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Polynomial Singular Value Decompositions of a
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Abstract—1In this paper, we show that the conditional expec-
tation operators corresponding to a family of source-channel
models, defined by natural exponential families with quadratic
variance functions and their conjugate priors, have orthonor-
mal polynomials as singular vectors. These models include the
Gaussian channel with Gaussian source, the Poisson channel
with gamma source, and the binomial channel with beta source.
To derive the singular vectors of these models, we prove and
employ the equivalent condition that their conditional moments
are strictly degree preserving polynomials.

Index Terms— Singular value decomposition, natural exponen-
tial family, conjugate prior, orthogonal polynomials.

I. INTRODUCTION

PECTRAL and singular value decompositions (SVDs) of
S conditional expectation operators have many uses in infor-
mation theory and statistics [1]-[3]. As a result, it is valuable
to analytically determine the singular vectors corresponding
to some widely studied toy models. In this paper, we illus-
trate that a certain simple family of source-channel models
always has corresponding conditional expectation operators
with orthogonal polynomial singular vectors. We commence
by presenting this family of models and formally defining
conditional expectation operators in the next two subsections.

A. Natural Exponential Families With Quadratic Variance
Functions and Their Conjugate Priors

Since we will study source-channel models that have
exponential family and conjugate prior structure, we briefly
introduce these notions. Exponential families form an
important class of distributions in statistics because they
are analytically tractable and intimately tied to several
theoretical phenomena [4], [S]. For instance, they have
sufficient statistics with bounded dimension after i.i.d.
sampling (Pitman-Koopman-Darmois theorem) [6], they have
conjugate priors [7], they admit efficient estimators that
achieve the Cramér-Rao bound under a mean parametriza-
tion [5], they are maximum entropy distributions under
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moment constraints [8], and they are used in tilting arguments
in large deviations theory [5]. We are interested in a particular
subclass of one-parameter exponential families known as nat-
ural exponential families with quadratic variance functions
(NEFQVF). So, we define natural exponential families next.

Definition 1 (Natural Exponential Family): Given a mea-
surable space (), B())) with a o-finite measure u, where
Y C R and B()) denotes the Borel o-algebra on ), the para-
metrized family of probability densities {Py(-;x):x € X}
with respect to u that have support ) (independent of x) is
called a natural exponential family when each density has the
form:

Vxe X, Vyel, Pr(y;x)=exp(xy—a(x)) Py(y;0)

where Py (-; 0) is a base density function, and:

Vx € X, oa(x)=log (/yCXP(Xy) Py(y;O)d#(y))

is known as the log-partition function which satisfies a.(0) = 0
without loss of generality. The parameter x is called the
natural parameter, and the natural parameter space X =
{x e R:Ja(x)] < 400} € R is defined as the largest interval
where the log-partition function is finite. We usually assume
without loss of generality that 0 € X'. (Here, and throughout
this paper, exp(-) and log(-) refer to the natural exponential
and the natural logarithm with the base e, respectively.)

In [9] and [10], Morris specialized Definition 1 further in
an effort to justify why certain natural exponential families
like the Gaussian, Poisson, and binomial enjoy “many useful
mathematical properties” [9]. He asserted that the tractability
of these distributions stemmed from their quadratic variance
functions. To define this, observe that a(-) is infinitely differ-
entiable on X’° (the interior of X') [4], and satisfies:

Vx e X, a(x) =log(Ep, (.0 [exp (xY)]) (1)
Vx € X°, a'(x) = Ep,(.x)[Y] )
Vx € X°, a"(x) = VARp, (..x) (¥) 3)

where Y denotes a random variable taking values in Y, (1) is
the cumulant generating function of Y, and (3) is the Fisher
information Y carries about x [5]. Following the exposition
in [9], we may define the variance function V : image(a’) —
RT as the variance of Y written as a function of the mean
of Y:

Vy eimage(a’), V()2 a"(' " () )
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where a/(-) is injective because a”(-) is strictly positive in
non-degenerate scenarios. We can now define NEFQVFs.

Definition 2 (NEFQVF): An NEFQVF is a natural expo-
nential family whose variance function V (y) is a polynomial
in y with degree at most 2.

We will only analyze channel conditional distribution mod-
els Pyix(ylx) = Py(y; x) that are NEFQVFs (although we
will not explicitly use the NEFQVF parametrization in our
calculations). There are six possible NEFQVFs [9]:

1) Gaussian pdfs with mean parameter and fixed variance

2) Poisson pmfs with rate parameter

3) binomial pmfs with success probability parameter and

fixed number of Bernoulli trials

4) gamma pdfs with rate parameter and fixed “shape”

5) negative binomial pmfs with success probability para-

meter and fixed “number of failures”

6) generalized hyperbolic secant pdfs (see [9] for details

regarding this family)
and only the first three will lead to non-degenerate situations.

Given a channel Py|x(y|x) = Py(y;x) defined by an
NEFQVE, we will only analyze source distributions that
belong to the corresponding conjugate prior family. For any
natural exponential family, we may define a conjugate prior
family as shown next [4], [5].

Definition 3 (Conjugate Prior): Suppose we are given a
natural exponential family from Definition 1 such that X
is a non-empty open interval defining the measurable space
(X, B(X)) with o-finite measure A. The corresponding con-
Jjugate prior family is the parametrized family of probability
densities {Px (-; z,n) : (z,n) € E} with respect to 4 that have
support X (independent of (z, n)), and are of the form:

Vx € X, Px(x;z,n)=exp(zx —na(x) —t(z,n))

for any (z,n) € E, where the log-partition function 7 : & —

R is given by:

YV (z,n) € E, t(z,n)=log (/X exp (zx — na(x)) di(x))

and (z,n) are hyper-parameters that belong to the hyper-
parameter space E = {(z,n) e R x R : |7(z, n)| < 4+00}.

When channels are given by natural exponential families,
if we use a conjugate prior source, then posterior distributions
also belong to the conjugate family. This structure allows
computationally efficient updating of beliefs in Bayesian infer-
ence problems [5]. A comprehensive list of different conjugate
prior families can be compiled from [5], [10], [11], and we
will present the conjugate prior families for the first three
NEFQVFs listed above (without tediously referring back to
the aforementioned sources) in section II.

B. Conditional Expectation Operators

We next formally define conditional expectation operators.
We fix a probability space, (2, F,P), and define an input
random variable X : Q — X C R with source probability
density Px with respect to a o-finite measure A on the
standard measurable space (X, B(X)). Likewise, we define
an output random variable ¥ : Q — Y C R, and chan-
nel conditional probability densities {Py‘ X=x : X € X } with
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respect to a o-finite measure u on the standard measur-
able space (), B()))). We will use the notation Px and Py
to denote the marginal probability laws of X and Y, and
we will assume that Py and Py have (measure theoretic)
supports X and Y (which are the closures of X and ))),
respectively. Finally, we note that this source-channel model
defines a joint probability density Px y on the product measure
space (X x YV, B(X) ® B(Y), 2 x p) such that Py y(x,y) =
Py|x(y|x)Px(x) for every x € X and y € ). In section II,
our channels will be NEFQVFs and our sources will be the
corresponding conjugate priors.

