower bound, candidates con-
sist of a bounded number of intervals. Since f goes to
infinity in both directions, candidates lie in a bounded re-
gion. By compactness, there is a sequence of candidates
whose perimeters tend to the infimum and whose endpoints
converge. Because f is continuous, the limit of these can-
didates is an n-bubble enclosing the desired volumes and
the perimeter is the infimum. So a perimeter-minimizing n-
bubble exists (and consists of finitely many intervals). [

Proposition 3.2. (First Variation Formula). Let f be a
Cl density on R. Then the first derivative of perimeter
moving a point  to the right at rate 1/ f to alter volume at
unit speed is given by

P ,
— = (log f)(2).

Proof.
dP  dPdx 1
—=——=f==(1 '
i awa 7 ess)
O
Corollary 3.3. Let f be a C! density on R. If an n-bubble
with boundary points r1 < Ty < .-+ < X} 1S perimeter
minimizing, then
k
> (log f)(a;) = 0.
i=1

More generally, if 1 < a < b < k are such that the blocks to
the left of x, and to the right of x;, both belong to the same
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bubble or to no bubble, then

b

S (log f)' () = 0.

i=a

Proof. Since moving the points at rate 1/f preserves vol-
umes and the n-bubble minimizes perimeter for fixed vol-
umes, the derivative dP/dt must vanish. Now the result
follows from the First Variation Formula (Prop. 3.2). O

Remark 3.4. In Corollary 3.3, if the condition on f is re-
laxed from C' to one-sided derivatives (for example if f is
convex or log-convex), then similarly the sum of the right
derivatives is nonnegative and the sum of the left deriva-
tives nonpositive.

Proposition 3.5. On R with a continuous density that
is nonincreasing on (—oo, 0] and nondecreasing on [0, 00),
a perimeter-minimizing n-bubble consists of finitely many
contiguous ntervals.

Proof. Because the density is nonincreasing on (—oo, 0] and
nondecreasing on [0,00), it has a positive lower bound.
Hence a perimeter-minimizing n-bubble consists of finitely
many intervals, or it would have infinite perimeter.
Suppose that these intervals are not contiguous. Then
there exist two components [a,b] and [c,d] with a < b <
¢ < d, where (b, c) does not intersect any bubble. We may
assume that b < 0 by symmetry. But then [a,b] can be
moved to the right until it reaches [c,d] or the origin so
that the volume is preserved and the perimeter does not
increase. If [a,b] meets [, d], two boundary points become
one and the total perimeter is less than the original con-
figuration’s, contradiction. If [a,b] meets the origin, then
[¢, d] can be moved to the left while maintaining the volume
and reducing the perimeter as before, contradiction. O
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For completeness we include a proof of the 1D log-convex
density theorem [RCBM, Cor. 4.12]:

Proposition 3.6 (Single bubble). On R with symmetric,
strictly log-convex, continuous density, every interval sym-
metric about the origin is uniquely isoperimetric.

Proof. By Proposition 3.1, a perimeter minimizer exists for
a given volume. By Proposition 3.5, it is a single interval
[1, x5]. Corollary 3.3 implies that

(log f)'(x1) + (log f)'(z2) = 0

for the C! case. Since (log f)' is a strictly increasing odd
function, we have x9 = —x; and the interval is symmetric
about the origin.

By Remark 3.4, for the non-C' case

(1) (log f)7.(z1) + (log f)7(22)
(2) (log f)g(x1) + (log f)R(22)

where (log f)7 and (log f); denote the left and right deriva-
tives. Since f is symmetric and strictly log-convex, (1)
gives that x; + z9 < 0, while (2) gives that z7 + 29 > 0.
Therefore 1 = —x9 and the interval is symmetric about
the origin. Furthermore, for every given volume there is a
unique symmetric interval. 0

<0
>0

Lemma 3.7. Consider R with a continuous density that is
nonincreasing on (—oo, 0] and nondecreasing on [0, 00). Let
M be the density minimum set where f(x) = f(0). Con-
sider two components of the same bubble in a perimeter-
minimizing n-bubble. Then the component on the right con-
tains no points to the left of M and some to the right of
M. Similarly the component on the left contains no points
right of M and some left of M.
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Proof. Let M = [my, ms] and the two components be [a, b]
and [c, d] with a < b < ¢ < d. For the right component, we
need to show that ¢ > m; and d > msy. Slide everything
between b and c to the right, preserving volumes while de-
creasing the volume of [c, d]. If d < mag, then the perimeter
would not increase before ¢ reaches d, and it would de-
crease at that moment, a contradiction. Hence d > mo. If
¢ < myq, then while sliding ¢ up to my, the density never
increases and decreases near m;. So perimeter decreases, a
contradiction. A similar argument applies to the left com-
ponent. L]

Proposition 3.8. On R with a continuous density that is
nonincreasing on (—oo, 0] and nondecreasing on [0,00), a
perimeter-minimizing n-bubble has at most 2n — 1 compo-
nents.

Proof. By Proposition 3.5, all the components are contigu-
ous. By Lemma 3.7, each bubble has at most two compo-
nents, so the n-bubble has at most 2n components. More-
over, if it has exactly 2n components, then the left compo-
nent of any bubble lies to the left of the right component
of every bubble. The right-most left component L and the
left-most right component R meet at a point of minimum
density. Denote the second components of the same bub-
bles by L' and R'. They appear in the order R, L, R, L.
Now slide everything between R’ and L to the right and ev-
erything between R and L' to the left, preserving volumes
and not increasing perimeter, until either L or R disappears
(all volume is contained in L' or R', respectively), reducing
perimeter, a contradiction. Therefore the n-bubble has at
most 2n — 1 components. L]

Remark 3.9. We suspect that the restriction to at most
2n — 1 components is sharp. In particular, we think that
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for some densities a perimeter-minimizing n-bubble for vol-
umes V] € Vo < --- <V, has 2n — 1 components: Vj is
centered on the origin flanked by V5/2 on either side, which
is flanked by V5/2 on either side, and so on. Proposition
4.11 proves this for n = 2.

