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Abstract—In this paper, we model the unsupervised learning
of a sequence of observed data vector as a problem of extracting
joint patterns among random variables. In particular, we formu-
late an information-theoretic problem to extract common features
of random variables by measuring the loss of total correlation
given the feature. This problem can be solved by a local geometric
approach, where the solutions can be represented as singular
vectors of some matrices related to the pairwise distributions
of the data. In addition, we illustrate how these solutions can be
transferred to feature functions in machine learning, which can be
computed by efficient algorithms from data vectors. Moreover, we
present a generalization of the HGR maximal correlation based
on these feature functions, which can be viewed as a nonlinear
generalization to linear PCA. Finally, the simulation result shows
that our extracted feature functions have great performance in
real-world problems.

I. INTRODUCTION

In unsupervised learning, it is assumed that a sequence

of d-dimensional data vectors x(m) = (x
(m)
1 , . . . , x

(m)
d ), for

m = 1, . . . , n, is observed. These data vectors are often
statistically modelled as i.i.d. generated from an unknown
joint distribution PX1···Xd

for some jointly distributed random
variables X1 · · ·Xd, and we want to learn features or patterns
directly from these data vectors. In this paper, we would like
to assume that there exists an unknown structure, modelled
as a random variable W , such that the random variables
X1, . . . , Xd are conditionally independent outputs from W ,
i.e., PX1···Xd|W = Πd

i=1PXi|W . Figure 1 illustrates this model.
Then, our goal is to learn features of the hidden structure W
directly from the observed data vectors x(m) without prior
knowledge of W . Note that Figure 1 can model a wide range of
unsupervised learning problems. For example, in unsupervised
image clustering, the hidden structure can be the collection of
hidden features, such as the gender or age, and Xi can be
subareas of the images.

It turns out that the main difficulty here is that there is
no prior knowledge about W , and we need to design a good
information criterion to select features that are more likely to
describe W very well. For that, observe that W can be viewed
as a sort of “common information” shared by random variables
X1, . . . , Xd, and learning the features of W can be formulated
as extracting common features among these random variables.
Motivated by this observation, in this paper we measure the
among of common information between random variables by
the total correlation [1], and formulate an information-theoretic
problem to select the feature U from the data variables to

Fig. 1. The random variables X1, . . . , Xd are conditional independently
generated from some hidden structure W .

maximize the loss of total correlation given the feature:

max
PUX1···Xd

:

I(U ;X1,...,Xd)≤ 1
2
ε2

C(X1, . . . , Xd)− C(X1, . . . , Xd|U) (1)

where C(X1, . . . , Xd) � D(PX1···Xd
‖PX1

· · ·PXd
) is the

total correlation. In this paper, we are particularly interested
in solving (1) in the small ε region, which allows us to focus
on the most significant low rate feature that are often useful in
practice. Moreover, this formulation reveals several important
advantages.

Firstly, the problem (1) in the small ε region can be solved
by a local geometric approach [2]- [4] with a clean analytical
form. In addition, the solution can be represented by singular
vectors of a matrix B, whose entries are weighted paiwise joint
distributions between X1, . . . , Xd. In addition, the sufficient
statistic for estimating the optimal U of (1) from X1, . . . , Xd

can be adopted as a feature function, which extracts all the
relevant information of an observed data vector contained
about U . Moreover, this feature function can be computed
by an efficient algorithm from data vectors directly. Finally,
the feature functions from our approach can be interpreted as
a generalization of the well-known Hirschfeld-Gebelein-Rényi
(HGR) maximal correlation [5] to multiple random variables.
We also show that this can be viewed as a nonlinear gener-
alization to linear principle component analysis (PCA). This
offers critical insights between information theory, statistics,
and machine learning, and the local geometric approach is
precisely the key technique to draw these connections. In the
rest of this paper, we demonstrate these results in detail, and
show the application of the feature functions to a real-world
problem.
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Related works : The local geometric approach employed in
this paper was first introduced in [2] for solving communi-
cation problem. In addition, the authors in [3] [4] extended
this approach to study the learning problem for a pair of
random variables, where our work in this paper can be viewed
as the generalization of this framework to multiple random
variables. Moreover, the idea of applying the reduction of
total correlation as a learning criterion was also observed
in [6], where the authors solved an optimization problem by
restricting the cardinality of U , and an rather complicated
iterative algorithm was derived. On the other hand, in this
paper we restrict the information volume contained in U ,
which is a much more natural constrain in information theory,
and obtain clean analytical solutions that can be computed by
a simple and efficient algorithm.