We next define the Hilbert spaces and linear operators
pertinent to our discussion. Corresponding to the measure
space (X, B(X),Py), we define the separable Hilbert space
L2 (X, Px) over the field R:

L2 (X, Py) 2 {f:X—)R’E[fZ(X)] <+oo} )

which is the space of all Borel measurable and Py-square
integrable functions, with correlation as the inner product:

Vf,g € L2(X,Px), (f.8)p, ZELf(X)g(X)] (6

and induced norm:

Ve 2By, Ifl, 2 (605, =E[£X] . @

Likewise, we define the separable Hilbert space £2 (Y, Py)
corresponding to the measure space (), B())), Py). The condi-
tional expectation operators are maps that are defined between
these Hilbert spaces. The “forward” conditional expectation
operator C : £L* (X, Pyx) — L? (), Py) is defined as:

CNHOEELfXD)Y =y], (8)

and the “reverse” conditional expectation operator C*
L2 (Y, Py) — L2 (X, Py) is defined as:

Vg e L2V, Py), (C*(g)(x) 2E[g(M)IX=x]. (9

It is straightforward to verify from (8) and (9) that the
codomains of C and C* are indeed Hilbert spaces. The next
proposition collects some simple properties of these operators.
Proposition 1 (Conditional Expectation Operators): C and
C* are bounded linear operators with operator norms
ICllop = IC*|lop = 1. Moreover, C* is the adjoint operator
of C.
Proof: See Appendix A. |
Given NEFQVF channels and conjugate prior sources,
we will prove that the corresponding operators C and C* have
singular vectors that are orthonormal polynomials under the
regularity condition that the input and output Hilbert spaces
have orthonormal polynomial bases. The ensuing two subsec-
tions provide some illustrations from the literature where such
SVDs can be useful.

Vfe L (X, Px),

C. Maximal Correlation Functions

In statistics, one utility of singular vectors of conditional
expectation operators is that they can be construed as “max-
imal correlation functions.” To explain this, we first recall
the Hirschfeld-Gebelein-Rényi maximal correlation, which is
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a variational generalization of the well-known Pearson correla-
tion coefficient. Given two jointly distributed random variables
X € X and Y € ), the maximal correlation between them is:

p(X;Y) 2 s}up E[f(X)g(Y)] (10)
-8

where the supremum is over all functions f € £ (X, Py)
and g € L% (Y, Py) such that E[f(X)] = E[g(Y)] = 0 and
E[f2(X)] = E[g?(Y)] = 1 [1]. Furthermore, if X or Y is
a constant almost surely, then p(X;Y) = 0. p(X;Y) was
originally introduced as a normalized measure of the statistical
dependence between X and Y that satisfies seven “reasonable”
axioms [1]. Indeed, 0 < p(X;Y) < 1, and p(X;Y) = 0 if
and only if X and Y are independent random variables.

Maximal correlation turns out to have an elegant spectral
characterization. Notice that the everywhere unity functions
1y € L*(X,Px) and 1y € £? (Y, Py) (which are defined
in Appendix A) are the right and left singular vectors of the
conditional expectation operator C corresponding to its largest
singular value of [|Cllop = I:

C(l;{)ZIy and C*(ly)ZIX. (11)

The orthogonal complement of the span of this right singu-
lar vector, span(ly)®™ = {f € £*(X,Px) : E[f(X)] =0},
is a sub-Hilbert space of £ (X, Py). Indeed, it is clearly a
linear subspace of £2(X,Py) that inherits the same inner
product (6), and its completeness follows from the continuity
of the inner product. It is proved in [1, Th. 1] that maximal
correlation can be written as the Courant-Fischer-Weyl vari-
ational characterization of the second largest singular value
of C:

C
fespan(1x)+\{0} ”f”PX

where 0 denotes the zero function. If C is a compact operator,
the supremum in (12) is actually achieved by some right
singular vector f* € span(ly)’. Furthermore, f* and the
corresponding left singular vector g* = C(f*)/[IC(f")lp,
are precisely the maximal correlation functions achieving the
supremum in (10).

Maximal correlation functions can also be construed as the
solutions to a general version of non-linear regression studied
in [2]:

(12)

. 2
. min _E[(£00) ~ g(1)’] (13)
where F = {f € £2 (X, Px) : E[f(X)] =0, E[f2(X)] = 1}
and G = {g e L2V, Py) :E[g(¥)] =0, E[g>(Y)] = 1} are
collections of arbitrary (non-linear) Borel measurable func-
tions, and we assume the minimum exists. Note that when
real data (that is assumed to be drawn i.i.d. from Py y)
is given, the idealized problem in (13) can be modified by
replacing the theoretical (population) expectations with empiri-
cal (sample) expectations. Breiman and Friedman proposed the
alternating conditional expectations (ACE) algorithm in [2]
to solve (13) and find the optimal f* € F and g* € G that
provide the best linear relationship between f*(X) and g*(Y).
Moreover, these f* and g* are also the maximal correlation
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functions that achieve (10), because E[(f(X) — g(¥))*] =
E[£2(X)] —2E[f (X)g(Y)]+E[g>(Y)] = 2 —2E[ £ (X)g(V)].
Hence, the non-linear regression problem (13) studied in [2]
is equivalent to the maximal correlation problem (10).

While the singular vectors f* and g* of C have palpa-
ble significance in the contexts of regression and maximal
correlation, we may impart other singular vectors of C with
similar operational interpretations. The pair of singular vectors
corresponding to the kth largest singular value of C (for
k €{2,3,4,...}) are the functions that are maximally corre-
lated and orthogonal to all previous pairs of singular vectors.
Hence, we refer to all such singular vectors as “maximal cor-
relation functions.” Maximal correlation functions associated
with larger singular values of C can be interpreted as more
informative score functions, and are useful in decomposing
information into several mutually orthogonal parts. Indeed,
such functions are used to perform inference on hidden
Markov models in an image processing context in [12], and
algorithms based on the ACE algorithm to learn such functions
are presented in [13]. These algorithms are essentially power
iteration methods to compute singular vectors of C. Our main
results in section II provide explicit characterizations of maxi-
mal correlation functions for conditional expectation operators
defined by NEFQVFs and their conjugate priors.

D. Local Perturbation Arguments in Information Theory

SVDs of conditional expectation operators are also useful
when performing perturbation arguments in network informa-
tion theory. For instance, SVDs of Gaussian conditional expec-
tation operators are used to demonstrate that non-Gaussian
codes can achieve higher rates than Gaussian codes for various
Gaussian networks in [3] (where in particular, the strong
Shamai-Laroia conjecture for the Gaussian ISI channel is
disproved). As another example, we briefly delineate the linear
information coupling problem studied in [14].

Suppose X and ) are finite sets (and A and u are counting
measures), Py, y is a joint pmf such that Px(x) > O for every
x € X and Py(y) > O for every y € )V, and U € U (with
|| < 00) is an arbitrary random variable that is conditionally
independent of ¥ given X so that U — X — Y is a Markov
chain. For any fixed € # 0, we first consider the extremal
problem that maximizes /(U; Y)) with the constraint that only
a thin layer of information can pass through X:

sup 1(U;Y)
Py,Pxiy:U—>X—>Y

1(U:X)<1e?

(14)

where the supremum is over all Py and Py |y such that Py y is
fixed (or equivalently, over all Py x). Note that problem (14)
and some of its variants have also been considered in the
contexts of investment portfolio theory [15], the information
bottleneck method [16], and strong data processing inequali-
ties [17]-[19]. Then, we assume each conditional pmf Py y—,
for u € U is a (multiplicative) local perturbation of Py by
$u € LH(X, Py):

Yuel, Pxiu=u= Px(lx +€dpy)

where the sums and products in (15) hold pointwise, and for
every u € U, E[¢,(X)] = 0 so that Pxjy—, is a valid pmf.

