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Abstract
Variational auto-encoder (VAE) is a powerful unsupervised learning
framework for image generation. One drawback of VAE is that
it generates blurry images due to its Gaussianity assumption and
thus `2 loss. To allow the generation of high quality images by
VAE, we increase the capacity of decoder network by employing
residual blocks and skip connections, which also enable efficient
optimization. To overcome the limitation of `2 loss, we propose to
generate images in a multi-stage manner from coarse to fine. In the
simplest case, the proposed multi-stage VAE divides the decoder
into two components in which the second component generates
refined images based on the course images generated by the first
component. Since the second component is independent of the
VAE model, it can employ other loss functions beyond the `2
loss and different model architectures. The proposed framework
can be easily generalized to contain more than two components.
Experiment results on the MNIST and CelebA datasets demonstrate
that the proposed multi-stage VAE can generate sharper images as
compared to those from the original VAE.

1 Introduction
In recent years, progress in deep learning has promoted the
development of generative models[1, 2, 3, 4, 5] that are able
to capture the distributions of high-dimensional dataset and
generate new samples. Variational auto-encoder (VAE)[6]
is a powerful unsupervised learning framework for deep
generative modeling. In VAE, the input data is encoded into
latent variables before they are reconstructed by the decoder
network. The VAE learns the transformation parameters by
optimizing a variational lower bound of the true likelihood.
The lower bound consists of two components. The first
component is the Kullback-Leibler (KL) divergence between
the approximate posterior and a prior distribution, which is
commonly a normal distribution. The second component
is the reconstruction loss given a latent variable. The VAE
assumes that the output follows a normal distribution given
the latent variable, thereby leading to an `2 loss in the
objective function. It has been shown that the `2 loss leads
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to blurry images when the data are drawn from multi-modal
distributions.

To make the VAE generate high quality images, some
approaches have been proposed to improve the decoder
network [8, 9, 10]. Since the decoder network is usually
implemented with convolutional neural networks (CNNs)
[11], we can increase the network depth to improve the
capacity of decoder networks as in [12, 13, 14]. However,
deeper networks can be difficult to optimize. Therefore, we
employ the deep residual blocks, which are easy to optimize,
to increase the capacity of decoder. By employing residual
blocks in the decoder network, the VAE can generate high
quality images. However, it still suffers from the effect of `2
loss and thus generates blurry images.

In this work, we propose a multi-stage VAE framework
to generate high quality images. The key idea of multi-stage
VAE is to generate images from coarse to fine. One chal-
lenge is that, since the decoder network is trained end-to-
end, it is difficult to control the decoder network and make it
generate images from coarse to fine. A simple solution is to
train two models separately in which the first model gener-
ates a coarse image and the second model refines the coarse
image. A drawback of this simple approach is that it reduces
the efficiency of the model and involves more computational
costs. To obtain fine images efficiently, we propose to em-
ploy an `2 loss in the middle of the decoder network, thus
requiring coarse images to be generated in an intermediate
stage of the decoder network. The remaining parts of the en-
coder network can be considered as a model that takes coarse
images as inputs and generates refined versions of them as
outputs. Indeed, the second network can be considered as a
super-resolution network. Following this interpretation, we
can employ any loss functions to refine the images in the
super-resolution network[15], thereby overcoming the effect
of `2 loss. In this way, we can generate images from coarse
to fine and alleviate the effect of `2 loss without introducing
extra parameters. Experimental results on the MNIST and
CelebA datasets demonstrate that the proposed multi-stage
VAE can capture more details and generate sharper images
than the original VAE. Some sample results are given in Fig-
ure 1.

2 Multi-Stage Variational Auto-Encoder
2.1 Variational Auto-Encoder Variational auto-encoder
(VAE) [16] is a generative model that is able to capture
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Figure 1: Comparison of reconstructed images from the CelebA dataset. The first row is the input images in the CelebA
training set. The second row is the reconstructed images generated by the original VAE. The third and fourth rows are the
results of deep residual VAE and multi-stage VAE, respectively.

the probability distribution over high-dimensional datasets.
For image generation tasks, given a dataset X = {x(i)}Ni=1,
we wish to learn a distribution function that can capture the
dependencies among pixels. To tackle this problem, we can
train a distribution model pθ1(x), parameterized by θ1, to
approximate the data distribution and optimize the model by
maximizing the log likelihood as follows:
(2.1)

log pθ1(X) = log pθ1(x
(1), . . . , x(N)) =

N∑
i=1

log pθ1(x
(i)).

