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Abstract. The classic double bubble theorem says that the least-
perimeter way to enclose and separate two prescribed volumes in
RN is the standard double bubble. We seek the optimal double
bubble in RN with density, which we assume to be strictly log-
convex. For N = 1 we show that the solution is sometimes two
contiguous intervals and sometimes three contiguous intervals. In
higher dimensions we think that the solution is sometimes a stan-
dard double bubble and sometimes concentric spheres (e.g. for one
volume small and the other large).
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1. Introduction

The double bubble theorem (see [M, Chapt. 14]) says
that in RN the standard double bubble of Figure 1, con-
sisting of three spherical caps meeting at 120 degrees, pro-
vides the least-perimeter way to enclose and separate two
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2 BONGIOVANNI ET AL.

given volumes. We want to put density on RN . We focus
on strictly log-convex, C1 radial densities, for which the
sphere about the origin is stable and indeed, for C3 den-
sities, uniquely the best single bubble by Chambers’ [Ch]
recent proof of the log-convex density conjecture. In R2,
McGillivray [MG] recently extended Chambers’ results to
arbitrary (not necessarily smooth) radial log-convex densi-
ties.

Figure 1. The standard double bubble pro-
vides the least-perimeter way to enclose and
separate two given volumes in R3 with density
1. We consider more general densities. Im-
age from John M. Sullivan, http://www.math.
uiuc.edu/~jms/Images.

For the case of R1 (N = 1), we show that there are two
types of optimal double bubbles, as illustrated in Figure 2.

Proposition 1.1 (Prop. 4.10). On R with a symmetric,
strictly log-convex, C1 density, for equal prescribed volumes,

http://www.math.uiuc.edu/~jms/Images
http://www.math.uiuc.edu/~jms/Images
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Figure 2. Perimeter-minimizing double bub-
bles in R with strictly log-convex C1 symmetric
density can consist of two or three contiguous
intervals.

the perimeter-minimizing double bubble is a connected dou-
ble interval, symmetric about the origin.

Proposition 1.2 (Prop. 4.11). On R with symmetric,
strictly log-convex, C1 density f such that (log f)′ is un-
bounded, for given V1 > 0, for sufficiently large V2, the
least-perimeter double bubble is a symmetric interval of vol-
ume V1 flanked by two contiguous intervals of volume V2/2.

Our main result characterizes when the optimal double
bubble transitions from a double interval to a triple inter-
val, for a strictly log-convex density such that the derivative
of the log of the density is unbounded:

Theorem 1.3 (Thm. 4.15). On R with a symmetric, strictly
log-convex, C1 density f such that (log f)′ is unbounded, for
given V1 > 0, there is a unique V2 = λ(V1) such that the
double interval in equilibrium and the triple interval tie.
For V2 > λ(V1), the perimeter-minimizing double bubble is
uniquely the triple interval. For V2 < λ(V1), the perimeter-
minimizing double bubble is uniquely the double interval in
equilibrium. Moreover, λ is a strictly increasing C1 func-
tion that tends to a positive limit as V1 → 0.

Section 6 studies the growth rate of the tie curve λ(V1).
Our results imply for example that for Borell density ex

2

,
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Figure 3. We conjecture that a perimeter-
minimizing double bubble in RN with density
er

2

is sometimes a standard double bubble and
sometimes a much smaller bubble inside a bub-
ble. Computed with Brakke’s Surface Evolver
[Br] and Mathematica.

for V1 large,

V1(log V1)
1/2−ε < λ(V1) < V 4+ε

1

(Cors. 6.9, 6.12).
Our numerics indicated to our astonishment that some-

times as the volumes are scaled up, the minimizer changes
from a double interval to a triple interval and then back to
a double interval, as in Figure 4.
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Figure 4. This numerically generated plot
shows the tie points of the double and triple
interval in the curve with solid red points for
density ex

2

and the curve with the empty green
points for density ex

4

. The solid blue line is
V2 = 10V1 and the dashed blue line is V2 = 2V1.
Note that the solid blue line intersects the red
curve twice.

In RN , we conjecture and provide some numerical evi-
dence that the solution is a standard double bubble (the
analog of the double interval) when the sizes are compara-
ble and a bubble inside a bubble (the analog of the triple
interval) when one bubble is much larger, as in Figure 3.
For equal volumes in 2D, as the volumes increase, the so-
lution tends to a circle centered at the origin plus diameter
(Fig. 5).

We conjecture that the smoothness assumption of The-
orem 4.15 can be omitted. By smoothing, any symmetric
strictly log-convex density on R is a limit of smooth densi-
ties. It follows that Proposition 4.10 holds for any symmet-
ric strictly log-convex density. But this argument does not
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Figure 5. For increasing equal volumes (0.01,
0.1, 10 and 1000) the double bubble ap-
proaches a circle plus diameter. Computed
with Brakke’s Surface Evolver.

work in general: in Proposition 4.11, the threshold for the
“sufficiently large V2” condition could go to infinity in the
limit. Nevertheless, we think that one may be able to ob-
tain the same results by directly working with non-smooth
densities via one-sided derivatives.

The triple bubble problem on the real line can be stud-
ied with techniques similar to those used in this paper. In
fact, we have made some progress, showing that for a sym-
metric, strictly log-convex density, there are four possible
combinatorial types of perimeter-minimizing triple bubbles.
Our results on this problem can be found in our report
[So1]. However, the triple bubble problem is much more
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complicated than the double one. The transition bound-
ary is likely many surfaces in R3 stitched together, making
it more difficult to study. Moreover, in the double bubble
problem, it happens that there is a single kind of transi-
tion (from double to triple intervals) that occurs for every
density. We suspect that, in the triple bubble case, there
may be different kinds of transitions depending on the den-
sity. In particular, we conjecture that only three types of
perimeter minimizers occur for some densities and four for
others.

The single bubble problem with density was previously
studied by Bobkov and Houdré [BH] and Bayle [Ba]. There
are results in the literature on double bubbles in the sphere
SN , hyperbolic space HN , flat tori T2 and T3, and Gauss
space (Euclidean space with density e−r

2

); see [M, Chapt.
19]. Recently, Milman and Neeman [MN] proved the Gauss-
ian double bubble conjecture, which states that the solution
is three halfspaces meeting at 120 degrees.

Outline of proofs. First we show that a perimeter-minimizing
double bubble consists of two or three contiguous inter-
vals, by sliding and rearrangement arguments (Prop. 4.6).
Moreover, for fixed V1, as V2 increases from V1, it transi-
tions from double to triple (Thm. 4.15). Our most difficult
analysis describes how the transition point λ(V1) increases
as V1 increases (Props. 6.5 and 6.11).

Outline of paper. Section 2 defines bubbles and densi-
ties. Section 3 provides our results on n-bubbles on the
real line. Section 4 provides our main results on the double
bubbles on the real line with strictly log-convex densities.
Section 5 examines some non-strict log-convex densities on
the real line. Section 6 gives lower and upper bounds on
the tie curve given in Theorem 4.15. Section 7 uses numer-
ical techniques to compute the surface areas of conjectured
double bubbles in R2 and R3 with Borell density er

2

.
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2. Densities and Bubbles

Definition 2.1. A density on RN is just a positive function,
used to weight volume and perimeter. A bubble in RN is a
region of prescribed (weighted) volume and perhaps many
components. An n-bubble consists of n bubbles with dis-
joint interiors, which may or may not share boundaries. A
2-bubble is also called a double bubble. Each shared bound-
ary is counted only once in the perimeter. An n-bubble
that minimizes perimeter for its enclosed volumes is called
perimeter minimizing or isoperimetric.