4. DOUBLE BUBBLES ON THE REAL LINE

We now focus on the double bubble and prove that perime-
ter minimizers are sometimes double intervals and some-
times triple intervals (Props. 4.10 and 4.11). This is con-
sistent with Proposition 3.8, which states that a perimeter-
minimizing double bubble has no more than 3 components.
Theorem 4.15 analyzes when each type occurs (see Fig. 9).

Definition 4.1. A double interval (x1, x2, x3) for prescribed
volumes V; < V5 consists of two contiguous intervals [xy, z3],
(9, 23] of volumes V; and V5, respectively, as in Figure 6.
For a C' density f, a double bubble is in equilibrium if
it satisfies the consequence of perimeter minimization of
Corollary 3.3:

(log f)'(z1) + (log f)(22) + (log f)'(x3) = 0.

The term also applies to the generalization to one-sided
derivatives of Remark 3.4.

The triple interval (yy,y2) for prescribed volumes Vi <V,
consists of three contiguous intervals, two of which flank the
middle interval and enclose an equal volume, as in Figure
7. The middle interval is [—y1,y1] and encloses volume
V1. The left interval is [—ys, —y1] and the right interval is
[y1, y2], and each encloses volume V5 /2.

For a symmetric continuous, piecewise C' density, the
triple interval is in equilibrium.

Proposition 4.6 will characterize perimeter-minimizing dou-
ble bubbles. First we show that a log-convex density can
be considered as a convex density in volume coordinate.
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FI1GURE 6. A double interval on the real line.
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FIGURE 7. A triple interval on the real line.
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FIGURE 8. Double and triple intervals in equi-
librium on the real line.
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Lemma 4.2 (Volume coordinate). On R with density f, let

v- [

Then f is a log-convex function of x if and only if f is a
convex function of V.

Proof. The result follows from the fact that the one-sided
derivatives satisfy

df  df/de  df/de  d(log f)
v dvVidz  f  dz

O

The next lemma shows how to convert the volume coor-
dinate back to the positional coordinate.

Lemma 4.3. On R with density f, let

v [

V1

0o f

Then
z(V) =

where f is a function of V.

Proof. We have

V1 1dV |
—dV:/ ——dx—/ —fdx = x.
o 7 Fa ™) 7!
O

Lemma 4.4. On R with symmetric, strictly log-convexr den-
sity, for prescribed volumes Vi < Vs, if a perimeter-minimaizing
double bubble has two components, then it is the unique dou-
ble interval in equilibrium (up to reflection).
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Proof. Let f be the density. By Proposition 3.5, the inter-
vals are contiguous, so the double bubble must be a double
interval (z1,x9,23). If fis C!, Corollary 3.3 implies that
the equilibrium condition

(log f)'(21) + (log f)'(x2) + (log f)'(x3) = 0.

holds. Moreover, assuming that the region on the left has
volume V7, this equation uniquely determines the double in-
terval: as 1 moves, x5 and x3 also move as strictly increas-
ing functions of xy. Hence the left-hand side is a strictly
increasing function of x; which tends to a negative value
as r1 — —oo and tends to a positive value as 1 — oo.
The double interval satisfying the equation must therefore

be unique.
If f is not C*, a similar argument applies using one-sided
derivatives and Remark 3.4. O

Proposition 5.4 shows that the strict log-convexity hy-
pothesis in Lemma 4.4 is necessary.

Lemma 4.5. On R with symmetric, strictly log-convex den-
sity, for prescribed volumes Vi < Vs, if a perimeter-minimaizing
double bubble has three components, then it is the triple in-
terval.

Proof. Let Vi < V; be the prescribed volumes. By Corollary
3.5, the intervals are contiguous. By applying Corollary
3.3 or Remark 3.4 to the middle interval we find that the
middle interval is symmetric about the origin, and similarly
the whole double bubble is also symmetric about the origin.

Finally, it is optimal to place V; in the middle: since the
total volume enclosed in the double bubble is the same re-
gardless of which bubble is in the middle, we only need to
examine the two inner boundary points. Since the perime-
ter is minimized when these points are nearest to the origin,
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the optimal choice is for the middle bubble to enclose vol-
ume V7. Thus the perimeter-minimizing configuration is
the triple interval. O

We can summarize the results of Proposition 3.8 and
Lemmas 4.4 and 4.5 in the following proposition.

Proposition 4.6. On R with symmetric, strictly log-conver
density f, for prescribed volumes Vi < V5, a perimeter-
minimazing double bubble is one of the following:

(a) the unique double interval (x1,x9,x3) in equilibrium
(up to reflection) or

(b) the triple interval (y1,ys).
See Figure 8.

Volume and perimeter relationships. To understand
better the transition from double to triple intervals, we ex-
amine volumes and perimeters more carefully. Let f be a
symmetric, strictly log-convex, and C! density. For pre-
scribed volumes Vi < Vi, let P» be the perimeter of the
double interval in equilibrium and P3 the perimeter of the
triple interval. In volume coordinates (Lemma 4.2), we
have

Py=f(V)+ f(V+V) + f(V + Vi + V),

1% i+ Vs
P3 =2 f _1 + f . 2 )
2 2
where V is the unique volume satisfying the equilibrium

condition for the double interval

B) )+ FV+V)+ F(V+Vi+ Vi) =0.

Notice that the derivatives are in volume coordinates:

(V) = (log f)(x) where V = /Om f.
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Taking derivatives of P, and P yields
(@) P=f(V+Vi+ V)V~ f(NV,

©  A=r () vir () e,

2 2
where we used the equilibrium condition from (3) for sim-

plification.

Characterizations of when the double or triple in-
terval is perimeter minimizing.

Definition 4.7. For prescribed volumes V; < V5, let
M(%)‘/Q):P:i_PZ

be the difference between the perimeter Pj of the triple in-
terval and the perimeter P, of the double interval in equi-
librium.

By Proposition 4.6, we obtain the following characteriza-
tion.

(a) If u(V4, Va) < 0, then the perimeter-minimizing dou-
ble bubble is uniquely the triple interval.