Notations : Throughout this paper, we use X , X , |X | and
x to denote the random variable, range, cardinality, and its
value. For a matrix B, B(i; j) denotes the entry of B in the
i-th row and j-th column. Finally, we use

√
PX to denote an

|X |-dimensional vector with entries
√

PX(x), for all x ∈ X .

II. THE LOCAL GEOMETRIC APPROACH

We commence by applying a local geometric technique [2]
to solve (1). For this purpose, we make a subtle assumption that
maxu PU (u)/minu PU (u) < γ, for some finite γ > 0 irrele-
vant to ε. This assumption is natural to many practical prob-
lems. With this assumption, the constraint I(U ;X1, . . . , Xd) ≤
1
2ε

2 for small ε implies that the conditional distribution
PX1···Xd|U can be written as a perturbation to the marginal

distribution1:

PX1···Xd|U=u(x1, . . . , xd) = (2)

PX1···Xd
(x1, . . . , xd) + ε

√

PX1···Xd
(x1, . . . , xd)φu(x1, . . . , xd)

where φu can be viewed as an |X1| · |X2| · · · |Xd| dimensional
vector. Then, the mutual information can be expressed as

I(U ;X1, . . . , Xd) =
1

2
ε2EU [‖φU‖2] + o(ε2),

where ‖ · ‖ denotes the l2-norm. Thus, by ignoring the higher
order term of ε as we are interested in the small ε region, the
constraint I(U ;X1, . . . , Xd) ≤ 1

2ε
2 can be reduced to

EU [‖φU‖2] ≤ 1.

In addition, the objective function of (1) can also be
expressed in terms of mutual informations:

C(X1, . . . , Xd)− C(X1, . . . , Xd|U)

=
d

∑

i=1

I(U ;Xi)− I(U ;X1, . . . , Xd), (3)

and for each i, the mutual information can be again approxi-
mated as the l2-norm square

I(U ;Xi) =
1

2
ε2EU [‖ψi,U‖2] + o(ε2),

1Note that the constraint I(U ;X1, . . . , Xd) ≤ ε2/2 itself does not imply
that the conditional distribution has a perturbation form. See [7] for the details.

where ψi,U is the |Xi|-dimensional perturbation vector defined
as

ψi,u(xi) =
PXi|U=u(xi)− PXi

(xi)

ε
√

PXi
(xi)

(4)

Then, the optimization problem (1), by ignoring the higher
order terms of ε, can be transferred to a linear algebraic
problem

max
EU [‖φU‖2]≤1

d
∑

i=1

EU [‖ψi,U‖2]. (5)

To solve (5), observe that PXi
and PXi|U are marginal

distributions of PX1···Xd
and PX1···Xd|U , thus there is a

correlation between φU and ψi,U :

ψi,u(xi) =

∑

x1,...,xi−1,xi+1,...,xd

√

PX1···Xd
(x1, . . . , xd)

√

PXi
(xi)

φu(x1, . . . , xd)

which can be represented in matrix form as ψi,u = Bi · φu,
where Bi is an |Xi| × (|X1| · |X2| · · · |Xd|) matrix with entries

Bi(x̂i; (x1, . . . , xn)) =

{

√
PX1···Xn (x1,...,xn)√

PXi
(x̂i)

if x̂i = xi,

0 otherwise.