5)
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From the Markov relation U — X — Y, we have:

Yueld, Pyw=u = Py(ly+eC(d,)) (16)

where the conditional expectation operator C : £> (X, Px) —
£ (Y, Py) was defined in (8). Using (15) and (16), we can
locally approximate the mutual information terms in (14)
via the result in Corollary 1 of Appendix B. Neglecting all
0(62) terms, this produces the linear information coupling
problem:

> Py IC@B)I5,

ueld

max (17)

Py, {py:ucld}

where we maximize over all Py and {¢, € L2(X,Px):u €
U} subject to the constraints: E[¢, (X)] = 0 for every u € U,
> wer Pu@) Igullp, < 1,and 3, o Pu(u) Px¢h, = 0 (which
ensures that the marginal pmf of X is fixed at Px).

It is straightforward to verify that problem (17) can be
solved by setting U/ = {—1, 1} with Py(—1) = Py(l) = %
(i.e. U ~ Rademacher), letting ¢; be a unit norm right sin-
gular vector of C corresponding to its second largest singular
value, and setting ¢_; = —¢;. Hence, the SVD of a con-
ditional expectation operator C solves the linear information
coupling problem by identifying the optimal perturbations as
right singular vectors of C. Moreover, problem (17) is actually
a single letter case of a more general multi-letter problem,
which can be solved via single letterization using tensorization
properties of the SVD [14]. Huang and Zheng [14] exploit
this tensorization to study questions in network information
theory.

E. Outline

Having illustrated the utility of SVDs of conditional expec-
tation operators, we briefly outline the remaining discussion.
In section II, we will state the polynomial SVDs of three
source-channel models in key theorems. In section III,
we will present the proofs of these results via a useful
lemma.

II. MAIN RESULTS

In this section, we present our main results. Informally,
we show that:

Conditional expectation operators corresponding to every
NEFQVF channel and its conjugate prior source, such that
all moments of the marginal distributions exist and are finite,
have orthonormal polynomial singular vectors.

It is straightforward to verify that the moments of the output
marginal distributions corresponding to the gamma, negative
binomial, and generalized hyperbolic secant NEFQVFs and
their conjugate priors do not always exist, and are sometimes
infinite. So, the Hilbert space Ez()},]P’y) does not have an
orthonormal basis of polynomials for these joint distributions,
and we cannot hope for the singular vectors of C to be
orthonormal polynomials. Hence, we will establish three main
results in this paper corresponding to the Poisson, binomial,
and Gaussian NEFQVFs. These results are outlined in the
ensuing subsections.
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A. The Laguerre SVD

Recalling the setup in subsection I-B, let X = (0, co) and
Y=N#2{0,1,2,...}, and let 1 be the Lebesgue measure and
4 be the counting measure. For our first result, the channel
conditional pmfs {Pyx—, ~ Poisson(x) : x € (0,00)} are
the NEFQVF of Poisson distributions:

xYe ™

Vx € (0,00), VyeN, Pyx(ylx) = (18)
where x € (0, 00) is the rate (or expectation) parameter of the
Poisson distribution. We remark that the Poisson channel is a
widely used model in optical communications where X rep-
resents the intensity of transmitted light and Y represents the
number of photons hitting a direct-detection receiver; see [20]
and the references therein. The corresponding conjugate prior
family consists of gamma distributions, and we assume that
the source pdf is Py ~ gamma(a, f):

ﬂaxa—le—ﬁx
I'(a)

where a € (0, 00) is the shape parameter, f € (0, 00) is the
rate parameter, and the gamma function, I : (0, 00) — R, is:

o
F(z)é/ x¥ e ™ dx.
0

Vx € (0,0), Px(x)= (19)

(20)

Note that when o € Z* £ {1,2,3,...}, the gamma dis-
tribution specializes to an Erlang distribution. The posterior
pdfs {Pxjy=y ~ gamma(a + y,f + 1) : y € N} are also
gamma distributions as we used a conjugate prior. Finally,
the output marginal pmf Py ~ negative-binomial(a, p = ﬁ)
is a negative binomial distribution:

y o
F(a+y)( 1 ) ( s ) @1
C(a)y! \p+1 p+1

where p = % € (0, 1) is the success probability parameter
and a € (({ 00) is the number of failures parameter. When
a € 71, the negative binomial random variable is the sum
of o independent geometric random variables, and models the
number of successes in a Bernoulli process until a failures.

The Hilbert space £2((0, 00), Px) has an orthonormal basis
of generalized Laguerre polynomials. In particular, the gen-
eralized Laguerre polynomial with degree k € N, denoted
L,Ea’ﬁ ). (0, 00) — R, is defined by the Rodrigues formula:

k
(o, ) A r(a) 1—a px d k+a—1 —px
L = Termr © ¢ ok (" ¢ ) (22)

with the parameters a, f € (0, 00). These polynomials satisfy
the orthogonality relation:

VyeN, Pr(y)=

Vi k€N, E[L§“’ﬁ)(X)L,£“’ﬁ)(X)]: o (23)

with respect to the gamma pdf, where J;; is the Kronecker
delta function that equals 1 if j = k and equals O otherwise.

The Hilbert space £>(N, Py) has a unique (up to arbitrary
sign changes) orthonormal polynomial basis of Meixner poly-
nomials. The Meixner polynomial with degree k € N, denoted
les’p) : N — R, is parametrized by s € (0,00) and



7720

p € (0,1). These polynomials satisfy the orthogonality
relation:
oo
's+y)
S MEPGMEP ()2 pr (L - p)Y =i (24)
o J I'(s)y!

for every j,k € N, with respect to the negative binomial
distribution with parameters s € (0,00) and p € (0,1).
All our definitions of orthogonal polynomials are derived
from [21]-[23], and we use to these sources in subsequent
sections without tediously referring back to them.

The next theorem presents the orthogonal polynomial SVD
of the conditional expectation operator C corresponding to the
gamma source and Poisson channel model.

Theorem 1 (Laguerre SVD): For the Poisson channel with
gamma source, as presented in (18) and (19), the conditional
expectation operator, C : L2 ((0, 00), Px) — £ (N, Py), has
SVD:

1
o,
Vke N, C (L,({a’ﬁ)) = akMk( ﬂH)

where {oy € (0, 1] : k € N} are the singular values such that
oo=1and lim o =0.
— 00 .

The o = 1 case of Theorem 1, where Px is an exponen-
tial distribution and Py is a geometric distribution, is also
presented in [12], and the corresponding singular values are
calculated to be:

Vk e N ! %
eN, ov=——) .
¢ (/3+1)

Note that when a = 1, the right singular vectors of C are
known as Laguerre polynomials. Although the left singular
vectors of C are Meixner polynomials, we refer to this result as
the “Laguerre SVD” because Meixner polynomials behave like
discrete Laguerre polynomials. Indeed, the negative binomial
distribution is the discrete analog of the gamma distribu-
tion (much like the geometric distribution is the discrete analog
of the exponential distribution).

(25)

B. The Jacobi SVD

For our second result, let X = (0,1) and YV = [n] £
{0,...,n}, and let 1 be the Lebesgue measure and u be the
counting measure in subsection I-B. The channel conditional
pmfs { Py|x=x ~ binomial(n, x) : x € (0, 1)} are the NEFQVF
of binomial distributions:

Vx €(0,1), Yy € [n], Py|x(y|x)=(Z)xy(1 —x)"7 (26)

where x € (0, 1) is the success probability parameter and
n € Z7 is the fixed number of Bernoulli trials of the binomial
distribution. The capacity of this “biased coin channel” model
has been studied in the literature [24]. The corresponding
conjugate prior family consists of beta distributions, and we
assume that the source pdf is Px ~ beta(a, f5):

xafl(l _ x)ﬂfl

Vx € (0, 1), B )

Px(x) = 27)
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where a, f € (0,00) are shape parameters, and the beta
function, B : (0, 00)> — R, is defined as:

b - Izl (z2)
A z1—1 -1 —
B(z1, 22) /0 X 1—=x) dx TG+ )
The posterior pdfs { Px|y=, ~ beta(a+y, f+n—y):y € [nl]}
are also beta distributions since we used a conjugate prior.
Lastly, the output marginal pmf Py ~ beta-binomial(n, a, )
is the beta-binomial distribution:

Vyelnl, Pr(y)= (’;) 2 +1:Eaﬁ ;)n =

with parameters n € Z*, a € (0, 00), and S € (0, 00).

