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Polynomial Singular Value Decompositions of a

Family of Source-Channel Models

Anuran Makur , Student Member, IEEE, and Lizhong Zheng, Fellow, IEEE

Abstract— In this paper, we show that the conditional expec-
tation operators corresponding to a family of source-channel
models, defined by natural exponential families with quadratic
variance functions and their conjugate priors, have orthonor-

mal polynomials as singular vectors. These models include the
Gaussian channel with Gaussian source, the Poisson channel
with gamma source, and the binomial channel with beta source.
To derive the singular vectors of these models, we prove and
employ the equivalent condition that their conditional moments
are strictly degree preserving polynomials.

Index Terms— Singular value decomposition, natural exponen-
tial family, conjugate prior, orthogonal polynomials.

I. INTRODUCTION

S
PECTRAL and singular value decompositions (SVDs) of

conditional expectation operators have many uses in infor-

mation theory and statistics [1]–[3]. As a result, it is valuable

to analytically determine the singular vectors corresponding

to some widely studied toy models. In this paper, we illus-

trate that a certain simple family of source-channel models

always has corresponding conditional expectation operators

with orthogonal polynomial singular vectors. We commence

by presenting this family of models and formally defining

conditional expectation operators in the next two subsections.

A. Natural Exponential Families With Quadratic Variance

Functions and Their Conjugate Priors

Since we will study source-channel models that have

exponential family and conjugate prior structure, we briefly

introduce these notions. Exponential families form an

important class of distributions in statistics because they

are analytically tractable and intimately tied to several

theoretical phenomena [4], [5]. For instance, they have

sufficient statistics with bounded dimension after i.i.d.

sampling (Pitman-Koopman-Darmois theorem) [6], they have

conjugate priors [7], they admit efficient estimators that

achieve the Cramér-Rao bound under a mean parametriza-

tion [5], they are maximum entropy distributions under

Manuscript received December 9, 2015; revised July 16, 2017; accepted
September 21, 2017. Date of publication October 6, 2017; date of current
version November 20, 2017. This work was supported in part by the National
Science Foundation under Award 1216476 and in part by the Hewlett-Packard
Fellowship. This work was presented at the 2016 54th Annual Allerton
Conference on Communication, Control, and Computing.

The authors are with the Department of Electrical Engineering and
Computer Science, Massachusetts Institute of Technology, Cambridge, MA
02139 USA (e-mail: a_makur@mit.edu; lizhong@mit.edu).

Communicated by C. Nair, Associate Editor for Shannon Theory.
Digital Object Identifier 10.1109/TIT.2017.2760626

moment constraints [8], and they are used in tilting arguments

in large deviations theory [5]. We are interested in a particular

subclass of one-parameter exponential families known as nat-

ural exponential families with quadratic variance functions

(NEFQVF). So, we define natural exponential families next.

Definition 1 (Natural Exponential Family): Given a mea-

surable space (Y,B(Y)) with a σ -finite measure µ, where

Y ⊆ R and B(Y) denotes the Borel σ -algebra on Y , the para-

metrized family of probability densities {PY (·; x) : x ∈ X }
with respect to µ that have support Y (independent of x) is

called a natural exponential family when each density has the

form:

∀x ∈ X , ∀y ∈ Y, PY (y; x) = exp (xy − α(x)) PY (y; 0)

where PY (·; 0) is a base density function, and:

∀x ∈ X , α(x) = log

(∫

Y

exp (xy) PY (y; 0) dµ(y)

)

is known as the log-partition function which satisfies α(0) = 0

without loss of generality. The parameter x is called the

natural parameter, and the natural parameter space X �

{x ∈ R : |α(x)| < +∞} ⊆ R is defined as the largest interval

where the log-partition function is finite. We usually assume

without loss of generality that 0 ∈ X . (Here, and throughout

this paper, exp(·) and log(·) refer to the natural exponential

and the natural logarithm with the base e, respectively.)

In [9] and [10], Morris specialized Definition 1 further in

an effort to justify why certain natural exponential families

like the Gaussian, Poisson, and binomial enjoy “many useful

mathematical properties” [9]. He asserted that the tractability

of these distributions stemmed from their quadratic variance

functions. To define this, observe that α(·) is infinitely differ-

entiable on X ° (the interior of X ) [4], and satisfies:

∀x ∈ X , α(x) = log
(
EPY (·;0)

[
exp (xY )

])
(1)

∀x ∈ X °, α′(x) = EPY (·;x) [Y ] (2)

∀x ∈ X °, α′′(x) = VARPY (·;x) (Y ) (3)

where Y denotes a random variable taking values in Y , (1) is

the cumulant generating function of Y , and (3) is the Fisher

information Y carries about x [5]. Following the exposition

in [9], we may define the variance function V : image(α′) →
R+ as the variance of Y written as a function of the mean

of Y :

∀γ ∈ image(α′), V (γ ) � α′′(α′−1
(γ )) (4)
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where α′(·) is injective because α′′(·) is strictly positive in

non-degenerate scenarios. We can now define NEFQVFs.

Definition 2 (NEFQVF): An NEFQVF is a natural expo-

nential family whose variance function V (γ ) is a polynomial

in γ with degree at most 2.

We will only analyze channel conditional distribution mod-

els PY |X (y|x) = PY (y; x) that are NEFQVFs (although we

will not explicitly use the NEFQVF parametrization in our

calculations). There are six possible NEFQVFs [9]:

1) Gaussian pdfs with mean parameter and fixed variance

2) Poisson pmfs with rate parameter

3) binomial pmfs with success probability parameter and

fixed number of Bernoulli trials

4) gamma pdfs with rate parameter and fixed “shape”

5) negative binomial pmfs with success probability para-

meter and fixed “number of failures”

6) generalized hyperbolic secant pdfs (see [9] for details

regarding this family)

and only the first three will lead to non-degenerate situations.

Given a channel PY |X (y|x) = PY (y; x) defined by an

NEFQVF, we will only analyze source distributions that

belong to the corresponding conjugate prior family. For any

natural exponential family, we may define a conjugate prior

family as shown next [4], [5].

Definition 3 (Conjugate Prior): Suppose we are given a

natural exponential family from Definition 1 such that X

is a non-empty open interval defining the measurable space

(X ,B(X )) with σ -finite measure λ. The corresponding con-

jugate prior family is the parametrized family of probability

densities {PX (·; z, n) : (z, n) ∈ �} with respect to λ that have

support X (independent of (z, n)), and are of the form:

∀x ∈ X , PX (x; z, n) = exp (zx − nα(x) − τ (z, n))

for any (z, n) ∈ �, where the log-partition function τ : � →
R is given by:

∀ (z, n) ∈ �, τ(z, n) = log

(∫

X

exp (zx − nα(x)) dλ(x)

)

and (z, n) are hyper-parameters that belong to the hyper-

parameter space � � {(z, n) ∈ R × R : |τ (z, n)| < +∞}.
When channels are given by natural exponential families,

if we use a conjugate prior source, then posterior distributions

also belong to the conjugate family. This structure allows

computationally efficient updating of beliefs in Bayesian infer-

ence problems [5]. A comprehensive list of different conjugate

prior families can be compiled from [5], [10], [11], and we

will present the conjugate prior families for the first three

NEFQVFs listed above (without tediously referring back to

the aforementioned sources) in section II.

B. Conditional Expectation Operators

We next formally define conditional expectation operators.

We fix a probability space, (�,F , P), and define an input

random variable X : � → X ⊆ R with source probability

density PX with respect to a σ -finite measure λ on the

standard measurable space (X ,B(X )). Likewise, we define

an output random variable Y : � → Y ⊆ R, and chan-

nel conditional probability densities
{

PY |X=x : x ∈ X
}

with

respect to a σ -finite measure µ on the standard measur-

able space (Y,B(Y)). We will use the notation PX and PY

to denote the marginal probability laws of X and Y , and

we will assume that PX and PY have (measure theoretic)

supports X and Y (which are the closures of X and Y),

respectively. Finally, we note that this source-channel model

defines a joint probability density PX,Y on the product measure

space (X × Y,B(X ) ⊗ B(Y), λ × µ) such that PX,Y (x, y) =
PY |X (y|x)PX (x) for every x ∈ X and y ∈ Y . In section II,

our channels will be NEFQVFs and our sources will be the

corresponding conjugate priors.

