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ABSTRACT

Forced convection in porous media has many important applications, one of which is in thermal energy storage
systems that use low cost materials, such as stones or brick, as heat storage materials. Turbulence is welcomed in
such thermal energy storage systems since it efficiently enhances heat transfer. Forced convection in porous media
can be described by the macroscopic momentum and energy equations. In order to close the macroscopic
equations, we analyzed the microscopic flow and temperature fields in porous media by direct numerical
simulation (DNS) methods. Two DNS methods were adopted in our study to compare and verify the results. They
are a finite volume method (FVM) and a Lattice-Boltzmann method (LBM). The porous matrix is made of a large
number of periodically arranged 3-dimensional spheres. Based on our DNS results, we proposed a macroscopic
model for calculating forced convection in porous media.
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1. INTRODUCTION

A porous medium refers to a material consisting of a solid matrix with interconnected voids. Examples of
porous media are sandstone, soil, coal, brick, and fiberglass. Fluid flows in porous media often occur at low
velocities and are thus laminar. However, when the Reynolds number, defined based on the size of the matrix
elements, d, and the mean flow velocity, u,,, is of the order of 100 or higher, the flow within the pores becomes
turbulent.

Turbulence is welcomed in many industrial applications because it enhances heat and mass transfer. A thermal
energy storage system can be used to demonstrate the significance of turbulent porous medium flow.
Rocks/bricks are often used for storing thermal energy. Although they come at a low cost, these materials have
low thermal conductivity, leading to a very slow charging and discharging process. To overcome this
limitation, the porous element size and the mean velocity may be adjusted to make the flow fully turbulent.
For a tube bank (which can be approximated as a porous medium), a relationship between the Nusselt number
and the Reynolds number changes from Nu~Re%3¢ for Re<300 to Nu~Re%®* for a fully turbulent flow
(Re>300) [1]. Heat transfer is thus efficiently enhanced by transition to turbulence.

For engineering applications, it is more practical to solve macroscopic equations to simulate turbulent flows
and heat transfer in porous media since using microscopic simulations requires the specification of a detailed
geometry of the porous matrix and also is computationally very expensive. In order to close the volume-
averaged Reynolds stress and temperature fluctuation terms in the macroscopic equations, various turbulence
models have been developed. The so-called eddy viscosity assumption is commonly adopted in most models
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to calculate the Reynolds stress. Representative models are those developed by Lee & Howell [2], Prescott &
Incropera [3], Antohe & Lage [4], and de Lemos & Pedras [5].

However, the eddy viscosity assumption was developed for clear fluid flows (with no solid obstacles) and thus
its validity for porous medium flows needs to be proven. In our recent direct numerical simulation (DNS)
studies, we found that the size of turbulent structures in a porous medium is generally limited by the pore size,
which leads to the pore scale prevalence hypothesis (PSPH) [6-8]. This is in accordance with the hypothesis
proposed by Nield [9, 10], which states that true macroscopic turbulence, at least in a dense porous medium,
is impossible because of the limitation on the size of turbulent eddies imposed by the pore scale.

The purpose of the present study is to develop a model for turbulent forced convection in a porous medium.
Forced convection in a generic porous matrix (GPM) composed of a large number of spheres will be studied
with DNS methods. The DNS results will be used to further validate the PSPH, propose a macroscopic model
for a turbulent flow in a porous medium, and determine its coefficients. The proposed macroscopic model will
also account for local thermal non-equilibrium (LTNE) effects.

2. GOVERNING EQUATIONS AND NUMERICAL METHODS

2.1 Microscopic and macroscopic equations

Forced convection in a porous medium in a heat storage system is typically characterized by local thermal non-
equilibrium. The microscopic governing equations are incompressible Navier-Stokes and energy conservation
equations. In Cartesian coordinates these equations are
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where v is the kinematic viscosity of the fluid; a5 and a; are the thermal diffusion coefficients of the fluid and
the solid matrix, respectively; Tr and Ty are the fluid and solid temperatures, respectively; and g; is a constant
applied pressure gradient which causes the fluid flow. The viscous heat dissipation is neglected in the thermal
energy conservation equation (3).