The Hilbert space £2((0, 1), Px) has an orthonormal basis
of Jacobi polynomials. In particular, the Jacobi polynomial
with degree k € N, denoted Jk(a’ﬁ) :(0, 1) — R, is defined by
the Rodrigues formula:

(28)

(29)

k
Jk(a’ﬁ)(x) A xlfa(l _ x)lfﬂ%(xlﬁrafl(l _ x)k#»ﬂ*l)
1y [@htat B DB T ktat 1)
T(k+o)T (k+p) k!

with the parameters a, € (0, 00). These polynomials satisfy
the orthogonality relation:

(30)

Vji,keN, E [J;a’ﬁ)(X)Jk(a’ﬁ)(X)] =0k 31)

with respect to the beta distribution. They also generalize
several other orthogonal polynomial families such as the
Legendre and Chebyshev polynomials.

The Hilbert space £2([n], Py) has a unique (up to arbitrary
sign changes) orthonormal polynomial basis of Hahn polyno-
mials. The Hahn polynomial with degree k € [n], denoted
Q,({a’ﬁ) : [n] — R, is parametrized by a, f € (0, 00). These
polynomials satisfy the orthogonality relation:

Vikeml, E[QfPmo " m)] = o

with respect to the beta-binomial distribution. The Hahn poly-
nomials also generalize several other families of orthog-
onal polynomials in the limit, including the Jacobi and
Meixner polynomials defined earlier, and the Krawtchouk and
Charlier polynomials which are orthogonal with respect to the
binomial and Poisson distributions, respectively [21].

The following theorem presents the orthogonal polynomial
SVD of the conditional expectation operator C corresponding
to the beta source and binomial channel model.

Theorem 2 (Jacobi SVD): For the binomial channel with
beta source, as presented in (26) and (27), the conditional
expectation operator, C : L2 ((0, 1), Px) — £* ([n], Py), has
SVD:

(32)

vienl, € (1) = a0
vk e NM\[nl, € (47) =0

where {oy, € (0, 1]: k € [n]} are the singular values such that
oo = 1.

When ¢ = f = 1, Px is the uniform pdf and Py is
the uniform pmf. The corresponding orthonormal polynomials
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are known as Legendre polynomials and discrete Cheby-
shev or Gram polynomials respectively, and are analogs of
each other. For this reason, and the fact that Jacobi polynomi-
als can be obtained as limits of Hahn polynomials, we refer
to the SVD in Theorem 2 as the “Jacobi SVD.”

C. The Hermite SVD

For our final result, let X = ) = R, and let 1 and u be the
Lebesgue measure in subsection I-B. The channel conditional
pdfs {Pyjx=x ~ N(x,v) : x € R} are the NEFQVF of

Gaussian distributions:
N2
exp (_ u) (33)

Vx,y e R, Pyx(ylx)= »

1
V2rv
where x € R is the expectation parameter of the Gaussian
distribution and v € (0, o0) is some fixed variance. We can
construe (33) as the well-known single letter additive white
Gaussian noise (AWGN) channel:

Y=X+W, X1 W~N(QO,v) (34)

where the input X is independent of the Gaussian noise W.
The corresponding conjugate prior family consists of Gaussian
distributions, and we assume that the source pdf is
1
Vx eR, Px(x)=——¢

PX NN(ra p)
(_ (x — r)z) (35)
V27 p P 2p

where r € R is the expectation parameter, and p € (0, 00)
is the variance parameter. The posterior pdfs {Pxjy—, ~
N((py+vr)/(p+v), pv/(p+V)) : y € R} are also Gaussian
distributions as we used a conjugate prior. Finally, the output
marginal pdf Py ~ A (r, p+v) is also a Gaussian distribution.

The Hilbert spaces £>(R,Py) and £*(R,Py) have ortho-
normal bases of Hermite polynomials. In particular, the Her-
mite polynomial with degree k € N, denoted H k(m) ‘R —> R,
is defined by the Rodrigues formula:

k 2 gk )
(2 NN ¢ G- d =)
Hy (x) = F (=Dfe 2 W e~ 2t (36)

with the parameters » € R and 7 € (0, 00). These polynomials
satisfy the orthogonality relation:

o (x—r 2
Vi keN, / Hj(”)(x)H,f”)(x) 5 =0
—00

1

V2T ¢
(37)
with respect to the Gaussian distribution N (r, 7).

The ensuing theorem presents the orthogonal polynomial
SVD of the conditional expectation operator C corresponding
to the Gaussian source-channel model.

Theorem 3 (Hermite SVD): For the Gaussian channel with
Gaussian source, as presented in (33) and (35), the conditional
expectation operator, C : L* (R, Px) — L* (R, Py), has SVD:

VkeN, C(H"")=am""

where {o; € (0, 1] : k € N} are the singular values such that
oo =1 and klim or =0.
— 00
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This result is known in the literature. For example, Theo-
rem 3 was derived in [3] for the r = O case, where the authors
also computed the singular values to be:

p 7
_— ak=( ) . (38)
p+v

Furthermore, the authors of [3] also remarked upon the pos-
sible relation between Theorem 3 and the classical theory
of the Ornstein-Uhlenbeck process. We include Theorem 3
here for completeness, and provide an alternative proof of it.
Theorems 1 and 2 generalize Theorem 3 by establishing
a “nice” class of source-channel models whose conditional
expectation operators have orthogonal polynomial singular
vectors.

D. Related Results in the Literature

The general problem of analyzing when the singular vec-
tors (or eigenvectors) of certain linear operators are orthogonal
polynomials has been widely studied in mathematics. Compre-
hensive resources on the general theory of orthogonal polyno-
mials include [21]-[23]. In particular, it is well-known that
the classical orthogonal polynomials (Hermite, Laguerre, and
Jacobi) arise as eigenfunctions of certain second order (Sturm-
Liouville type of) differential operators. Both [23] and [25]
meticulously expound various relationships between orthogo-
nal polynomials and differential or integral linear operators.

In the setting of probability theory, there are deep ties
between orthogonal polynomials and certain Markov semi-
groups. Under regularity conditions, the conditional expecta-
tion operators of a semigroup are completely characterized by
an infinitesimal generator, because they form the unique solu-
tion to the heat equation defined by their generator (due to the
Hille-Yosida theorem) [26]. When the generator is a diffusion
operator (which is a kind of second order differential opera-
tor), the orthogonal polynomials with respect to the invariant
measure of the semigroup turn out to be eigenfunctions of the
generator, or equivalently, the conditional expectation oper-
ators. Moreover, there are only three families of orthogonal
polynomials (up to scaling and translations) that are eigenfunc-
tions of diffusion operators: the Hermite, Laguerre, and Jacobi
polynomials [27]. The three corresponding diffusion operators
are precisely the aforementioned second order differential
operators with classical orthogonal polynomial eigenfunctions.
In particular, the Markov semigroup in the Hermite case is the
well-known Ornstein-Uhlenbeck semigroup. We refer readers
to [26], [27], and the references therein for detailed expositions
of these ideas.