We next define the Hilbert spaces and linear operators

pertinent to our discussion. Corresponding to the measure

space (X ,B(X ), PX ), we define the separable Hilbert space

L2 (X , PX ) over the field R:

L2 (X , PX ) �

{
f : X → R

∣∣∣E
[

f 2(X)
]

< +∞
}

(5)

which is the space of all Borel measurable and PX -square

integrable functions, with correlation as the inner product:

∀ f, g ∈ L2 (X , PX ) , 〈 f, g〉PX
� E [ f (X)g(X)] (6)

and induced norm:

∀ f ∈ L2 (X , PX ) , ‖ f ‖PX
� 〈 f, f 〉

1
2

PX
= E

[
f 2(X)

] 1
2
. (7)

Likewise, we define the separable Hilbert space L2 (Y, PY )

corresponding to the measure space (Y,B(Y), PY ). The condi-

tional expectation operators are maps that are defined between

these Hilbert spaces. The “forward” conditional expectation

operator C : L2 (X , PX ) → L2 (Y, PY ) is defined as:

∀ f ∈ L2 (X , PX ) , (C( f ))(y) � E [ f (X)|Y = y] , (8)

and the “reverse” conditional expectation operator C∗ :
L2 (Y, PY ) → L2 (X , PX ) is defined as:

∀g ∈ L2 (Y, PY ) ,
(
C∗(g)

)
(x) � E [g(Y )|X = x] . (9)

It is straightforward to verify from (8) and (9) that the

codomains of C and C∗ are indeed Hilbert spaces. The next

proposition collects some simple properties of these operators.

Proposition 1 (Conditional Expectation Operators): C and

C∗ are bounded linear operators with operator norms

‖C‖op = ‖C∗‖op = 1. Moreover, C∗ is the adjoint operator

of C.

Proof: See Appendix A.

Given NEFQVF channels and conjugate prior sources,

we will prove that the corresponding operators C and C∗ have

singular vectors that are orthonormal polynomials under the

regularity condition that the input and output Hilbert spaces

have orthonormal polynomial bases. The ensuing two subsec-

tions provide some illustrations from the literature where such

SVDs can be useful.

C. Maximal Correlation Functions

In statistics, one utility of singular vectors of conditional

expectation operators is that they can be construed as “max-

imal correlation functions.” To explain this, we first recall

the Hirschfeld-Gebelein-Rényi maximal correlation, which is
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a variational generalization of the well-known Pearson correla-

tion coefficient. Given two jointly distributed random variables

X ∈ X and Y ∈ Y , the maximal correlation between them is:

ρ(X; Y ) � sup
f, g

E [ f (X)g(Y )] (10)

where the supremum is over all functions f ∈ L2 (X , PX )

and g ∈ L2 (Y, PY ) such that E[ f (X)] = E[g(Y )] = 0 and

E[ f 2(X)] = E[g2(Y )] = 1 [1]. Furthermore, if X or Y is

a constant almost surely, then ρ(X; Y ) = 0. ρ(X; Y ) was

originally introduced as a normalized measure of the statistical

dependence between X and Y that satisfies seven “reasonable”

axioms [1]. Indeed, 0 ≤ ρ(X; Y ) ≤ 1, and ρ(X; Y ) = 0 if

and only if X and Y are independent random variables.

Maximal correlation turns out to have an elegant spectral

characterization. Notice that the everywhere unity functions

1X ∈ L2 (X , PX ) and 1Y ∈ L2 (Y, PY ) (which are defined

in Appendix A) are the right and left singular vectors of the

conditional expectation operator C corresponding to its largest

singular value of ‖C‖op = 1:

C (1X ) = 1Y and C∗(1Y
)

= 1X . (11)

The orthogonal complement of the span of this right singu-

lar vector, span(1X )⊥ =
{

f ∈ L2 (X , PX ) : E [ f (X)] = 0
}
,

is a sub-Hilbert space of L2 (X , PX ). Indeed, it is clearly a

linear subspace of L2 (X , PX ) that inherits the same inner

product (6), and its completeness follows from the continuity

of the inner product. It is proved in [1, Th. 1] that maximal

correlation can be written as the Courant-Fischer-Weyl vari-

ational characterization of the second largest singular value

of C:

ρ(X; Y ) = sup
f ∈span(1X )⊥\{0}

‖C( f )‖PY

‖ f ‖PX

(12)

where 0 denotes the zero function. If C is a compact operator,

the supremum in (12) is actually achieved by some right

singular vector f 
 ∈ span(1X )⊥. Furthermore, f 
 and the

corresponding left singular vector g
 = C( f 
)/ ‖C( f 
)‖PY

are precisely the maximal correlation functions achieving the

supremum in (10).

Maximal correlation functions can also be construed as the

solutions to a general version of non-linear regression studied

in [2]:

min
f ∈F , g∈G

E

[
( f (X) − g(Y ))2

]
(13)

where F =
{

f ∈ L2 (X , PX ) : E[ f (X)] = 0, E[ f 2(X)] = 1
}

and G =
{
g ∈ L2 (Y, PY ) : E[g(Y )] = 0, E[g2(Y )] = 1

}
are

collections of arbitrary (non-linear) Borel measurable func-

tions, and we assume the minimum exists. Note that when

real data (that is assumed to be drawn i.i.d. from PX,Y )

is given, the idealized problem in (13) can be modified by

replacing the theoretical (population) expectations with empiri-

cal (sample) expectations. Breiman and Friedman proposed the

alternating conditional expectations (ACE) algorithm in [2]

to solve (13) and find the optimal f 
 ∈ F and g
 ∈ G that

provide the best linear relationship between f 
(X) and g
(Y ).

Moreover, these f 
 and g
 are also the maximal correlation

functions that achieve (10), because E[( f (X) − g(Y ))2] =
E[ f 2(X)]−2E[ f (X)g(Y )]+E[g2(Y )] = 2 −2E[ f (X)g(Y )].
Hence, the non-linear regression problem (13) studied in [2]

is equivalent to the maximal correlation problem (10).

While the singular vectors f 
 and g
 of C have palpa-

ble significance in the contexts of regression and maximal

correlation, we may impart other singular vectors of C with

similar operational interpretations. The pair of singular vectors

corresponding to the kth largest singular value of C (for

k ∈ {2, 3, 4, . . . }) are the functions that are maximally corre-

lated and orthogonal to all previous pairs of singular vectors.

Hence, we refer to all such singular vectors as “maximal cor-

relation functions.” Maximal correlation functions associated

with larger singular values of C can be interpreted as more

informative score functions, and are useful in decomposing

information into several mutually orthogonal parts. Indeed,

such functions are used to perform inference on hidden

Markov models in an image processing context in [12], and

algorithms based on the ACE algorithm to learn such functions

are presented in [13]. These algorithms are essentially power

iteration methods to compute singular vectors of C . Our main

results in section II provide explicit characterizations of maxi-

mal correlation functions for conditional expectation operators

defined by NEFQVFs and their conjugate priors.

D. Local Perturbation Arguments in Information Theory

SVDs of conditional expectation operators are also useful

when performing perturbation arguments in network informa-

tion theory. For instance, SVDs of Gaussian conditional expec-

tation operators are used to demonstrate that non-Gaussian

codes can achieve higher rates than Gaussian codes for various

Gaussian networks in [3] (where in particular, the strong

Shamai-Laroia conjecture for the Gaussian ISI channel is

disproved). As another example, we briefly delineate the linear

information coupling problem studied in [14].

Suppose X and Y are finite sets (and λ and µ are counting

measures), PX,Y is a joint pmf such that PX (x) > 0 for every

x ∈ X and PY (y) > 0 for every y ∈ Y , and U ∈ U (with

|U | < ∞) is an arbitrary random variable that is conditionally

independent of Y given X so that U → X → Y is a Markov

chain. For any fixed ε �= 0, we first consider the extremal

problem that maximizes I (U ; Y ) with the constraint that only

a thin layer of information can pass through X :

sup
PU ,PX |U : U→X→Y

I (U ;X)≤ 1
2 ε2

I (U ; Y ) (14)

where the supremum is over all PU and PX |U such that PX,Y is

fixed (or equivalently, over all PU |X ). Note that problem (14)

and some of its variants have also been considered in the

contexts of investment portfolio theory [15], the information

bottleneck method [16], and strong data processing inequali-

ties [17]–[19]. Then, we assume each conditional pmf PX |U=u

for u ∈ U is a (multiplicative) local perturbation of PX by

φu ∈ L2(X , PX ):

∀u ∈ U, PX |U=u = PX (1X + ε φu) (15)

where the sums and products in (15) hold pointwise, and for

every u ∈ U , E[φu(X)] = 0 so that PX |U=u is a valid pmf.
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From the Markov relation U → X → Y , we have:

∀u ∈ U, PY |U=u = PY (1Y + ε C(φu)) (16)

where the conditional expectation operator C : L2 (X , PX ) →
L2 (Y, PY ) was defined in (8). Using (15) and (16), we can

locally approximate the mutual information terms in (14)

via the result in Corollary 1 of Appendix B. Neglecting all

o
(
ε2
)

terms, this produces the linear information coupling

problem:

max
PU , {φu :u∈U}

∑

u∈U
PU (u) ‖C(φu)‖2

PY
(17)

where we maximize over all PU and {φu ∈ L2(X , PX ) : u ∈
U} subject to the constraints: E[φu(X)] = 0 for every u ∈ U ,∑

u∈U PU (u) ‖φu‖2
PX

≤ 1, and
∑

u∈U PU (u)PX φu = 0 (which

ensures that the marginal pmf of X is fixed at PX ).