By performing time and volume averaging of Egs. (1) and (2) over a representative elementary volume (REV),
of Eq. (3) over the fluid part of the REV, and of Eq. (4) over the solid part of the REV, we obtained the
following macroscopic equations:
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Here ¢ is the porosity of the porous matrix. The operator ~denotes time averaging, the operator (-)! denotes
volume averaging over the fluid region of a REV, and the operator (-)° denotes volume averaging over the
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solid region. The operator ‘¢, where ¢ is any dependent variable, is defined as '@ = @ — (@)’. Parameters
Afm and agy, are the thermal diffusivities of the fluid and solid phases of the porous medium, respectively, and
=11

g'" is the volumetric heat transfer rate from the solid matrix to the fluid. In order to close Egs. (5)-(8), we
studied convection in porous media with DNS methods and investigated the turbulence length scales.

2.2 Direct numerical simulation methods

Two different methods which complement and verify each other were utilized in this study to understand the
mechanism of turbulence in porous media. They are

o The finite volume method (FVM) which directly solves the Navier-Stokes equations.
e The Lattice-Boltzmann method (LBM) which determines the particle distribution; this method
indirectly corresponds to solving the Navier-Stokes equations.

In our FVM, the solution of Egs. (1)—(3) was advanced in time with the second-order implicit backward method.
Eq. (4) was not solved in our study because an isothermal boundary condition was used at the surfaces of the
solid matrix. A second-order central difference scheme was used for spatial discretization. The pressure at the
new time level was determined by the Poisson equation. The velocity was corrected by the pressure-implicit
scheme with splitting of operators (PISO) pressure—velocity coupling.

The basic equation for the LBM is a discretized version of the Boltzmann equation [11] with the collision
operator being treated by the Bhatnagar-Gross-Krook (BGK) model [12], i.e.

filx + 5t + 80 — f(x.0) = =2 (1) — £(x,0)) ©

where ; is a discrete particle velocity, f;(x, t) is the probability to find a particle with a velocity §; at a position
X at a time ¢, fieq (x,t) is the equilibrium form of f;(x,t), and 7 is the relaxation time, which is related to the
viscosity of the fluid. Different macroscopic velocities now correspond to different probability distributions of
the particle velocities. A standard grid for modeling the three-dimensional motions of that kind, shown in Fig.
1, is called the D3Q19-grid (D3: three-dimensional, Q19: 19 discrete velocities). More details can be found in
Chen & Doolen [13].

2.3 Techniques for detecting turbulence length scales
Turbulence is characterized by the fluctuating flow field quantities that are strongly affected by eddy structures
of various sizes, often called coherent structures. These coherent structures are the building blocks of

turbulence. These structures need to be identified when turbulence is analyzed in detail.

Here we used the two-point correlations to determine the length scale of the turbulent structures. A two-point
correlation between the quantities u; (x) and u]'- (x + 1) at a certain time t is defined as:

Rij(r,x)= u (x, )y (x+r,t) (10)

where ~ denotes time (Reynolds) averaging. The length scale of the turbulent structures can be determined by
the non-zero region of R;;. However, non-zero correlations are not solely from turbulent fluctuations but also
can be caused by simultaneous unsteady motions around each of the porous elements. They are called non-
turbulent correlations and they have to be distinguished from the true turbulent correlations due to the turbulent
coherent structures. This can be done provided the non-turbulent correlations are the same for all values 73,
i.e. the uj (xq,t) correlation and u; (xo + 7 + 73€3,t) correlation have the same non-turbulent correlation
pattern. Adding r;e3to the correlation distance  means that now the correlation points are located in two
parallel planes which are a distance 3 apart, see Fig. 2. We call this special correlation a two-point lateral
correlation; it is defined as:
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Rij (rs,r, %) = uj(x,t) uj (x + 1 + r3e3,1) (11)
When the quantity R;; is subtracted from R;; defined by Eq. (10), the difference
Rij =Ry — Ry (12)

corresponds to the true turbulent correlations provided 73 is so large that there are no correlations due to the
large-scale turbulent structures in R; -

L

X

Fig. 1 Grid structure and velocities with the Fig. 2 Correlation points in two parallel planes
D3Q19 discretization.

