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Abstract

We propose and study a method for imaging an approximate electrical 

conductivity from the magnitude of one interior current density field without 

any knowledge of the boundary voltage potential. Solely from this interior 

data, the exact conductivity is impossible to recover as non-unique solutions 

exist. We propose a method to recover a minimum residual type solution. 

The method is based on a weighted least gradient problem in the subspace 

of functions of bounded variations with square integrable traces. We prove 

existence and uniqueness for a nearby problem, and study the continuous 

dependence data for a regularized problem. The computational effectiveness 

and numerical convergence of this method is demonstrated in numerical 

experiments.

Keywords: minimum weighted gradient, conductivity imaging, current 

density impedance imaging, generalized 1-Laplacian

1. Introduction

Let Ω ⊂ Rd , d = 2, 3, be a Lipschitz domain modeling a conductive body. We revisit the 

inverse hybrid problem of reconstructing an inhomogeneous, isotropic, electrical conductivity 

σ from knowledge of the magnitude of one current density field inside Ω. The problem may 

be reduced to solving a singular, degenerate elliptic equation (the 1-Laplacian in a confor-

mal Euclidean metric) subject to various boundary conditions [12, 22], or can be cast as a 

minimization problem involving a weighted gradient term [19, 23, 26]. Without some minimal 

knowledge of the voltage potential at the boundary, the problem has non-unique solution as 

recently characterized in [26], where additional measurements of the voltage potential along 

a curve joining the electrodes were proposed to establish uniqueness. Other approaches, some 
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of which are mentioned below, assume knowledge of the magnitude of two current density 

fields, or of the entire field. To date, the only known modality of obtaining the interior data 

involves rotations in a magnetic resonance machine [30]. This makes any boundary voltage 

potential measurement, while not impossible, at least impractical.

The forward problem is modeled by the Robin boundary conditions as follows. Assume 

that a current density field is generated by injecting/extracting a net current I > 0 from a cou-

ple of surface electrodes e± assumed bounded Lipschitz subdomains in ∂Ω, with real valued 

impedance z > 0. For a known conductivity σ, the voltage potential u0 ∈ H1(Ω) (functions 

and their gradient are square integrable) distributes inside according to

∇ · σ∇u0 = 0, in Ω, (1)

σ
∂u0

∂ν
= −b0u0 + c0, on ∂Ω, (2)

where

b0 :=

{

1/z on e±,

0, off e±,
and c0 :=

{

±I, on e±,

0, off e±,
 (3)

and ν  denotes the outer unit normal to the boundary,

By replacing the conductivity in (1) by a/|∇u0|, the problem reduces to solving a bound-

ary value problem for a generalized 1-Laplacian as originally proposed in [12]. The work 

in [22] was first to point out the connection with minimum surfaces in a Riemannian space 

determined by the interior data, and proposed a method to recover the conductivity from 

Cauchy data. For Dirichlet data in [23, 24] the problem was reduced to minimum gradient 

problem for functions of given trace at the boundary, and, in [26], extended to the complete 

electrode model (CEM) boundary conditions originally introduced in [31]. Existence and/or 

uniqueness of such weighted gradient problems were studied in [8] and [21], with extensions 

to perfectly insulated and conducting inclusions in [20, 21]. A structural stability result for the 

minimization problem can be found in [27]. Reconstruction algorithms based on the minimi-

zation problem were proposed in [23] and [19], and based on level set methods in [22, 23, 33]. 

Continuous dependence on σ on a (for a given unperturbed Dirichlet data) can be found in 

[17], and, for partial data in [18]. For further references on determining the isotropic conduc-

tivity based on measurements of current densities see [11–16, 25, 32, 35], and for reconstruc-

tions on anisotropic conductivities from multiple measurements see [2, 3, 7, 10].

In here we seek to determine an approximate conductivity σ, from knowledge of the mag-

nitude of the current density field,

a0 := |σ∇u0|, (4)

where u0 ∈ H1(Ω) is the unique solution to the Robin problem (1) and (2). The impedance of 

the surface electrodes z > 0, and the injected amperage I > 0 are assumed known.

As characterized in [26], we note that σ is not uniquely determined by a0. For example, 

for any ϕ : Range(u0) → Range(u0) an increasing Lipschitz continuous function, satisfying 

ϕ(t) = t for t ∈ u0(e+) ∪ u0(e−), one can verify that uϕ = ϕ ◦ u0 is another solution of the 

Robin problem corresponding to the conductivity σ/(ϕ′ ◦ u0), while the magnitude of the 

induces current density field does not change. We address the issue of non-uniqueness via 

a regularization method that recovers an approximate conductivity without recourse to any 

boundary voltage information. In any vicinity of the given interior data we identify the vir-

tual data that uniquely determines the sought conductivity. The given data is considered as a 

perturbation of the virtual data. In accordance with the theory of ill-posed problems (see, e.g. 
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[1]), the regularization consists of selecting an element of a minimizing sequence, so that the 

norm of the residual does not exceed the prescribed level of perturbation. The feasibility of the 

proposed method is demonstrated in numerical experiments.

Similar to the original idea in [23], we approach the inverse problem via a weighted mini-

mum gradient problem, here modeled for Robin boundary conditions. Let us introduce the 

functional

v �→ G(v; a, b, h) :=

∫

Ω

a|∇v|dx +
1

2

∫

∂Ω

b(v − h)2ds, (5)

defined for some nonnegative a ∈ C(Ω) ∩ L∞(Ω) (either the interior data or one of its approx-

imations), and some boundary functions b ∈ L∞(∂Ω) and h ∈ L1(∂Ω) arising in the Robin 

condition.