It is straightforward to verify that problem (17) can be

solved by setting U = {−1, 1} with PU (−1) = PU (1) = 1
2

(i.e. U ∼ Rademacher), letting φ1 be a unit norm right sin-

gular vector of C corresponding to its second largest singular

value, and setting φ−1 = −φ1. Hence, the SVD of a con-

ditional expectation operator C solves the linear information

coupling problem by identifying the optimal perturbations as

right singular vectors of C . Moreover, problem (17) is actually

a single letter case of a more general multi-letter problem,

which can be solved via single letterization using tensorization

properties of the SVD [14]. Huang and Zheng [14] exploit

this tensorization to study questions in network information

theory.

E. Outline

Having illustrated the utility of SVDs of conditional expec-

tation operators, we briefly outline the remaining discussion.

In section II, we will state the polynomial SVDs of three

source-channel models in key theorems. In section III,

we will present the proofs of these results via a useful

lemma.

II. MAIN RESULTS

In this section, we present our main results. Informally,

we show that:

Conditional expectation operators corresponding to every

NEFQVF channel and its conjugate prior source, such that

all moments of the marginal distributions exist and are finite,

have orthonormal polynomial singular vectors.

It is straightforward to verify that the moments of the output

marginal distributions corresponding to the gamma, negative

binomial, and generalized hyperbolic secant NEFQVFs and

their conjugate priors do not always exist, and are sometimes

infinite. So, the Hilbert space L2(Y, PY ) does not have an

orthonormal basis of polynomials for these joint distributions,

and we cannot hope for the singular vectors of C to be

orthonormal polynomials. Hence, we will establish three main

results in this paper corresponding to the Poisson, binomial,

and Gaussian NEFQVFs. These results are outlined in the

ensuing subsections.

A. The Laguerre SVD

Recalling the setup in subsection I-B, let X = (0,∞) and

Y = N � {0, 1, 2, . . . }, and let λ be the Lebesgue measure and

µ be the counting measure. For our first result, the channel

conditional pmfs {PY |X=x ∼ Poisson(x) : x ∈ (0,∞)} are

the NEFQVF of Poisson distributions:

∀x ∈ (0,∞), ∀y ∈ N, PY |X (y|x) =
x ye−x

y!
(18)

where x ∈ (0,∞) is the rate (or expectation) parameter of the

Poisson distribution. We remark that the Poisson channel is a

widely used model in optical communications where X rep-

resents the intensity of transmitted light and Y represents the

number of photons hitting a direct-detection receiver; see [20]

and the references therein. The corresponding conjugate prior

family consists of gamma distributions, and we assume that

the source pdf is PX ∼ gamma(α, β):

∀x ∈ (0,∞), PX (x) =
βαxα−1e−βx

�(α)
(19)

where α ∈ (0,∞) is the shape parameter, β ∈ (0,∞) is the

rate parameter, and the gamma function, � : (0,∞) → R, is:

�(z) �

∫ ∞

0

x z−1e−x dx . (20)

Note that when α ∈ Z+ � {1, 2, 3, . . . }, the gamma dis-

tribution specializes to an Erlang distribution. The posterior

pdfs {PX |Y=y ∼ gamma(α + y, β + 1) : y ∈ N} are also

gamma distributions as we used a conjugate prior. Finally,

the output marginal pmf PY ∼ negative-binomial
(
α, p = 1

β+1

)

is a negative binomial distribution:

∀y ∈ N, PY (y) =
�(α + y)

�(α)y!

(
1

β + 1

)y ( β

β + 1

)α

(21)

where p = 1
β+1

∈ (0, 1) is the success probability parameter

and α ∈ (0,∞) is the number of failures parameter. When

α ∈ Z+, the negative binomial random variable is the sum

of α independent geometric random variables, and models the

number of successes in a Bernoulli process until α failures.

The Hilbert space L2((0,∞), PX ) has an orthonormal basis

of generalized Laguerre polynomials. In particular, the gen-

eralized Laguerre polynomial with degree k ∈ N, denoted

L
(α,β)
k : (0,∞) → R, is defined by the Rodrigues formula:

L
(α,β)
k (x) �

√
�(α)

�(k + α) k!
x1−αeβx dk

dxk

(
xk+α−1e−βx

)
(22)

with the parameters α, β ∈ (0,∞). These polynomials satisfy

the orthogonality relation:

∀ j, k ∈ N, E

[
L

(α,β)
j (X)L

(α,β)
k (X)

]
= δ j k (23)

with respect to the gamma pdf, where δ j k is the Kronecker

delta function that equals 1 if j = k and equals 0 otherwise.

The Hilbert space L2(N, PY ) has a unique (up to arbitrary

sign changes) orthonormal polynomial basis of Meixner poly-

nomials. The Meixner polynomial with degree k ∈ N, denoted

M
(s,p)
k : N → R, is parametrized by s ∈ (0,∞) and
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p ∈ (0, 1). These polynomials satisfy the orthogonality

relation:

∞∑

y=0

M
(s,p)
j (y)M

(s,p)
k (y)

�(s + y)

�(s)y!
py(1 − p)s = δ j k (24)

for every j, k ∈ N, with respect to the negative binomial

distribution with parameters s ∈ (0,∞) and p ∈ (0, 1).

All our definitions of orthogonal polynomials are derived

from [21]–[23], and we use to these sources in subsequent

sections without tediously referring back to them.

The next theorem presents the orthogonal polynomial SVD

of the conditional expectation operator C corresponding to the

gamma source and Poisson channel model.

Theorem 1 (Laguerre SVD): For the Poisson channel with

gamma source, as presented in (18) and (19), the conditional

expectation operator, C : L2 ((0,∞), PX ) → L2 (N, PY ), has

SVD:

∀k ∈ N, C
(

L
(α,β)
k

)
= σk M

(
α, 1

β+1

)

k

where {σk ∈ (0, 1] : k ∈ N} are the singular values such that

σ0 = 1 and lim
k→∞

σk = 0.

The α = 1 case of Theorem 1, where PX is an exponen-

tial distribution and PY is a geometric distribution, is also

presented in [12], and the corresponding singular values are

calculated to be:

∀k ∈ N, σk =
(

1

β + 1

) k
2

. (25)

Note that when α = 1, the right singular vectors of C are

known as Laguerre polynomials. Although the left singular

vectors of C are Meixner polynomials, we refer to this result as

the “Laguerre SVD” because Meixner polynomials behave like

discrete Laguerre polynomials. Indeed, the negative binomial

distribution is the discrete analog of the gamma distribu-

tion (much like the geometric distribution is the discrete analog

of the exponential distribution).

B. The Jacobi SVD

For our second result, let X = (0, 1) and Y = [n] �

{0, . . . , n}, and let λ be the Lebesgue measure and µ be the

counting measure in subsection I-B. The channel conditional

pmfs {PY |X=x ∼ binomial(n, x) : x ∈ (0, 1)} are the NEFQVF

of binomial distributions:

∀x ∈ (0, 1), ∀y ∈ [n], PY |X (y|x)=
(

n

y

)
x y(1 − x)n−y (26)

where x ∈ (0, 1) is the success probability parameter and

n ∈ Z+ is the fixed number of Bernoulli trials of the binomial

distribution. The capacity of this “biased coin channel” model

has been studied in the literature [24]. The corresponding

conjugate prior family consists of beta distributions, and we

assume that the source pdf is PX ∼ beta(α, β):

∀x ∈ (0, 1), PX (x) =
xα−1(1 − x)β−1

B(α, β)
(27)

where α, β ∈ (0,∞) are shape parameters, and the beta

function, B : (0,∞)2 → R, is defined as:

B(z1, z2) �

∫ 1

0

x z1−1(1 − x)z2−1 dx =
�(z1)�(z2)

�(z1 + z2)
. (28)

The posterior pdfs {PX |Y=y ∼ beta(α+ y, β+n− y) : y ∈ [n]}
are also beta distributions since we used a conjugate prior.

Lastly, the output marginal pmf PY ∼ beta-binomial(n, α, β)

is the beta-binomial distribution:

∀y ∈ [n], PY (y) =
(

n

y

)
B(α + y, β + n − y)

B(α, β)
(29)

with parameters n ∈ Z+, α ∈ (0,∞), and β ∈ (0,∞).