Our results are closer in spirit to a line of work in statistics
initiated by Lancaster [28], [29]. Given marginal distributions
Px and Py, and sequences of orthonormal functions, {f; €
L2 (X,Px)} and {gx € £* (), Py)}, a bivariate distribution
Pyx,y is called a Lancaster distribution (with respect to Py,
Py, {f;}, and {gk}) if for every j, k:

E[fi(X)gr(Y)] = oxdjx

for some Lancaster sequence of non-negative correla-
tions {ox}. In [28], Lancaster proved that if Pxy is

(39)
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absolutely continuous with respect to the product distribution
Px x Py, and has finite “mean square contingency” (i.e. the
x2-divergence Xz(PX,Y [IPx xPy) = Ep, «p, [r (X, Y)2] —1is
finite), then there exist orthonormal bases, { f; € L2 (X, Px))}
and {gx € L2 (), Py)}, such that Py y is a Lancaster distrib-
ution, and the following expansion holds:

(0, 3) = Do fil@)gk(y) (40)
k

where 7 (x, y) denotes the Radon-Nikodym derivative of Py y
with respect to Px x Py. It is straightforward to see that
an expansion of the form (40) captures the SVD structure
of the conditional expectation operators associated with Py y.
Explicit expansions of the form (40) in terms of orthogonal
polynomials have since been derived for various bivariate
distributions. For instance, orthogonal polynomial expansions
for bivariate distributions that are generated additively from
three independent NEFQVF random variables were established
in [30]. We refer readers to [30], [31], and the references
therein for further details on such classical work. More con-
temporary results on Lancaster distributions are presented in
in [32], [33], and the references therein. As explained in [33],
one direction of research is to find the extremal Lancaster
sequences corresponding to the extremal points of the com-
pact, convex set of Lancaster distributions corresponding to
certain marginal distributions and their orthogonal polynomial
sequences.

In contrast to the aforementioned classical examples of
orthogonal polynomial eigenfunctions, the conditional expec-
tation operators that we derive SVDs for are defined by
NEFQVF channels and conjugate prior sources. As we men-
tioned earlier, the Hermite SVD result in Theorem 3 can be
related to results on the Ornstein-Uhlenbeck semigroup since
a Gaussian NEFQVF has a Gaussian conjugate prior family.
However, we emphasize that the Laguerre and Jacobi SVDs
in Theorems 1 and 2 are distinct from classical results (in the
contexts of differential equations, integral equations, Markov
semigroups, or Lancaster distributions). To our knowledge,
these classical results do not analyze the setting of NEFQVF
channels and conjugate prior sources. On the other hand,
we would like to acknowledge that results similar to ours on
spectral decompositions of Markov chains have been indepen-
dently derived in [34] to analyze the convergence rate of Gibbs
sampling.

Finally, it is worth mentioning that although we refer
to Morris’ unified theory of NEFQVFs in [9] and [10]
in section I, the importance of NEFQVFs was recognized
much earlier by Meixner. Indeed, Meixner characterized the
orthogonal polynomial families corresponding to NEFQVFs
as precisely those that have generating functions with a
certain tractable form in [35]. (Since we only use orthogonal
polynomials corresponding to Py and Py rather than those
corresponding to NEFQVFs, Meixner’s results are not directly
of relevance to us.)

III. PROOFS OF MAIN RESULTS

In this section, we will prove our main results under the con-
ditions stated in subsection I-B. To this end, we will first derive
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an auxiliary result that provides simple necessary and suffi-
cient conditions for conditional expectation operators to have
orthonormal polynomial singular vectors. We refer readers to
[36]-[38] for the relevant functional analysis background.

Recall that we are given the Hilbert space £ (X, Py) with
dimension:

dim (£2 (X, Px)) = 1X| € Z* U {+00) (41)
i.e. £2 (X, Py) is infinite dimensional when |X| = 400, and
finite dimensional when |X| < +oo. Since L2 (X, Px) is
separable, it equivalently has a countable complete orthonor-
mal (Schauder) basis. We will assume that £2 (X ,Px) has
a unique (up to arbitrary sign changes) orthonormal basis
of polynomials { px € £2 (X, Px) : k < |X|}, where py is an
orthonormal polynomial with degree k € N. Typically, such
orthonormal polynomials can be constructed by applying the
Gram-Schmidt algorithm to the monomials {1,x,x2, o }
Note that the finiteness of the moment generating func-
tion (MGF) of X on an interval containing zero guaran-
tees the existence of an orthonormal polynomial basis of
L2 (X, Px) (since it ensures that all moments of X exist
and are finite), and the positive definiteness of (-, -)p, with
respect to the subspace of all polynomials guarantees the
uniqueness of this basis. Furthermore, this discussion holds
mutatis mutandis for the Hilbert space L2 (Y, Py), and we also
assume that it has a unique orthonormal basis of polynomi-
als {qx € L2V, Py)  k < |V}, where g is an orthonormal
polynomial with degree k. The next definition presents a
pertinent property of bounded linear operators between the
Hilbert spaces £ (X, Px) and £* (), Py).

Definition 4 (Degree Preservation): A bounded linear
operator T : L2 (X,Px) — L2V, Py) is degree preserving
if for any polynomial p € L2 (X,Px) with degree k € N,
T(p) € L? (Y, Py) is also a polynomial with degree at most
k. T is strictly degree preserving if:

o Case |X| < |Y|: For any polynomial p € L*(X,Py)
with degree k < |X|, T(p) € L>(V,Py) is also a
polynomial with degree exactly k.

o Case |X| > |)| (= |Y| < +00): For any polynomial
p € L? (X, Py) with degree k < | V|, T(p) € L? (Y, Py)
is also a polynomial with degree exactly k, and for any
polynomial p € L2 (X, Px) with degree |)| < k < |X],
T(p) € £L> (), Py) is also a polynomial with degree at
most |Y| — 1.

In Definition 4, we use the convention that co < o
is true, and oo < oo is false. We also remark that when
X = ), this definition implies that polynomials form an
invariant subspace of a degree preserving operator 7. The next
proposition presents our auxiliary result using this definition.

Proposition 2 (Orthogonal Polynomial SVD):

Let T : L2(X,Px) — L>(V,Py) be a compact linear
operator, and T* : L* (Y, Py) — L>(X,Px) be its unique
adjoint operator. Then, T and T* are strictly degree preserving
if and only if T has SVD:

Vk <min{|X|, [V}, T (p) = Prak
X1 > VI = VIYI=k<|X], T(pr) =0
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where {fr € (0,00) : k < min{|X|, |V|}} are singular values
such that hm Pr = 0 when min{|X|, | Y|} = +o0.

Proof: _)We first prove the forward direction. Since T is
a compact linear operator, its adjoint 7* is also compact by
Schauder’s theorem [36], [37]. Hence, the (Gramian) operator
T*T is self-adjoint, positive, and compact since the composi-
tion of compact operators is compact. Moreover, since 7 and
T* are strictly degree preserving, T*T is degree preserving;
in fact, T*T is strictly degree preserving when |[X| < |)].
Using the spectral theorem for compact self-adjoint oper-

ators [36], T*T has a countable orthonormal eigenbasis
{rie L2(X,Px):ieN,i<|X|}:
Vi < |X|, T*T (rl-) = a;ri

where {a; € RT : i < |X|} are the non-negative eigenval-
ues (since T*T is positive) such that lim;_, o a; = 0 when
|X| = +4o00. We will prove by strong induction that these
eigenfunctions are orthonormal polynomials.

The first eigenfunction of 7*7 must be the constant function
ro = po = ly since T*T is degree preserving. Assume that
the first k 4+ 1 eigenfunctions are orthonormal polynomials:
ri = p; fori € {0, ..., k} (inductive hypothesis). Then, since
Pk+1 1s orthogonal to span (rg, ..., rxr) = span(po, ..., Pk),

we have:
>

k+1<j<|X|

Pk+1 = (Pk+1,’”j>Px rj.