(b) If u(V1, V2) > 0, then the perimeter-minimizing dou-
ble bubble is uniquely the double interval in equilib-
rium.

(c) If u(V1, V2) = 0, then the perimeter-minimizing dou-
ble bubble is either the triple interval or the double
interval in equilibrium.

Let f be a C! density. Observe that by equations (4) and
(5), u is a C! function with partial derivatives

8;0_,& /‘/1+‘/é 117
=1 (5) 1 (F52)

8_u_f, Vi+ Vs
oVy 2

)—fﬁ+%+%)
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14
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10

5

V1

F1GURE 9. The figure above is a numerical
computation which represents the value of the
perimeter difference p(V7, Vs) for Borell density
f(x) = e”". The orange color marks the region
in which the double interval has lesser perime-
ter, the blue color represents the region in which
the triple interval has lesser perimeter, and the
white curve marks the tie point between the
double and triple intervals. Computed in Math-
ematica.

The remainder of this section investigates the behavior
of u.

Lemma 4.8. On R with symmetric, strictly log-convex, C!
density, for prescribed volumes Vi < Vs,

Vi+Ve =~
— 1;— 2<V<—V1.
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Proof. Let f be the density. Consider the equilibrium con-
dition

FV)+ V4V + f(V+Vi+15) = 0.
By Lemma 4.2, f is convex in volume coordinate, so the
left-hand side is strictly increasing in V. At V = —(V; +
V5)/2, the left-hand side is negative, while at V' = —V],
the left-hand side is positive. Hence the value of V' that

makes the left-hand side vanish must lie inside the desired
range. U

Lemma 4.9. Consider R with symmetric, strictly log-convex,
Cl density. Given Vo > 0, p is a strictly increasing func-
tion of Vi < Vh. Gwen Vi > 0, p is a strictly decreasing
function of Vo > V7.

Proof. Fix V;. For Vi < V5, we have

e (5) o (552 102 () -

due to Lemma 4.8. Now fix V;. For V5, >V}, we have

o _p <V1+V2
8‘/2 2

due to Lemma 4.8. O

)—f’(\7+v1+vz)<0

Proposition 4.10. On R with symmetric, strictly log-convexz,
C' density, for equal prescribed volumes Vi = Vs, we have
>0 (so the double interval is better).

Proof. For V; = V5, we have V= —Vi. So

Py = 2f(Vi) + £(0) < 2f (V) L2/ () = P,
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Proposition 4.11. On R with symmetric, strictly log-convexz,
C*t density f such that (log f) is unbounded, given Vi > 0,
we have pu < 0 for large Vo > Vi (so the triple interval is
better).

Proof. Fix V. For V; large, we need to show that

Po= V)TV > 2|1 () + 1 (B2 )| =

By convexity of f in volume coordinate (Lemma 4.2),

V1+V2)

f(—?)+f(?+v1+v2)z2f<

Notice that f(—‘7) = f(V) by symmetry of f. So we need
to show that, for V; large,

~ |%
fFV+Vi) > 2f (é) .
It suffices to show that V — —oo as Vo — o0.
From the equilibrium condition

FON+ PV W)+ F(V+Vi+ 1) =0,

as Vo — oo, if V does not become very small, then the
leftmost two terms stay bounded, while the rightmost term
goes to infinity because f’(V') is unbounded, which is a

contradiction. Hence V — —oc0 as V5 — oo. O]

Remark 4.12. Propositions 5.4 and 5.5 show that the hy-
pothesis of strict log-convexity in Proposition 4.11 is nec-
essary. Moreover, the following example shows that the
hypothesis that (log f)" is unbounded is needed.

Example 4.13. Consider the density in volume coordinate
f(V) =|V|+e Wl Notice that f is C' and f(V) is strictly
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convex, but f'(V') is bounded. For fixed Vi, as Vo — oo, it
can be computed that V' — —log(1 + €"1). We can then
check that

(= 2V —log(14€") +2e /2 -1 >0

for all V3 > 0. Since p is decreasing in V5 (Lemma 4.9),
1> 0 and so the double interval is better for all V; and V5.

Lemma 4.14. On R with symmetric, strictly log-convez,
C! density, for small Vo >0, > 0 for all V; < V4 (so the
double interval is better).

Proof. For V5 small, by Lemma 4.8, V is also small in mag-
nitude. Hence every density term that contributes to P
and Pj is close to f(0). Thus for V5 small, P, is close to
3f(0) while Ps is close to 4f(0), so that P, < Ps. O

Theorem 4.15. On R with symmetric, strictly log-conver,
C*t density f such that (log f) is unbounded, given Vi > 0,
there is a unique Vo = A(V1) such that the double interval in
equilibrium and the triple interval tie. For Vo > A(V1), the
perimeter-minimizing double bubble is uniquely the triple
interval. For Vo < A(V4), the perimeter-minimizing double
bubble is uniquely the double interval in equilibrium. More-
over, \ is a strictly increasing C' function that tends to a
positive limit as Vi — 0.

Proof. Fix V;. By Lemma 4.9, u is a strictly decreasing
function of V5. By Lemma 4.10, x > 0 for V5 = V4. By
Lemma 4.11, p < 0 for large V5. These together imply that
there is a unique V5 = A(V}) such that g = 0 and that
p >0 for Vo < A(V1) and p < 0 for Vo > (V). Thus A
determines the perimeter-minimizing double bubbles as in
the theorem statement.

Observe that p is a C! function with partial derivative
Op/0Vy < 0 at points (Vi, A(V1)), by Lemma 4.9. So by the
implicit function theorem, X is a C' function.
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We now show that A is strictly increasing. Suppose not.
Then there are V; < Vi with A(V3) > A(V}*). By Lemma
4.9,

0= p(Vi, A1) < p(Vi, A(N)) < p(Vi5 A(VY)) = 0,

a contradiction. Note the term in the middle makes sense
because V" < A(V}).