3. n-Bubbles on the Real Line

We consider R with density f . If f is bounded below
and an n-bubble has finite weighted perimeter, then each
region consists of finitely many intervals. The boundary
points divide R into closed intervals (which may be infinite
on one side) called blocks. A block may be a component of
a bubble, or its interior may not intersect any bubble.

This section contains results on existence (Prop. 3.1),
equilibrium (Cor. 3.3), and regularity (Prop. 3.5) for
n-bubbles on the real line with density. Proposition 3.6
identifies the optimal single bubble as a symmetric inter-
val. Proposition 3.8 proves that a perimeter-minimizing
n-bubble has at most 2n− 1 components.
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Proposition 3.1. On R with continuous density f going
to infinity in both directions, given n finite volumes Vi >
0, a perimeter-minimizing n-bubble exists and consists of
finitely many intervals.

Proof. Since f has a positive lower bound, candidates con-
sist of a bounded number of intervals. Since f goes to
infinity in both directions, candidates lie in a bounded re-
gion. By compactness, there is a sequence of candidates
whose perimeters tend to the infimum and whose endpoints
converge. Because f is continuous, the limit of these can-
didates is an n-bubble enclosing the desired volumes and
the perimeter is the infimum. So a perimeter-minimizing n-
bubble exists (and consists of finitely many intervals). �

Proposition 3.2. (First Variation Formula). Let f be a
C1 density on R. Then the first derivative of perimeter
moving a point x to the right at rate 1/f to alter volume at
unit speed is given by

dP

dt
= (log f)′(x).

Proof.
dP

dt
=
dP

dx

dx

dt
= f ′

1

f
= (log f)′.

�

Corollary 3.3. Let f be a C1 density on R. If an n-bubble
with boundary points x1 < x2 < · · · < xk is perimeter
minimizing, then

k∑
i=1

(log f)′(xi) = 0.

More generally, if 1 ≤ a < b ≤ k are such that the blocks to
the left of xa and to the right of xb both belong to the same
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bubble or to no bubble, then

b∑
i=a

(log f)′(xi) = 0.

Proof. Since moving the points at rate 1/f preserves vol-
umes and the n-bubble minimizes perimeter for fixed vol-
umes, the derivative dP/dt must vanish. Now the result
follows from the First Variation Formula (Prop. 3.2). �

Remark 3.4. In Corollary 3.3, if the condition on f is re-
laxed from C1 to one-sided derivatives (for example if f is
convex or log-convex), then similarly the sum of the right
derivatives is nonnegative and the sum of the left deriva-
tives nonpositive.

Proposition 3.5. On R with a continuous density that
is nonincreasing on (−∞, 0] and nondecreasing on [0,∞),
a perimeter-minimizing n-bubble consists of finitely many
contiguous intervals.

Proof. Because the density is nonincreasing on (−∞, 0] and
nondecreasing on [0,∞), it has a positive lower bound.
Hence a perimeter-minimizing n-bubble consists of finitely
many intervals, or it would have infinite perimeter.

Suppose that these intervals are not contiguous. Then
there exist two components [a, b] and [c, d] with a < b <
c < d, where (b, c) does not intersect any bubble. We may
assume that b < 0 by symmetry. But then [a, b] can be
moved to the right until it reaches [c, d] or the origin so
that the volume is preserved and the perimeter does not
increase. If [a, b] meets [c, d], two boundary points become
one and the total perimeter is less than the original con-
figuration’s, contradiction. If [a, b] meets the origin, then
[c, d] can be moved to the left while maintaining the volume
and reducing the perimeter as before, contradiction. �
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For completeness we include a proof of the 1D log-convex
density theorem [RCBM, Cor. 4.12]:

Proposition 3.6 (Single bubble). On R with symmetric,
strictly log-convex, continuous density, every interval sym-
metric about the origin is uniquely isoperimetric.

Proof. By Proposition 3.1, a perimeter minimizer exists for
a given volume. By Proposition 3.5, it is a single interval
[x1, x2]. Corollary 3.3 implies that

(log f)′(x1) + (log f)′(x2) = 0

for the C1 case. Since (log f)′ is a strictly increasing odd
function, we have x2 = −x1 and the interval is symmetric
about the origin.

By Remark 3.4, for the non-C1 case

(log f)′L(x1) + (log f)′L(x2) ≤ 0(1)

(log f)′R(x1) + (log f)′R(x2) ≥ 0(2)

where (log f)′L and (log f)′R denote the left and right deriva-
tives. Since f is symmetric and strictly log-convex, (1)
gives that x1 + x2 ≤ 0, while (2) gives that x1 + x2 ≥ 0.
Therefore x1 = −x2 and the interval is symmetric about
the origin. Furthermore, for every given volume there is a
unique symmetric interval. �

Lemma 3.7. Consider R with a continuous density that is
nonincreasing on (−∞, 0] and nondecreasing on [0,∞). Let
M be the density minimum set where f(x) = f(0). Con-
sider two components of the same bubble in a perimeter-
minimizing n-bubble. Then the component on the right con-
tains no points to the left of M and some to the right of
M . Similarly the component on the left contains no points
right of M and some left of M .
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Proof. Let M = [m1,m2] and the two components be [a, b]
and [c, d] with a < b < c < d. For the right component, we
need to show that c ≥ m1 and d > m2. Slide everything
between b and c to the right, preserving volumes while de-
creasing the volume of [c, d]. If d ≤ m2, then the perimeter
would not increase before c reaches d, and it would de-
crease at that moment, a contradiction. Hence d > m2. If
c < m1, then while sliding c up to m1, the density never
increases and decreases near m1. So perimeter decreases, a
contradiction. A similar argument applies to the left com-
ponent. �

Proposition 3.8. On R with a continuous density that is
nonincreasing on (−∞, 0] and nondecreasing on [0,∞), a
perimeter-minimizing n-bubble has at most 2n − 1 compo-
nents.

Proof. By Proposition 3.5, all the components are contigu-
ous. By Lemma 3.7, each bubble has at most two compo-
nents, so the n-bubble has at most 2n components. More-
over, if it has exactly 2n components, then the left compo-
nent of any bubble lies to the left of the right component
of every bubble. The right-most left component L and the
left-most right component R meet at a point of minimum
density. Denote the second components of the same bub-
bles by L′ and R′. They appear in the order R′, L,R, L′.
Now slide everything between R′ and L to the right and ev-
erything between R and L′ to the left, preserving volumes
and not increasing perimeter, until either L or R disappears
(all volume is contained in L′ or R′, respectively), reducing
perimeter, a contradiction. Therefore the n-bubble has at
most 2n− 1 components. �

Remark 3.9. We suspect that the restriction to at most
2n − 1 components is sharp. In particular, we think that
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for some densities a perimeter-minimizing n-bubble for vol-
umes V1 � V2 � · · · � Vn has 2n − 1 components: V1 is
centered on the origin flanked by V2/2 on either side, which
is flanked by V3/2 on either side, and so on. Proposition
4.11 proves this for n = 2.

4. Double Bubbles on the Real Line

We now focus on the double bubble and prove that perime-
ter minimizers are sometimes double intervals and some-
times triple intervals (Props. 4.10 and 4.11). This is con-
sistent with Proposition 3.8, which states that a perimeter-
minimizing double bubble has no more than 3 components.
Theorem 4.15 analyzes when each type occurs (see Fig. 9).

Definition 4.1. A double interval (x1, x2, x3) for prescribed
volumes V1 ≤ V2 consists of two contiguous intervals [x1, x2],
[x2, x3] of volumes V1 and V2, respectively, as in Figure 6.
For a C1 density f , a double bubble is in equilibrium if
it satisfies the consequence of perimeter minimization of
Corollary 3.3:

(log f)′(x1) + (log f)′(x2) + (log f)′(x3) = 0.