The smallest subspace in which a minimizing sequence of (5) is compact is the subspace 

BV2(Ω) of functions of bounded variation with square integrable traces. In this regard, |∇v|dx 

in the first integral term is understood as a Radon measure applied to the bounded continuous 

function a,

|Dv|(a) := sup{

∫

Ω

v∇ · Fdx : F ∈ C1
0(Ω; Rd), |F(x)| � a(x)}. (6)

In general, the minimization of the functional (5) is an open problem. However, in our 

inverse problem here, there is a compatibility relation between the coefficients a and (b, h) 
coming from the forward Robin problem. We exploit this compatibility to prove existence of 

a minimizer for the functional in (5). We show that the solution u0 of the forward problem 

minimizes the functional v �→ G(v; a0, b0, h0) in (5) with a = a0 in (4), b = b0 and h = c0/b0 

specified on e± in (3). However, it is not unique. For example, for ϕ as in the counterexample 

above, one can check that ϕ ◦ u0 will also be a minimizer.

The new idea idea is to find a family of triples (aǫ, bǫ, hǫ) converging to (a0, b0, h0) as ǫ → 0, 

and such that the corresponding minimization problem for the functional v �→ G(v; aǫ, bǫ, hǫ) 
over BV2(Ω) has the unique minimizer uǫ ∈ H1(Ω); see theorem 1. This property, that

∃! argmin{G(v; aǫ, bǫ, cǫ, h), : v ∈ BV2(Ω)} ∈ H1(Ω), (7)

is key in proving convergence of a minimizing (sub)sequence in section 5, and in devising 

the algorithm in section 7. Note that uǫ is also the voltage potential corresponding to a Robin 

problem for the same conductivity σ.

While bǫ, hǫ are explicit in terms of b0 and h0, the construction of aǫ is implicit (depends on the 

unknown σ). We are thus forced to consider the minimization problem for v �→ G(v; a0, bǫ, hǫ), 
where a0 is seen as a perturbation of aǫ. In general, the functional v �→ G(v; a0, bǫ, hǫ) for 

some fixed ǫ > 0 may not have a minimizer, even in BV2(Ω). This motivates to work with the 

regularized functional

v �→ Gδ(v; a, bǫ, hǫ) := G(v; a, bǫ, hǫ) +
δ

2

∫

Ω

|∇(v − hǫ)|
2dx, (8)

where hǫ is now an arbitrary H1(Ω)-extension from the boundary inside, and δ > 0.

We consider the data dependence problem for Gδ with respect to a and δ, and prove the 

compactness of a minimizing sequence as a → aǫ and δ → 0, see theorem 2. This result 

depends crucially on the fact that G(v; a, bǫ, hǫ) when a = aǫ satisfies (7), and is independent 

of the choice of the extension of hǫ.
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We propose an iterative algorithm, where at each step the functional is strictly minimized, 

see theorem 3. For this result we use the harmonic extension of hǫ as an H1(Ω) map. The effect 

of this choice of the extension on the recovered conductivity is subject of further studies. 

However, regardless of this extension, the algorithm recovers a minimum residual solution σǫ 

in the following sense: if σ �→ |J|(σ) := σ|∇u(σ)| denotes the nonlinear operator for which a 

right inverse is sought, the recovered σǫ is such that ‖|J|(σǫ)− |J|(σ)‖L2 � ǫ.

To connect with the work in [26] in the appendix we remark that, for two electrodes, the 

Robin problem is equivalent to the complete electrode model (CEM) problem in [31] up to 

a scaling factor. Moreover, in the numerical experiments, the simulated data is generated by 

solving a forward CEM, whereas the reconstruction method is based on the Robin problem.

2. Remarks on the smoothness of solutions to the Robin problem

Our technique, which is based on the minimization of the functional (5) in a subspace of 

functions of bounded variation, requires the weight a (the product of σ with the magnitude of 

the gradient of the solution of a Robin problem) be bounded continuous in Ω. This regularity 

cannot be achieved solely on the smoothness in the conductivity σ, as the regularity of the 

coefficients appearing in the Robin condition (2) also play a role. Throughout we assume a 

conductivity

σ ∈ C1/2(Ω) with σ|∂Ω ∈ C2(∂Ω), and σ > 0. (9)

Under this smoothness assumption, the elliptic regularity for solutions to the Robin problem 

(e.g. [9, theorem 7.4 and remark 7.2]) yields that u0 ∈ C1/2(Ω) ∩ C1,1/2(Ω). Moreover, ∇u0 

and thus a0 in (4) extend by Hölder-continuity to all points in ∂Ω \ ∂e±, see [26, proposition 

B.1. (ii)] for details. By itself, this regularity is insufficient to yield boundedness of |∇u0| at 

points on the boundary ∂e± of the electrodes.

In our case, the jump in the coefficients b0 and c0, yield the right hand side of (2) be merely 

in H
1
2
−s for some s > 0. Then u0 is merely in H3−s(Ω), which is insufficient to conclude 

the boundedness of ∇u0 in three dimensions. Namely, at the boundary of the electrodes, the 

tangential derivative normal to ∂e± may blow up, yielding an unbounded interior data a0 in 

(4). However, if bǫ, cǫ ∈ H3/2(∂Ω) are smooth approximations of b0 and c0, then the bootstrap 

argument in the proof of [26, proposition B.1. (ii)] applies to yield that the corresponding 

Robin problem has a solution uǫ ∈ H3(Ω): indeed, for a right hand side of (2) in H1/2(∂Ω), 

the solution uǫ ∈ H2(Ω), which in turn yields uǫ ∈ H3/2(∂Ω). Since bǫ, cǫ ∈ H3/2(∂Ω), we 

get uǫbǫ ∈ H3/2(∂Ω) and thus that the right hand side of (2) now lie in H3/2(∂Ω). Another 

application of the classical regularity result yields uǫ ∈ H3(Ω) ⊂ C1,1/2(Ω). Therefore in two 

and three dimensions, aǫ := σ|∇uǫ| ∈ C1/2(Ω) is bounded continuous.

3. Existence and uniqueness of a minimizer in BV2(Ω) for a nearby problem

The regularized method can be understood through a family of forward problems. Recall the 

coefficients b0 and c0 in (3), and for each ǫ > 0 small, let first define the piecewise boundary 

function
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b̃ǫ :=

{

1/z on e±,

ǫ/z, on ∂Ω \ (e− ∪ e+).