Therefore, if we define an (|X1|+· · ·+|Xm|)×(|X1| · · · |Xm|)-
dimensional matrix B0 � [BT

1 · · ·BT
d ]

T , then (5) can be
written as

max
EU [‖φU‖2]≤1

d
∑

i=1

EU [‖Bi · φU‖2] = max
EU [‖φU‖2]≤1

EU [‖B0 · φU‖2]

(6)

Moreover, since φU is a perturbation vector of probability
distributions, by summing over all x1, . . . , xd for both sides
of (2), it has to satisfy an extra constraint

∑

x1,...,xd

√

PX1···Xd
(x1, . . . , xd)φu(x1, . . . , xd) = 0,

which implies that φU is orthogonal to the vector u0 =
√

PX1···Xd
. In particular, it is shown in [2] that u0 is the

right singular vector of B0 with the largest singular value
σ0 =

√
n, and the corresponding left singular vector is

v0 = 1√
n

[

√

PX1

T · · ·
√

PXd

T
]T

. Thus, the optimal solution

of (6) is to align the vectors φU=u, for all u, along the second
largest right singular vector of B0. It turns out that it is
easier to compute the second largest left singular vector of
B instead of the right one, since the left singular vector has
much smaller dimensionality. This is equivalent to compute the

second largest eigenvector of the matrix B � B0B
T
0 , which

by definition can be written as

B =

⎡

⎢

⎢

⎣

B11 B12 · · · B1d

B21 B22 · · · B2d

...
...

. . .
...

Bd1 Bd2 · · · Bdd

⎤

⎥

⎥

⎦

(7)

where Bij � BiB
T
j are |Xi|× |Xj |-dimensional matrices with
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entries

Bij(xi;xj) =
PXiXj

(xi, xj)
√

PXi
(xi)

√

PXj
(xj)

for i �= j, and for each i, Bii is an identity matrix. The above
discussions are summarized as the following Theorem.
Theorem 1. Let λ(1) and ψ(1) be the second largest eigenvalue
and eigenvector of B, then

λ(1) = lim
ε→0

2

ε2
max

I(U ;X1,...,Xd)≤ 1
2
ε2

d
∑

i=1

I(U ;Xi),

which from (3) implies that the optimum of (1) is λ(1) − 1.

Moreover, let the optimal solution of (1) be P
(ε)
X1···Xd|U , then

lim
ε→0

1

ε

P
(ε)
X1···Xd|U − PX1···Xd

√

PX1···Xd

∝ BT
0 ψ

(1),

where “∝” denotes two vectors are aligned.

We will show in section III-A that the second largest
eigenvector of BBT can be computed efficiently by a modified
ACE algorithm. Finally, we highlight a property of ψ(1) that
will be used later.
Lemma 1. Let ψ(1) = [ψT

1 · · ·ψT
d ]

T , where each ψi is an
|Xi|-dimensional vector, then ψi is orthogonal to PXi

.

Proof: Let φ(1) be the second largest right singular vector
of B0, then ψi = B0φ

(1). Since φ(1) is a perturbation vector
defined in (2), ψi is also a perturbation vector defined in (4),
which implies its orthogonality to PXi

.

III. FEATURE EXTRACTION FROM DATA VECTORS

We shall now transfer the information-theoretic results
obtained in section II to learning problems. Remember that
our goal is to extract features from a sequence of observed
data vectors x(m) about the hidden common structure W , and
the features are often represented by functions of the data x(m)

in machine learning. While the results in section II tells us the
statistical relationship between the targeted common feature U
and the data variables, it remains to transfer this knowledge to a
functional representation of data vectors. This can typically be
carried out by considering the sufficient statistic of inferring U
via random variables X1, . . . , Xd, which is the log-likelihood

log
PX1···Xd|U
PX1···Xd

� PX1···Xd|U − PX1···Xd

PX1···Xd

∝ φ(1)

√

PX1···Xd

where φ(1) is the second largest right singular vector of B.
Here, we approximate the log-likelihood to the first order term
of ε, and note that all the vectors φU should be aligned to φ(1).
This motivates us to define the feature function f : X1×· · ·×
Xd 	→ R as

f(x1, . . . , xd) �
φ(1)(x1, . . . , xd)

√

PX1···Xd
(x1, . . . , xd)

, (8)

which is the functional representation of the data vectors that
extracts all the relevant information about the target U . It is
easy to verify that f is a zero-mean and unit-variance function.