The Hilbert space L2((0, 1), PX ) has an orthonormal basis

of Jacobi polynomials. In particular, the Jacobi polynomial

with degree k ∈ N, denoted J
(α,β)
k : (0, 1) → R, is defined by

the Rodrigues formula:

J
(α,β)
k (x) � x1−α(1 − x)1−β dk

dxk

(
xk+α−1(1 − x)k+β−1

)

· (−1)k

√
(2k+α+β−1)B(α, β)�(k+α+β−1)

�(k+α)�(k+β) k!
(30)

with the parameters α, β ∈ (0,∞). These polynomials satisfy

the orthogonality relation:

∀ j, k ∈ N, E

[
J

(α,β)
j (X)J

(α,β)
k (X)

]
= δ j k (31)

with respect to the beta distribution. They also generalize

several other orthogonal polynomial families such as the

Legendre and Chebyshev polynomials.

The Hilbert space L2([n], PY ) has a unique (up to arbitrary

sign changes) orthonormal polynomial basis of Hahn polyno-

mials. The Hahn polynomial with degree k ∈ [n], denoted

Q
(α,β)
k : [n] → R, is parametrized by α, β ∈ (0,∞). These

polynomials satisfy the orthogonality relation:

∀ j, k ∈ [n], E

[
Q

(α,β)
j (Y )Q

(α,β)
k (Y )

]
= δ j k (32)

with respect to the beta-binomial distribution. The Hahn poly-

nomials also generalize several other families of orthog-

onal polynomials in the limit, including the Jacobi and

Meixner polynomials defined earlier, and the Krawtchouk and

Charlier polynomials which are orthogonal with respect to the

binomial and Poisson distributions, respectively [21].

The following theorem presents the orthogonal polynomial

SVD of the conditional expectation operator C corresponding

to the beta source and binomial channel model.

Theorem 2 (Jacobi SVD): For the binomial channel with

beta source, as presented in (26) and (27), the conditional

expectation operator, C : L2 ((0, 1), PX ) → L2 ([n], PY ), has

SVD:

∀k ∈ [n], C
(

J
(α,β)
k

)
= σk Q

(α,β)
k

∀k ∈ N\[n], C
(

J
(α,β)
k

)
= 0

where {σk ∈ (0, 1] : k ∈ [n]} are the singular values such that

σ0 = 1.

When α = β = 1, PX is the uniform pdf and PY is

the uniform pmf. The corresponding orthonormal polynomials



MAKUR AND ZHENG: POLYNOMIAL SINGULAR VALUE DECOMPOSITIONS OF A FAMILY OF SOURCE-CHANNEL MODELS 7721

are known as Legendre polynomials and discrete Cheby-

shev or Gram polynomials respectively, and are analogs of

each other. For this reason, and the fact that Jacobi polynomi-

als can be obtained as limits of Hahn polynomials, we refer

to the SVD in Theorem 2 as the “Jacobi SVD.”

C. The Hermite SVD

For our final result, let X = Y = R, and let λ and µ be the

Lebesgue measure in subsection I-B. The channel conditional

pdfs {PY |X=x ∼ N (x, ν) : x ∈ R} are the NEFQVF of

Gaussian distributions:

∀x, y ∈ R, PY |X (y|x) =
1

√
2πν

exp

(
−

(y − x)2

2ν

)
(33)

where x ∈ R is the expectation parameter of the Gaussian

distribution and ν ∈ (0,∞) is some fixed variance. We can

construe (33) as the well-known single letter additive white

Gaussian noise (AWGN) channel:

Y = X + W, X ⊥⊥ W ∼ N (0, ν) (34)

where the input X is independent of the Gaussian noise W .

The corresponding conjugate prior family consists of Gaussian

distributions, and we assume that the source pdf is

PX ∼ N (r, p):

∀x ∈ R, PX (x) =
1

√
2πp

exp

(
−

(x − r)2

2 p

)
(35)

where r ∈ R is the expectation parameter, and p ∈ (0,∞)

is the variance parameter. The posterior pdfs {PX |Y=y ∼
N ((py +νr)/(p +ν), pν/(p +ν)) : y ∈ R} are also Gaussian

distributions as we used a conjugate prior. Finally, the output

marginal pdf PY ∼ N (r, p+ν) is also a Gaussian distribution.

The Hilbert spaces L2(R, PX ) and L2(R, PY ) have ortho-

normal bases of Hermite polynomials. In particular, the Her-

mite polynomial with degree k ∈ N, denoted H
(r,τ )
k : R → R,

is defined by the Rodrigues formula:

H
(r,τ )
k (x) �

√
τ k

k!
(−1)k e

(x−r)2

2τ
dk

dxk

(
e− (x−r)2

2τ

)
(36)

with the parameters r ∈ R and τ ∈ (0,∞). These polynomials

satisfy the orthogonality relation:

∀ j, k ∈ N,

∫ ∞

−∞
H

(r,τ )
j (x)H

(r,τ )
k (x)

1
√

2πτ
e− (x−r)2

2τ dx =δ j k

(37)

with respect to the Gaussian distribution N (r, τ ).

The ensuing theorem presents the orthogonal polynomial

SVD of the conditional expectation operator C corresponding

to the Gaussian source-channel model.

Theorem 3 (Hermite SVD): For the Gaussian channel with

Gaussian source, as presented in (33) and (35), the conditional

expectation operator, C : L2 (R, PX ) → L2 (R, PY ), has SVD:

∀k ∈ N, C
(

H
(r,p)
k

)
= σk H

(r,p+ν)
k

where {σk ∈ (0, 1] : k ∈ N} are the singular values such that

σ0 = 1 and lim
k→∞

σk = 0.

This result is known in the literature. For example, Theo-

rem 3 was derived in [3] for the r = 0 case, where the authors

also computed the singular values to be:

∀k ∈ N, σk =
(

p

p + ν

) k
2

. (38)

Furthermore, the authors of [3] also remarked upon the pos-

sible relation between Theorem 3 and the classical theory

of the Ornstein-Uhlenbeck process. We include Theorem 3

here for completeness, and provide an alternative proof of it.

Theorems 1 and 2 generalize Theorem 3 by establishing

a “nice” class of source-channel models whose conditional

expectation operators have orthogonal polynomial singular

vectors.

D. Related Results in the Literature

The general problem of analyzing when the singular vec-

tors (or eigenvectors) of certain linear operators are orthogonal

polynomials has been widely studied in mathematics. Compre-

hensive resources on the general theory of orthogonal polyno-

mials include [21]–[23]. In particular, it is well-known that

the classical orthogonal polynomials (Hermite, Laguerre, and

Jacobi) arise as eigenfunctions of certain second order (Sturm-

Liouville type of) differential operators. Both [23] and [25]

meticulously expound various relationships between orthogo-

nal polynomials and differential or integral linear operators.

In the setting of probability theory, there are deep ties

between orthogonal polynomials and certain Markov semi-

groups. Under regularity conditions, the conditional expecta-

tion operators of a semigroup are completely characterized by

an infinitesimal generator, because they form the unique solu-

tion to the heat equation defined by their generator (due to the

Hille-Yosida theorem) [26]. When the generator is a diffusion

operator (which is a kind of second order differential opera-

tor), the orthogonal polynomials with respect to the invariant

measure of the semigroup turn out to be eigenfunctions of the

generator, or equivalently, the conditional expectation oper-

ators. Moreover, there are only three families of orthogonal

polynomials (up to scaling and translations) that are eigenfunc-

tions of diffusion operators: the Hermite, Laguerre, and Jacobi

polynomials [27]. The three corresponding diffusion operators

are precisely the aforementioned second order differential

operators with classical orthogonal polynomial eigenfunctions.

In particular, the Markov semigroup in the Hermite case is the

well-known Ornstein-Uhlenbeck semigroup. We refer readers

to [26], [27], and the references therein for detailed expositions

of these ideas.

Our results are closer in spirit to a line of work in statistics

initiated by Lancaster [28], [29]. Given marginal distributions

PX and PY , and sequences of orthonormal functions, { f j ∈
L2 (X , PX )} and {gk ∈ L2 (Y, PY )}, a bivariate distribution

PX,Y is called a Lancaster distribution (with respect to PX ,

PY , { f j }, and {gk}) if for every j, k:

E
[

f j (X)gk(Y )
]

= σkδ j k (39)

for some Lancaster sequence of non-negative correla-

tions {σk}. In [28], Lancaster proved that if PX,Y is
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absolutely continuous with respect to the product distribution

PX × PY , and has finite “mean square contingency” (i.e. the

χ2-divergence χ2(PX,Y ||PX ×PY ) = EPX ×PY

[
τ (X, Y )2

]
−1 is

finite), then there exist orthonormal bases, { f j ∈ L2 (X , PX )}
and {gk ∈ L2 (Y, PY )}, such that PX,Y is a Lancaster distrib-

ution, and the following expansion holds:

τ (x, y) =
∑

k

σk fk(x)gk(y) (40)

where τ (x, y) denotes the Radon-Nikodym derivative of PX,Y

with respect to PX × PY . It is straightforward to see that

an expansion of the form (40) captures the SVD structure

of the conditional expectation operators associated with PX,Y .