According to the regularity remarks above, the solution to the problem (1) subject to the 

Robin boundary condition

σ
∂u

∂ν
= −b̃ǫu + c0, on ∂Ω,

might not be of bounded gradient (regularity needed in order for a = |σ∇u| to be bounded 

continuous).

This motivates to further consider some smooth approximates bǫ ∈ H3/2(∂Ω) of b̃ǫ, and 

cǫ ∈ H3/2(∂Ω) of c0, with the only necessary property that

lim
ǫ→0

‖bǫ − b0‖∞ = 0, and lim
ǫ→0

‖cǫ − c0‖∞ = 0. (10)

Let uǫ ∈ H1(Ω) be the solution of the Robin problem (1) subject to

σ
∂u

∂ν
= −bǫu + cǫ, on ∂Ω, (11)

and define an ‘ideal’ interior coefficient aǫ as the magnitude of the corresponding current 

density field,

aǫ := |σ∇uǫ|. (12)

The remarks of section 2 show that aǫ ∈ C1/2(Ω) for ǫ > 0.

Classical arguments on the continuous dependence (in particular, since the coercivity con-

stant is bounded below independently of ǫ), also apply to yield

‖uǫ − u0‖H1(Ω) → 0, and ‖aǫ − a0‖L2(Ω) → 0, as ǫ → 0+.

Also for ǫ > 0, let hǫ be defined at the boundary ∂Ω by

hǫ :=
cǫ

bǫ
. (13)

For uniformity, let also define h0 ∈ L∞(∂Ω) on the electrodes by h0 = c0/b0, and h0 = 0 off 

the electrodes.

Recall the functional in (5):

v �→ G(v; a, b, h) :=

∫

Ω

a|∇v|dx +
1

2

∫

∂Ω

b(v − h)2ds.

The following result shows the regularizing effect of ǫ > 0.

Theorem 1. Let σ satisfy (9). For ǫ � 0, let aǫ, bǫ, hǫ, and uǫ be the solutions to the Robin 

problem (1) and (11) as defined above. Then, for ǫ � 0,

G(uǫ; aǫ, bǫ, hǫ) � G(v; aǫ, bǫ, hǫ), for all v ∈ H1(Ω). (14)

Moreover, if ǫ > 0, then
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G(uǫ; aǫ, bǫ, hǫ) � G(v; aǫ, bǫ, hǫ), for all v ∈ BV2(Ω), (15)

uǫ ∈ C1,1/2(Ω) is the unique minimizer, and the exact conductivity can be recovered from aǫ by

σ =
aǫ

|∇uǫ|
. (16)

Proof. Let ǫ � 0. For any v ∈ H1(Ω), we estimate

G(v; aǫ, bǫ, hǫ) =

∫

Ω

aǫ|∇v|dx +
1

2

∫

∂Ω

bǫ(v − hǫ)
2ds

=

∫

Ω

σ|∇uǫ||∇v|dx +
1

2

∫

∂Ω

bǫ(v − hǫ)
2ds

�

∫

Ω

σ∇uǫ · ∇vdx +
1

2

∫

∂Ω

bǫ(v − hǫ)
2ds

=

∫

∂Ω

(−bǫuǫ + c)vds +
1

2

∫

∂Ω

bǫ(v − hǫ)
2ds

=
1

2

∫

∂Ω

bǫ(v − uǫ)
2ds +

1

2

∫

∂Ω

bǫ(h
2
ǫ − u2

ǫ)ds

�
1

2

∫

∂Ω

bǫ(h
2
ǫ − u2

ǫ)ds = G(uǫ; aǫ, bǫ, hǫ),

 

(17)

where the second equality uses (12), the third equality uses the divergence theorem and the 

fact the uǫ solves the Robin problem (1) and (11). This proves (14).

Now let ǫ > 0. We show first that uǫ is a global minimizer of the functional over the larger 

set BV2(Ω). Let v ∈ BV2(Ω) be arbitrary. By mollification (e.g. [6, remark 2.12]), there exists 

a sequence {vn} ⊂ H1(Ω) with vn|∂Ω = v|∂Ω (as traces in L1(∂Ω)), and such that vn → v in 

L1(Ω), and

lim
n→∞

∫

Ω

aǫ|∇vn|dx = |Dv|(aǫ). (18)

Since (14) now holds,

Gǫ(uǫ; aǫ, bǫ, hǫ) � Gǫ(vn; aǫ, bǫ, hǫ)

=

∫

Ω

aǫ|∇vn|dx +

∫

∂Ω

bǫ(v − hǫ)
2ds,

 (19)

where the equality above uses the fact that vn|∂Ω = v|∂Ω. By taking the limit with n → ∞ in 

(19), and using (18), we conclude that

Gǫ(uǫ; aǫ, bǫ, hǫ) � |Dv|(aǫ) +

∫

∂Ω

bǫ(v − hǫ)
2ds = G(v; aǫ, bǫ, hǫ).

Next we prove uniqueness. Let v ∈ BV2(Ω) be another minimizer of G(·; aǫ, bǫ, hǫ), and 

consider a mollified sequence {vn} ⊂ H1(Ω), vn|∂Ω = v|∂Ω as above to estimate
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G(v; aǫ, bǫ, hǫ) = |Dv|(aǫ) +
1

2

∫

∂Ω

bǫ(v − hǫ)
2ds

= lim
n→∞

∫

Ω

σ|∇uǫ||∇vn|dx +
1

2

∫

∂Ω

bǫ(v − hǫ)
2ds

� lim sup
n→∞

∫

Ω

σ∇uǫ · ∇vndx +
1

2

∫

∂Ω

bǫ(v − hǫ)
2ds

= lim sup
n→∞

∫

∂Ω

(−bǫuǫ + cǫ)vnds +
1

2

∫

∂Ω

bǫ(v − hǫ)
2ds

=

∫

∂Ω

(−bǫuǫ + cǫ)vds +
1

2

∫

∂Ω

bǫ(v − hǫ)
2ds

=
1

2

∫

∂Ω

bǫ(v − uǫ)
2ds +

1

2

∫

∂Ω

bǫ(h
2
ǫ − u2

ǫ)ds

�
1

2

∫

∂Ω

bǫ(h
2
ǫ − u2

ǫ)ds = Gǫ(uǫ; aǫ, bǫ, hǫ).