The term also applies to the generalization to one-sided
derivatives of Remark 3.4.

The triple interval (y1, y2) for prescribed volumes V1 ≤ V2
consists of three contiguous intervals, two of which flank the
middle interval and enclose an equal volume, as in Figure
7. The middle interval is [−y1, y1] and encloses volume
V1. The left interval is [−y2,−y1] and the right interval is
[y1, y2], and each encloses volume V2/2.

For a symmetric continuous, piecewise C1 density, the
triple interval is in equilibrium.

Proposition 4.6 will characterize perimeter-minimizing dou-
ble bubbles. First we show that a log-convex density can
be considered as a convex density in volume coordinate.
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Figure 6. A double interval on the real line.

Figure 7. A triple interval on the real line.

Figure 8. Double and triple intervals in equi-
librium on the real line.
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Lemma 4.2 (Volume coordinate). On R with density f, let

V =

∫ x

0
f.

Then f is a log-convex function of x if and only if f is a
convex function of V .

Proof. The result follows from the fact that the one-sided
derivatives satisfy

df

dV
=
df/dx

dV/dx
=
df/dx

f
=
d(log f)

dx
.

�

The next lemma shows how to convert the volume coor-
dinate back to the positional coordinate.

Lemma 4.3. On R with density f, let

V =

∫ x

0
f.

Then

x(V ) =

∫ V

0

1

f
,

where f is a function of V .

Proof. We have∫ V

0

1

f
dV =

∫ x

0

1

f

dV

dx
dx =

∫ x

0

1

f
f dx = x.

�

Lemma 4.4. On R with symmetric, strictly log-convex den-
sity, for prescribed volumes V1 ≤ V2, if a perimeter-minimizing
double bubble has two components, then it is the unique dou-
ble interval in equilibrium (up to reflection).
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Proof. Let f be the density. By Proposition 3.5, the inter-
vals are contiguous, so the double bubble must be a double
interval (x1, x2, x3). If f is C1, Corollary 3.3 implies that
the equilibrium condition

(log f)′(x1) + (log f)′(x2) + (log f)′(x3) = 0.

holds. Moreover, assuming that the region on the left has
volume V1, this equation uniquely determines the double in-
terval: as x1 moves, x2 and x3 also move as strictly increas-
ing functions of x1. Hence the left-hand side is a strictly
increasing function of x1 which tends to a negative value
as x1 → −∞ and tends to a positive value as x1 → ∞.
The double interval satisfying the equation must therefore
be unique.

If f is not C1, a similar argument applies using one-sided
derivatives and Remark 3.4. �

Proposition 5.4 shows that the strict log-convexity hy-
pothesis in Lemma 4.4 is necessary.

Lemma 4.5. On R with symmetric, strictly log-convex den-
sity, for prescribed volumes V1 ≤ V2, if a perimeter-minimizing
double bubble has three components, then it is the triple in-
terval.

Proof. Let V1 ≤ V2 be the prescribed volumes. By Corollary
3.5, the intervals are contiguous. By applying Corollary
3.3 or Remark 3.4 to the middle interval we find that the
middle interval is symmetric about the origin, and similarly
the whole double bubble is also symmetric about the origin.

Finally, it is optimal to place V1 in the middle: since the
total volume enclosed in the double bubble is the same re-
gardless of which bubble is in the middle, we only need to
examine the two inner boundary points. Since the perime-
ter is minimized when these points are nearest to the origin,
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the optimal choice is for the middle bubble to enclose vol-
ume V1. Thus the perimeter-minimizing configuration is
the triple interval. �

We can summarize the results of Proposition 3.8 and
Lemmas 4.4 and 4.5 in the following proposition.

Proposition 4.6. On R with symmetric, strictly log-convex
density f , for prescribed volumes V1 ≤ V2, a perimeter-
minimizing double bubble is one of the following:

(a) the unique double interval (x1, x2, x3) in equilibrium
(up to reflection) or

(b) the triple interval (y1, y2).

See Figure 8.

Volume and perimeter relationships. To understand
better the transition from double to triple intervals, we ex-
amine volumes and perimeters more carefully. Let f be a
symmetric, strictly log-convex, and C1 density. For pre-
scribed volumes V1 ≤ V2, let P2 be the perimeter of the
double interval in equilibrium and P3 the perimeter of the
triple interval. In volume coordinates (Lemma 4.2), we
have

P2 = f(Ṽ ) + f(Ṽ + V1) + f(Ṽ + V1 + V2),

P3 = 2

[
f

(
V1
2

)
+ f

(
V1 + V2

2

)]
,

where Ṽ is the unique volume satisfying the equilibrium
condition for the double interval

(3) f ′(Ṽ ) + f ′(Ṽ + V1) + f ′(Ṽ + V1 + V2) = 0.

Notice that the derivatives are in volume coordinates:

f ′(V ) = (log f)′(x) where V =

∫ x

0
f.
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Taking derivatives of P2 and P3 yields

P ′2 = f ′(Ṽ + V1 + V2)V
′
2 − f ′(Ṽ )V ′1 ,(4)

P ′3 = f ′
(
V1
2

)
V ′1 + f ′

(
V1 + V2

2

)
(V ′1 + V ′2),(5)

where we used the equilibrium condition from (3) for sim-
plification.

Characterizations of when the double or triple in-
terval is perimeter minimizing.

Definition 4.7. For prescribed volumes V1 ≤ V2, let

µ(V1, V2) = P3 − P2

be the difference between the perimeter P3 of the triple in-
terval and the perimeter P2 of the double interval in equi-
librium.

By Proposition 4.6, we obtain the following characteriza-
tion.

(a) If µ(V1, V2) < 0, then the perimeter-minimizing dou-
ble bubble is uniquely the triple interval.

(b) If µ(V1, V2) > 0, then the perimeter-minimizing dou-
ble bubble is uniquely the double interval in equilib-
rium.

(c) If µ(V1, V2) = 0, then the perimeter-minimizing dou-
ble bubble is either the triple interval or the double
interval in equilibrium.

Let f be a C1 density. Observe that by equations (4) and
(5), µ is a C1 function with partial derivatives

∂µ

∂V1
= f ′

(
V1
2

)
+ f ′

(
V1 + V2

2

)
+ f ′(Ṽ ),

∂µ

∂V2
= f ′

(
V1 + V2

2

)
− f ′(Ṽ + V1 + V2).
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Figure 9. The figure above is a numerical
computation which represents the value of the
perimeter difference µ(V1, V2) for Borell density
f(x) = ex

2

. The orange color marks the region
in which the double interval has lesser perime-
ter, the blue color represents the region in which
the triple interval has lesser perimeter, and the
white curve marks the tie point between the
double and triple intervals. Computed in Math-
ematica.

The remainder of this section investigates the behavior
of µ.

Lemma 4.8. On R with symmetric, strictly log-convex, C1

density, for prescribed volumes V1 < V2,

−V1 + V2
2

< Ṽ < −V1.
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Proof. Let f be the density. Consider the equilibrium con-
dition

f ′(Ṽ ) + f ′(Ṽ + V1) + f ′(Ṽ + V1 + V2) = 0.

By Lemma 4.2, f is convex in volume coordinate, so the
left-hand side is strictly increasing in Ṽ . At Ṽ = −(V1 +

V2)/2, the left-hand side is negative, while at Ṽ = −V1,
the left-hand side is positive. Hence the value of Ṽ that
makes the left-hand side vanish must lie inside the desired
range. �

Lemma 4.9. Consider R with symmetric, strictly log-convex,
C1 density. Given V2 > 0, µ is a strictly increasing func-
tion of V1 ≤ V2. Given V1 > 0, µ is a strictly decreasing
function of V2 ≥ V1.