Explicit expansions of the form (40) in terms of orthogonal

polynomials have since been derived for various bivariate

distributions. For instance, orthogonal polynomial expansions

for bivariate distributions that are generated additively from

three independent NEFQVF random variables were established

in [30]. We refer readers to [30], [31], and the references

therein for further details on such classical work. More con-

temporary results on Lancaster distributions are presented in

in [32], [33], and the references therein. As explained in [33],

one direction of research is to find the extremal Lancaster

sequences corresponding to the extremal points of the com-

pact, convex set of Lancaster distributions corresponding to

certain marginal distributions and their orthogonal polynomial

sequences.

In contrast to the aforementioned classical examples of

orthogonal polynomial eigenfunctions, the conditional expec-

tation operators that we derive SVDs for are defined by

NEFQVF channels and conjugate prior sources. As we men-

tioned earlier, the Hermite SVD result in Theorem 3 can be

related to results on the Ornstein-Uhlenbeck semigroup since

a Gaussian NEFQVF has a Gaussian conjugate prior family.

However, we emphasize that the Laguerre and Jacobi SVDs

in Theorems 1 and 2 are distinct from classical results (in the

contexts of differential equations, integral equations, Markov

semigroups, or Lancaster distributions). To our knowledge,

these classical results do not analyze the setting of NEFQVF

channels and conjugate prior sources. On the other hand,

we would like to acknowledge that results similar to ours on

spectral decompositions of Markov chains have been indepen-

dently derived in [34] to analyze the convergence rate of Gibbs

sampling.

Finally, it is worth mentioning that although we refer

to Morris’ unified theory of NEFQVFs in [9] and [10]

in section I, the importance of NEFQVFs was recognized

much earlier by Meixner. Indeed, Meixner characterized the

orthogonal polynomial families corresponding to NEFQVFs

as precisely those that have generating functions with a

certain tractable form in [35]. (Since we only use orthogonal

polynomials corresponding to PX and PY rather than those

corresponding to NEFQVFs, Meixner’s results are not directly

of relevance to us.)

III. PROOFS OF MAIN RESULTS

In this section, we will prove our main results under the con-

ditions stated in subsection I-B. To this end, we will first derive

an auxiliary result that provides simple necessary and suffi-

cient conditions for conditional expectation operators to have

orthonormal polynomial singular vectors. We refer readers to

[36]–[38] for the relevant functional analysis background.

Recall that we are given the Hilbert space L2 (X , PX ) with

dimension:

dim
(
L2 (X , PX )

)
= |X | ∈ Z

+ ∪ {+∞} (41)

i.e. L2 (X , PX ) is infinite dimensional when |X | = +∞, and

finite dimensional when |X | < +∞. Since L2 (X , PX ) is

separable, it equivalently has a countable complete orthonor-

mal (Schauder) basis. We will assume that L2 (X , PX ) has

a unique (up to arbitrary sign changes) orthonormal basis

of polynomials
{

pk ∈ L2 (X , PX ) : k < |X |
}
, where pk is an

orthonormal polynomial with degree k ∈ N. Typically, such

orthonormal polynomials can be constructed by applying the

Gram-Schmidt algorithm to the monomials
{
1, x, x2, . . .

}
.

Note that the finiteness of the moment generating func-

tion (MGF) of X on an interval containing zero guaran-

tees the existence of an orthonormal polynomial basis of

L2 (X , PX ) (since it ensures that all moments of X exist

and are finite), and the positive definiteness of 〈·, ·〉PX
with

respect to the subspace of all polynomials guarantees the

uniqueness of this basis. Furthermore, this discussion holds

mutatis mutandis for the Hilbert space L2 (Y, PY ), and we also

assume that it has a unique orthonormal basis of polynomi-

als
{
qk ∈ L2 (Y, PY ) : k < |Y|

}
, where qk is an orthonormal

polynomial with degree k. The next definition presents a

pertinent property of bounded linear operators between the

Hilbert spaces L2 (X , PX ) and L2 (Y, PY ).

Definition 4 (Degree Preservation): A bounded linear

operator T : L2 (X , PX ) → L2 (Y, PY ) is degree preserving

if for any polynomial p ∈ L2 (X , PX ) with degree k ∈ N,

T (p) ∈ L2 (Y, PY ) is also a polynomial with degree at most

k. T is strictly degree preserving if:

• Case |X | ≤ |Y|: For any polynomial p ∈ L2 (X , PX )

with degree k < |X |, T (p) ∈ L2 (Y, PY ) is also a

polynomial with degree exactly k.

• Case |X | > |Y| (⇒ |Y| < +∞): For any polynomial

p ∈ L2 (X , PX ) with degree k < |Y|, T (p) ∈ L2 (Y, PY )

is also a polynomial with degree exactly k, and for any

polynomial p ∈ L2 (X , PX ) with degree |Y| ≤ k < |X |,
T (p) ∈ L2 (Y, PY ) is also a polynomial with degree at

most |Y| − 1.

In Definition 4, we use the convention that ∞ ≤ ∞
is true, and ∞ < ∞ is false. We also remark that when

X = Y , this definition implies that polynomials form an

invariant subspace of a degree preserving operator T . The next

proposition presents our auxiliary result using this definition.

Proposition 2 (Orthogonal Polynomial SVD):

Let T : L2 (X , PX ) → L2 (Y, PY ) be a compact linear

operator, and T ∗ : L2 (Y, PY ) → L2 (X , PX ) be its unique

adjoint operator. Then, T and T ∗ are strictly degree preserving

if and only if T has SVD:

∀k < min{|X |, |Y|} , T (pk) = βkqk

|X | > |Y| ⇒ ∀|Y| ≤ k < |X |, T (pk) = 0
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where {βk ∈ (0,∞) : k < min{|X |, |Y|}} are singular values

such that lim
k→∞

βk = 0 when min{|X |, |Y|} = +∞.

Proof: We first prove the forward direction. Since T is

a compact linear operator, its adjoint T ∗ is also compact by

Schauder’s theorem [36], [37]. Hence, the (Gramian) operator

T ∗T is self-adjoint, positive, and compact since the composi-

tion of compact operators is compact. Moreover, since T and

T ∗ are strictly degree preserving, T ∗T is degree preserving;

in fact, T ∗T is strictly degree preserving when |X | ≤ |Y|.
Using the spectral theorem for compact self-adjoint oper-

ators [36], T ∗T has a countable orthonormal eigenbasis

{ri ∈ L2 (X , PX ) : i ∈ N, i < |X |}:

∀i < |X |, T ∗T (ri ) = αiri

where {αi ∈ R+ : i < |X |} are the non-negative eigenval-

ues (since T ∗T is positive) such that limi→∞ αi = 0 when

|X | = +∞. We will prove by strong induction that these

eigenfunctions are orthonormal polynomials.

The first eigenfunction of T ∗T must be the constant function

r0 = p0 = 1X since T ∗T is degree preserving. Assume that

the first k + 1 eigenfunctions are orthonormal polynomials:

ri = pi for i ∈ {0, . . . , k} (inductive hypothesis). Then, since

pk+1 is orthogonal to span (r0, . . . , rk) = span (p0, . . . , pk),

we have:

pk+1 =
∑

k+1≤ j<|X |

〈
pk+1, r j

〉
PX

r j .

When |X | = +∞, this equality holds in the sense that the

partial sums converge to pk+1 in L2 (X , PX )-norm. Applying

T ∗T to both sides and using the continuity (or equivalently,

the boundedness) of T ∗T , we get:

T ∗T (pk+1) =
∑

k+1≤ j<|X |
α j

〈
pk+1, r j

〉
PX

r j

which also holds in the L2 (X , PX )-norm sense when

|X | = +∞. Hence, T ∗T (pk+1) is orthogonal to

span (p0, . . . , pk) using the continuity of the inner product,

and it is a polynomial with degree at most k + 1 as T ∗T is

degree preserving. This implies that:

T ∗T (pk+1) = αk+1 pk+1

where αk+1 is possibly zero, which means that rk+1 = pk+1

(without loss of generality). By strong induction, {pk ∈
L2 (X , PX ) : k < |X |} are the eigenfunctions of T ∗T :

∀k < |X |, T ∗T (pk) = αk pk (42)

where for all k < min{|X |, |Y|}, αk > 0 because both

T and T ∗ do not reduce the degrees of input polynomials

with degrees less than min{|X |, |Y|}.
Now observe (by definition of the adjoint operator) that:

∀ j, k < |X |,
〈
T
(

p j

)
, T (pk)

〉
PY

=
〈
p j , T ∗T (pk)

〉
PX

= αk

〈
p j , pk

〉
PX

= αkδ j k.

