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Abstract

®

CrossMark

We propose and study a method for imaging an approximate electrical

conductivity from the magnitude of one interior current density

field without

any knowledge of the boundary voltage potential. Solely from this interior
data, the exact conductivity is impossible to recover as non-unique solutions
exist. We propose a method to recover a minimum residual type solution.

The method is based on a weighted least gradient problem in

the subspace

of functions of bounded variations with square integrable traces. We prove
existence and uniqueness for a nearby problem, and study the continuous

dependence data for a regularized problem. The computational
and numerical convergence of this method is demonstrated
experiments.

effectiveness
in numerical

Keywords: minimum weighted gradient, conductivity imaging, current

density impedance imaging, generalized 1-Laplacian

1. Introduction

Let Q C RY, d = 2,3, be a Lipschitz domain modeling a conductive body. We revisit the
inverse hybrid problem of reconstructing an inhomogeneous, isotropic, electrical conductivity

o from knowledge of the magnitude of one current density field inside €2. The

problem may

be reduced to solving a singular, degenerate elliptic equation (the 1-Laplacian in a confor-
mal Euclidean metric) subject to various boundary conditions [12, 22], or can be cast as a
minimization problem involving a weighted gradient term [19, 23, 26]. Without some minimal
knowledge of the voltage potential at the boundary, the problem has non-unique solution as
recently characterized in [26], where additional measurements of the voltage potential along
a curve joining the electrodes were proposed to establish uniqueness. Other approaches, some
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of which are mentioned below, assume knowledge of the magnitude of two current density
fields, or of the entire field. To date, the only known modality of obtaining the interior data
involves rotations in a magnetic resonance machine [30]. This makes any boundary voltage
potential measurement, while not impossible, at least impractical.

The forward problem is modeled by the Robin boundary conditions as follows. Assume
that a current density field is generated by injecting/extracting a net current / > 0 from a cou-
ple of surface electrodes e+ assumed bounded Lipschitz subdomains in 9€, with real valued
impedance z > 0. For a known conductivity o, the voltage potential ug € H'(£2) (functions
and their gradient are square integrable) distributes inside according to

V-oVuy =0, inf{, (1)
a% = —boug + cp, on 912, 2)
ov
where
__[1/zonesx, __ [&£l, oneyg,
bo = {0, offey, M o= {o, off ey G)

and v denotes the outer unit normal to the boundary,

By replacing the conductivity in (1) by a/|Vuy|, the problem reduces to solving a bound-
ary value problem for a generalized 1-Laplacian as originally proposed in [12]. The work
in [22] was first to point out the connection with minimum surfaces in a Riemannian space
determined by the interior data, and proposed a method to recover the conductivity from
Cauchy data. For Dirichlet data in [23, 24] the problem was reduced to minimum gradient
problem for functions of given trace at the boundary, and, in [26], extended to the complete
electrode model (CEM) boundary conditions originally introduced in [31]. Existence and/or
uniqueness of such weighted gradient problems were studied in [8] and [21], with extensions
to perfectly insulated and conducting inclusions in [20, 21]. A structural stability result for the
minimization problem can be found in [27]. Reconstruction algorithms based on the minimi-
zation problem were proposed in [23] and [19], and based on level set methods in [22, 23, 33].
Continuous dependence on o on a (for a given unperturbed Dirichlet data) can be found in
[17], and, for partial data in [18]. For further references on determining the isotropic conduc-
tivity based on measurements of current densities see [11-16, 25, 32, 35], and for reconstruc-
tions on anisotropic conductivities from multiple measurements see [2, 3, 7, 10].

In here we seek to determine an approximate conductivity o, from knowledge of the mag-
nitude of the current density field,

ap := |oVuy), 4)

where ug € H'(£2) is the unique solution to the Robin problem (1) and (2). The impedance of
the surface electrodes z > 0, and the injected amperage / > 0 are assumed known.