Proof. Fix V2. For V1 < V2, we have

∂µ

∂V1
= f ′

(
V1
2

)
+ f ′

(
V1 + V2

2

)
+ f ′(Ṽ ) > f ′

(
V1
2

)
> 0

due to Lemma 4.8. Now fix V1. For V2 > V1, we have

∂µ

∂V2
= f ′

(
V1 + V2

2

)
− f ′(Ṽ + V1 + V2) < 0

due to Lemma 4.8. �

Proposition 4.10. On R with symmetric, strictly log-convex,
C1 density, for equal prescribed volumes V1 = V2, we have
µ > 0 (so the double interval is better).

Proof. For V1 = V2, we have Ṽ = −V1. So

P2 = 2f(V1) + f(0) < 2f

(
V1
2

)
+ 2f(V1) = P3.

�
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Proposition 4.11. On R with symmetric, strictly log-convex,
C1 density f such that (log f)′ is unbounded, given V1 > 0,
we have µ < 0 for large V2 ≥ V1 (so the triple interval is
better).

Proof. Fix V1. For V2 large, we need to show that

P2 = f(Ṽ )+f(Ṽ+V1)+f(Ṽ+V1+V2) > 2

[
f

(
V1
2

)
+ f

(
V1 + V2

2

)]
= P3.

By convexity of f in volume coordinate (Lemma 4.2),

f(−Ṽ ) + f(Ṽ + V1 + V2) ≥ 2f

(
V1 + V2

2

)
.

Notice that f(−Ṽ ) = f(Ṽ ) by symmetry of f . So we need
to show that, for V2 large,

f(Ṽ + V1) > 2f

(
V1
2

)
.

It suffices to show that Ṽ → −∞ as V2 →∞.
From the equilibrium condition

f ′(Ṽ ) + f ′(Ṽ + V1) + f ′(Ṽ + V1 + V2) = 0,

as V2 → ∞, if Ṽ does not become very small, then the
leftmost two terms stay bounded, while the rightmost term
goes to infinity because f ′(V ) is unbounded, which is a

contradiction. Hence Ṽ → −∞ as V2 →∞. �

Remark 4.12. Propositions 5.4 and 5.5 show that the hy-
pothesis of strict log-convexity in Proposition 4.11 is nec-
essary. Moreover, the following example shows that the
hypothesis that (log f)′ is unbounded is needed.

Example 4.13. Consider the density in volume coordinate
f(V ) = |V |+e−|V |. Notice that f is C1 and f(V ) is strictly
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convex, but f ′(V ) is bounded. For fixed V1, as V2 →∞, it

can be computed that Ṽ → − log(1 + eV1). We can then
check that

µ→ 2V1 − log(1 + eV1) + 2e−V1/2 − 1 > 0

for all V1 > 0. Since µ is decreasing in V2 (Lemma 4.9),
µ > 0 and so the double interval is better for all V1 and V2.

Lemma 4.14. On R with symmetric, strictly log-convex,
C1 density, for small V2 > 0, µ > 0 for all V1 ≤ V2 (so the
double interval is better).

Proof. For V2 small, by Lemma 4.8, Ṽ is also small in mag-
nitude. Hence every density term that contributes to P2

and P3 is close to f(0). Thus for V2 small, P2 is close to
3f(0) while P3 is close to 4f(0), so that P2 < P3. �

Theorem 4.15. On R with symmetric, strictly log-convex,
C1 density f such that (log f)′ is unbounded, given V1 > 0,
there is a unique V2 = λ(V1) such that the double interval in
equilibrium and the triple interval tie. For V2 > λ(V1), the
perimeter-minimizing double bubble is uniquely the triple
interval. For V2 < λ(V1), the perimeter-minimizing double
bubble is uniquely the double interval in equilibrium. More-
over, λ is a strictly increasing C1 function that tends to a
positive limit as V1 → 0.

Proof. Fix V1. By Lemma 4.9, µ is a strictly decreasing
function of V2. By Lemma 4.10, µ > 0 for V2 = V1. By
Lemma 4.11, µ < 0 for large V2. These together imply that
there is a unique V2 = λ(V1) such that µ = 0 and that
µ > 0 for V2 < λ(V1) and µ < 0 for V2 > λ(V1). Thus λ
determines the perimeter-minimizing double bubbles as in
the theorem statement.

Observe that µ is a C1 function with partial derivative
∂µ/∂V2 < 0 at points (V1, λ(V1)), by Lemma 4.9. So by the
implicit function theorem, λ is a C1 function.
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We now show that λ is strictly increasing. Suppose not.
Then there are V1 < V ∗1 with λ(V1) ≥ λ(V ∗1 ). By Lemma
4.9,

0 = µ(V1, λ(V1)) < µ(V ∗1 , λ(V1)) ≤ µ(V ∗1 , λ(V ∗1 )) = 0,

a contradiction. Note the term in the middle makes sense
because V ∗1 ≤ λ(V1).

Finally we show that λ tends to a positive limit as V1 → 0.
By Lemma 4.14, there is v > 0 such that µ > 0 for all
V1 ≤ V2 ≤ v, so λ(V1) 6= v for all V1. Thus because λ is
strictly increasing, it tends to a limit which is at least as
big as v as V1 → 0. �

It is an interesting question what happens in the case
where (log f)′ is bounded. In our follow-up note [So2], we
show that the tie function λ still exists but only for V1 ∈
(0, V0) for some “blowup time” 0 ≤ V0 ≤ ∞, and λ → ∞
as V1 → V0.

5. Non-Strictly Log-Convex Densities

Section 5 considers some densities which are symmetric,
piecewise C1, and log-convex, but not strictly log-convex.

We investigate the following densities:

(i) The constant density f(x) = c (Prop. 5.4).

(ii) The exponential density f(x) = e|x| (Prop. 5.5).

(iii) The smoothed-out exponential density

(6) f(x) =

{
ex

2

for |x| < a

ea(2|x|−a) for |x| ≥ a

with a > 2
√

log 2 (Prop. 5.9).
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For the constant density, every double interval is perime-
ter minimizing. For the exponential density, a perimeter-
minimizing double bubble is a double interval with the mid-
dle point at the origin. For the smoothed-out exponential
density, the triple interval appears for V1 small and V2 large.

For non-strictly log-convex densities, there may be a con-
tinuum of double intervals (or triple intervals) in equilib-
rium with the prescribed volumes. Lemma 5.1 shows that
all such are perimeter minimizing among double intervals
(among triple intervals).

Lemma 5.1. On R with symmetric log-convex density f,
among n-bubbles of prescribed volumes and fixed combina-
torial type, every equilibrium is perimeter minimizing.

Proof. We may assume that f is not constant, since the
result is easy in that case. If we switch to volume coordinate
(Lemma 4.2), then f is a convex function of volume V .
Since f is symmetric, convex, and nonconstant, it goes to
infinity in both directions. Hence a minimizer exists. Since
every minimizer is in equilibrium, it remains to show that
every equilibrium has equal perimeter.

Represent an n-bubble as a tuple of volume coordinates of
endpoints of its components. Then given two n-bubbles in
equilibrium B1 and B2, on the straight line between them,
the volume of each component varies linearly. Since the
volume of each bubble is equal at B1 and B2, the volume
of each bubble must be constant along this straight line.
Hence all n-bubbles along this straight line have the pre-
scribed volumes. Let P (t) denote the perimeter of the n-
bubble (1−t)B1+tB2, t ∈ [0, 1], on this straight line. Then
P is convex because f is convex, and the one-sided deriva-
tives P ′R(0) ≥ 0 and P ′L(1) ≤ 0 because B1 and B2 are in
equilibria. It follows that P is constant, and so B1 and B2

have equal perimeter. �
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Remark 5.2. Lemma 5.1 reduces the search for a perimeter-
minimizing double bubble to any double interval or triple
interval in equilibrium. We can pick a perimeter-minimizing
triple interval to be the triple interval symmetric about the
origin.