A. The Algorithm to Compute Feature Functions

The feature function (8) is a high-dimensional function
exponential to the number of random variables d; however,

this function can be computed efficiently via the analyses in

section II. The key step is to note that
√
λ(1)φ(1) = BT

0 ψ
(1) =

∑d

i=1 B
T
i ψi, where ψ(1) = [ψT

1 · · ·ψT
d ]

T . Thus, if we define

functions fi : Xi 	→ R as fi(xi) = ψi(xi)/
√

PXi
(xi), then it

is easy to verify that

√

λ(1)φ(1)(x1, . . . , xd) =
√

PX1···Xd
(x1, . . . , xd)

d
∑

i=1

fi(xi),

which implies

√

λ(1)f(x1, . . . , xd) =
d

∑

i=1

fi(xi). (9)

Since
√
λ(1) is simply a normalization factor, we simply need

to compute the functions �f = (f1, . . . , fd), which is equivalent

to compute the second largest eigenvector ψ(1) of B.
Remark 1. From (9), we know that the feature function to infer
the most informative target U about common information of
X1, . . . , Xd has an additive structure, i.e., it can be written as
the sum of individual functions of each Xi. Note that the result
of additive structure comes from applying the local geometric
approach to solve the information theoretic problem (1) over
general high-dimensional perturbation vectors ψ. This is par-
ticular attractive since we do not need to make any assumption
on how the target U is embedded in X1, . . . , Xd, and the
structure of the perturbation vector ψ in (2), but can still obtain
the additive structure of feature functions. This demonstrates
the critical role of the local geometric approach in applying
information theory to machine learning.

To derive an algorithm to compute the eigenvector ψ(1)

from observed data vectors x(m), an intuitive way is to
estimate the empirical distribution between X1, . . . , Xd from
data samples, and construct the matrix B to solve the eigen-
decomposition. However, this is often not feasible in practice
due to: (1) there may not be enough number of samples to esti-
mate the joint distribution accurately, (2) the dimensionality of
B may be extremely high especially for big data applications,
so that the SVD can not be conducted directly. Alternatively, it
is well-known that eigenvectors of a matrix can be efficiently
computed by the well-known power method, which iterative
multiplies the matrix to an initial vector, and converges to
the largest eigenvector exponentially fast. To apply the power
method for computing the second largest singular vector of B,
from Lemma 1, we choose the initial vector ψ = [ψ1 · · ·ψd]

T ,
such that ψi is orthogonal to PXi

. This also forces ψ to be

orthogonal to
√

PX1···Xd
, which guarantees the convergence to

the second largest eigenvalue. Then, the algorithm iteratively
compute the matrix multiplication ψ ← Bψ, or equivalently

ψi ← ψi +
∑

j �=i

Bijψj , (10)

for all i. Note that if we write fi(xi) = ψi(xi)/
√

PXi
(xi),

then as shown in [3], the step (10) is mathematically equivalent
to a conditional expectation operation on functions:

fi(Xi) ← fi(Xi) + E

⎡

⎣

∑

j �=i

fj(Xj)

∣

∣

∣

∣

∣

∣

Xi

⎤

⎦ ,

Therefore, the power method can be transferred to an algorithm
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based on the alternative conditional expectation (ACE) [8] as
shown in Algorithm 1, which computes the optimal feature
functions for (9).

Algorithm 1 The modified ACE Algorithm

Require : The data samples of variables X1, . . . , Xd

1. Initialization: randomly pick zero-mean functions �f =
(f1, . . . , fd).

repeat :

2. fi(Xi) ← fi(Xi) + E

[

∑

j �=i fj(Xj)
∣

∣

∣
Xi

]

.

3. fi(Xi) ← fi(Xi)/

√

E

[

∑d

i=1 f
2
i (Xi)

]

.

until �f converges.

B. Computing Multiple Feature Functions
While the above discussions focuses on the second largest

singular vector of B and the corresponding feature function,
it is clear that one can also compute the rest eigenvectors
and feature functions. It turns out that these feature func-
tions demonstrates an optimal tradeoff between the number
of selected feature functions, and the amount of information
extracted about a targeted hidden variable [3]. Like the eigen-
vectors, the computation of multiple feature functions can be
implemented in a successive manner. After the first k−1 sets of

feature functions �f (i) = (f
(i)
1 , . . . , f

(i)
d ), for i = 1, . . . , k − 1,

is computed, the k-th set of feature functions �f (k) has to be
orthogonal to previous feature functions:

〈�f (m), �f (k)〉 �
d

∑

i=1

E

[

f
(m)
i (Xi)f

(k)
i (Xi)

]

= 0, for m ≤ k − 1

Therefore, �f (k) can be computed the same as Algorithm 1 but
with an extra step of Gram-Schmidt procedure to guarantee
the orthogonality, which is illustrated in Algorithm 2.