However, probability distributions in high-dimensional
space are very difficult to model. Thus, a low-dimensional
latent variable z is usually introduced. It has been shown
in [16] that the latent variable models can be optimized
efficiently by maximizing a variational lower bound on the
likelihood function as

log pθ1(x)≥Eqφ(z|x)[log pθ1(x|z)]−DKL[qφ(z|x)|pθ1(z)]
= −LV AE ,(2.2)

where LV AE is the loss function we need to minimize
in VAE, and qφ(z|x) is an approximate representation of
the intractable pθ1(z|x) parameterized by qφ. The output
distribution in the first term is often Gaussian as:
(2.3)

pθ1(x|z) = N (x; fθ1(z), σ
2I) = C×exp

(
− (x− fθ1(z))2

2σ2

)
,

whereC is a constant, and fθ1(·) is computed by CNNs [12].

Therefore, the log likelihood can be expressed as:

log pθ1(X|z)=
N∑
i=1

logC × exp

(
− (x(i) − fθ1(z(i)))2

2σ2

)
,

= N × C − 1

2σ2

N∑
i=1

(x(i) − fθ1(z(i)))2,(2.4)

where N ×C is a constant that is irrelevant to fθ1(·) and can
be ignored in optimization. The first term in LV AE is a `2
loss between x and fθ1(z). The second term corresponds to
the Kullback-Leibler (KL) divergence between qφ(z|x) and
pθ1(z). VAE assumes that qφ(z|x) = N (z;µφ(x),

∑
φ(x))

and pθ(z) = N (z; 0, I). µφ(x) and
∑
φ(x) are also

implemented by CNNs. The second term in LV AE can
be considered as a prior regularization. Therefore, the loss
function of VAE can be written as

(2.5) LV AE = L`2 + Lprior,

where

L`2 = −Eqφ(z|x)[log pθ1(x|z)]

=
1

2σ2

N∑
i=1

(x(i) − fθ1(z(i)))2,(2.6)

Lprior = DKL[qφ(z|x)|pθ1(z)].(2.7)

2.2 Deep Residual Variational Auto-Encoder VAE has
shown promising results in image generation tasks[17, 18,
19]. However, the images generated by VAE are blurry. This
is caused by the `2 loss, which is based on the assumption
that the data follow a single Gaussian distribution. When
samples in dataset have multi-modal distribution, VAE can-
not generate images with sharp edges and fine details. In
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Figure 2: The network architecture of deep residual VAE. In this model, the encoder takes images as input and generate
latent variables. The latent variables are fed into decoder network to recover the original spatial information. To make the
decoder generate better image, we concatenate the original decoder network fθ1(·) with the residual block network fθ2(·)
to increase the capacity of model.

VAE, images are generated by fθ1(·). It is possible to gen-
erate better images by using more complex model for fθ1(·).
One solution is to employ the autoregressive model [20][21]
for decoder function fθ1(·). In the autoregressive model,
each pixel is conditioned on previously generated pixels. The
autoregressive model increases the dependency between pix-
els and generates images with fine details. However, since it
must generate images pixel by pixel, the prediction proce-
dure of autoregressive model is much slower compared with
other generative models such as VAE.

Since the decoder of VAE is implemented with CNNs,
a direct way to generate better images is to employ deeper
networks, resulting in increased capacity of the decoder
model [13]. The difficulty that deep neural networks facing
is the degradation problem. As the network depth increases,
the performance of deep networks initially improves and
then degrades rapidly. Although deep neural network models
with higher capacity usually yield better performance, it is
also challenging to optimize them. To efficiently train deep
neural networks, the batch normalization method is proposed
in [22] by reducing internal covariate shift. Another solution
is the residual learning framework proposed in [23], which
employs the residual blocks and skip connection to back-
propagate the gradients more efficiently in the network. The
introduction of skip connection and residual block makes
the optimization of deep neural networks more efficient.
It is possible to employ deeper neural works on complex
tasks. The residual learning framework has already been
successfully applied to image recognition, object detection,
and image super-resolution. To increase the capacity of
decoder in VAE and optimize the model efficiently, we

concatenate the original VAE decoder with several residual
blocks. The architecture of deep residual VAE is illustrated
in Figure 2. Given the original decoder fθ1(z), the deeper
decoder networks can be denoted as fθ = fθ2(fθ1(z)),
where fθ2(·) corresponds to the residual network. Compared
with the original VAE decoder, the deeper decoder networks
can capture more details. The loss function of deep residual
VAE can be written as:

(2.8) LRSV AE = L`2 + Lprior,

where

L`2 = −Eqφ(z|x)[log pθ1(x|z)]

=
1

2σ2

N∑
i=1

(x(i) − fθ2(fθ1(z(i))))2,(2.9)

Lprior = DKL[qφ(z|x)|pθ1(z)].(2.10)

2.3 Multi-Stage Variational Auto-Encoder Experiment
results in Section 3 show that deep residual VAE can capture
more details than the original VAE by adding residual blocks
to the decoder network. But the performance of deep residual
VAE saturates rapidly as more residual blocks are added.
As the depth of decoder network increases, the quality
of generated images improves with smaller and smaller
margins. This saturation effect is not a surprise as the
network still employs `2 loss and thus generates blurry
images. On the other hand, it is natural to use a step-by-step
procedure to generate high-quality images[24]. Specifically,
in image generation, we can generate a coarse image with
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Figure 3: The network architecture of multi-stage VAE based on the deep residual VAE. In the first stage, the sub-network
fθ1(·) generates a coarse image fθ1(z). In the second stage, the coarse image fθ1(z) is fed into the model fθ2(·) to produce
a fine image fθ2(fθ1(z)).

rough shape and basic colors first and then refine the coarse
image to a high quality one. In VAE, the decoder network
is trained end-to-end. Thus we cannot control the process
of image generation. To make the decoder network generate
images step-by-step, we need to divide the decoder network
into two components, where the first component generates
a coarse image, and the second component refines it to a
high quality one. To achieve this, we propose to add a loss
function at some location in the decoder network and enforce
the network to generate images at that location.

Here we use two stage deep VAE to illustrate how
this idea works. Since in the first stage we only need to
generate a coarse image, it is possible for the original VAE to
accomplish this using the decode function fθ1(·). Then we
need to build a model to refine the coarse images. When
we require the sub-network fθ1(·) in the decoder of deep
residual VAE to generate a coarse image, the input of fθ2(·)
is not some arbitrary intermediate feature maps but a coarse
image. In this way, the sub-network fθ2(·) acts as a model
to refine the coarse images generated from fθ1(z). The
architecture of the proposed multi-stage VAE is illustrated
in Figure 3. The loss of the multi-stage VAE can be written
as:

LMSVAE =−Eqφ(z|x)[log pθ(x|z)] +DKL[qφ(z|x)|pθ(z)]
+ Lrf (x, fθ2(fθ1(z))).(2.11)

Compared with deep residual VAE, multi-stage VAE has
two cost functions in the decoder network. The cost function
of the first stage corresponds to −Eqφ(z|x)[log pθ(x|z)] in
the original VAE, and it is used to generate coarse images.

The cost function of the second stage corresponds to the
third term in Equation 2.11, and it is used to refine the
coarse images. In multi-stage VAE framework, the second
network is independent of the VAE model. Therefore, we
can employ loss function on Lrf (x, fθ2(fθ1(z))). It also
overcomes the effect of `2 loss under the assumption that
data have a single Gaussian distribution. By employing
different loss functions, the second model can recover more
detailed information from blurry images. The LMSVAE can
be written as:

(2.12) LMSVAE = L`2 + Lprior + Lrf (x, fθ2(fθ1(z))),

where

Ll2 = −Eqφ(z|x)[log pθ1(x|z)]

=
1

2σ2

N∑
i=1

(x(i) − fθ1(z(i)))2,(2.13)

Lprior = DKL[qφ(z|x)|pθ1(z)].(2.14)