The proof shows that the set of (perimeter-minimizing)
equilibria is a finite-dimensional cell, convex in the V coor-
dinates.

The hypothesis that f be symmetric, used for the exis-
tence of a minimizer, is not necessary. If f approaches but
never reaches a limit in either direction, equilibria do not
exist (because the derivative of perimeter is negative as you
slide the n-bubble in that direction), and the result holds
trivially. Otherwise minimizers exist.

Remark 5.3. By Lemma 5.1, in volume coordinates (Lemma
4.2), the perimeters P2 of double and P3 of triple intervals
in equilibrium are still given by

P2 = f(Ṽ ) + f(Ṽ + V1) + f(Ṽ + V1 + V2),

P3 = 2

[
f

(
V1
2

)
+ f

(
V1 + V2

2

)]
,

where Ṽ is any volume satisfying the equilibrium condition

f ′(Ṽ ) + f ′(Ṽ + V1) + f ′(Ṽ + V1 + V2) = 0.

We now consider some specific non-strict log-convex den-
sities.

Proposition 5.4. On R with density f(x) = c, any dou-
ble interval enclosing the prescribed volumes is perimeter
minimizing.

Proof. A double interval has perimeter 3c. Any other con-
figuration has perimeter at least 4c. Therefore a double
interval is perimeter minimizing. �
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Proposition 5.5. On R with density f(x) = e|x|, the perimeter-
minimizing double bubble is the double interval with the
middle perimeter point at the origin, unique up to reflection
across the origin.

Proof. The density in volume coordinate (Lemma 4.2) is

f(V ) = 1 + |V | .

We first consider a double interval in equilibrium. The func-
tion f is C1 everywhere except at the origin with f ′(V ) = 1
or −1. So the equilibrium condition (Rem. 5.3) cannot be
satisfied unless one boundary point is at the origin. By
Remark 3.4, the leftmost boundary point cannot be at the
origin because the sum of the left derivatives∑

f ′L = 1

would be positive. Similarly the rightmost boundary point
cannot be at the origin. Hence the middle boundary point
is at the origin. So the double interval in equilibrium is
unique up to reflection across the origin.

Now we can compare the perimeters of double and triple
intervals in equilibrium:

P2 = f(V1)+f(0)+f(V2) = V1+V2+3 < 2V1+V2+4 = P3.

Therefore the perimeter-minimizing double bubble is the
double interval in equilibrium. �

We now consider the smoothed-out exponential density
(6).

Lemma 5.6. Consider R with the smoothed-out exponen-
tial density (6). Let V1 ≤ V2 be prescribed volumes. If

V1 + V2 ≤
∫ a

0
ex

2

dx,
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then the perimeter-minimizing double bubbles are the same
double and triple intervals as for the Borell density f(x) =
ex

2

of Proposition 4.6.

Proof. By Proposition 3.5, a perimeter-minimizing double
bubble consists of contiguous intervals. Observe that one
of these intervals must contain the origin, as otherwise the
whole double bubble can be shifted towards the origin and
the perimeter will decrease. By the upper bound on V1+V2,
the whole bubble is contained in [−a, a]. In this interval,
the density is identical to the Borell density. By Propo-
sition 4.6, a perimeter-minimizing double bubble for the
Borell density also lies in this interval for the prescribed
volumes. So perimeter-minimizing double bubbles for the
two densities are identical. �

Lemma 5.7. Consider R with the smoothed-out exponen-
tial density (6). Let V1 ≤ V2 be prescribed volumes, with

V1 ≥
∫ a

−a
ex

2

dx.

Then the double interval in equilibrium has the middle bound-
ary point at the origin, and a triple interval in equilibrium
has boundary points

−y2 < −y1 ≤ −a < 0 < a ≤ y′1 < y′2,

free up to the volume constraints.

Proof. Observe that f is C1 and that

(log f)′(x) =


−2a for x ≤ −a
2x for |x| < a

2a for x ≥ a.

By Corollary 3.3, the sum of the derivatives of the log of
the density at the boundary points of a double interval in
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equilibrium must equal zero. We claim that the middle
boundary point is 0. If the middle boundary point were
less than zero, then the sum of the derivatives of the log
of the density would be negative. If the middle boundary
point were greater than 0, then the sum of the derivatives
of the log of the density would be positive. Therefore the
middle boundary point is 0, as asserted.

For a triple interval in equilibrium, let the boundary
points be −y2 < −y1 < y′1 < y′2. If y′1 is less than a, then
the sum of the derivatives of the log of the density at the
boundary points is negative. If −y1 is greater than −a, then
the sum of the derivatives of the log of the density at the
boundary points is positive. Therefore −y1 ≤ −a < a ≤ y′1,
and the sum of the derivatives of the log of the density
equals zero whenever this holds. So the claim holds. �

Lemma 5.8. Consider R with the smoothed-out exponen-
tial density (6). Let V1 ≤ V2 be prescribed volumes, where

V1 <

∫ a

0
ex

2

dx, V1 + V2 ≥
∫ a

−a
ex

2

dx.

Then a double interval in equilibrium has perimeter points
x1, x2, x3, where

−a ≤ x1 < x2 = −a− x1 ≤ 0 < a ≤ x3,

up to reflection across the origin. A perimeter-minimizing
triple interval has perimeter points

−y2 ≤ −a < −y1 < 0 < y1 < a ≤ y′2,

where [−y1, y1] has volume V1 and y2 and y′2 are free up to
the volume constraint.

Proof. Let a double interval in equilibrium have boundary
points x1 < x2 < x3, and assume that the left interval has
volume V1. By Corollary 3.3,

(7) (log f)′(x1) + (log f)′(x2) + (log f)′(x3) = 0.
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If x1 < −a, then x2 < 0, and so (7) implies that (log f)′(x3) >
2a, which is impossible. Hence x1 ≥ −a. Because of the
bound on V1 + V2, x3 ≥ a. Now by (7), (log f)′(x2) ≤ 0, so
x2 ≤ 0. So (7) reduces to x1 + x2 + a = 0, or x2 = −a− x1.
Then the inequality stated in the proposition holds. The
resulting double interval is unique because there is only one
x1 such that [x1,−a − x1] has volume V1, and x3 is deter-
mined from x1.

For a perimeter-minimizing triple interval, denote the
boundary points by −y2 < −y1 < y′1 < y′2. By Corollary
3.3,

(log f)′(−y1) + (log f)′(y′1) = 0(8)

(log f)′(−y2) + (log f)′(y′2) = 0,

so either −y2, y′2 ∈ (−a, a) with y2 = y′2 or −y2 ≤ −a and
y′2 ≥ a. By the bound on V1 + V2, the latter must be the
case. Similarly, either −y1, y′1 ∈ (−a, a) with y1 = y′1 or
−y1 ≤ −a and y′1 ≥ a. To determine which is the case, we
must first determine whether [−y1, y′1] encloses volume V1
or V2.