When |X| = 400, this equality holds in the sense that the
partial sums converge to py41 in £> (X, Px)-norm. Applying
T*T to both sides and using the continuity (or equivalently,
the boundedness) of T*T, we get:

T*T (pey1) = Y

k1<) <] X

oj (i1 i), i

which also holds in the £2 (X,Px)-norm sense when
|X| = Hence, T*T (px+1) is orthogonal to
span (po, - - -, px) using the continuity of the inner product,
and it is a polynomial with degree at most k 4+ 1 as T*T is
degree preserving. This implies that:

T*T (Pi+1) = Gkt1 Pi+1

where a4 is possibly zero, which means that ry41 = pr+1
(without loss of generality). By strong induction, {p; €
L% (X,Px) : k < |X|} are the eigenfunctions of T*T

Vk <|X|, T*T (px) = axpk (42)

where for all & < min{|X]|, |)|}, ax > O because both
T and T* do not reduce the degrees of input polynomials
with degrees less than min{|X|, |)|}.

Now observe (by definition of the adjoint operator) that:

(T (2) - T (PO, = (Pj» T*T (p0))p,

= Ok (pj» Pk)PX
= ardjk.

Vi k <X,

This means that {7 (pi) : k < min{|X|, |)|}} are scaled ver-
sions of the orthonormal polynomials in £> (), Py) since T is
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strictly degree preserving:

Vk < min{|X|, [VI}, T (p) = ouqr

where the sign of each orthonormal polynomial g; is chosen
to keep /ax > 0. On the other hand, if |X'| > ||, then for
any |Y| < k < |X|, T (pr) is a polynomial with degree at
most |V| —1 and is orthogonal to every g; with j < |V|. This
implies that 7' (py) =0 as {g; € L2V, Py):j < |Y|}is an
orthonormal basis of £2 (Y, Py). Moreover, a; = 0 for every
|V| < k < |X|. Therefore, we have:

X > Y] = VIV <k<|X|],

T (pr) = /oukq
T (pr) =0
which is the SVD of T with singular values, fy = Jax > 0
for every k < min{|X|, ||}, that satisfy limy_, o, fx = 0 when
min{|X|, |V|} = 400 (since limy_, o, ax = 0). This completes
the proof of the forward direction.

To prove the converse direction, notice that 7" having SVD:

Vk <min{|X], [VI}, T (p) = Prak
[X]> V] = VIYI=k<|X], T(pk)=0

implies that 7* has SVD:

V> |X| = VX <k <]V,

T*(qx) = Prpx
T*(qx) = 0.

This is an exercise in functional analysis. Since f; > 0 for any
k < min{|X], |)|}, and any polynomial can be decomposed
into a weighted sum of orthonormal polynomials, these SVDs
imply that 7 and T* are strictly degree preserving. This
completes the proof. |

We briefly make some remarks regarding Proposition 2.
Firstly, the result continues to hold if Py or Py are
relaxed to be non-probability measures that have unique
orthonormal polynomial bases. Secondly, the singular values
{fr € (0,00) : k < min{|X|, |YV|}} of T must be computed
on a case by case basis if desired. Thirdly, as mentioned
in the proof, the signs of {pk € L2 (X,Px): k < |X|} and
{gk € L2 (Y, Py) 1k < |Y|} are chosen to ensure that the
singular values are non-negative. This convention also applies
to Theorems 1, 2, 3, and Lemma 1 below. Fourthly, it is worth
considering Proposition 2 when £2 (X,Px) and £> (Y, Py)
are finite dimensional, and isomorphic to RIXT and RV )
respectively. In this scenario, T and 7™* have finite rank, and
are trivially compact operators that have SVDs. Moreover,
every basis of a Euclidean space R" (n = |X| or n = |)])
corresponds to a basis of polynomials, where each polynomial
has degree at most n — 1, by the unisolvence theorem. So,
the singular vectors of 7" and 7* will always be polynomials.
The non-trivial aspect of Proposition 2 in this finite dimen-
sional setting is that 7 and 7* have orthonormal polynomial
singular vector bases if and only if 7 and T* are strictly
degree preserving. Lastly, it is worth noting that although the
SVD result in Proposition 2 requires strict degree preservation,
the spectral decomposition result in (42) only requires degree
preservation as the proof illustrates.

The ensuing lemma is a straightforward corollary of Propo-
sition 2 specializing it for conditional expectation operators.
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Lemma 1 (Conditional Moment Condition):

Suppose the conditional expectation operator C
L% (X, Px) — L (Y, Py) is compact, and suppose | X| > |V
without loss of generality. Then, for every n € N, n < |},
E [Y”|X] is a polynomial in X with degree n and & [X”|Y]
is a polynomial in Y with degree n, and for every n € N,
|V <n<|X| E [X"IY] is a polynomial in Y with degree at
most |Y| — 1 if and only if C has SVD:

C (pr) = Prax
Cp) =0

where {fr € (0,1]: k < |Y|} are singular values such that
Po =1, and klim Pr =0 when |Y| =
Proof: Th_e)ogonditional moment conditions of the lemma
are equivalent to C and C* being strictly degree preserving.
The SVD of C then follows from Proposition 2, where as
before, the signs of the orthonormal polynomials are selected
to keep the singular values positive. (When |X| = |Y]|,
no value of k satisfies the second line of the SVD, and it is
vacuously true.) Furthermore, fx < 1 for all £k < |)| because
ICllop = 1 by Proposition 1, and Sy = 1 since C (1x) = 1y.
|
Lemma 1 provides an easily testable equivalent condition
for a conditional expectation operator to have an orthonormal
polynomial SVD; it holds with natural modifications when
|X| < |Y|. We must also verify that C is compact when using
this lemma. A well-known sufficient condition that ensures
that C (and C*) are compact is the Hilbert-Schmidt condition:

// Pryny)

Py (x) Py (y)

where Py y, Px, and Py are the probability densities defined
in subsection I-B. In functional analysis, this condition arises
from the compactness of Hilbert-Schmidt operators, which are
integral operators with square integrable kernels [36]. In sta-
tistics, it corresponds to the finite “mean square contingency”
condition mentioned in subsection II-D; for example, it is
mentioned after Assumption 5.2 in [2], and in the premise of
Theorem 2 in [1]. In our ensuing proofs, we will not explicitly
check for compactness of the operators for brevity.

Vk < VI,
VIVI =k <|X],

du(y)di(x) < +oo (43)

A. Finite Alphabet Examples

Before proving our main results, we briefly provide two
basic examples of polynomial SVDs in the finite alphabet case.

Example 1 (Uniform Source and Binary Symmetric Chan-
nel): Suppose X ~ Bernoulli(3), and ¥ ~ Bernoulli(3) is the
output of passing X through a binary symmetric channel with
crossover probability J € (0, §). The orthonormal polynomials
in £2 ({0, 1}, Bernoulli(1)) are po = (1, 1) and p; = (1, —1),
where pr = (px(0), pr(1)) for k = 0, 1. It is straightforward
to directly verify that the SVD of C is:

C(po) = po and C(p1) = (1 —29) py.

So, C and C* are strictly degree preserving by Lemma 1.
Example 2 (Uniform Source and Binary Erasure Channel):
Suppose X = {0,1}, Y = X U {e} (where e is the erasure

(44)
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symbol), X ~ Bernoulli(), and Y is the output of passing
X through a binary erasure channel with erasure probability
€ € (0,1). In this case, the SVD of C is:

C(po) =go and C(p1) =v1—€g; (45)

where the right singular vectors are given in Example 1, and
the left singular vectors are the orthonormal vectors gy =
(1,1,1) and g1 = (IM/T—€,—14/T—¢€,0) in L*> (Y, Py),
where gr = (gx(0), gx(1), gx(e)) for k = 0, 1. Note that
C has an orthonormal polynomial SVD if and only if g
is a linear polynomial, which is true if and only if e = %
Therefore, when e € R and e # % C and C* are not strictly
degree preserving by Lemma 1 (although g; is a non-linear
polynomial).