Algorithm 2 The Computation of �f (k)

Require : The data samples of variables X1, . . . , Xn, and

previously computed functions �f (1), . . . , �f (k−1).

1. Initialization: randomly pick zero-mean functions
�f (k) = (f

(k)
1 , . . . , f

(k)
d ).

repeat :

2. Run step 2 and 3 of Algorithm 1.

3. �f (k) ← �f (k) −∑k−1
m=1〈�f (m), �f (k)〉 · �f (m)

until �f (k) converges.

IV. THE GENERALIZED MAXIMAL CORRELATION

The HGR maximal correlation is a variational generaliza-
tion of the well-known Pearson correlation coefficient, and
was originally introduced as a normalized measure of the
dependence between two random variables [5].
Definition 1 (Maximal Correlation). For jointly distributed
random variables X and Y , with ranges X and Y respectively,
the maximal correlation between X and Y is defined as:

ρ(X;Y ) � sup
f :X→R, g:Y→R :
E[f(X)]=E[g(Y )]=0

E[f2(X)]=E[g2(Y )]=1

E [f(X)g(Y )]

where the supremum is taken over all Borel measurable
functions. Furthermore, if X or Y is a constant almost surely,
there exist no functions f and g which satisfy the constraints,
and we define ρ(X;Y ) = 0.

It is easily verified that 0 ≤ ρ(X;Y ) ≤ 1, and ρ(X;Y ) =
0 if and only if X is independent of Y . In this section,
we propose a generalization of HGR maximal correlation to
multiple random variables, based on the feature functions in
section III.
Definition 2. The generalized maximal correlation (GMC) for
jointly distributed random variables X1, . . . , Xd with ranges
Xi, for i = 1, . . . , d, is defined as

ρ∗(X1, · · · , Xd) � max
1

d− 1
E

⎡

⎣

∑

i �=j

fi(Xi)fj(Xj)

⎤

⎦ (11)

for the functions fi : Xi → R, with the constraints

E [fi(Xi)] = 0, E

[

d
∑

i=1

f2
i (Xi)

]

= 1, for all i. (12)

Proposition 1. The optimal functions of (11) can be computed
by Algorithm 1.

Proof: Let f∗
i be the functions optimizing (11), and

ψi(xi) =
√

PXi
(xi)f

∗
i (xi), then it is easy to verify that the

vector ψ = [ψT
1 · · ·ψT

d ]
T is the second largest eigenvector

of B.

As the HGR maximal correlation, the GMC satisfies some
fundamental properties for correlation measurements, where
the proofs of these properties are straightforward by definition.
Property 1. For jointly distributed random variables
X1, . . . , Xd, the GMC satisfies ρ∗(X1, . . . , Xd) ≤ 1, and for
d ≥ 3, the equality holds if and only if there exists functions
fi(Xi), such that for all i, j, fi(Xi) = fj(Xj) with probability
1.
Property 2. For random variables X1, . . . , Xd, the GMC
ρ∗(X1, . . . , Xd) = 0 if and only if the random variables are
pairwise independent.
Property 3. For d = 2, the GMC reduces to the maximal
correlation, i.e., ρ∗(X;Y ) = ρ(X,Y ).