We claim that [−y1, y′1] must enclose volume V1. By the
volume restriction on V1 and (8), if [−y1, y′1] has volume
V1, then −y1, y′1 ∈ (−a, a) with y1 = y′1. If [−y1, y′1] en-
closes volume V2, then the magnitudes of y1 and y′1—and
hence the perimeter f(−y1) + f(y′1)—will be greater than
when [−y1, y′1] encloses volume V1, so in order for the triple
interval to be perimeter minimizing, [−y1, y′1] must enclose
volume V1. Then y′1 = y1 ∈ (0, a), and therefore the bound-
ary points satisfy the inequality in the statement of the
proposition. �

The following proposition is our most interesting exam-
ple, which shows that the appearance of the triple interval
can depend on V1. The particular value 2

√
log 2 is just for

our convenience.
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Proposition 5.9. Consider R with the smoothed-out expo-
nential density (6):

f(x) =

{
ex

2

for |x| < a

ea(2|x|−a) for |x| ≥ a

with a > 2
√

log 2. Let V1 ≤ V2 be prescribed volumes. If

(9) V1 ≥
∫ a

−a
ex

2

dx,

then the perimeter-minimizing double bubble is the double
interval in equilibrium for all V2 (up to reflection). If V1
is small, then for V2 close to V1 the perimeter-minimizing
double bubble is the double interval in equilibrium and for
V2 large a perimeter-minimizing double bubble is a triple
interval.

See Figure 10.

Proof. By Proposition 3.5, a perimeter-minimizing double
bubble consists of finitely many contiguous intervals. By
Proposition 3.8, a perimeter-minimizing double bubble con-
sists of two or three such intervals.

First consider the case when V1 is small V2 is close to V1.
We assume that

V1 + V2 ≤
∫ a

0
ex

2

dx.

By Lemma 5.6, a perimeter-minimizing double bubble is
identical to the one for the Borell density f(x) = ex

2

with
the same prescribed volumes. By Lemma 4.10, it is the
double interval in equilibrium for V2 close to V1.

Now suppose (9) holds. By Lemma 5.7, the boundary
points of the double interval in equilibrium are x1, 0, x3,
where x1 ≤ −a and x3 ≥ a, and the boundary points of
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Figure 10. The figure above is a numerical
computation which represents the value of the
perimeter difference µ(V1, V2) for the smoothed
out exponential density (6). The orange color
marks the region in which the double inter-
val has less perimeter, the blue color represents
the region in which the triple interval has less
perimeter, and the white curve marks the tie
point between the double and triple intervals.
The plot indicates that the tie curve asymp-
totes to fixed value of V1. Computed in Math-
ematica.
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a triple interval in equilibrium are −y2,−y1, y′1, y′2, where
we may choose −y2 = x1 and hence y′2 = x3. Thus we
only need to compare the inner boundary points. Because
f(−y1) + f(y′1) > f(0) = 1, a double interval in equilib-
rium has less perimeter than a triple interval in equilib-
rium. Therefore the perimeter-minimizing double bubble
is the double interval in equilibrium for all V2.

Finally, suppose that V1 is small and V2 is large. By
Lemma 5.8, a double interval in equilibrium has boundary
points x1, x2, x3, where x2 is close to −a/2, and a perimeter-
minimizing triple interval has boundary points−y2,−y1, y1, y′2,
where y1 is close to zero, −y2 ≤ −a, and y′2 ≥ a. Observe
that the single bubbles [−y2, y′2] and [x1, x3] have volume
V1 + V2 and that by Corollary 3.3 the first single bubble is
in equilibrium. Thus the perimeter of the outer boundary
points of a perimeter-minimizing triple interval is less than
or equal to the perimeter of the outer boundary points of
a double interval in equilibrium. So it remains to exam-
ine the perimeter from the inner boundary points. Observe
that

f
(
−a

2

)
= ea

2/4 > e(2
√
log 2)2/4 = 2 = 2f(0),

since a > 2
√

log 2. Because x2 is close to −a/2 and y1 is
close to 0, the perimeter from the inner boundary points
of a perimeter-minimizing triple interval is less than the
perimeter from the inner boundary points of a double inter-
val in equilibrium. Then the total perimeter for a perimeter-
minimizing triple interval is less than the total perimeter
for a double interval in equilibrium. Therefore for V1 small
and V2 large, a perimeter-minimizing double bubble is a
triple interval. �

Conjecture 5.10. Consider R with the smoothed-out ex-
ponential density (6). Let V1 ≤ V2 be prescribed volumes.
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Then there exists V0 > 0 such that for V1 ≥ V0, a perimeter-
minimizing double bubble is always a double interval. For
0 < V1 < V0, there is a unique V2 = λ(V1) such that dou-
ble intervals and triple intervals tie. For V2 > λ(V1), a
perimeter-minimizing double bubble is a triple interval. For
V2 < λ(V1), a perimeter-minimizing double bubble is a dou-
ble interval. Moreover, λ is a strictly increasing C1 func-
tion that tends to a positive limit as V1 → 0 and tends to
infinity as V1 → V0.

6. Bounds on the Tie Points

We put some bounds on the growth of the function V2 =
λ(V1), where the double and triple intervals tie, as defined
in Theorem 4.15. From this point onwards we assume that
f is a symmetric, strictly log-convex, C1 density such that
(log f)′ is unbounded.

One of the main results of this section is that λ(V1)/V1 →
∞ as V1 → ∞ for densities f = eψ such that ψxx/ψx is
bounded for x large (Cor. 6.7). As in Remark 6.8, this
implies that a line through the origin can intersect the tie
curve (V1, λ(V1)) more than once. For the Borell density,
this is illustrated in Figure 4 of the Introduction.

Lemma 6.1. For prescribed volumes V1 ≤ V2, let (x1, x2, x3)
be the double interval in equilibrium (with the left interval
enclosing volume V1) and (y1, y2) be the triple interval. Fix
V1. As V2 increases, y2 and x3 increase, while x1 and x2
decrease.

Proof. It is easy to see that y2 increases. As V2 increases, x3
can be moved to the right to accommodate the increased
volume. The double interval is no longer in equilibrium,
with

3∑
i=1

ψx(xi) > 0.



34 BONGIOVANNI ET AL.

In order to be in equilibrium, the double interval must shift
left. This implies that x1 and x2 decrease. To show that x3
increases, note that in equilibrium,

3∑
i=1

ψx(xi) = 0.

So because x1 and x2 decrease, x3 must increase so that the
sum remains zero. �

The next lemma shows that the density in volume coor-
dinate grows at least linearly but is approximately linear.

Lemma 6.2. Let f be a symmetric, strictly log-convex, C1

density on R. In volume coordinate, there is c > 0 such
that for large V ,

f(V ) ≥ cV.

Moreover, ∫ ∞
0

1

f(V )

diverges.

In particular, this implies that although f grows asymp-
totically at least as fast as V , it cannot grow asymptotically
faster than V c for any c > 1.

Proof. Because f ′ is strictly increasing (Lemma 4.2), there
is ε > 0 such that for large V , f ′ > ε. Hence for large V ,
f(V ) ≥ (ε/2)V .

The integral diverges because as we take V → ∞ in the
formula in Lemma 4.3, it must be the case that x(V ) →
∞. �

The next lemma shows that the rate of growth of the
volume of the interval [0, x] is on the order of f(x)/ψx for
typical densities. Notice that the hypothesis ψ2

x ≥ Mψxx
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for large x is mild and holds for all densities we are inter-
ested in, namely ex

n

and ee
x

. In fact, it holds if the sign of
ψ2
x −Mψxx changes only a finite number of times, because

we can easily check that a function satisfying ψ2
x < Mψxx

blows up in finite time.

Lemma 6.3 (Fundamental Bounding Lemma). Let f = eψ

be a symmetric, strictly log-convex, C1 density on R. For
x > 0, define

V =

∫ x

0
f.

Then

lim inf
x→∞

V

f/ψx
≥ 1.

Furthermore, if f is C2 and M > 1 is such that ψ2
x ≥Mψxx

for x large, then

lim sup
x→∞

V

f/ψx
≤ M

M − 1
.

In particular, if ψ2
x/ψxx →∞ as x→∞, then

lim
x→∞

V

f/ψx
= 1.

Proof. In volume coordinate, we can rewrite the quatity in
question via Lemma 4.2 as

V

f/ψx
=

V

f(V )/f ′(V )
=
V f ′(V )

f(V )
.