Since v is also a minimizer Gǫ(v; aǫ, bǫ, hǫ) = Gǫ(uǫ; aǫ, bǫ, hǫ) and all the inequalities above 

hold with equality, in particular
∫

∂Ω

bǫ(v − uǫ)
2ds = 0.

Since the weight bǫ is essentially positive on the boundary, we conclude that

v|∂Ω = uǫ|∂Ω. (20)

Next, we note that, for competitors restricted to the affine subspace

Dǫ := {v ∈ BV2(Ω) : v|∂Ω = uǫ|∂Ω},

the minimization problem min {Gǫ(v; aǫ, bǫ, hǫ) : v ∈ Dǫ} is equivalent to

min {|Dv|(aǫ) : v ∈ BV(Ω), v|∂Ω = uǫ|∂Ω} . (21)

Since uǫ ∈ C1,1/2(Ω) is a solution, we apply the uniqueness result [21, theorem 1.1] to the 

minimization problem (21) to conclude that

v = uǫ, in Ω.

Following from the definition of aǫ in (12), and the strict positivity of the conductivity, the 

set of critical points {x ∈ Ω : |∇uǫ| = 0} coincide with the set of zeros of aǫ. Since uǫ is a 

solution of an elliptic equation. The set of critical points is negligible in Ω, the equality (16) 

holds almost everywhere. Since σ is assumed continuous, the equality (16) must then hold at 

all points in Ω.
□

We stress here that, for ǫ > 0, the uniqueness of the minimizer is not a consequence of the 

classical methods in the theory of augmented Lagrangian, e.g., in [5], but rather of the unique-

ness result in [21].

4. Regularization of the weighted least gradient problem

The results of theorem 1 cannot apply directly to recover σ: on the one hand, for ǫ = 0, the 

minimizer u0 is not unique, on the other hand for ǫ > 0, we are not given the coefficient aǫ, but 

rather its approximate a0, and the existence pf minimizers for v �→ G(v; a0, bǫ, aǫ) is not clear 
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in general. This motivates to consider the regularized functional v �→ Gδ(v; a, b, h) in (8) and 

study the continuous dependence of its minimizer with respect to a and δ.

To simplify notation, since b and h are fixed, we drop the explicit dependence in the nota-

tion of the functional Gδ and work with

Gδ(v; a) :=

∫

Ω

a|∇v|dx +

∫

∂Ω

b(v − h)2ds +
δ

2

∫

Ω

|∇(v − h)|2dx. (22)

In this section we assume that a ∈ L2(Ω) is bounded away from zero,

0 <
ǫ

z
� b �

1

z
, a.e. ∂Ω, (23)

while h ∈ H1(Ω) is arbitrarily fixed.

The sum

Fδ(v) :=
1

2

∫

∂Ω

bv
2ds +

δ

2

∫

Ω

|∇v|2dx (24)

of the quadratic terms in (22) defines an equivalent square norm in H1(Ω), since

min

{

ǫ

2z
,
δ

2

}

‖u‖2
1 � Fδ(u) � max

{

1

2z
,
δ

2

}

‖u‖2
1, (25)

where

‖u‖2
1 :=

∫

∂Ω

|u|2ds +

∫

Ω

|∇u|2dx.

Existence and uniqueness of the minimizer in H1(Ω) of the functional (22) follows from 

classical convex minimization arguments, recalled below for completeness.

Proposition 1. For ǫ, δ > 0 arbitrarily fixed, and a ∈ L2(Ω) positive, let Gδ(·, a) be the 

functional in (22). The minimization problem

min{Gδ(v; a) : v ∈ H1(Ω)}

has a unique solution.

Proof. We show first that Gδ(·; a) is weakly lower semi-continuous. Let vn ⇀ v be a weak-

ly convergent sequence in H1(Ω). We need to show that

Gδ(v; a) � lim inf
n→∞

Gδ(vn; a). (26)

The weak lower semicontinuity of Fδ
ǫ : H1(Ω) → R follows from its convexity

Fδ

ǫ (vn) � Fδ

ǫ (v) +

∫

∂Ω

bǫv(vn − v)ds + δ

∫

Ω

∇v · ∇(vn − v)dx,

and Fatou’s lemma. The weak lower semicontinuity of the weighted gradient functional

v �→

∫

∂Ω

a|∇v|dx (27)

also follows from standard arguments: let {am} be an increasing sequence of bounded continu-

ous functions, which converges in L2(Ω) sense to a. For each fixed index m , let f ∈ C1
0(Ω; Rd) 
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be arbitrary with |f | � am. Since vn ⇀ v in L2(Ω) we have
∫

Ω

v∇ · f dx = lim
n→∞

∫

Ω

vn∇ · f dx = lim inf
n→∞

∫

Ω

vn∇ · f dx

� lim inf
n→∞

sup

{
∫

Ω

vn∇ · gdx : g ∈ C1
0(Ω; Rn), |g| � am

}

= lim inf
n→∞

∫

Ω

am|∇vn|dx � lim inf
n→∞

∫

Ω

a|∇vn|dx,

 

(28)

where the last inequality above uses the fact that am � a. By taking the supremum in (28) over 

all f ∈ C1
0(Ω; Rd) with |f | � am we get

∫

Ω

am|∇v|dx = sup

{
∫

Ω

v∇ · f dx : f ∈ C1
0(Ω; Rd), |f | � am

}

� lim inf
n→∞

∫

Ω

a0|∇vn|dx.

 

(29)

By letting m → ∞ in (29) we obtain the weakly lower semi-continuity for (27).