This means that {T (pk) : k < min{|X |, |Y|}} are scaled ver-

sions of the orthonormal polynomials in L2 (Y, PY ) since T is

strictly degree preserving:

∀k < min{|X |, |Y|}, T (pk) =
√

αkqk

where the sign of each orthonormal polynomial qk is chosen

to keep
√

αk > 0. On the other hand, if |X | > |Y|, then for

any |Y| ≤ k < |X |, T (pk) is a polynomial with degree at

most |Y|−1 and is orthogonal to every q j with j < |Y|. This

implies that T (pk) = 0 as {q j ∈ L2 (Y, PY ) : j < |Y|} is an

orthonormal basis of L2 (Y, PY ). Moreover, αk = 0 for every

|Y| ≤ k < |X |. Therefore, we have:

∀k < min{|X |, |Y|}, T (pk) =
√

αkqk

|X | > |Y| ⇒ ∀|Y| ≤ k < |X |, T (pk) = 0

which is the SVD of T with singular values, βk = √
αk > 0

for every k < min{|X |, |Y|}, that satisfy limk→∞ βk = 0 when

min{|X |, |Y|} = +∞ (since limk→∞ αk = 0). This completes

the proof of the forward direction.

To prove the converse direction, notice that T having SVD:

∀k < min{|X |, |Y|} , T (pk) = βkqk

|X | > |Y| ⇒ ∀|Y| ≤ k < |X |, T (pk) = 0

implies that T ∗ has SVD:

∀k < min{|X |, |Y|} , T ∗(qk) = βk pk

|Y| > |X | ⇒ ∀|X | ≤ k < |Y|, T ∗(qk) = 0.

This is an exercise in functional analysis. Since βk > 0 for any

k < min{|X |, |Y|}, and any polynomial can be decomposed

into a weighted sum of orthonormal polynomials, these SVDs

imply that T and T ∗ are strictly degree preserving. This

completes the proof.

We briefly make some remarks regarding Proposition 2.

Firstly, the result continues to hold if PX or PY are

relaxed to be non-probability measures that have unique

orthonormal polynomial bases. Secondly, the singular values

{βk ∈ (0,∞) : k < min{|X |, |Y|}} of T must be computed

on a case by case basis if desired. Thirdly, as mentioned

in the proof, the signs of
{

pk ∈ L2 (X , PX ) : k < |X |
}

and{
qk ∈ L2 (Y, PY ) : k < |Y|

}
are chosen to ensure that the

singular values are non-negative. This convention also applies

to Theorems 1, 2, 3, and Lemma 1 below. Fourthly, it is worth

considering Proposition 2 when L2 (X , PX ) and L2 (Y, PY )

are finite dimensional, and isomorphic to R|X | and R|Y |,
respectively. In this scenario, T and T ∗ have finite rank, and

are trivially compact operators that have SVDs. Moreover,

every basis of a Euclidean space Rn (n = |X | or n = |Y|)
corresponds to a basis of polynomials, where each polynomial

has degree at most n − 1, by the unisolvence theorem. So,

the singular vectors of T and T ∗ will always be polynomials.

The non-trivial aspect of Proposition 2 in this finite dimen-

sional setting is that T and T ∗ have orthonormal polynomial

singular vector bases if and only if T and T ∗ are strictly

degree preserving. Lastly, it is worth noting that although the

SVD result in Proposition 2 requires strict degree preservation,

the spectral decomposition result in (42) only requires degree

preservation as the proof illustrates.

The ensuing lemma is a straightforward corollary of Propo-

sition 2 specializing it for conditional expectation operators.
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Lemma 1 (Conditional Moment Condition):

Suppose the conditional expectation operator C :
L2 (X , PX ) → L2 (Y, PY ) is compact, and suppose |X | ≥ |Y|
without loss of generality. Then, for every n ∈ N, n < |Y|,
E
[
Y n|X

]
is a polynomial in X with degree n and E

[
Xn |Y

]

is a polynomial in Y with degree n, and for every n ∈ N,

|Y| ≤ n < |X |, E
[
Xn |Y

]
is a polynomial in Y with degree at

most |Y| − 1 if and only if C has SVD:

∀k < |Y|, C (pk) = βkqk

∀|Y| ≤ k < |X |, C (pk) = 0

where {βk ∈ (0, 1] : k < |Y|} are singular values such that

β0 = 1, and lim
k→∞

βk = 0 when |Y| = +∞.

Proof: The conditional moment conditions of the lemma

are equivalent to C and C∗ being strictly degree preserving.

The SVD of C then follows from Proposition 2, where as

before, the signs of the orthonormal polynomials are selected

to keep the singular values positive. (When |X | = |Y|,
no value of k satisfies the second line of the SVD, and it is

vacuously true.) Furthermore, βk ≤ 1 for all k < |Y| because

‖C‖op = 1 by Proposition 1, and β0 = 1 since C (1X ) = 1Y .

Lemma 1 provides an easily testable equivalent condition

for a conditional expectation operator to have an orthonormal

polynomial SVD; it holds with natural modifications when

|X | ≤ |Y|. We must also verify that C is compact when using

this lemma. A well-known sufficient condition that ensures

that C (and C∗) are compact is the Hilbert-Schmidt condition:

∫

X

∫

Y

P2
X,Y (x, y)

PX (x)PY (y)
dµ(y)dλ(x) < +∞ (43)

where PX,Y , PX , and PY are the probability densities defined

in subsection I-B. In functional analysis, this condition arises

from the compactness of Hilbert-Schmidt operators, which are

integral operators with square integrable kernels [36]. In sta-

tistics, it corresponds to the finite “mean square contingency”

condition mentioned in subsection II-D; for example, it is

mentioned after Assumption 5.2 in [2], and in the premise of

Theorem 2 in [1]. In our ensuing proofs, we will not explicitly

check for compactness of the operators for brevity.

A. Finite Alphabet Examples

Before proving our main results, we briefly provide two

basic examples of polynomial SVDs in the finite alphabet case.

Example 1 (Uniform Source and Binary Symmetric Chan-

nel): Suppose X ∼ Bernoulli
(

1
2

)
, and Y ∼ Bernoulli

(
1
2

)
is the

output of passing X through a binary symmetric channel with

crossover probability δ ∈
(
0, 1

2

)
. The orthonormal polynomials

in L2
(
{0, 1}, Bernoulli

(
1
2

))
are p0 = (1, 1) and p1 = (1,−1),

where pk = (pk(0), pk(1)) for k = 0, 1. It is straightforward

to directly verify that the SVD of C is:

C(p0) = p0 and C(p1) = (1 − 2δ) p1. (44)

So, C and C∗ are strictly degree preserving by Lemma 1.

Example 2 (Uniform Source and Binary Erasure Channel):

Suppose X = {0, 1}, Y = X ∪ {e} (where e is the erasure

symbol), X ∼ Bernoulli
(

1
2

)
, and Y is the output of passing

X through a binary erasure channel with erasure probability

ε ∈ (0, 1). In this case, the SVD of C is:

C(p0) = g0 and C(p1) =
√

1 − ε g1 (45)

where the right singular vectors are given in Example 1, and

the left singular vectors are the orthonormal vectors g0 =
(1, 1, 1) and g1 =

(
1/

√
1 − ε,−1/

√
1 − ε, 0

)
in L2 (Y, PY ),

where gk = (gk(0), gk(1), gk(e)) for k = 0, 1. Note that

C has an orthonormal polynomial SVD if and only if g1

is a linear polynomial, which is true if and only if e = 1
2

.

Therefore, when e ∈ R and e �= 1
2

, C and C∗ are not strictly

degree preserving by Lemma 1 (although g1 is a non-linear

polynomial).

B. Proof of Theorem 1: Laguerre SVD

Proof: First notice that given X = x ∈ (0,∞), Y is

Poisson distributed with rate x as shown in (18). This means

that the cumulants of PY |X=x are all equal to x . Since the nth

moment E
[
Y n|X = x

]
for n ∈ N is a polynomial in the first

n cumulants with degree n [39], E
[
Y n |X

]
is a polynomial in

X with degree n for every n ∈ N. (Note that this can also be

proved directly by using induction on the derivatives of the

MGF of a Poisson random variable.)