B. Proof of Theorem 1: Laguerre SVD

Proof: First notice that given X = x € (0,00), Y is
Poisson distributed with rate x as shown in (18). This means
that the cumulants of Py x—, are all equal to x. Since the nth
moment E [Y"|X = x] for n € N is a polynomial in the first
n cumulants with degree n [39], E[Y"|X] is a polynomial in
X with degree n for every n € N. (Note that this can also be
proved directly by using induction on the derivatives of the
MGEF of a Poisson random variable.)

Next, we prove that the moments of a gamma distribution
Px ~ gamma(a, B) with a, f € (0, 00), shown in (19), are
polynomials in a with the same degree. The MGF of X is:

Mx<s>éE[esx]:[%)“» :/f

and as f > 0, the MGF is finite on an open interval around
s = 0. This means the moments of X are given by:

n

ds" s=0

_ (Y
T odst (ﬁ—s) §=0
(AN e
_(ﬂ—S) (ﬁ—swg(“’)s_
ln—l

pll

for every n € N\{0}. Thus, for every n € N, E[X”] is a
polynomial in a with degree n.

As mentioned earlier in subsection II-A, the posterior pdfs
{Px|y=y ~ gamma(a+y, f+1) : y € N} are also gamma pdfs
with updated parameters. Hence, for every n € N, E [X "y ]
is a polynomial in Y with degree n. Applying Lemma 1
completes the proof. [ ]

E[X"] = — Mx(s)

C. Proof of Theorem 2: Jacobi SVD

Proof:  First observe that given X = x € (0,1),
Py|x=x ~ binomial(n, x), which means that Y = Z;+---+Z,
where Z1, ..., Z, are conditionally i.i.d. Bernoulli(x) random
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variables (i.e. P(Z; = 1) = x and P(Z; = 0) = 1 — x for
i =1,...,n). Hence, we have for any m € N:

A7) =

! n
2 kl'n-i-kn!qE[Zk
1=

0<ky,....kn<m
ki+--+kp=m

Z i
= X
K- oyl
0<ky...., 1 n

kn<m

-k =m

E[Y"X =x] =

:x]

N(ki,....kn)

where the second equality follows from the multinomial theo-
rem, the third equality follows from the fact that the moments
of the Bernoulli random variables are E [Zl(.)lX = x] =1 and
for every m € N\{0}, E [Z;"IX = x] =x, and N(ky,..., k)
denotes the number of non-zero k;. Since N(ki,...,k,) <
min{m, n} and N(ky, ..., k,) = min{m, n} for at least one of
the terms, we have that for every m € [n], E[leX] is a
polynomial in X with degree m.

Next, as mentioned in subsection II-B, we note that the
posterior pdfs {Pxjy—, ~ beta(a +y,+n—y):y € [nl]}
are also beta pdfs with updated parameters. For any fixed
Y =y € [n] and any m € N, we have:

" B B manryfl(l _ x)ﬂ+n*y71
E[X |Y_y]_/(0,1)x Bty ftn—y) dA(x)
_ Bla+y+m,B+n—y)
 Bla4y,f+n—y)
_Ta+y+mT(a+p+n)
F'ec+y)T(a+p+n+m)
m—1
[[Te@+y+h
== (46)
[[T@+s+n+h
k=0

where the first equality uses (27) with the updated parameters.
Therefore, for every m € [n], E[Xm|Y ] is a polynomial
in Y with degree m, and for every m € N\[n], E[Xm|Y]
is a polynomial in Y with degree at most n. The latter
deduction seems counter-intuitive in light of (46), which seems
to suggest that E [X’”|Y ] is always a polynomial in ¥ with
degree m. However, since the function y +— IE[X’”|Y = y]
is supported on a set of size n + 1, it can only be uniquely
represented as a polynomial with degree at most n by the
unisolvence theorem.

Finally, employing Lemma 1 completes the proof. [ ]

D. Proof of Theorem 3: Hermite SVD

As mentioned earlier, Theorem 3 was proved in [3] using the
Appell sequence recurrence relation of Hermite polynomials.
We now provide another proof using Lemma 1 here. Our proof
uses the following lemma, cf. the line below equation (51) in
[40, Ch. 7].

Lemma 2 (Translation Invariant Kernels): Fix u,v €
R\{0}, and a Borel measurable A-integrable function
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¢ : R — R such that qu’)di = 1, where 1 is the Lebesgue
measure. If T : L>R,Px) — L>®R,Py) is a bounded
integral operator with translation invariant kernel ¢:

Vf e LR, Px), (T(f))(y)=/R¢>(uy+vx)f(X)d/1(X),

then T is strictly degree preserving.

Proof: We include a proof of this known result in
Appendix C for completeness. [ ]

Note that u = 1 and v = —1 corresponds to a difference ker-

nel setting where T represents convolution with the function ¢.
We also remark that although £2 (R, Px) and £* (R, Py) are
the Hilbert spaces defined in subsection II-C, Lemma 2 also
holds for other (appropriately generalized) Hilbert spaces.

Proof of Theorem 3: Observe that when Py y is defined
by (33) and (35), both C and C* are integral operators
with translation invariant kernels satisfying the conditions of
Lemma 2. Indeed, for any f € £>(R,Px) and any
g € L? (R, Py):

C(NG) = /]R £GPy (xly) dAx)

I AP
17[:}1) 2(”11:”) |

(C*(9) () = /]R () Prix (v1x) d(y)

[ &) —x)?
_,/]1{—2711) exp( 5y )dxl(y).

Hence, C and C* are strictly degree preserving by Lemma 2.
Finally, applying Lemma 1 completes the proof. [ ]

IV. CONCLUSION

In this paper, we first illustrated the utility of SVDs of
conditional expectation operators by citing examples from
the literature such as maximal correlation functions (which
are themselves singular vectors of conditional expectation
operators) and linear information coupling problems (which
are solved by SVDs of conditional expectation operators).
We then proved that conditional expectation operators corre-
sponding to NEFQVF channels and conjugate prior sources,
where all marginal moments exist and are finite, have ortho-
normal polynomial SVDs. In particular, the Gaussian source
and Gaussian channel produce Hermite polynomial singular
vectors, the gamma source and Poisson channel produce gener-
alized Laguerre and Meixner polynomial singular vectors, and
the beta source and binomial channel produce Jacobi and Hahn
polynomial singular vectors. To establish these results, we ver-
ified that the corresponding conditional expectation operators
and their adjoint operators are strictly degree preserving, which
we showed is equivalent to having orthonormal polynomial
SVDs. This equivalence between strict degree preservation and
orthonormal polynomial SVDs may also be useful in future
for deriving orthonormal polynomial SVDs for other source-
channel models.
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APPENDIX A
PROOF OF PROPOSITION 1

Proof: We prove this for completeness. The maps C and
C* are clearly linear since they are defined using expectations.
To show that they are bounded, it suffices to prove that they
have operator norms equal to unity (and this also verifies that
their codomains are indeed Hilbert spaces). We now prove
that:

ICWle,
Ihllpy

where 0 denotes the zero function. Let 15 denote the every-
where unity function on the set § € R: 1g:5 — R,
15(x) =1. Observe that 1y € L*(X,Px) (because
nxlp, = 1, and using (8), C (1x) = 1y € L*(V,Py)

= 1). Hence, [|Cllopp > 1. Now, for any
hel*X, IEDX) We have:

ICllop =
heL2(X,Px)\{0)

2
IcwI3, =E [E [noo)|v] } <E[E[n0|r]] = InI,
using (8), conditional Jensen’s inequality, and the tower prop-
erty and (7), respectively. Thus, ||Cllop =1 and [[C*|lop = 1,
where the latter follows from an analogous argument.