Therefore v �→ Gδ(v; a) : H1(Ω) → R is weakly lower semi-continuous in H1(Ω). Since 

the Gδ(·; a) is also strictly convex (as a sum of a convex with a strictly convex), it has a unique 

minimizer. □

In is worth noting that if, for some fixed ǫ > 0, the functional v �→ G(v; a0, bǫ, hǫ) has a 

C1(Ω)-minimizer then the uniqueness part of the proof of theorem 1 yields that it would be 

unique among all minimizers in BV2(Ω). As a consequence any minimization algorithm for 

Gδ(·; a0, bǫ, hǫ) with δ → 0+ would produce that unique solution, regardless of the choice of 

the H1(Ω)-extension of hǫ.  

5. Compactness of the regularized minimizing sequence

In this section we assume a ∈ C(Ω) ∩ L∞(Ω),

inf(a) =: α > 0, (30)

b ∈ L∞(∂Ω) with

0 <
ǫ

z
� b �

1

z
, a.e. ∂Ω, (31)

and h ∈ H1(Ω) arbitrarily fixed.

Recall the functional v �→ G(v; a, b, h) in (5). Similar to the notation in (22), since b and h 

will be fixed, we drop the dependence from the notation and work with

G(v; a) :=

∫

Ω

a|∇v|dx +

∫

∂Ω

b(v − h)2. (32)

If v ∈ BV2(Ω), then the first integral is understood as a Radon measure applied to a.

We assume that v �→ G(v; a) satisfies the existence and uniqueness hypothesis (7), i.e. there 

is some u ∈ H1(Ω), such that

G(u; a) � G(v; a), ∀v ∈ BV2(Ω), (33)

A Tamasan and A Timonov Inverse Problems 35 (2019) 045006



10

and u is the unique minimizer in BV2(Ω).
We will often use the trivial identity

∫

Ω

ã|∇v|dx =

∫

Ω

a|∇v|dx +

∫

Ω

(ã − a)|∇v|dx, (34)

which allows us to exchange two arbitrary weights a, ã ∈ L2(Ω). By ‖ · ‖ we denote the 

L2(Ω)-norm, and by ‖ · ‖1 the H1(Ω)-norm.

The following result provides the theoretical basis of our reconstruction method.

Theorem 2. Let Ω ⊂ Rd  be a bounded Lipschitz domain with connected boundary, and 

a ∈ C(Ω) ∩ L∞(Ω) satisfy (30). Assume that the functional G(·; a) in (32) satisfy the hypoth-

esis (7), and let u ∈ H1(Ω) be the unique minimizer

u = argmin{G(v; a) : v ∈ BV2(Ω)}. (35)

Let {an} ⊂ L2(Ω) be a sequence of positive functions, with

‖an − a‖ −→ 0, as n → ∞ (36)

and δn ↓ 0 be a decreasing sequence such that

lim
n→∞

‖an − a‖2

δn

= 0. (37)

Corresponding to each n, consider the regularized functional v �→ Gδn(v, an) as in (22), and 

let

un := argmin{Gδn(v, an) : v ∈ H1(Ω)} (38)

be the corresponding minimizer provided by proposition 1. Then

lim
n→∞

Gδn(un; an) = lim
n→∞

G(un; a) = G(u; a). (39)

Moreover, on a subsequence {ũn} of {un},

ũn −→ u, in Lq(Ω), 0 � q �
d

d − 1
,

and, for any open subset O ⊂ Ω,

lim
n→∞

∫

O

an|∇ũn|dx = lim
n→∞

∫

O

a|∇ũn|dx =

∫

O

a|∇u|dx. (40)

Proof. Despite the fact that ‖un‖1 may not be uniformly bounded, we prove first that

lim
n→∞

∫

Ω

(a − an)|∇un|dx = 0. (41)

Let n be sufficiently large so that ‖an‖ � 2‖a‖. Recall the functional Fδn(·; an) in (24) with 

δ = δn and a = an, and the induced norm on H1(Ω) in (25). We estimate
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min

{

ǫ

2z
,
δn

2

}

‖un − h‖2
1 � Fδn(un − h; an)

� Fδn(un − h; an) +

∫

Ω

an|∇un|dx

= Gδn(un; an)

� Gδn(h; an)

=

∫

Ω

an|∇h|dx

� 2‖a‖‖∇h‖,

 

(42)

where the third inequality uses the minimizing property defining un. Note that the right hand 

side of (42) is independent of δn to yield

‖un‖1 � C max

{

2z

ǫ
,

2

δn

}1/2

, (43)

for some constant C dependent on ‖a‖ and ‖h‖1. In particular since δn → 0, for sufficiently 

large n, we obtained

‖un‖1 � C
1√
δn

, (44)

where C depends only on ‖a‖ and the ‖h‖1. The rate of decay (37) together with (44) yields 

(41). □ 

Since u is a minimizer of G(·; a), we estimate

G(u; a) � lim inf
n→∞

G(un; a) � lim sup
n→∞

G(un; a)

= lim sup
n→∞

{

G(un; an) +

∫

Ω

(a − an)|∇un|dx

}

� lim sup
n→∞

{

G(un; an) +
δn

2

∫

Ω

|∇(un − h)|2dx +

∫

Ω

(a − an)|∇un|dx

}

= lim sup
n→∞

{

Gδn(un; an) +

∫

Ω

(a − an)|∇un|dx

}

= lim sup
n→∞

Gδn(un; an)

 

(45)

where the first equality uses (34), the next to the last equality uses the definition of Gδn
ǫ , and 

the last equality uses (41). Similarly,

G(u; a) � lim inf
n→∞

G(un; a)

= lim inf
n→∞

{

G(un; an) +

∫

Ω

(a − an)|∇un|dx

}

� lim inf
n→∞

{

G(un; an) +
δn

2

∫

Ω

|∇(un − h)|2dx +

∫

Ω

(a − an)|∇un|dx

}

= lim inf
n→∞

{

Gδn(un; an) +

∫

Ω

(a − an)|∇un|dx

}

= lim inf
n→∞

Gδn(un; an) � lim inf
n→∞

Gδn(un; an).