It turns out that GMC is a nonlinear generalization of the
linear PCA [9]. To see that, consider a sequence of data vectors

x(m) = (x
(m)
1 , . . . , x

(m)
d ) ∈ R

d, for m = 1, . . . , n, where the
sample mean and variance for each dimension are zero and

one, i.e.,
∑n

m=1 x
(m)
i = 0, and 1

n

∑n

m=1(x
(m)
i )2 = 1, for

all i. Then, the PCA aims to find the principle vector w =
(w1, . . . , wd) with unit norm such that

∑n

m=1〈w, x(m)〉2 is
maximized; or equivalently, to maximize

n
∑

m=1

∑

i �=j

(

wix
(m)
i

)(

wjx
(m)
j

)

= E

⎡

⎣

∑

i �=j

(wiXi) · (wjXj)

⎤

⎦

(13)

subject to the constraint

1 =

d
∑

i=1

w2
i =

d
∑

i=1

E

[

(wiXi)
2
]

, (14)

where the expectations in (13) and (14) are over the empirical
distributions PXiXj

and PXi
from the data vectors. Comparing

to the definition 2, we can see that GMC generalizes the linear
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PCA to nonlinear functional spaces of data. We would like to
emphasize that [3] also provides a nonlinear generalization to
PCA for the Gaussian distributed data vectors by the local
geometric approach. Our approach presented in this paper
essentially offers another generalization for general discrete
data vectors.
Remark 2. There are some other generalizations to maximal
correlations to multiple random variables. For example, the
network maximal correlation (NMC) proposed in [10] defines
a correlation measurement the same as (11) but with a slightly
different constraint:

E [fi(Xi)] = 0, E
[

f2
i (Xi)

]

= 1, for all i.

In addition, [11] proposes a maximally correlated principal
component analysis, which considers the largest singular value
of a matrix closely related to (7). Our results essentially
offer the information theoretic justification of generalizing the
maximal correlation as extracting common features among
random variables, and it turns out that the local geometric
approach is the key technique to obtain these insights.

V. SIMULATION RESULTS

In this section, we verify the performance of the selected
features from our framework to the MNIST Handwritten Digit
Database [12] for digits recognition. In the MNIST database,
there are N = 60000 images contained in the training sets,
and each image has a label that represents the digits “0” to
“9”. The images in this database are consisted of 28 × 28
pixels, where each image pixel takes the value ranging from
0 to 255. While this is a supervised learning problem, we
will show that Algorithm 2 can be applied to select features
from images directly without the knowledge of labels, and
these features, although selected in an unsupervised way, have
good performance in digital recognition. To apply Algorithm 2,
we need to identify the random variables Xi’s in the MNIST
problem as follows:

1. Each image pixel is quantized into binary signals “0”
and “1” with the quantization threshold 40.

2. We divide each image into 8 × 8 = 64 overlapping
subareas, where each sub-image has 6× 6 pixels, and
two nearby subareas are overlapped with 3 pixels.
Figure 2 illustrates this division of images.

Moreover, we quantize each subarea by Hamming distance
3, and represent each subarea as a random variable Xi, for
i = 1, . . . 64.

After this pre-processing, 64 random variables Xi are
specified, and each image n can be viewed as a 64-dimensional

data vector (x
(n)
1 , . . . , x

(n)
64 ), for n = 1, . . . , N . Then, we

apply Algorithm 2 to compute k feature functions �fi =

(f
(1)
i , . . . , f

(k)
i ) for each random variable Xi. These feature

functions maps the pre-processed training image n into a 64k-
dimensional score vector

�si =
(

�f1(x
(n)
1 ), . . . , �f64(x

(n)
64 )

)

.

which extracts non-linear features of the image. Note that in
this step, we select the feature functions only from the image
pixels but without the knowledge of the labels.

With the score vectors computed, at the second step we
apply the linear support vector machine (SVM) [13] to classify
the vectors �si, for i = 1, . . . , N into ten groups with respect to

Fig. 2. The division of images into 8× 8 = 64 overlapping subareas. Each
subarea has 6× 6 pixels, and nearby subareas overlap with 3 pixels.

the labels zi. This results in a linear classifier that associates a
label ẑi ∈ {0, . . . , 9} to each score vector �si, and the label
represents the recognized digit of the image corresponding
to the score vector. To test the performance of this linear
classifier in the set of test images, we first conduct the
same pre-processing to the test images, and map the pre-
processed test images into 64k-dimensional score vectors by

the score functions �fi. Then, the linear classifier is applied to
recognize the digits in the test images. The error probability
of recognizing the digits via the score vectors with k = 24 is
2.1%, which outperformances the convolutional neural network
with 2 layers.
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