Next, we prove that the moments of a gamma distribution

PX ∼ gamma(α, β) with α, β ∈ (0,∞), shown in (19), are

polynomials in α with the same degree. The MGF of X is:

MX (s) � E

[
es X
]

=

{(
β

β−s

)α
, s < β

+∞, s ≥ β

and as β > 0, the MGF is finite on an open interval around

s = 0. This means the moments of X are given by:

E
[
Xn
]

=
dn

dsn
MX (s)

∣∣∣∣
s=0

=
dn

dsn

(
β

β − s

)α∣∣∣∣
s=0

=
(

β

β − s

)α
1

(β − s)n

n−1∏

i=0

(α + i)

∣∣∣∣∣
s=0

=
1

βn

n−1∏

i=0

(α + i)

for every n ∈ N\{0}. Thus, for every n ∈ N, E
[
Xn
]

is a

polynomial in α with degree n.

As mentioned earlier in subsection II-A, the posterior pdfs

{PX |Y=y ∼ gamma(α+y, β+1) : y ∈ N} are also gamma pdfs

with updated parameters. Hence, for every n ∈ N, E
[
Xn |Y

]

is a polynomial in Y with degree n. Applying Lemma 1

completes the proof.

C. Proof of Theorem 2: Jacobi SVD

Proof: First observe that given X = x ∈ (0, 1),

PY |X=x ∼ binomial(n, x), which means that Y = Z1+· · ·+Zn

where Z1, . . . , Zn are conditionally i.i.d. Bernoulli(x) random
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variables (i.e. P(Z i = 1) = x and P(Z i = 0) = 1 − x for

i = 1, . . . , n). Hence, we have for any m ∈ N:

E
[
Y m |X = x

]
= E

[(
n∑

i=1

Z i

)m ∣∣∣∣∣ X = x

]

=
∑

0≤k1,...,kn≤m
k1+···+kn=m

m!
k1! · · · kn!

n∏

i=1

E

[
Z

ki

i

∣∣∣X = x
]

=
∑

0≤k1,...,kn≤m
k1+···+kn=m

m!
k1! · · · kn!

x N(k1,...,kn )

where the second equality follows from the multinomial theo-

rem, the third equality follows from the fact that the moments

of the Bernoulli random variables are E
[
Z0

i |X = x
]

= 1 and

for every m ∈ N\{0}, E
[
Zm

i |X = x
]

= x , and N(k1, . . . , kn)

denotes the number of non-zero ki . Since N(k1, . . . , kn) ≤
min{m, n} and N(k1, . . . , kn) = min{m, n} for at least one of

the terms, we have that for every m ∈ [n], E
[
Y m |X

]
is a

polynomial in X with degree m.

Next, as mentioned in subsection II-B, we note that the

posterior pdfs
{

PX |Y=y ∼ beta(α + y, β + n − y) : y ∈ [n]
}

are also beta pdfs with updated parameters. For any fixed

Y = y ∈ [n] and any m ∈ N, we have:

E
[
Xm |Y = y

]
=
∫

(0,1)

xm xα+y−1(1 − x)β+n−y−1

B(α + y, β + n − y)
dλ(x)

=
B(α + y + m, β + n − y)

B(α + y, β + n − y)

=
� (α + y + m) � (α + β + n)

� (α + y) � (α + β + n + m)

=

m−1∏

k=0

(α + y + k)

m−1∏

k=0

(α + β + n + k)

(46)

where the first equality uses (27) with the updated parameters.

Therefore, for every m ∈ [n], E
[
Xm |Y

]
is a polynomial

in Y with degree m, and for every m ∈ N\[n], E
[
Xm |Y

]

is a polynomial in Y with degree at most n. The latter

deduction seems counter-intuitive in light of (46), which seems

to suggest that E
[
Xm |Y

]
is always a polynomial in Y with

degree m. However, since the function y �→ E
[
Xm |Y = y

]

is supported on a set of size n + 1, it can only be uniquely

represented as a polynomial with degree at most n by the

unisolvence theorem.

Finally, employing Lemma 1 completes the proof.

D. Proof of Theorem 3: Hermite SVD

As mentioned earlier, Theorem 3 was proved in [3] using the

Appell sequence recurrence relation of Hermite polynomials.

We now provide another proof using Lemma 1 here. Our proof

uses the following lemma, cf. the line below equation (51) in

[40, Ch. 7].

Lemma 2 (Translation Invariant Kernels): Fix u, v ∈
R\{0}, and a Borel measurable λ-integrable function

φ : R → R such that
∫
R

φ dλ = 1, where λ is the Lebesgue

measure. If T : L2 (R, PX ) → L2 (R, PY ) is a bounded

integral operator with translation invariant kernel φ:

∀ f ∈ L2 (R, PX ) , (T ( f ))(y) =
∫

R

φ(uy + vx) f (x) dλ(x),

then T is strictly degree preserving.

Proof: We include a proof of this known result in

Appendix C for completeness.

Note that u = 1 and v = −1 corresponds to a difference ker-

nel setting where T represents convolution with the function φ.

We also remark that although L2 (R, PX ) and L2 (R, PY ) are

the Hilbert spaces defined in subsection II-C, Lemma 2 also

holds for other (appropriately generalized) Hilbert spaces.

Proof of Theorem 3: Observe that when PX,Y is defined

by (33) and (35), both C and C∗ are integral operators

with translation invariant kernels satisfying the conditions of

Lemma 2. Indeed, for any f ∈ L2 (R, PX ) and any

g ∈ L2 (R, PY ):

(C( f ))(y) =
∫

R

f (x)PX |Y (x |y) dλ(x)

=
∫

R

f (x)√
2π
(

pν
p+ν

) exp

⎛
⎜⎝−

(
x − py+νr

p+ν

)2

2
(

pν
p+ν

)

⎞
⎟⎠ dλ(x),

(
C∗(g)

)
(x) =

∫

R

g(y)PY |X (y|x) dλ(y)

=
∫

R

g(y)
√

2πν
exp

(
−

(y − x)2

2ν

)
dλ(y).

Hence, C and C∗ are strictly degree preserving by Lemma 2.

Finally, applying Lemma 1 completes the proof.

IV. CONCLUSION

In this paper, we first illustrated the utility of SVDs of

conditional expectation operators by citing examples from

the literature such as maximal correlation functions (which

are themselves singular vectors of conditional expectation

operators) and linear information coupling problems (which

are solved by SVDs of conditional expectation operators).

We then proved that conditional expectation operators corre-

sponding to NEFQVF channels and conjugate prior sources,

where all marginal moments exist and are finite, have ortho-

normal polynomial SVDs. In particular, the Gaussian source

and Gaussian channel produce Hermite polynomial singular

vectors, the gamma source and Poisson channel produce gener-

alized Laguerre and Meixner polynomial singular vectors, and

the beta source and binomial channel produce Jacobi and Hahn

polynomial singular vectors. To establish these results, we ver-

ified that the corresponding conditional expectation operators

and their adjoint operators are strictly degree preserving, which

we showed is equivalent to having orthonormal polynomial

SVDs. This equivalence between strict degree preservation and

orthonormal polynomial SVDs may also be useful in future

for deriving orthonormal polynomial SVDs for other source-

channel models.
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APPENDIX A

PROOF OF PROPOSITION 1

Proof: We prove this for completeness. The maps C and

C∗ are clearly linear since they are defined using expectations.

To show that they are bounded, it suffices to prove that they

have operator norms equal to unity (and this also verifies that

their codomains are indeed Hilbert spaces). We now prove

that:

‖C‖op � sup
h∈L2(X ,PX )\{0}

‖C(h)‖PY

‖h‖PX

= 1

where 0 denotes the zero function. Let 1S denote the every-

where unity function on the set S ⊆ R: 1S : S → R,

1S(x) = 1. Observe that 1X ∈ L2 (X , PX ) (because

‖1X ‖2
PX

= 1), and using (8), C (1X ) = 1Y ∈ L2 (Y, PY )

(because
∥∥1Y

∥∥2

PY
= 1). Hence, ‖C‖op ≥ 1. Now, for any

h ∈ L2 (X , PX ), we have:

‖C(h)‖2
PY

= E

[
E

[
h(X)

∣∣∣Y
]2
]

≤ E

[
E

[
h2(X)

∣∣∣Y
]]

= ‖h‖2
PX

using (8), conditional Jensen’s inequality, and the tower prop-

erty and (7), respectively. Thus, ‖C‖op = 1 and ‖C∗‖op = 1,

where the latter follows from an analogous argument.