 

(46)

A Tamasan and A Timonov Inverse Problems 35 (2019) 045006



12

The reverse inequality also holds:

lim sup
n→∞

Gδn(un; an) � lim sup
n→∞

Gδn(u; an)

= lim sup
n→∞

{

Gδn(u; a) +

∫

Ω

(an − a)|∇u|dx

}

= lim sup
n→∞

{

G(u; a) +
δn

2

∫

Ω

|∇(u − h)|2dx +

∫

Ω

(an − a)|∇u|dx

}

= G(u; a).

 

(47)

In the estimate (47), the first inequality uses (38), while the last equality uses (36) and the 

assumption u ∈ H1(Ω).
The inequalities (45)–(47) prove the identity (39). In particular, we showed that

lim
n→∞

(
∫

Ω

a|∇un|dx +

∫

∂Ω

b(un − h)2ds

)

=

∫

Ω

a|∇u|dx +

∫

∂Ω

b(u − h)2ds.

 (48)

Note that both the regularization parameter and the coefficients in the functional are chang-

ing with n. In particular, the sequence un may not be bounded in H1(Ω). However, we show 

next that {un} is bounded in W1,1(Ω); endowed with the norm

‖u‖1,1 :=

∫

∂Ω

uds +

∫

Ω

|∇u|dx.

Recall the lower bound α in (30) to estimate

min{α, 2
√

b}‖un‖1,1 �

∫

Ω

a|∇un|dx +

∫

∂Ω

2
√

b|un|ds

�

∫

Ω

a|∇un|dx +

∫

∂Ω

2
√

bǫ|un − h|ds +

∫

∂Ω

2
√

b|h|ds

�

∫

Ω

a|∇un|dx +

∫

∂Ω

bǫ(un − h)2ds + |∂Ω|+
∫

∂Ω

2
√

b|h|ds

� G(un; a) + |∂Ω|+
∫

∂Ω

2
√

b|h|ds

= G(un; an) +

∫

Ω

(a − an)|∇un|dx + |∂Ω|+
∫

∂Ω

2
√

b|h|ds

�G(h; an) + C
‖a − an‖√

δn

+ |∂Ω|+
∫

∂Ω

2
√

b|h|ds

= G(h; a) +

∫

Ω

(an − a)|∇h|dx + C
‖a − an‖√

δn

+ |∂Ω|+
∫

∂Ω

2
√

b|h|ds

= G(h; a) + ‖an − a‖‖∇h‖+ C
‖a − an‖√

δn

+ |∂Ω|+
∫

∂Ω

2
√

b|h|ds,

 (49)

where the fifth inequality uses the bound (44). By the hypothesis (37) on the rate of decay of 

δn, the right hand side above is uniformly bounded in n.

Since min{α, essinf(b)} > 0 we showed that ‖un‖1,1 is uniformly bounded. An applica-

tion of Rellich–Kondrachov’s compactness embedding (e.g. [36]) shows the existence of a 

convergent subsequence {ũn}, with ũn → u∗ in Lq(Ω) for all 1 � q < d/(d − 1). Moreover, 

since {ũn} is bounded in W1,1(Ω), the limit u∗ ∈ BV(Ω) and u∗|∂Ω ∈ L1(∂Ω), see e.g. [6].
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Also following from the estimate (49), the sequence of traces {un|∂Ω} is uniformly bounded 

in L2(∂Ω). In particular, u∗|∂Ω ∈ L2(∂Ω), and, possibly passing to a subsubsequence, {ũn} 

converges weakly in L2(∂Ω) to u∗|∂Ω.

We recall the weak lower semi-continuity properties on each of the two functionals in G . 

The first one is the lower semi-continuity of the total variations. For any a ∈ C(Ω) ∩ L∞(Ω),

|Du∗|(a) � lim inf
n→∞

∫

Ω

a|∇ũn|dx. (50)

The second is the weak lower semi-continuity of the quadratic term,

1

2

∫

∂Ω

b(u∗ − h)2ds � lim inf
n→∞

1

2

∫

∂Ω

b(un − h)2ds. (51)

By adding (50) and (51) and using (48) we get

G(u∗, a) � lim inf
n→∞

G(ũn; a) = G(u; a). (52)

Since u was assumed the unique minimizer of G  in BV2(Ω), we conclude that equality must 

hold in (52), i.e. G(u∗; a) = lim inf
n→∞

G(ũn; a), and that

u = u∗. (53)

Moreover, each of the inequalities (50) and (51) must also be equalities. By possibly passing 

to a further sub-subsequence, we have shown that

|Du|(a) = lim
n→∞

∫

Ω

a|∇ũn|dx,

∫

∂Ω

b(u − h)2ds = lim
n→∞

∫

∂Ω

b(ũn − h)2ds.

 

(54)

For any O an open subset of Ω, the arguments of [36, theorem 5.2.3] carries verbatim to con-

clude the upper semi-continuity property,

lim sup
n→∞

∫

O

a|∇ũn|dx �

∫

O

a|∇u|dx.

Now (40) follows by an application of (41). □

6. The minimizing property in successive iterations

To minimize (22) we propose an iterative procedure, where at each step we solve an appropri-

ate Robin problem for the updated conductivity. The iterative procedure is similar to those 

developed earlier in [23] in connection to the Dirichlet problem or in [26] in connection to the 

complete electrode model. A marked difference in here is due to the regularizing term, which 

involves an extension of the given boundary function h inside the domain. While in theorem 3 

no particular extension was relevant, in the arguments below we essentially use the harmonic 

extension uh:

∆uh = 0 in Ω, uh = h on ∂Ω. (55)

More precisely, since 
∫
Ω
∇uh · ∇vdx =

∫
∂Ω

∂uh

∂ν
vds, one can check that

Jδ(v;σ) =
1

2

{
∫

Ω

σ|∇v|2dx +

∫

∂Ω

b(v − h)2ds + δ

∫

Ω

|∇(v − uh)|
2dx

}
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is the energy functional for

∇ · (σ + δ)∇u = 0 in Ω, (56)

(σ + δ)
∂u

∂ν
= −bu + δ

∂uh

∂ν
on ∂Ω. (57)

In particular, if u ∈ H1(Ω) is the solution to (56) and (57), then

Jδ(u;σ) � Jδ(v;σ), for all v ∈ H1(Ω). (58)

Recall the functional Gδ in (22), which depends on the data, and contrast with Jδ above, 

which depends on the unknown conductivity. The minimization of Gδ algorithm by successive 

iterations is based on the following result.