3. GENERIC POROUS MATRIX

The generic porous matrix (GPM) is composed of aligned distributed spheres with the diameter d and distance s
apart from each other. The GPM used in this study and the representative elementary volume (REV) are shown in
Fig. 3. Periodic boundary conditions are used in all three directions. Fluid flow and heat transfer are produced by
a constant applied pressure gradient g; and a constant temperature difference AT in the x; direction, i.e.
T(0,x4,x3) + AT = T(L4, x4, x3), where L is the length of the domain. The bulk temperature of each REV is
calculated according to our DNS results. Two values of the pore size s, 1.0 and 1.1, were adopted. Their
corresponding porosity values are 0.48 and 0.61.

4. RESULTS AND DISCUSSIONS
4.1 Accuracy of DNS methods

Our DNS methods have already been verified by solving problems involving turbulent flow in porous media, see
our studies in [6-8]. Here we focused on the mesh independence of our DNS results. Direct numerical simulation
solutions need numerical grids that are fine enough to resolve the smallest scales involved. Quite generally these
smallest scales are of the order of the Kolmogorov scale = v3/4/g1/4. A perfect DNS solution would comply
with the condition Ax; /n < 1, where Ax; are the mesh sizes in the three dimensions of the solution domain. Since
7 is not uniformly distributed, we compare our mesh sizes with the mean Kolmogorov scale 7,, for the flow
domain. A typical FVM case has 270,000 cells in each REV and 9.72 million cells in total. The mesh is
concentrated near the wall. Ax,, /1, is smaller than 0.1, where Ax,, is the distance from the first cell to the wall.
The largest Ax; /1, is smaller than 10. Uniformly distributed meshes were used for our LBM cases. The case with
the highest Reynolds number has 680,000 cells in each REV and 174 million cells in total. The Ax; /n,,, values for
all the LBM cases are smaller than 2. However, we were still unable to achieve Ax; /n < 1 everywhere in the flow
domain, especially very close to the solid walls where the local dissipation rate € is very large. Our simulations
should therefore be considered as “low resolution DNS”.
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However, we found that our mesh resolution is sufficient to calculate parameters such as the friction coefficient
and the Nusselt number correctly, which are of the primary interest for the present study. The friction coefficient
and the Nusselt number only change slightly when the mesh resolution is increased.

GPM

Fig. 3 Generic porous matrix (GPM) used in our study; 96 (8 X 4 X 4) REVs were used for the LBM
simulations and 36 (4 X 3 X 3) REVs were used for the FVM simulations.

4.2 Turbulent length scales and the PSPH

Fig. 4 shows the instantaneous velocity field and the vortical structures identified by the iso-surfaces of Q. The

. . . . . . . L du; 0uj
quantity Q is the second invariant of the instantaneous velocity gradient tensor, which is defined as — %a—?a—?
j i

Fig. 5 shows the instantaneous temperature field and iso-surfaces of the thermal dissipation rate. The thermal

aT; aT C . .

ax]-c ax]-c . The thermal dissipation rate corresponds to the entropy generation rate in
L L

the temperature field when the temperature variation is small. It also corresponds to the entransy dissipation rate,

which was proposed recently by Guo [14]. Jin and Herwig [15] argued that the thermal dissipation rate will be

associated with certain sizes of vortical structures since it indicates the conversion rate of mechanical energy into

internal energy. Figs. 4b and 5b show that turbulent structures are of the pore size or smaller with some of them

reaching into neighboring pores but not further.

dissipation rate is defined as k¢

Fig. 4 Instantaneous flow fields, Re=342, LBM results. (a) Velocity magnitude; (b)Vortical structures identified
by iso-surfaces of Q.

In Fig. 6 the two-point correlations Ry, R;4, and R,;, computed according to Eqs. (10)-(12), are shown. In both
cases (¢p = 0.48 and 0.61) non-zero turbulent correlations can be found only within a distance s away from the
correlation point. R4 is almost identical to R;; when the flow is laminar. Our DNS results confirmed the pore
scale prevalence hypothesis (PSPH), i.e., that the size of turbulent eddies is restricted by the pore size.