Finally we show that X tends to a positive limit as 1}, — 0.
By Lemma 4.14, there is v > 0 such that g > 0 for all
Vi < Vo <w, 80 A(Vq) # v for all Vi. Thus because A is
strictly increasing, it tends to a limit which is at least as
big as v as V; — 0. ]

It is an interesting question what happens in the case
where (log f)" is bounded. In our follow-up note [So2], we
show that the tie function A still exists but only for V; €
(0, Vo) for some “blowup time” 0 < V) < oo, and A — o0
as Vi — V.

5. NON-STRICTLY LOG-CONVEX DENSITIES

Section 5 considers some densities which are symmetric,
piecewise C!, and log-convex, but not strictly log-convex.
We investigate the following densities:

(i) The constant density f(z) = ¢ (Prop. 5.4).
(ii) The exponential density f(z) = e/*! (Prop. 5.5).

(iii) The smoothed-out exponential density

e’ for |z] <a
6 pr—
( ) f(x) {ea(Qa?a) for \x\ > q

with a > 24/log2 (Prop. 5.9).
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For the constant density, every double interval is perime-
ter minimizing. For the exponential density, a perimeter-
minimizing double bubble is a double interval with the mid-
dle point at the origin. For the smoothed-out exponential
density, the triple interval appears for V; small and V5 large.

For non-strictly log-convex densities, there may be a con-
tinuum of double intervals (or triple intervals) in equilib-
rium with the prescribed volumes. Lemma 5.1 shows that
all such are perimeter minimizing among double intervals
(among triple intervals).

Lemma 5.1. On R with symmetric log-convexr density f,
among n-bubbles of prescribed volumes and fixed combina-
torial type, every equilibrium is perimeter minimaizing.

Proof. We may assume that f is not constant, since the
result is easy in that case. If we switch to volume coordinate
(Lemma 4.2), then f is a convex function of volume V.
Since f is symmetric, convex, and nonconstant, it goes to
infinity in both directions. Hence a minimizer exists. Since
every minimizer is in equilibrium, it remains to show that
every equilibrium has equal perimeter.

Represent an n-bubble as a tuple of volume coordinates of
endpoints of its components. Then given two n-bubbles in
equilibrium B; and B,, on the straight line between them,
the volume of each component varies linearly. Since the
volume of each bubble is equal at B; and By, the volume
of each bubble must be constant along this straight line.
Hence all n-bubbles along this straight line have the pre-
scribed volumes. Let P(t) denote the perimeter of the n-
bubble (1—t)B;+tBs, t € [0, 1], on this straight line. Then
P is convex because f is convex, and the one-sided deriva-
tives PR(0) > 0 and P;(1) < 0 because By and B, are in
equilibria. It follows that P is constant, and so B; and Bs
have equal perimeter. O
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Remark 5.2. Lemma 5.1 reduces the search for a perimeter-
minimizing double bubble to any double interval or triple
interval in equilibrium. We can pick a perimeter-minimizing
triple interval to be the triple interval symmetric about the
origin.

The proof shows that the set of (perimeter-minimizing)
equilibria is a finite-dimensional cell, convex in the V' coor-
dinates.

The hypothesis that f be symmetric, used for the exis-
tence of a minimizer, is not necessary. If f approaches but
never reaches a limit in either direction, equilibria do not
exist (because the derivative of perimeter is negative as you
slide the n-bubble in that direction), and the result holds
trivially. Otherwise minimizers exist.

Remark 5.3. By Lemma 5.1, in volume coordinates (Lemma
4.2), the perimeters P» of double and Pj of triple intervals
in equilibrium are still given by

Py=f(V)+ f(V+W)+ f(V +Vi+ V),

el (5) (5]

where V is any volume satisfying the equilibrium condition

FO)+ (VAW + F(V+Vi+ V) =0

We now consider some specific non-strict log-convex den-
sities.

Proposition 5.4. On R with density f(x) = ¢, any dou-
ble interval enclosing the prescribed volumes is perimeter
MANIMIZING.

Proof. A double interval has perimeter 3c. Any other con-

figuration has perimeter at least 4c. Therefore a double
interval is perimeter minimizing. 0
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Proposition 5.5. On R with density f(x) = el*l, the perimeter-
minimizing double bubble is the double interval with the
middle perimeter point at the origin, unique up to reflection
across the origin.

Proof. The density in volume coordinate (Lemma 4.2) is
fV)=1+[V].

We first consider a double interval in equilibrium. The func-
tion f is C! everywhere except at the origin with f/(V) = 1
or —1. So the equilibrium condition (Rem. 5.3) cannot be
satisfied unless one boundary point is at the origin. By
Remark 3.4, the leftmost boundary point cannot be at the
origin because the sum of the left derivatives

d =1

would be positive. Similarly the rightmost boundary point
cannot be at the origin. Hence the middle boundary point
is at the origin. So the double interval in equilibrium is
unique up to reflection across the origin.

Now we can compare the perimeters of double and triple
intervals in equilibrium:

Py = f(Vi)+ f(0)+ f(Va) = Vi+Va+3 < 2Vi+Vo+4 = P,

Therefore the perimeter-minimizing double bubble is the
double interval in equilibrium. O

We now consider the smoothed-out exponential density
(6).

Lemma 5.6. Consider R with the smoothed-out exponen-
tial density (6). Let Vi < V4 be prescribed volumes. If

V1+V2§/ ez2d:c,
0
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then the perimeter-minimizing double bubbles are the same
double and triple intervals as for the Borell density f(x) =

v’ of Proposition 4.6.

Proof. By Proposition 3.5, a perimeter-minimizing double
bubble consists of contiguous intervals. Observe that one
of these intervals must contain the origin, as otherwise the
whole double bubble can be shifted towards the origin and
the perimeter will decrease. By the upper bound on V;+ V5,
the whole bubble is contained in [—a,a]. In this interval,
the density is identical to the Borell density. By Propo-
sition 4.6, a perimeter-minimizing double bubble for the
Borell density also lies in this interval for the prescribed
volumes. So perimeter-minimizing double bubbles for the
two densities are identical. O

Lemma 5.7. Consider R with the smoothed-out exponen-
tial density (6). Let Vi < Vi be prescribed volumes, with

Vi > / e du.