Theorem 3. Let δ > 0, a ∈ L2(Ω), and b ∈ L∞(∂Ω) be positive. Let also uh ∈ H1(Ω) be the 

harmonic extension of some h ∈ H1/2(∂Ω) in (55). Let v ∈ H1(Ω) be such that a
|∇v| ∈ L∞(Ω), 

and let u ∈ H1(Ω) be the solution to the Robin problem

∇ ·

(

a

|∇v|
+ δ

)

∇u = 0 in Ω, (59)

(

a

|∇v|
+ δ

)

∂u

∂ν
= −bu + δ

∂uh

∂ν
on ∂Ω. (60)

Figure 1. Comparison of the reconstructed mean conductivity distributions. The level 
of the roundoff and truncation errors in the interior data does not exceed 10−5. The 
parameters ǫ = 5 · 10−4  and δ = 3 · 10−3 are chosen.
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Then

Gδ(u; a) � Gδ(v; a). (61)

Moreover, if the equality in (61) holds, then u = v.

Proof. On the one hand, since u is a global minimizer of Jδ(u;σ) in H1(Ω), we obtain

Gδ(v; a) =

∫

Ω

a|∇v|dx +
1

2

∫

∂Ω

b(v − h)2ds +
δ

2

∫

Ω

|∇(v − h)|2dx

=
1

2

∫

Ω

a|∇v|dx + Jδ
(

v;
a

|∇v|

)

�
1

2

∫

Ω

a|∇v|dx + Jδ
(

u;
a

|∇v|

)

.

 

(62)

On the other hand, representing the first term in Gδ(v; a) in the form

∫

Ω

a|∇u|dx =

∫

Ω

(

a

|∇v|

)1/2

|∇v| ·

(

a

|∇v|

)1/2

|∇u|dx

�

(
∫

Ω

a

|∇v|
|∇v|2dx

)1/2

·

(
∫

Ω

a

|∇v|
|∇u|2dx

)1/2

�
1

2

∫

Ω

a|∇v|dx +
1

2

∫

Ω

a

|∇v|
|∇u|2dx,

we obtain

Figure 2. Comparison of the recovered conductivity from noisy interior data.
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Gδ(u; a) =

∫

Ω

a|∇u|dx +
δ

2

∫

Ω

|∇(u − h)|2dx +
1

2

∫

∂Ω

b(u − uh)
2ds

�
1

2

∫

Ω

a|∇v|dx + Jδ
(

u;
a

|∇v|

)

� Gδ(v; a).

 

(63)

The estimates (62) and (63) implies (61). □ 

Suppose now that the equality in (61) holds. Then the equality holds also in (62), in 

particular,

Jδ
(

u;
a

|∇v|

)

= Jδ
(

v;
a

|∇v|

)

.

Thus v is also a global minimizer in H1(Ω) of Jδ
(

·; a
|∇v|

)

. The uniqueness of the minimizer 

for Jδ yields u = v.  □

7. The algorithm and reconstruction

In this section  we present the algorithm and demonstrate its computational feasibility in 

numerical experiments.

For a given conductivity σ, the interior data was simulated by solving the forward problem 

subject to the complete electrode model (CEM) boundary conditions and setting

aCEM := σ|∇u|,

where u is the unique solution to (1) subject to (A.1)–(A.3) in the appendix. In solving the 

CEM problem we used the Galerkin finite element method.

The noisy data ã was obtained by adding to the exact coefficient aCEM a normally distrib-

uted noise

ã = aCEM +∆ ·
R

||R||2
, (64)

where ∆ > 0 is the prescribed level of error, R = R(0, 1) is the normally distributed pseudo-

random matrix with the zero mean and standard deviation one.

We also assume an a priori known upper bound for the conductivity

σ � σ. (65)

To solve the inverse problem, we use the iterative algorithm below, which produces a mini-

mizing sequence based on successive applications of the result in theorem 3. At each step, a 

Robin problem is solved by the finite difference method (e.g. [29]), which is different from the 

method used to generate the data.

 •  Initialization. Given ã, b, h,∆,σ, and a decreasing sequence δn → 0+. Precompute the 

harmonic function uh of trace h at the boundary, and set σ0 ≡ 1.

 •  Step 1. Solve the problem

∇ · (σ0 + δ1)∇u = 0 in Ω,

(σ0 + δ1)
∂u

∂ν
= −bu + δ1

∂uh

∂ν
on ∂Ω

  and let u0 be its solution.
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 •  Step 2. Assume that the (k − 1)st iteration was made. Update to

σk = min

{

ã

|∇uk−1|
,σ

}

,

  and solve the problem

∇ · (σk + δk+1)∇u = 0 in Ω,

(σk + δk+1)
∂u

∂ν
= −bu + δk+1

∂uh

∂ν
on ∂Ω.

  Let uk  be its solution.

 •  Step 3. Verify the stopping criteria

max ||∇uk| − |∇uk−1|| �
∆

σ

  and

‖σk − σk−1‖2

‖σk‖2

� TOL,

  where TOL  is the tolerance level. If they are not satisfied, reassign the quantities for 

k − 1 := k and repeat Step 2.

  Otherwise, compute the approximate conductivity σδ and interior voltage potential uδ as

σ
δ = σk, uδ = uk.

For the electrical conductivity σ we use an abdominal CT image (shown in the left upper 

corner in figure 1), which is scaled to the typical range [1, 1.8] S m−1 of values of the electrical 

conductivity of biological tissues. The upper conductivity bound is set to σ = 2 S m−1. The 

electrodes are placed on the opposite sides of the unit square containing the image, so that the 

electrode supports are given by

e
−
= {(x1, 0) : a � x1 � b, 0 � a < 0, 0 < b � 1}

e+ = {(x1, 1) : a � x1 � b, 0 � a < 0, 0 < b � 1}.