In addition, generating higher resolution images (e.g.,
128 × 128) is challenging for generative models. In multi-
stage VAE, the coarse images generated in the first stage
provide additional information and subsequently enables the
multi-stage VAE to generate high-resolution images. The
idea of tackling complex tasks in a multi-stage manner is
also employed by Stack GAN [24]. Stack GAN employs two
separate models to generate low-resolution images and high-
resolution images, respectively. The two models are trained
separately. However, our model divides the decoder network
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Figure 4: Comparison of reconstructed images from the CelebA dataset. The first row is the input images in the CelebA
training set. The second row is the reconstructed images generated by the original VAE. The third and fourth rows are the
results of deep residual VAE and multi-stage VAE respectively.

Figure 5: Comparison of reconstructed images from the MNIST dataset. The first row is the input images from the MNIST
training set. The second row is the reconstructed images generated by the original VAE. The third and fourth rows are the
results of deep residual VAE and multi-stage VAE, respectively.

into two components with different loss functions, and both
networks are trained jointly.

2.4 Connections with Super-Resolution We employ
residual networks in the second stage of our multi-stage
VAE to refine the coarse images generated in the first stage.
The key idea of the second model is similar to the super-
resolution residual net (SRResNet) [25]. In SRResNet, a
low-resolution image is fed into a network composed of
residual blocks and up-sampling layers. Then an image with
high resolution is generated by SRResNet.

In multi-stage VAE, we employ a pixel-wise loss func-
tion to recover the details between low-resolution images
and high-resolution images. Minimizing the pixel-wise loss
encourages the model to generate the average of plausible
solutions, thus leading to poor perceptual quality [17, 26].
A plausible loss function applied in image super-resolution
tasks is the combination of Euclidean distances in feature
space and adversarial loss. In fact, our multi-stage VAE
framework can work with any plausible super-resolution
model by replacing the loss function in Lrf and the model

architecture of fθ2(·).

3 Experiments
In this section, we evaluate the deep residual VAE and multi-
stage VAE1 on the MNIST and CelebA datasets. Since
the evaluation methods cannot guarantee the performance of
generative models, we compare the quality of generated im-
ages with the original VAE [27]. In addition, we employ
the structural similarity (SSIM) [28] to measure the simi-
larity between generated images and real images. Results
show that the proposed multi-stage VAE generates higher-
resolution images as compared to those generated by the
original VAE and deep residual VAE.

3.1 Settings CelebA [29] is a large scale face dataset
that contains 202, 599 face images. The size of each face
image is 178×218. Most prior VAE work using this dataset
crops the images to 64 × 64. In order to demonstrate the
performance of our multi-stage VAE in generating high-

1https://github.com/divelab/msvae/
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Figure 6: Illustration of decoder outputs on the CelebA dataset. The first and third rows are the output of fθ1(·) in deep
residual VAE and multi-stage VAE, respectively. The second and fourth rows are the outputs of fθ2(·) in deep residual VAE
and multi-stage VAE, respectively.

Figure 7: Illustration of decoder output on the MNIST dataset. The first and third rows are the outputs of fθ1(·) in deep
residual VAE and multi-stage VAE, respectively. The second and fourth rows are the outputs of fθ2(·) in deep residual VAE
and multi-stage VAE, respectively.

resolution images, we crop the image to 128×128. We train
three models for 200000 iterations. with batch size of 32 and
a learning rate of 2e-4. The encoder model of VAE consists
of four layers. Each layer consists of a convolution layer
with stride 1 followed by a convolution layer with stride 2.
The latent variable size of VAE is 512 for the CelebA dataset.
The decoder network consists of four deconvolution layers.
To generate images with high quality, five residual blocks are
employed in the decoder network. The `1 loss is used in the
objective function of the second network.

The MNIST is a handwritten digits dataset where the
size of each image is 28×28. We train three models on the
training set of 60, 000 images. Each model is trained for
100, 000 iterations with a batch size of 256 and a learning
rate of 1e-3. The encoder model of VAE consists of three
convolution layers with a stride of 2. The latent variable size
of VAE is set to 128. The decoder reconstructs the image
from the latent variable with three deconvolution layers. To
increase the complexity of decoder network, we concatenate
the original VAE decoder with five residual blocks in the
deep residual network. Each residual block consists of two
convolution layers followed by a batch normalization layer.
In multi-stage VAE, we add an `2 loss function at the location
of the output in the original VAE. The residual network is

Table 1: Comparison of SSIM by three models

Model CelebA MNIST
VAE 0.646 0.834
Residual-VAE 0.648 0.839
MSVAE 0.690 0.836

employed to refine the coarse images generated in the first
stage. To overcome the blurry effect of `2 loss, we employ
`1 loss in the objective function of the second network.