Then the double interval in equilibrium has the middle bound-
ary point at the origin, and a triple interval in equilibrium
has boundary points

—yp < —y < —a<0<a<y| <y,
free up to the volume constraints.

Proof. Observe that f is C' and that

—2a for x < —a
(log f)'(z) = { 2« for |z| < a
2a for x > a.

By Corollary 3.3, the sum of the derivatives of the log of
the density at the boundary points of a double interval in
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equilibrium must equal zero. We claim that the middle
boundary point is 0. If the middle boundary point were
less than zero, then the sum of the derivatives of the log
of the density would be negative. If the middle boundary
point were greater than 0, then the sum of the derivatives
of the log of the density would be positive. Therefore the
middle boundary point is 0, as asserted.

For a triple interval in equilibrium, let the boundary
points be —ys < —1y; < y; < y5. If y] is less than a, then
the sum of the derivatives of the log of the density at the
boundary points is negative. If —y; is greater than —a, then
the sum of the derivatives of the log of the density at the
boundary points is positive. Therefore —y; < —a < a <y,
and the sum of the derivatives of the log of the density
equals zero whenever this holds. So the claim holds. O

Lemma 5.8. Consider R with the smoothed-out exponen-
tial density (6). Let Vi < Vi be prescribed volumes, where

a

V1</ exgda:, V1+V22/ e dx.
0

—a
Then a double interval in equilibrium has perimeter points
1, T, x3, where

—a<ri<ro=—a—x1 <0<a<uxs,

up to reflection across the origin. A perimeter-minimizing
triple interval has perimeter points

—p < —a< -y <0<y <a<uys,,

where [—y1,y1] has volume Vi and yo and yh are free up to
the volume constraint.

Proof. Let a double interval in equilibrium have boundary
points x1 < 9 < x3, and assume that the left interval has
volume V7. By Corollary 3.3,

(7)  (log f)(z1) + (log f)'(z2) + (log f)'(x3) = 0.
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If 2y < —a, then x < 0, and so (7) implies that (log f)'(z3) >
2a, which is impossible. Hence z; > —a. Because of the
bound on Vi + V4, 23 > a. Now by (7), (log f)'(z) <0, so
2 < 0. So (7) reduces to z1+ x93 +a =0, or o = —a — 7.
Then the inequality stated in the proposition holds. The
resulting double interval is unique because there is only one
x1 such that [z1, —a — z1] has volume V;, and x5 is deter-
mined from x;.

For a perimeter-minimizing triple interval, denote the
boundary points by —y» < —y; < y; < vy5. By Corollary
3.3,

(8) (log f)'(=y1) + (log f) (1)
(log f)'(—y2) + (log f) (y2)

so either —yo, yh € (—a,a) with yo = 95 or —y, < —a and
yy > a. By the bound on V; 4+ V5, the latter must be the
case. Similarly, either —y;,vy} € (—a,a) with y; = y] or
—1y1 < —a and y} > a. To determine which is the case, we
must first determine whether [—y1,y;] encloses volume V;
or Vs.

We claim that [—y;, y}] must enclose volume V;. By the
volume restriction on V; and (8), if [—yi, ;] has volume
Vi, then —yp,y; € (—a,a) with y; = y1. If [—y1,9)] en-
closes volume V5, then the magnitudes of y; and y;—and
hence the perimeter f(—y;) + f(y;)—will be greater than
when [—11, y;] encloses volume V4, so in order for the triple
interval to be perimeter minimizing, [—y;, y}| must enclose
volume Vj. Then ¢ = y; € (0,a), and therefore the bound-
ary points satisfy the inequality in the statement of the
proposition. L]

0
0,

The following proposition is our most interesting exam-
ple, which shows that the appearance of the triple interval
can depend on V;j. The particular value 24/log 2 is just for
our convenience.
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Proposition 5.9. Consider R with the smoothed-out expo-
nential density (6):

e’ for |z] < a
flz) = {eama)

for |z| > a

with a > 2+/log2. Let Vi < V5 be prescribed volumes. If

(9) i 2/ " dz,

—a

then the perimeter-minimizing double bubble is the double
interval in equilibrium for all Vo (up to reflection). If V3
15 small, then for Vs close to Vi the perimeter-minimizing
double bubble is the double interval in equilibrium and for
Vo large a perimeter-minimizing double bubble is a triple
interval.

See Figure 10.

Proof. By Proposition 3.5, a perimeter-minimizing double
bubble consists of finitely many contiguous intervals. By
Proposition 3.8, a perimeter-minimizing double bubble con-
sists of two or three such intervals.

First consider the case when V] is small V5 is close to V3.
We assume that

V1+V2§/ e du.
0

By Lemma 5.6, a perimeter-minimizing double bubble is
identical to the one for the Borell density f(z) = e*" with
the same prescribed volumes. By Lemma 4.10, it is the
double interval in equilibrium for V5 close to V.

Now suppose (9) holds. By Lemma 5.7, the boundary
points of the double interval in equilibrium are xz1,0, x3,
where 1 < —a and x3 > a, and the boundary points of
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6.4
43
2.1
0
N
>
-2.1
F
-4.3
-6.4

V1

FIGURE 10. The figure above is a numerical
computation which represents the value of the
perimeter difference p(V4, V3) for the smoothed
out exponential density (6). The orange color
marks the region in which the double inter-
val has less perimeter, the blue color represents
the region in which the triple interval has less
perimeter, and the white curve marks the tie
point between the double and triple intervals.
The plot indicates that the tie curve asymp-
totes to fixed value of V;. Computed in Math-
ematica.
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a triple interval in equilibrium are —ys, —y1, ¥y, ¥4, Where
we may choose —y, = x; and hence y5) = x3. Thus we
only need to compare the inner boundary points. Because
f(=y1) + f(yy) > f(0) = 1, a double interval in equilib-
rium has less perimeter than a triple interval in equilib-
rium. Therefore the perimeter-minimizing double bubble
is the double interval in equilibrium for all V5.