The electrode aperture b − a varies from 1 to few step sizes, and −I
−
= I+ = 5 · 10−3 A, 

z = 8 · 10−3 Ω · m2.

Our method is able to image a minimum residue conductivity without any appeal to the 

voltage potential at the boundary (and it is the first of this kind). In addition to comparing the 

reconstructed conductivity with the exact one, we also compare it with the results that would 

be obtained by the iterative method of alternating split Bregman (ASB) type in [19], had 

the boundary values also been known. Originally introduced for finding common extrema of 

general convex functionals in [4], the application of ASB type algorithms to image analysis 

are far more recent, see [28]. The choice of the algorithm in [19] for comparison is motivated 

by its regularizing ability at singular points of the electric field (critical points of the voltage 

potential).

Since in the numerical experiments the simulated data ã is perturbed, we perform recon-

structions for samples of 20 realizations of the perturbed interior data, so that a regularized 

solution is represented by the mean conductivity distribution. The relative errors of these 

A Tamasan and A Timonov Inverse Problems 35 (2019) 045006



18

means in the l2-norm are computed. The regularization parameter is chosen as δ = C∆1/2, 

where C = const > 0.

Figure 1 aims to compare the original conductivity distribution (in the left upper corner) 

with the conductivity means recovered from the interior data ã. The level of errors in ã is 

estimated as 10−5, and C = 1 is chosen. In the upper row we show the conductivity means 

obtained from the interior data simulated for the full electrode aperture size. The conductivity 

mean obtained by the proposed iterative procedure is shown in the middle of the upper row. Its 

relative error is 4 · 10−3, whereas the relative error of the conductivity mean obtained by the 

alternating split Bregman algorithm shown in the right upper corner is 1.5 · 10−2. In the lower 

row we show the conductivity means for the reduced electrode aperture sizes: half aperture 

(the left corner), two step sizes 2h (the middle—the proposed algorithm, the right corner—the 

alternating split Bregman algorithm). The corresponding relative l2-errors of reconstruction 

are 3 · 10−3, 6 · 10−3, and 3 · 10−2, respectively.

Figure 2 demonstrates the performance of the proposed algorithm when recovering the 

conductivity from the simulated noisy interior data ã. We set C = 1, C = 2.5, and C = 3, 

respectively, when choosing the regularization parameter. In the upper row we show the con-

ductivity means for the full electrode aperture size and perturbed with the noise levels 10−3, 

10−2, and 5 · 10−2 (from left to right). The corresponding relative l2-errors of reconstruction 

are 4.5 · 10−3, 7.9 · 10−3, and 4.3 · 10−2. In the lower row we show the conductivity means 

recovered from the data ã simulated for the reduced electrode aperture sizes (in the left corner 

its size equals 1/2, in the middle—1/4, and in the right corner—2h) with the noise of the level 

10−2 (from left to right). For all these configurations C = 2.5. The corresponding relative 

l2-errors of reconstruction are 1.1 · 10−2, 1.8 · 10−2, and 5.3 · 10−2, respectively.

Regardless of the method, the significant deterioration in quality of the reconstructed 

images (in the lower rows in both figures from left to right) is noted. This is due to the shrink-

ing size of the electrode aperture, which yields a redistribution of equipotential lines with 

higher curvatures. In turn this effects the numerical computation of the gradient field used by 

the algorithms in the update step.

8. Conclusions

We demonstrate that it is possible to image the electrical conductivity using the magnitude of 

one current density field, without any voltage information at the boundary. The new method 

recovers an approximate conductivity within a given residual error. The method is based on 

solving a minimum weighted gradient problem corresponding to some Robin boundary condi-

tions, which is further regularized to mitigate for the elliptic degeneracy present in the prob-

lem. A compactness property of the minimizing sequence is shown in the space of functions of 

bounded total variation. Numerical experiments are conducted to demonstrate the feasibility 

of the method, and they are also compared to one of the method that uses full knowledge of 

the voltage potential at the boundary.
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Appendix. On the equivalence between the Robin and complete electrode 

model (CEM)

We note here that, in the case of two electrodes the Robin and CEM boundary problems are 

equivalent up to a scaling factor. Not essential, but simplifying the exposition, we assume 

the the electrodes have equal surface areas, |e| := |e±|. In the complete electrode model the 

voltage potential v solution of (1) inside Ω, and an unknown constant voltage V  satisfy the 

boundary conditions

v + zσ
∂v

∂ν
= ±V , on e±, (A.1)

∫

e±

σ
∂v

∂ν
ds = ±I, (A.2)

∂v

∂ν
= 0, on ∂Ω \ (e+ ∪ e

−
). (A.3)

Under the assumptions that Ω is a Lipschitz domain, σ is essentially bounded away from zero 

and infinity, the electrodes e± have positive impedance and are (relatively) open connected sub-

sets of ∂Ω with disjoint closure, the CEM problem has a unique solution (v; V) ∈ H1(Ω)× R, 

see [31], or the appendix in [26]. For an arbitrary λ > 0 the pair (λu0,λzI) clearly solves (1) 

and (A.1) (with V = zλI), and (A.3). An application of Green’s theorem in the Robin model 

yields 
∫

e+
u0ds = −

∫
e
−

u0ds, which well defines the scaling choice

λ
−1 :=

(

|e| −
1

zI

∫

e+

u0ds

)

=

(

|e|+
1

zI

∫

e
−

u0ds

)

.

With this choice of scaling, one can check that λu0 also satisfies (A.2), and thus 

λu0 = v, and a0 = λσ|∇v|. Therefore, if we use to magnitude of the current density field 

corresponding to the Robin problem or to the CEM, we would recover the same conductivity 

σ = a0/|∇u0| = |σ∇v|/|∇v|.
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