Since C and C∗ are bounded, they have unique adjoint

operators using the Riesz representation theorem [36], [38].

Note that for every f ∈ L2 (X , PX ) and every g ∈ L2 (Y, PY ),

we have:

〈C( f ), g〉PY
= E [E [ f (X)|Y ] g(Y )]

= E [ f (X)E [g(Y )|X]] =
〈
f, C∗(g)

〉
PX

where the second equality follows from applying the tower

property to E [ f (X)g(Y )]. Hence, C∗ is the adjoint operator

of C (as is implicitly suggested by the notation).

APPENDIX B

LOCAL APPROXIMATIONS OF f -DIVERGENCES

In this appendix, we locally approximate f -divergences

satisfying some regularity conditions, and specialize the

approximation for Kullback-Leibler (KL) divergence. The

f -divergences are a class of divergence measures over dis-

tributions that were independently introduced by Csiszár

in [41], [42], and by Ali and Silvey in [43]. Let f : (0,∞) →
R be a convex function such that f (1) = 0. Given two prob-

ability densities QX and PX with respect to λ on (X ,B(X ))

(recall the setup in subsection I-B), the f -divergence between

QX and PX is defined as:

D f (QX ||PX ) �

∫

X

PX (x) f

(
QX (x)

PX (x)

)
dλ(x) (47)

where we assume that f (0) = limt→0+ f (t), 0 f
(

0
0

)
= 0, and

for all r > 0, 0 f
(

r
0

)
= lims→0+ s f

(
r
s

)
= r lims→0+ s f

(
1
s

)

based on continuity arguments. With appropriate choices of

the function f : (0,∞) → R, f -divergences generalize many

known divergence measures including KL divergence, total

variation distance, χ2-divergence, squared Hellinger distance,

Jensen-Shannon divergence, and Jeffreys divergence [44], [45].

Proposition 3 (Local f -Divergence): Let f : (0,∞) → R

be a convex function such that f (1) = 0, f (t) is thrice

differentiable over some open interval around t = 1, f ′′′(t)
is locally bounded at t = 1, and f ′′(1) > 0. Suppose we are

given a family of probability densities that are local pertur-

bations of the reference probability density PX > 0 λ-a.e.:

Qε = PX (1X + ε φ)

where φ ∈ L∞(X , PX ) is a fixed perturbation function such

that E[φ(X)] = 0, and Qε is a valid probability density for all

ε �= 0 of sufficiently small magnitude. Then, the f -divergence

between Qε and PX can be locally approximated as:

D f (Qε ||PX ) =
f ′′(1)

2
ε2

E

[
φ(X)2

]
+ o
(
ε2
)

where o
(
ε2
)

is the Bachmann-Landau asymptotic notation

denoting a function which satisfies lim
ε→0

o
(
ε2
)
/ε2 = 0.

Proof: First observe that using f (1) = 0, the thrice

differentiability of f (t) over some open interval around t = 1,

and Taylor’s theorem about the point t = 1, we have:

f (t) = f ′(1)(t − 1) +
1

2
f ′′(1)(t − 1)2 +

1

6
f ′′′(s)(t − 1)3

for every t ∈ (0,∞) sufficiently close to unity, and some

corresponding min {1, t} ≤ s ≤ max {1, t}, where we have

used the Lagrange form of the remainder. Using this Taylor

approximation of f (t), we have for every x ∈ X̂ :

f

(
Qε(x)

PX (x)

)
= f ′(1) ε φ(x) +

f ′′(1)

2
ε2φ(x)2

+
f ′′′(s(x))

6
ε3φ(x)3 (48)

where X̂ ⊆ X is a Borel measurable set such that PX (x) > 0

for all x ∈ X̂ and λ(X\X̂ ) = 0, and where for every x ∈ X̂ ,

min {1, Qε(x)/PX (x)} ≤ s(x) ≤ max {1, Qε(x)/PX (x)}. Let

h(x, ε) denote the Lagrange remainder term:

h(x, ε) �
f ′′′(s(x))

6
ε3φ(x)3. (49)

Since φ ∈ L∞(X , PX ), ‖φ‖∞ � ess supx∈X |φ(x)| < +∞.

So, the remainder term is bounded λ-a.e. on X :

|h(x, ε)| =
| f ′′′(s(x))|

6
|ε|3|φ(x)|3 ≤

B

6
|ε|3 ‖φ‖3

∞ < +∞

where | f ′′′(s(x))| ≤ B < +∞ λ-a.e. for sufficiently small

ε �= 0 because f ′′′(t) is locally bounded at t = 1, and we

have:

min {1, 1 + ε φ(x)} ≤ s(x) ≤ max {1, 1 + ε φ(x)} λ-a.e.

⇒ 1 − |ε| ‖φ‖∞ ≤ s(x) ≤ 1 + |ε| ‖φ‖∞ λ-a.e.

which means for sufficiently small ε �= 0, s(x) will be in

the neighborhood of t = 1 around which f ′′′(t) is bounded.

In fact, we also require Qε(x)/PX (x) to be sufficiently close

to unity λ-a.e. for (48) to be valid, and this also holds for

sufficiently small ε �= 0 because:
∣∣∣∣

Qε(x)

PX (x)
− 1

∣∣∣∣ = |ε||φ(x)| ≤ |ε| ‖φ‖∞ λ-a.e. .
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We now take the expectation of both sides of (48) with respect

to PX and use E[φ(X)] = 0 to obtain:

D f (Qε ||PX ) =
f ′′(1)

2
ε2

E

[
φ(X)2

]
+ E[h(X, ε)]. (50)

(Note that E
[
φ(X)2

]
is finite because φ ∈ L∞(X , PX ) ⊆

L2(X , PX ), and the inclusion holds as PX is a finite measure.)

Since |h(x, ε)|/ε2 ≤ B ‖φ‖3
∞ |ε|/6 λ-a.e. for sufficiently

small ε �= 0, we have:

0 ≤
|E[h(X, ε)]|

ε2
≤ E

[
|h(X, ε)|

ε2

]
≤

B

6
‖φ‖3

∞ |ε|

which implies that E[h(X, ε)] = o
(
ε2
)
. Therefore, (50)

produces the desired approximation.

Proposition 3 asserts that if we consider the stochastic

manifold of probability densities on X in the “neighborhood”

of PX , the f -divergence between any two densities is a

squared weighted L2-norm. This intuition is known in the

literature; the discrete case of Proposition 3 is proved in [45]

where f -divergences are locally shown to be χ2-divergences.

Our proof uses additional regularity conditions to provide

a more general version of the result. The specialization of

Proposition 3 for KL divergence is provided in the next

corollary.

Corollary 1 (Local KL Divergence): Suppose we are given

a family of probability densities that are local perturbations

of the reference probability density PX > 0 λ-a.e.:

Qε = PX (1X + ε φ)

where φ ∈ L∞(X , PX ) is a fixed perturbation function such

that E[φ(X)] = 0, and Qε is a valid probability density for all

ε �= 0 of sufficiently small magnitude. Then, the KL divergence

between Qε and PX can be locally approximated as:

D(Qε ||PX ) =
1

2
ε2

E

[
φ(X)2

]
+ o
(
ε2
)
.

Proof: It is straightforward to verify the conditions of

Proposition 3 for f (t) = t log(t) (where log(·) denotes

the natural logarithm), and this choice of f generates KL

divergence.

Corollary 1 is well-known in the literature. The discrete

version can be found in [8], and the general case in [46].

APPENDIX C

PROOF OF LEMMA 2

Proof: For any polynomial p : R → R with degree n ∈ N,

p(x) = a0 + a1x + · · · + anxn such that an �= 0, we have:

∀y ∈ R, (T (p))(y) =
∫

R

φ(uy + vx)p(x) dλ(x)

=
∫

R

1

|v|
φ(z)p

(
z − uy

v

)
dλ(z)

=
∫

R

1

|v|
φ(z)

n∑

i=0

fi (z)yi dλ(z)

=
n∑

i=0

yi

∫

R

1

|v|
φ(z) fi (z) dλ(z)

where the second equality follows from a change of variables

z = uy + vx , and the third equality holds because p((z −
uy)/v) = a0 + a1(z − uy)/v + · · · + an ((z − uy)/v)n is a

polynomial in y with degree n, coefficients fi (z) of yi for

i = 0, . . . , n (these depend on u, v as well), and leading

coefficient fn(z) = an(−u/v)n �= 0. The non-zero leading

coefficient of T (p) is:
∫

R

1

|v|
φ(z)an

(
−u

v

)n

dλ(z) =
an

|v|

(
−u

v

)n

since
∫
R

φ dλ = 1. Hence, T (p) is a polynomial with degree n,

which implies that T is strictly degree preserving.
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