Finally, suppose that V; is small and V5 is large. By
Lemma 5.8, a double interval in equilibrium has boundary
points x1, z9, x3, where x5 is close to —a/2, and a perimeter-
minimizing triple interval has boundary points —ya, —y1, Y1, ¥,
where 1, is close to zero, —y» < —a, and y, > a. Observe
that the single bubbles [—ys,y5] and [z, 3] have volume
Vi + V5 and that by Corollary 3.3 the first single bubble is
in equilibrium. Thus the perimeter of the outer boundary
points of a perimeter-minimizing triple interval is less than
or equal to the perimeter of the outer boundary points of
a double interval in equilibrium. So it remains to exam-
ine the perimeter from the inner boundary points. Observe
that

¥ (_g) _ 0 S o(2VI082)Y/4 _ g 2£(0),

since a > 2+4/log2. Because x5 is close to —a/2 and y; is
close to 0, the perimeter from the inner boundary points
of a perimeter-minimizing triple interval is less than the
perimeter from the inner boundary points of a double inter-
val in equilibrium. Then the total perimeter for a perimeter-
minimizing triple interval is less than the total perimeter
for a double interval in equilibrium. Therefore for V; small
and V5 large, a perimeter-minimizing double bubble is a
triple interval. O

Conjecture 5.10. Consider R with the smoothed-out ez-
ponential density (6). Let Vi < Vi be prescribed volumes.
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Then there exists Vi > 0 such that for Vi > Vi, a perimeter-
minimazing double bubble is always a double interval. For
0 < Vi < Vi, there is a unique Vo = A(V7) such that dou-
ble intervals and triple intervals tie. For Vo > A(V1), a
perimeter-minimaizing double bubble is a triple interval. For
Vo < A(V1), a perimeter-minimizing double bubble is a dou-
ble interval. Moreover, X\ is a strictly increasing C' func-
tion that tends to a positive limit as Vi — 0 and tends to
infinity as Vi — V4.

6. BOUNDS ON THE TIE POINTS

We put some bounds on the growth of the function V5 =
A(V1), where the double and triple intervals tie, as defined
in Theorem 4.15. From this point onwards we assume that
f is a symmetric, strictly log-convex, C! density such that
(log f)" is unbounded.

One of the main results of this section is that A(V1)/V; —
oo as Vi — oo for densities f = e¥ such that v, /1, is
bounded for x large (Cor. 6.7). As in Remark 6.8, this
implies that a line through the origin can intersect the tie
curve (V1,A(V1)) more than once. For the Borell density,
this is illustrated in Figure 4 of the Introduction.

Lemma 6.1. For prescribed volumes Vy < Vs, let (x1, w9, T3)
be the double interval in equilibrium (with the left interval
enclosing volume V1) and (y1,y2) be the triple interval. Fix
Vi. As Vi, increases, ys and x3 increase, while x1 and 9
decrease.

Proof. 1t is easy to see that yy increases. As V5 increases, 3
can be moved to the right to accommodate the increased
volume. The double interval is no longer in equilibrium,
with

3
1=1
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In order to be in equilibrium, the double interval must shift
left. This implies that x; and xo decrease. To show that x3
increases, note that in equilibrium,

Z 1%;(%) = 0.

So because x1 and x9 decrease, r3 must increase so that the
sum remains zero. UJ

The next lemma shows that the density in volume coor-
dinate grows at least linearly but is approximately linear.

Lemma 6.2. Let f be a symmetric, strictly log-convex, C*
density on R. In volume coordinate, there is ¢ > 0 such
that for large V,

f(V)=eV.

I

In particular, this implies that although f grows asymp-
totically at least as fast as V, it cannot grow asymptotically
faster than V¢ for any ¢ > 1.

Moreover,

diverges.

Proof. Because f' is strictly increasing (Lemma 4.2), there
is € > 0 such that for large V', f’ > ¢. Hence for large V,
V) > (/2)V.

The integral diverges because as we take V' — oo in the
formula in Lemma 4.3, it must be the case that z(V) —
0. ]

The next lemma shows that the rate of growth of the
volume of the interval [0, z] is on the order of f(x)/v, for
typical densities. Notice that the hypothesis ¥2 > M,



DOUBLE BUBBLES ON THE REAL LINE WITH LOG-CONVEX DENSITY 35

for large x is mild and holds for all densities we are inter-
ested in, namely e*" and e® . In fact, it holds if the sign of
Y2 — M1,, changes only a finite number of times, because
we can easily check that a function satisfying ¢2 < Mu,,
blows up in finite time.

Lemma 6.3 (Fundamental Bounding Lemma). Let f = e¥
be a symmetric, strictly log-convex, C' density on R. For

/
0

v
lim inf > 1.
T—00 f/% -

Furthermore, if f is C* and M > 1 is such that 1> > My,
for x large, then

Then

li < M
1111 Su .
st [J = M —1

In particular, if V2 /1., — 00 as x — oo, then
’ V
im =
T—00 f/@ba:

Proof. In volume coordinate, we can rewrite the quatity in
question via Lemma 4.2 as

VoV V()
fle — fOV)/ (V) f(V)

Because f’ is nondecreasing,

1.

)
(V) - £(0) = /0 F <V,

so that
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as V' — oo, implying the desired lower bound.
Now suppose 12 > M1, for x large. In volume coordi-
nate, ¢, = f'(V') and

_dfi(v)y dff(vydv. -,
- de dV dx = FV)FV).

So f2/(ff") > M for large V. Now for V large

(i)’ A P A
f/ f/2 — M’

so that, for constants ¢ and ¢y,

f VORY M—1
?:”/1 (?) Zot Ty

’ Vi < M

im su ,

v f M -1

as desired. ]

w.fCl'

Therefore

For lower bounds, we start by showing that, although
V5" > V) by definition, it never approaches the line V5 = V.

Proposition 6.4. On R with a symmetric, strictly log-
convex, C* density f such that (log f) is unbounded, given
Vi >0, let V' be the unique value of Vo such that the dou-
ble interval in equilibrium and the triple interval tie. Then
Vo' > 2Vy for all Vi > 0.