As characterized in [26], we note that o is not uniquely determined by ay. For example,
for any ¢ : Range(u) — Range(up) an increasing Lipschitz continuous function, satisfying
@(t) =t for t € up(ey) Uup(e—), one can verify that u, = ¢ o ug is another solution of the
Robin problem corresponding to the conductivity o/(¢’ o up), while the magnitude of the
induces current density field does not change. We address the issue of non-uniqueness via
a regularization method that recovers an approximate conductivity without recourse to any
boundary voltage information. In any vicinity of the given interior data we identify the vir-
tual data that uniquely determines the sought conductivity. The given data is considered as a
perturbation of the virtual data. In accordance with the theory of ill-posed problems (see, e.g.
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[1]), the regularization consists of selecting an element of a minimizing sequence, so that the
norm of the residual does not exceed the prescribed level of perturbation. The feasibility of the
proposed method is demonstrated in numerical experiments.

Similar to the original idea in [23], we approach the inverse problem via a weighted mini-
mum gradient problem, here modeled for Robin boundary conditions. Let us introduce the
functional

v~ G(v;a,b,h) := / a|Vo|dx + ! / b(v — h)*ds, 5)
Q 2 Joa

defined for some nonnegative a € C(2) N L>(2) (either the interior data or one of its approx-

imations), and some boundary functions b € L>°(92) and h € L'(9) arising in the Robin

condition.

The smallest subspace in which a minimizing sequence of (5) is compact is the subspace
BV, () of functions of bounded variation with square integrable traces. In this regard, |Vo|dx
in the first integral term is understood as a Radon measure applied to the bounded continuous
function a,

|Dv|(a) == :sup{/Q oV - Fdx: F € Cy(RY), |F(x)| < a(x)}. 6)

In general, the minimization of the functional (5) is an open problem. However, in our
inverse problem here, there is a compatibility relation between the coefficients a and (b, )
coming from the forward Robin problem. We exploit this compatibility to prove existence of
a minimizer for the functional in (5). We show that the solution uq of the forward problem
minimizes the functional v — G(v; ag, by, hg) in (5) with a = ag in (4), b = by and h = ¢y /by
specified on e+ in (3). However, it is not unique. For example, for ¢ as in the counterexample
above, one can check that ¢ o uy will also be a minimizer.

The new idea idea is to find a family of triples (ac, b, k) converging to (ag, b, ho)as e — 0,
and such that the corresponding minimization problem for the functional v — G(v; a, b, h)
over BV,() has the unique minimizer u. € H'(£2); see theorem 1. This property, that

3! argmin{G(v; ac,be,cc,h),: v € BV,(Q)} € H'(Q), (7)

is key in proving convergence of a minimizing (sub)sequence in section 5, and in devising
the algorithm in section 7. Note that u, is also the voltage potential corresponding to a Robin
problem for the same conductivity o.

While b, hcare explicitin terms of by and hy, the construction of a. is implicit (depends on the
unknown o). We are thus forced to consider the minimization problem for v — G(v; ag, b, k),
where ag is seen as a perturbation of a.. In general, the functional v — G(v; ag, be, k) for
some fixed € > 0 may not have a minimizer, even in BV,(£2). This motivates to work with the
regularized functional

v GO(via,be, he) == G(v;a,be, he) + g / V(v — he)|dx, 8)
Q

where . is now an arbitrary H'({)-extension from the boundary inside, and § > 0.

We consider the data dependence problem for G° with respect to a and &, and prove the
compactness of a minimizing sequence as a — a. and § — 0, see theorem 2. This result
depends crucially on the fact that G(v; a, b, h.) when a = a, satisfies (7), and is independent
of the choice of the extension of A..
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We propose an iterative algorithm, where at each step the functional is strictly minimized,
see theorem 3. For this result we use the harmonic extension of /. as an H'(£2) map. The effect
of this choice of the extension on the recovered conductivity is subject of further studies.
However, regardless of this extension, the algorithm recovers a minimum residual solution o
in the following sense: if o — |J|(0) := o|Vu(c)| denotes the nonlinear operator for which a
right inverse is sought, the recovered o is such that|||J|(c.) — |J|(0)]|2 < e.