4.3 A preliminary macroscopic model for turbulent convection in porous media

According to the PSPH, the effects of turbulence are confined within each REV, thus Egs. (5)-(8) can be
simplified to
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where up; = ¢(#i;)" is the superficial velocity, pp = @(p) is the mean pressure, Trp = (Tf)i is the mean
temperature in the fluid region, and Tsp = (T,)® is the mean temperature in the solid region. The time averaged
drag R; can be modeled by the Brinkman-Forchheimer extension of the Darcy law, i.e.
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Fig. 5 Instantaneous heat transfer field, Re=610, FVM results. (a) Temperature T¢; (b) Iso-surfaces of the
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Fig. 6 Two-point correlations. (a) ¢ = 0.48, Re=342; (b) ¢ = 0.61, Re=566. Re = u,, K*/?/v is the
Reynolds number, where u,, is the mean flow velocity.

The permeability K is calculated according to the Kozeny’s equation [10]:

_ d2¢3
T B(1-¢)2 (18)

where the coefficient § is 140. The model coefficient Cr was determined according to our DNS results. Fig. 7
shows the relationship between the friction coefficient f, = K*/?(dp/dx)/pu?, and the Reynolds number
Rex = u,, K% /v. The discrepancies between the FVM and LBM results are mainly due to the uncertainties
of the numerical solutions of a nonlinear system. Also, the LBM equations are only an approximation of the
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incompressible Navier-Stokes equations. Different initial fields may lead to uncertainties in the transition
region. Despite of these discrepancies, f;, can be reasonably well approximated by

fi = —+0.105 (19)
K

which indicates that the coefficient Cr is 0.105. This qualitatively agrees with [10], which states that C ranges
from 0.1 to 0.55. The parameter V is an effective viscosity involved in the Brinkman’s term. Vafai and Tien
[16] suggested that ¥ can be approximated as v/¢. However, in our recent study, we found that ¥ is

6uDi

proportional to s2 at large Reynolds numbers, where s is the pore size. According to [17], the effective

thermal diffusivity @, can be calculated as

dfm = Qpm + VKl/ZIuI (20)
where the coefficient y has a value of 0.025. The parameters asy, and ag,, can be approximated by ¢pay
and (1 — ¢)as, respectively, and ¢'" is calculated as

q" = ad" (Trp = Tep) 1)
where A" is the solid surface area per unit volume, and « is the heat transfer coefficient. The parameter a can
be calculated from the local Nusselt number, 1/a = d/ (N ukf) + d/(Bks). The constant 8 is 10 [9]. Nu can
be correlated with Reg and the Prandtl number Pr as follows:

Nu = ARef'Pr™ (22)
Fig. 8 shows the relationship between the Nusselt number Nu and Reg at various Prandtl numbers. The DNS
results indicate that the Nusselt number can be well fitted by Eq. (22) with A = 3.6, m = 0.57, and n = 0.37,
which is close to the parameter values suggested in [10].
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Fig. 7 Friction coefficient f at various porosities and Fig. 8 Nusselt number Nu at various Prandtl and
Reynolds numbers. Reynolds numbers, ¢ = 0.61.

S. CONCLUSIONS

We performed a direct numerical simulation study of turbulent forced convection in a porous medium composed
of aligned spheres. We also validated the pore scale prevalence hypothesis (PSPH). Based on the PSPH we
proposed a macroscopic model for forced convection in porous media. The model coefficients were determined
from our DNS results. The effects of local thermal non-equilibrium are taken into account in the macroscopic
model.
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NOMENCLATURE
a, effective thermal diffusivity (m?s™) Cr constant in the Forchheimer’s term (-)
am thermal diffusivity of a porous medium K permeability (m?)

(m2s) Nu Nusselt number (-)
R; time averaged drag (ms?) (ms™!)
R;; two point correlation (m’s?) ¢ porosity (-)
Re Reynolds number (-) a heat transfer coefficient (Wm=2K!)
Pr Prandtl number (-) 1 effective diffusivity (m?s™)
Upi superficial velocity y temperature dispersion coefficient (-)
Subscripts
f fluid s solid
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