Proof. In volume coordinate (Lemma 4.2), we have

Po=f(V)+ f(V+WV) + F(V+ Vi +V5)

oy (%) +2f (V“;V?) — P,
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where V is the unique value such that the double interval is
in equilibrium. If we use —(V; 4+ V5)/2 in place of V, then
the resulting double interval has perimeter greater than or
equal to the original perimeter:

o (U5) 1y (555,

2
Therefore
Vi -V Vi Vi
>2f | — —
(57) = (5)-0(3).
so that, because f is increasing, V5" > 2V]. U

We now show that for slow-growing density f, specifically
where V (V') is bounded in volume coordinate, the func-
tion A grows superlinearly. We do not know whether this
hypothesis is sharp.

Proposition 6.5. Let f be a symmetric, strictly log-convez,
C? density on R. Suppose that, in volume coordinate, f'(V)
is unbounded and V' f"(V') is bounded. Given Vi > 0, let V5
be the unique value of Vo such that the double interval in
equilibrium and the triple interval tie. Then V5 /Vi — oo
as Vi — oo.

Proof. By Lemma 6.2, there is ¢ > 0 such that for large V7,
2f(V1/2) > 2cV; > Vi + f(0). So

y
<2 () = £0) = 0V V)~ 1A V5)
Va9 Vi~ Vi + Vx
—— [ oy = fw+m+%w¢(1+2)wa
v, OVa v 2
vy vy
< [ ) - P av < / FVE) = f (V) dvs
i %1

= (Vi = V)(f'(Ve) = f(V1) < V5 (f'(Vy) = f' (W),
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where the third line follows because f’is nondecreasing and
V < —Vj due to Lemma 4.8. Therefore, for 1} large,

C

Vi /i

(10) F'Ve) = ') =

Because f’ is unbounded, f(V)/V — oo as V — oo, and
so the constant ¢ in (10) can be taken arbitrarily large. By
hypothesis on the growth of f, there is ¢; > 0 such that
f"(V)<e/V. So

f/(V*)—f/(‘/i):/V;f”<cl/v2 L —qlogv*
2 Vi - % vV Vi

Hence by (10)
V2 logv2 > ¢

VitV T
As Vi — o0, ¢ can be taken arbitrarily large, and so V5 /V; —
00, as desired. O

Remark 6.6. Instead of f being C?, it suffices to assume
that f is C! and that there is ¢ > 0 such that f/(V)—clogV
is eventually nonincreasing.

The following corollary translates the hypothesis of Propo-
sition 6.5 to the positional coordinate. It says that the con-
clusion of Proposition 6.5 holds for well-behaved densities
that can grow as fast as exp(e®), because this is the density
where 1, /1, is constant. We do not know whether this
condition is sharp.

Corollary 6.7. Let f = eV be a symmetric, strictly log-
convez, C? density on R, where 1, is unbounded and Yoz Vs
is bounded for x large. Given Vi > 0, let V' be the unique
value of V5 such that the double interval in equilibrium and
the triple interval tie. Then V5 /Vi — o0 as Vi — oo.



DOUBLE BUBBLES ON THE REAL LINE WITH LOG-CONVEX DENSITY 39

Moreover, there is ¢ > 0 such that for any € > 0, for
large,

Vo' 2 Vit f (V1))

where f~1 is the inverse function of the density in the po-
sitional coordinate.

Proof. Because 1, is unbounded and t,,/v, is bounded
for x large, 1?2 /1., — 00 as & — 0o, so the Fundamental
Bounding Lemma 6.3 applies. We have

, df'(V)  dydr Vib,
Vf(V):vfdi/):vd‘id‘i: ?

By Lemma 6.3, V is on the same order as f/u, for z
large, so V f”(V) is on the same order as 1., /1,, which
is bounded. Therefore the conclusion of the first part fol-
lows from Proposition 6.5.

For the second part, we use the method of Proposition

6.5 to arrive at

Ve Vi f(M/2)
11 —= log —= >

(1) [T

for some constant ¢ > 0. By Lemma 6.3, the quantity on

the right-hand side is on the same order as ¥, (z(V1/2)),

where x is the function that converts from volume to posi-

tional coordinate. By Lemma 6.2, there is a constant ¢; > 0
such that

fa(V)) zaV
for V' large. Because f is strictly increasing,
(V) > f(elV).
So (11) becomes

Vi VY 1
72 Jog 22 > e, V/2),
Vlogvl_mﬂf (c1V/2)

which implies the conclusion. O
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Remark 6.8. Along a line V5, = rV}, the perimeter mini-
mizer may change from a triple interval to a double interval
and back to a triple interval, as numerically plotted for the
Borell density f(r) = exp (r?) in Figure 4 of the introduc-
tion, where the line V5 = 10V} intersects the curve of tie
points in two places. Indeed, whenever v, is unbounded
and 1, /1, is bounded for x large, Corollary 6.7 implies
that \(V1)/Vi — oo as Vi — oo, while by Theorem 4.15, A
tends to a positive limit as V4 — 0, so A(V})/V4 — oo as
Vi — 0. Thus A(V1)/V1 must assume some value twice in
the interval (0, o).

The next two corollaries follow immediately from Corol-
lary 6.7. Corollary 6.9 gives a lower bound on the tie func-
tion A for the Borell density. Numerics suggest that the
bound is not sharp: Figure 4 of the introduction suggests
that A grows approximately quadratically for the Borell
density.

Corollary 6.9. On R with the Borell density f(z) = et
gwen Vi > 0, let V& be the unique value of Vo such that the
double interval in equilibrium and the triple interval tie.

Then for all e > 0,
Vs > Vi(log V4)'/>~

for Vi large.

Corollary 6.10. On R with the density f(z) = e, given
Vi > 0, let Vi be the unique value of Vy such that the double
interval in equilibrium and the triple interval tie. Then for
all e > 0,

Vs > Vi(log1)' 7

for Vi large.