Because f ′ is nondecreasing,

f(V )− f(0) =

∫ V

0
f ′ ≤ V f ′(V ),

so that
V f ′(V )

f(V )
≥ f(V )− f(0)

f(V )
→ 1
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as V →∞, implying the desired lower bound.
Now suppose ψ2

x ≥ Mψxx for x large. In volume coordi-
nate, ψx = f ′(V ) and

ψxx =
df ′(V )

dx
=
df ′(V )

dV

dV

dx
= f ′′(V )f(V ).

So f ′2/(ff ′′) ≥M for large V . Now for V large(
f

f ′

)′
=
f ′2 − ff ′′

f ′2
≥ 1− 1

M
,

so that, for constants c and c1,

f

f ′
= c+

∫ V

1

(
f

f ′

)′
≥ c1 +

M − 1

M
V.

Therefore

lim sup
V→∞

V f ′

f
≤ M

M − 1
,

as desired. �

For lower bounds, we start by showing that, although
V ∗2 ≥ V1 by definition, it never approaches the line V2 = V1.

Proposition 6.4. On R with a symmetric, strictly log-
convex, C1 density f such that (log f)′ is unbounded, given
V1 > 0, let V ∗2 be the unique value of V2 such that the dou-
ble interval in equilibrium and the triple interval tie. Then
V ∗2 > 2V1 for all V1 > 0.

Proof. In volume coordinate (Lemma 4.2), we have

P2 = f(Ṽ ) + f(Ṽ + V1) + f(Ṽ + V1 + V ∗2 )

= 2f

(
V1
2

)
+ 2f

(
V1 + V ∗2

2

)
= P3,
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where Ṽ is the unique value such that the double interval is
in equilibrium. If we use −(V1 + V ∗2 )/2 in place of Ṽ , then
the resulting double interval has perimeter greater than or
equal to the original perimeter:

P2 ≤ 2f

(
V1 + V ∗2

2

)
+ f

(
V ∗2 − V1

2

)
.

Therefore

f

(
V ∗2 − V1

2

)
≥ 2f

(
V1
2

)
> f

(
V1
2

)
,

so that, because f is increasing, V ∗2 > 2V1. �

We now show that for slow-growing density f , specifically
where V f ′′(V ) is bounded in volume coordinate, the func-
tion λ grows superlinearly. We do not know whether this
hypothesis is sharp.

Proposition 6.5. Let f be a symmetric, strictly log-convex,
C2 density on R. Suppose that, in volume coordinate, f ′(V )
is unbounded and V f ′′(V ) is bounded. Given V1 > 0, let V ∗2
be the unique value of V2 such that the double interval in
equilibrium and the triple interval tie. Then V ∗2 /V1 → ∞
as V1 →∞.

Proof. By Lemma 6.2, there is c > 0 such that for large V1,
2f(V1/2) > 2cV1 > cV1 + f(0). So

cV1 ≤ 2f

(
V1
2

)
− f(0) = µ(V1, V1)− µ(V1, V

∗
2 )

= −
∫ V ∗

2

V1

∂µ

∂V2
dV2 =

∫ V ∗
2

V1

f ′(Ṽ + V1 + V2)− f ′
(
V1 + V2

2

)
dV2

≤
∫ V ∗

2

V1

f ′(V2)− f ′(V1) dV2 ≤
∫ V ∗

2

V1

f ′(V ∗2 )− f ′(V1) dV2

= (V ∗2 − V1)(f ′(V ∗2 )− f ′(V1)) ≤ V ∗2 (f ′(V ∗2 )− f ′(V1)),
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where the third line follows because f ′ is nondecreasing and
Ṽ < −V1 due to Lemma 4.8. Therefore, for V1 large,

(10) f ′(V ∗2 )− f ′(V1) ≥
c

V ∗2 /V1
.

Because f ′ is unbounded, f(V )/V →∞ as V →∞, and
so the constant c in (10) can be taken arbitrarily large. By
hypothesis on the growth of f , there is c1 > 0 such that
f ′′(V ) ≤ c1/V . So

f ′(V ∗2 )− f ′(V1) =

∫ V ∗
2

V1

f ′′ ≤ c1

∫ V ∗
2

V1

1

V
= c1 log

V ∗2
V1
.

Hence by (10)
V ∗2
V1

log
V ∗2
V1
≥ c

c1
.

As V1 →∞, c can be taken arbitrarily large, and so V ∗2 /V1 →
∞, as desired. �

Remark 6.6. Instead of f being C2, it suffices to assume
that f is C1 and that there is c > 0 such that f ′(V )−c log V
is eventually nonincreasing.

The following corollary translates the hypothesis of Propo-
sition 6.5 to the positional coordinate. It says that the con-
clusion of Proposition 6.5 holds for well-behaved densities
that can grow as fast as exp(ecx), because this is the density
where ψxx/ψx is constant. We do not know whether this
condition is sharp.

Corollary 6.7. Let f = eψ be a symmetric, strictly log-
convex, C2 density on R, where ψx is unbounded and ψxx/ψx
is bounded for x large. Given V1 > 0, let V ∗2 be the unique
value of V2 such that the double interval in equilibrium and
the triple interval tie. Then V ∗2 /V1 →∞ as V1 →∞.
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Moreover, there is c > 0 such that for any ε > 0, for V1
large,

V ∗2 ≥ V1(ψxf
−1(cV1))

1−ε,

where f−1 is the inverse function of the density in the po-
sitional coordinate.

Proof. Because ψx is unbounded and ψxx/ψx is bounded
for x large, ψ2

x/ψxx → ∞ as x → ∞, so the Fundamental
Bounding Lemma 6.3 applies. We have

V f ′′(V ) = V
df ′(V )

dV
= V

dψx
dx

dx

dV
=
V ψxx
f

.

By Lemma 6.3, V is on the same order as f/ψx for x
large, so V f ′′(V ) is on the same order as ψxx/ψx, which
is bounded. Therefore the conclusion of the first part fol-
lows from Proposition 6.5.

For the second part, we use the method of Proposition
6.5 to arrive at

(11)
V ∗2
V1

log
V ∗2
V1
≥ c

f(V1/2)

V1

for some constant c > 0. By Lemma 6.3, the quantity on
the right-hand side is on the same order as ψx(x(V1/2)),
where x is the function that converts from volume to posi-
tional coordinate. By Lemma 6.2, there is a constant c1 > 0
such that

f(x(V )) ≥ c1V

for V large. Because f is strictly increasing,

x(V ) ≥ f−1(c1V ).

So (11) becomes

V ∗2
V1

log
V ∗2
V1
≥ cψxf

−1(c1V/2),

which implies the conclusion. �
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Remark 6.8. Along a line V2 = rV1, the perimeter mini-
mizer may change from a triple interval to a double interval
and back to a triple interval, as numerically plotted for the
Borell density f(r) = exp

(
r2
)

in Figure 4 of the introduc-
tion, where the line V2 = 10V1 intersects the curve of tie
points in two places. Indeed, whenever ψx is unbounded
and ψxx/ψx is bounded for x large, Corollary 6.7 implies
that λ(V1)/V1 →∞ as V1 →∞, while by Theorem 4.15, λ
tends to a positive limit as V1 → 0, so λ(V1)/V1 → ∞ as
V1 → 0. Thus λ(V1)/V1 must assume some value twice in
the interval (0,∞).

The next two corollaries follow immediately from Corol-
lary 6.7. Corollary 6.9 gives a lower bound on the tie func-
tion λ for the Borell density. Numerics suggest that the
bound is not sharp: Figure 4 of the introduction suggests
that λ grows approximately quadratically for the Borell
density.