Since C and C* are bounded, they have unique adjoint
operators using the Riesz representation theorem [36], [38].
Note that for every f € £2 (X, Px) and every g € £* (), Py),
we have:

(C() 8y, = EELF(X)IY]g(Y)]

=E[f(X)E[gM)IXN = (. C*(9)p,

where the second equality follows from applying the tower
property to E[f(X)g(Y)]. Hence, C* is the adjoint operator
of C (as is implicitly suggested by the notation). [ ]

APPENDIX B
LoCAL APPROXIMATIONS OF f-DIVERGENCES

In this appendix, we locally approximate f-divergences
satisfying some regularity conditions, and specialize the
approximation for Kullback-Leibler (KL) divergence. The
f-divergences are a class of divergence measures over dis-
tributions that were independently introduced by Csiszar
in [41], [42], and by Ali and Silvey in [43]. Let f : (0, c0) —
R be a convex function such that f(1) = 0. Given two prob-
ability densities Qx and Px with respect to A on (X, B(X))
(recall the setup in subsection I-B), the f-divergence between
Qx and Py is defined as:

Ox(x)
Px (x)

where we assume that f(0) = lim,_,o+ f(¢), Of ( ) =0, and
for all r > 0, Of( ) = limg_, g+ sf (S) = rlimg_, o+ sf( )
based on continuity arguments. With appropriate choices of
the function f : (0, 00) — R, f-divergences generalize many
known divergence measures including KL divergence, total
variation distance, y2-divergence, squared Hellinger distance,
Jensen-Shannon divergence, and Jeffreys divergence [44], [45].

D (Qx1Py) & / Px(x)f( )di(x) @)
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Proposition 3 (Local f-Divergence): Let f : (0,00) — R
be a convex function such that f(1) = 0, f(t) is thrice
differentiable over some open interval around t = 1, f"'(t)
is locally bounded at t = 1, and f" (1) > 0. Suppose we are
given a family of probability densities that are local pertur-
bations of the reference probability density Px > 0 l-a.e.:

O =PX(1X+6¢)

where ¢ € LX(X,Px) is a fixed perturbation function such
that E[¢(X)] = 0, and Q¢ is a valid probability density for all
€ # 0 of sufficiently small magnitude. Then, the f-divergence
between Q. and Px can be locally approximated as:

" 1
Dy(@eliPn = L B[3007] + o)

where 0(6 ) is the Bachmann-Landau asymptotic notation
denoting a function which satisfies hrr(l) o(e )/ e =0.

Proof: First observe that using f(1) = 0, the thrice
differentiability of f(¢) over some open interval around r = 1,
and Taylor’s theorem about the point = 1, we have:

F@) = £~ 1)+ 5 06— 1D+ 6~}

for every t € (0, 00) sufficiently close to unity, and some
corresponding min {1, ¢} < s < max{l,}, where we have
used the Lagrange form of the remainder. Using this Taylor
approximation of f (), we have for every x € X:

0.t o
(555) = rmese+ L2 egr

+ m Ep(x)? (48)

where X C A is a Borel measurable set such that Px (x) > 0
for all x € X and /I(X\X) = 0, and where for every x € X,
min {1, Q¢ (x)/Px(x)} < s(x) < max{l, Qc(x)/Px(x)}. Let
h(x, €) denote the Lagrange remainder term:

w2 76

Since ¢ € L®(X,Px), I#lloc = esssupcx lp(x)| < +00.
So, the remainder term is bounded A-a.e. on X:

If’”( )

(49)

lh(x, €)] = T——elPlp(x)® <

where |f”’(s(x))| < B < +00 A-a.e. for sufficiently small
€ # 0 because f”(¢) is locally bounded at r = 1, and we
have:

30413
|6| l#ll5 < 400

min{l, 1 + € (x)} <s(x) <max{l,1 +e¢p(x)} A-a.e.
= 1 —lel gl <5(x) <1+ e|lPlle A-a.e.

which means for sufficiently small ¢ # 0, s(x) will be in
the neighborhood of t = 1 around which f"’(¢) is bounded.
In fact, we also require Q(x)/Px(x) to be sufficiently close
to unity A-a.e. for (48) to be valid, and this also holds for
sufficiently small € # O because:

Qe(x)

- 1‘ = lellg(x)] < el 1@l A-a.e. .
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We now take the expectation of both sides of (48) with respect
to Py and use E[¢(X)] = 0 to obtain:

1’ 1
D (QellPy) = LR @ R[4 x| 4 BIRCK, 1. (50

(Note that E[¢(X)?] is finite because ¢ € LX(X,Px) C
L2(X,Py), and the inclusion holds as Py is a finite measure.)
Since |h(x,€)|/e*? < B ||</5||c3>O |€]/6 A-a.e. for sufficiently
small € # 0, we have:

- [E[A (X, Ol _ [Ih(X 6)|} §||¢Hgo .

0
€2

which implies that E[h(X,€)] = o(e?). Therefore, (50)
produces the desired approximation. [ ]

Proposition 3 asserts that if we consider the stochastic
manifold of probability densities on X in the “neighborhood”
of Py, the f-divergence between any two densities is a
squared weighted £?-norm. This intuition is known in the
literature; the discrete case of Proposition 3 is proved in [45]
where f-divergences are locally shown to be y2-divergences.
Our proof uses additional regularity conditions to provide
a more general version of the result. The specialization of
Proposition 3 for KL divergence is provided in the next
corollary.

Corollary 1 (Local KL Divergence): Suppose we are given
a family of probability densities that are local perturbations
of the reference probability density Px > 0 A-a.e.:

Oc = PX(1X+6¢)
where ¢ € L(X,Px) is a fixed perturbation function such
that E[¢(X)] = 0, and Q¢ is a valid probability density for all
€ # 0 of sufficiently small magnitude. Then, the KL divergence
between Q. and Px can be locally approximated as:

1
D(QelIPx) = 5 E[¢ ()| +0(c?).

Proof: Tt is straightforward to verify the conditions of
Proposition 3 for f(r) = tlog(r) (where log(-) denotes
the natural logarithm), and this choice of f generates KL
divergence. [ |

Corollary 1 is well-known in the literature. The discrete
version can be found in [8], and the general case in [46].

APPENDIX C
PROOF OF LEMMA 2

Proof: For any polynomial p : R — R with degree n € N,
p(x) =aog+aix + - - - 4+ a,x™ such that a, # 0, we have:

VyeR,  (T(p)() = / $(uy +vx)p(x) dA(x)

/—¢(>(

_ /R mqﬁ(z)Zﬁ(z)y di(2)

) di(z)

—Zy/ L@ fi@die)
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where the second equality follows from a change of variables
z = uy + vx, and the third equality holds because p((z —
uy)/v) = ao + ai(z —uy)/v +---+a, ((z—uy)/v)" is a
polynomial in y with degree n, coefficients f;(z) of y' for
i = 0,...,n (these depend on u,v as well), and leading
coefficient f,,(z) = a,(—u/v)* # 0. The non-zero leading
coefficient of T'(p) is:

/ ¢<z)an( ) di(s) = o (_—)
[v] o] \ v

since fR ¢ d2 = 1.Hence, T (p) is a polynomial with degree n,
which implies that 7T is strictly degree preserving. [ ]
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