The following proposition gives an upper bound for the
tie points. Note that the hypothesis ¢ > M1, for x large
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is mild. In fact, 1?> < M1, cannot hold for all = large, since
this inequality implies that the 1) blows up in finite time.

Proposition 6.11. Let f = eV be a symmetric, strictly
log-convez, C' density on R, where v, is unbounded and
V? > M, for x large. Given Vi > 0, let Vi be the unique
value of V4 such that the double interval in equilibrium and
the triple interval tie. Then, for constants c; > 0 and co,

Vs < crexp (Yo, (20,4))
for Vi large, where
A =1 Hlog Vi + 2loglog Vi + c).

Proof. Let Vo = V5. Let the double interval in equilibrium
be (x1,z2, x3) and the triple interval be (y1,y2). We have

f(x1) + f(@2) + fz3) = B3 = Pa = 2f(y1) + 2/ (y2)-

By Proposition 3.6, the interval [—ys, o] is the best single
bubble for volume V; + V3, so

f(x1) + f(x3) > 2f(ya).

Thus

f(x2) < 2f (),
which is equivalent to
(12) U(z2) < Y(y1) + log 2.

By the Fundamental Bounding Lemma 6.3, for = large,
(13)

() < 2V (@)ala) < 2V (@)i(a)? = -V (@)log )

because 12 > M), for x large. For x large, log f < f1/4, so
(13) implies that f < c¢V? for a constant c. Using this on
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the right-hand side of (13) gives f < ¢V (logV)? for a new
constant ¢ (we allow ¢ to change from line to line). Hence
(12) becomes

h(x2) <log f(y1) +log2 <log V(y1) + 2loglog V(y1) + ¢
(14) <logVi + 2loglog Vi + ¢,

because V' (y1) = V1/2. So |z3] < A, where A is defined as
in the proposition statement.
We now estimate z;. We have

|21 |:ml%f _ f(zy) — f(sz).

2w (]
So
Fln) < S2) +ballma)Vi < o) + 500,
= f2) + 37108 ()W
(15) < cWilogi)? + 5 (log f(e)PV,

by (14). For z large, log f < fY4, so by (15),
1
f(ar) < eVi(logVi)* + 2 f (1) /WA,

Solving gives f(z1) < ¢V2. Applying this to the right-hand
side of (15) yields

f(x1) < cVi(log Vi)*.
Hence
(16) Y(z1) = log f(x1) < log Vi + 2loglog V1 + ¢,

which implies that |z1] < A where A is defined as in the
proposition statement.
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Therefore, for V; large,

v2<2/ 2 f_% /%f

(z3) = f(1) _ — cexni(z
%(1) <cf(x3) p(x3)

= exp i, (Ya(w3)) = exp byt (Yu(|1]) + Pu(|2al))
< exp i, (20, 4),

by (14) and (16), because f’ = fi, and ¥, (x3) = ¥, (|21])+
Y (|xe]) due to the equilibrium. [

The following corollaries compute the upper bounds ex-
plicitly for the densities e and e’

Corollary 6.12. On R with the Borell density f(x) =
gwen Vi > 0, let Vb be the unique value of Vo such that the

double wnterval in equilibrium and the triple interval tie.
Then for all € > 0,

V< Vit
for Vi large.
Proof. Since v = 2% and v, = 2z, ¥? > 1, for x large, so
Proposition 6.11 applies. Therefore
Vi < crexpd(log Vi + 2loglog Vi + ¢2)
— Vilog V})® < Vit

for any € > 0 and V; large, where ¢y, ¢ and c are constants.
O

Corollary 6.13. On R with the density f(x) = e, given
Vi > 0, let V' be the unique value of Vy such that the double
interval in equilibrium and the triple interval tie. Then for
all e > 0,

for Vi large.
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Proof. Since 1) = 1), = €*, ¥* > 1), for = large, so Proposi-
tion 6.11 applies. Therefore

Vi < crexp2(logVq + 2loglog Vi + ¢9)
_ CV12(10gV1)4 S C‘/12+€

for any € > 0 and V; large, where ¢, co and ¢ are constants.
O

7. HIGHER DIMENSIONS

In RV with radial density going to infinity, for any n
given volumes, a perimeter-minimizing n-bubble exists by
an argument ([BDKS], Rmk. 3.3) after Morgan and Pratelli
([MP], Thm. 3.3).

In this section we use numerical techniques to determine
the shape and surface area of potentially perimeter-minimizing
double bubbles in higher dimensions with Borell density
e” as in Figure 3 of the Introduction. The code used for
these computations can be found at https://github.com/
arjunkakkar8/doublebubble.

To do so, we use the software Brakke’s Surface Evolver
[Br]. Starting with an initial shape, the surface evolver
iteratively minimizes the energy associated with that con-
figuration by moving its pieces while maintaining the values
of constraints defined on the configuration.

To examine the double bubble in space with Borell den-
sity, we define the initial configuration of two adjacent
cubes (squares in the plane). Then the energy of the system
is defined as the weighted perimeter of the cubes. Next the
weighted volume of the cubes is calculated by using the di-
vergence theorem. With boundary B, the weighted volume
is

VB:%F-H, where V- F = e*".
B


https://github.com/arjunkakkar8/doublebubble
https://github.com/arjunkakkar8/doublebubble
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Note that the choice of F for which V - F = ¢ is not
unique. We used 7

F = (ey2+22/6x2dx, 0, 0>.

Since there is no closed form for the integral, the vector
field is evaluated by using a series expansion. Care is taken
to use sufficiently many terms so that within the relevant
radius, the error from the approximation is negligible com-
pared to the 4-digit precision of the Evolver. Then the
system is evolved down the energy gradient while fixing
the weighted volumes. The final state that the system con-
verges to for the case of 2D and of 3D is depicted in Figure
3.

In closing, we conjecture that some of the behavior on R!
will recur in higher dimensions.

Conjecture 7.1. In RN with a smooth, radial, log-convex
density, a perimeter-minimizing double bubble 1s either

(i) the bubble inside a bubble (e.g. for Vi small and Vs
large), or

(ii) the standard double bubble (e.g. for Vi close to V).
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