Corollary 6.9. On R with the Borell density f(x) = ex
2

,
given V1 > 0, let V ∗2 be the unique value of V2 such that the
double interval in equilibrium and the triple interval tie.
Then for all ε > 0,

V ∗2 ≥ V1(log V1)
1/2−ε

for V1 large.

Corollary 6.10. On R with the density f(x) = ee
x

, given
V1 > 0, let V ∗2 be the unique value of V2 such that the double
interval in equilibrium and the triple interval tie. Then for
all ε > 0,

V ∗2 ≥ V1(log V1)
1−ε

for V1 large.

The following proposition gives an upper bound for the
tie points. Note that the hypothesis ψ2 ≥Mψx for x large
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is mild. In fact, ψ2 < Mψx cannot hold for all x large, since
this inequality implies that the ψ blows up in finite time.

Proposition 6.11. Let f = eψ be a symmetric, strictly
log-convex, C1 density on R, where ψx is unbounded and
ψ2 ≥ Mψx for x large. Given V1 > 0, let V ∗2 be the unique
value of V2 such that the double interval in equilibrium and
the triple interval tie. Then, for constants c1 > 0 and c2,

V ∗2 ≤ c1 exp
(
ψψ−1x (2ψxA)

)
for V1 large, where

A = ψ−1(log V1 + 2 log log V1 + c2).

Proof. Let V2 = V ∗2 . Let the double interval in equilibrium
be (x1, x2, x3) and the triple interval be (y1, y2). We have

f(x1) + f(x2) + f(x3) = P3 = P2 = 2f(y1) + 2f(y2).

By Proposition 3.6, the interval [−y2, y2] is the best single
bubble for volume V1 + V2, so

f(x1) + f(x3) ≥ 2f(y2).

Thus
f(x2) ≤ 2f(y1),

which is equivalent to

(12) ψ(x2) ≤ ψ(y1) + log 2.

By the Fundamental Bounding Lemma 6.3, for x large,
(13)

f(x) ≤ 2V (x)ψx(x) ≤ 2

M
V (x)ψ(x)2 =

2

M
V (x)(log f)2,

because ψ2 ≥Mψx for x large. For x large, log f ≤ f 1/4, so
(13) implies that f ≤ cV 2 for a constant c. Using this on
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the right-hand side of (13) gives f ≤ cV (log V )2 for a new
constant c (we allow c to change from line to line). Hence
(12) becomes

ψ(x2) ≤ log f(y1) + log 2 ≤ log V (y1) + 2 log log V (y1) + c

≤ log V1 + 2 log log V1 + c,(14)

because V (y1) = V1/2. So |x2| ≤ A, where A is defined as
in the proposition statement.

We now estimate x1. We have

V1 =

∫ |x1|
|x2|

f ≥ 1

ψx(|x1|)

∫ |x1|
|x2|

ψxf =
f(x1)− f(x2)

ψx(|x1|)
.

So

f(x1) ≤ f(x2) + ψx(|x1|)V1 ≤ f(x2) +
1

M
ψ(x1)

2V1

= f(x2) +
1

M
(log f(x1))

2V1

≤ cV1(log V1)
2 +

1

M
(log f(x1))

2V1,(15)

by (14). For x large, log f ≤ f 1/4, so by (15),

f(x1) ≤ cV1(log V1)
2 +

1

M
f(x1)

1/2V1.

Solving gives f(x1) ≤ cV 2
1 . Applying this to the right-hand

side of (15) yields

f(x1) ≤ cV1(log V1)
2.

Hence

(16) ψ(x1) = log f(x1) ≤ log V1 + 2 log log V1 + c,

which implies that |x1| ≤ A where A is defined as in the
proposition statement.
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Therefore, for V1 large,

V ∗2 ≤ 2

∫ x3

0
f ≤ 2

∫ x3

1
f ≤ 2

ψx(1)

∫ x3

1
ψxf

=
2(f(x3)− f(1))

ψx(1)
≤ cf(x3) = c expψ(x3)

= expψψ−1x (ψx(x3)) = expψψ−1x (ψx(|x1|) + ψx(|x2|))
≤ expψψ−1x (2ψxA),

by (14) and (16), because f ′ = fψx and ψx(x3) = ψx(|x1|)+
ψx(|x2|) due to the equilibrium. �

The following corollaries compute the upper bounds ex-
plicitly for the densities ex

2

and ee
x

.

Corollary 6.12. On R with the Borell density f(x) = ex
2

,
given V1 > 0, let V ∗2 be the unique value of V2 such that the
double interval in equilibrium and the triple interval tie.
Then for all ε > 0,

V ∗2 ≤ V 4+ε
1

for V1 large.

Proof. Since ψ = x2 and ψx = 2x, ψ2 ≥ ψx for x large, so
Proposition 6.11 applies. Therefore

V ∗2 ≤ c1 exp 4(log V1 + 2 log log V1 + c2)

= cV 4
1 (log V1)

8 ≤ V 4+ε
1

for any ε > 0 and V1 large, where c1, c2 and c are constants.
�

Corollary 6.13. On R with the density f(x) = ee
x

, given
V1 > 0, let V ∗2 be the unique value of V2 such that the double
interval in equilibrium and the triple interval tie. Then for
all ε > 0,

V ∗2 ≤ V 2+ε
1

for V1 large.
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Proof. Since ψ = ψx = ex, ψ2 ≥ ψx for x large, so Proposi-
tion 6.11 applies. Therefore

V ∗2 ≤ c1 exp 2(log V1 + 2 log log V1 + c2)

= cV 2
1 (log V1)

4 ≤ cV 2+ε
1

for any ε > 0 and V1 large, where c1, c2 and c are constants.
�

7. Higher Dimensions

In RN with radial density going to infinity, for any n
given volumes, a perimeter-minimizing n-bubble exists by
an argument ([BDKS], Rmk. 3.3) after Morgan and Pratelli
([MP], Thm. 3.3).

In this section we use numerical techniques to determine
the shape and surface area of potentially perimeter-minimizing
double bubbles in higher dimensions with Borell density
er

2

as in Figure 3 of the Introduction. The code used for
these computations can be found at https://github.com/
arjunkakkar8/doublebubble.

To do so, we use the software Brakke’s Surface Evolver
[Br]. Starting with an initial shape, the surface evolver
iteratively minimizes the energy associated with that con-
figuration by moving its pieces while maintaining the values
of constraints defined on the configuration.

To examine the double bubble in space with Borell den-
sity, we define the initial configuration of two adjacent
cubes (squares in the plane). Then the energy of the system
is defined as the weighted perimeter of the cubes. Next the
weighted volume of the cubes is calculated by using the di-
vergence theorem. With boundary B, the weighted volume
is

VB =

∮
B

F · n, where ∇ · F = er
2

.

https://github.com/arjunkakkar8/doublebubble
https://github.com/arjunkakkar8/doublebubble
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Note that the choice of F for which ∇ · F = er
2

is not
unique. We used ?

F =

(
ey

2+z2
∫
ex

2

dx, 0, 0

)
.

Since there is no closed form for the integral, the vector
field is evaluated by using a series expansion. Care is taken
to use sufficiently many terms so that within the relevant
radius, the error from the approximation is negligible com-
pared to the 4-digit precision of the Evolver. Then the
system is evolved down the energy gradient while fixing
the weighted volumes. The final state that the system con-
verges to for the case of 2D and of 3D is depicted in Figure
3.

In closing, we conjecture that some of the behavior on R1

will recur in higher dimensions.

Conjecture 7.1. In RN with a smooth, radial, log-convex
density, a perimeter-minimizing double bubble is either

(i) the bubble inside a bubble (e.g. for V1 small and V2
large), or

(ii) the standard double bubble (e.g. for V2 close to V1).
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