3.2 Quantitative Results and Analysis The goal of our
proposed method is to improve the quality of generated im-
ages and encourage generated images to be close to the orig-
inal images. Therefore, we employ the structural similarity
(SSIM) to measure the similarity between generated images
and real images as an evaluation of our model. We compute
SSIM on the dataset, and the results are shown in Table 1.
We can observe from the results that the images generated
by residual VAE are closer to the original images than those
of VAE. We employ multi-stage loss in our model without
adding extra parameters. The experimental results show that
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Figure 8: Sample images generated by different models when trained on the CelebA dataset. The three parts correspond to
standard VAE, residual VAE and multi-stage VAE.

Figure 9: Sample images generated by different models when trained on the MNIST dataset. The three parts correspond to
standard VAE, residual VAE and multi-stage VAE.

our proposed model achieves better performance than VAE
and residual VAE.

3.3 Qualitative Results and Analysis Figures 4 and 5
provide some reconstructed images by different models. We
can see that the deep residual VAE can capture more details
than the original VAE by employing more complex decoder
network. However, the images generated by deep residual
VAE are still blurry due to the effect of `2 loss. We also
observe that the effect of `2 loss is largely overcome by
employing the multi-stage loss. The blurry region becomes
clearer through the multi-stage refine process. These results
demonstrate that the proposed multi-stage VAE goes beyond
the bottleneck of increasing the capacity of decoder network,
thereby effectively overcoming the blurry effect caused by
the `2 loss.

Figures 6 and 7 provide some reconstructed images and
intermediate outputs of fθ1(·) by the deep residual VAE and
multi-stage VAE. We can see that at the intermediate location
in the decoder network of multi-stage VAE, a blurry image is
generated, and it is fed into the residual networks. Through
the refined operation of the second network, an image with
high quality is generated. Since the whole decoder network
of deep residual VAE only contains a single loss function,
the generation process suffers from the effect of `2 loss.
Therefore, the images generated by deep residual VAE are
still blurry.

Figures 8 and 9 provide some sample images generated
by the original VAE, deep residual VAE, and multi-stage
VAE when the models are trained on the CelebA and MNIST
datasets. We can see that the images generated by the multi-
stage VAE have higher resolution than those generated by
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other two methods. Also the images generated by the deep
residual VAE are clearer than those generated by the original
VAE. These results demonstrates that the proposed multi-
stage VAE is effective in generating high resolution images.

4 Conclusion and Future Work
In this work, we propose a multi-stage VAE that can generate
higher quality images than the original VAE. The original
VAE always generated blurry images due to the effect of
`2 loss. To generate high quality images, we propose to
improve the decoder capacity by increasing the network
depth and employing residual blocks and skip connection.
Although the deep residual VAE can capture more details, it
still suffers from the effect of `2 loss and generates blurry
images. To overcome the limitation of `2 loss, we propose
to generate images from coarse to fine. To achieve this
goal, we require the decoder network to generate a coarse
image by employing a `2 loss function in the first stage. The
subsequent stage in the decoder network acts as a super-
resolution network that takes a blurry image as input and
generates a high quality image. Since the super-resolution
network is independent of the VAE model, it can employ
other loss functions to overcome the the effect of `2 loss,
thereby generating high quality images. Experimental results
on the MNIST and CelebA datasets show that the proposed
multi-stage VAE can overcome the effect of `2 loss and
generate high quality images.

One interpretation of our proposed framework is that,
the network in the second stage can be considered as a super-
resolution module. Following this interpretation, we plan to
use other model architectures and loss functions commonly
used for super-resolution, such as the adversarial loss [25].
As has been mentioned, the proposed multi-stage framework
can be generalized to more than two components. We plan
to explore more stages in the future[16].
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