To connect with the work in [26] in the appendix we remark that, for two electrodes, the
Robin problem is equivalent to the complete electrode model (CEM) problem in [31] up to
a scaling factor. Moreover, in the numerical experiments, the simulated data is generated by
solving a forward CEM, whereas the reconstruction method is based on the Robin problem.

2. Remarks on the smoothness of solutions to the Robin problem

Our technique, which is based on the minimization of the functional (5) in a subspace of
functions of bounded variation, requires the weight a (the product of o with the magnitude of
the gradient of the solution of a Robin problem) be bounded continuous in 2. This regularity
cannot be achieved solely on the smoothness in the conductivity o, as the regularity of the
coefficients appearing in the Robin condition (2) also play a role. Throughout we assume a
conductivity

o € C'2(Q) with o|gq € C*(N), and o > 0. )

Under this smoothness assumption, the elliptic regularity for solutions to the Robin problem
(e.g. [9, theorem 7.4 and remark 7.2]) yields that uy € C'/2(Q) N C"'/2(Q2). Moreover, Vuy
and thus ap in (4) extend by Holder-continuity to all points in 92 \ de, see [26, proposition
B.1. (ii)] for details. By itself, this regularity is insufficient to yield boundedness of |Vuy| at
points on the boundary de. of the electrodes.

In our case, the jump in the coefficients by and cp, yield the right hand side of (2) be merely
in H2~5 for some s > 0. Then ug is merely in H37*(2), which is insufficient to conclude
the boundedness of Vi in three dimensions. Namely, at the boundary of the electrodes, the
tangential derivative normal to de4 may blow up, yielding an unbounded interior data ag in
(4). However, if be,c. € H 3/ 2(30) are smooth approximations of by and ¢y, then the bootstrap
argument in the proof of [26, proposition B.1. (ii)] applies to yield that the corresponding
Robin problem has a solution u, € H>(Q): indeed, for a right hand side of (2) in H'/?(d2),
the solution u. € H?(£2), which in turn yields u. € H3/?(9Q). Since b, c. € H>/?(99Q), we
get ucb. € H>/?(9) and thus that the right hand side of (2) now lie in H3/2(992). Another
application of the classical regularity result yields u. € H>(Q2) ¢ C"/2(Q)). Therefore in two
and three dimensions, a, := o|Vu.| € C'/?(Q) is bounded continuous.

3. Existence and uniqueness of a minimizer in BV, (Q2) for a nearby problem

The regularized method can be understood through a family of forward problems. Recall the
coefficients by and ¢y in (3), and for each € > 0 small, let first define the piecewise boundary
function
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B 1/zon ey,
" |e/z, on O\ (e— Uey).

According to the regularity remarks above, the solution to the problem (1) subject to the
Robin boundary condition

o -
o—u = —b.u+cy, ond,
ov

might not be of bounded gradient (regularity needed in order for a = |oVu| to be bounded
continuous).

This motivates to further consider some smooth approximates b. € H*>/?(982) of b, and
ce € H32(99Q) of ¢y, with the only necessary property that

ll_rf(l) [be = bolloc = 0, and ll_rf(l) [ce = colloo = 0. (10)

Let u. € H'(Q) be the solution of the Robin problem (1) subject to

0@ = —b.u+c., onof, (11)
ov

and define an ‘ideal’ interior coefficient a. as the magnitude of the corresponding current
density field,

ac = |oVu|. (12)

The remarks of section 2 show that a. € C'/2(Q2) for ¢ > 0.
Classical arguments on the continuous dependence (in particular, since the coercivity con-
stant is bounded below independently of €), also apply to yield

Hue — u0||H|(Q) — 0, and Hae — aO”U(Q) — 0, as e — 0.

Also for € > 0, let & be defined at the boundary 02 by
Ce
b,
For uniformity, let also define iy € L>°(9€2) on the electrodes by hy = co/bg, and hy = 0 off

the electrodes.
Recall the functional in (5):

he := (13)

1
v G(v;a,b,h) := / a|Vo|dx + 7/ b(v — h)*ds.
Q 2 oN

The following result shows the regularizing effect of € > 0.

Theorem 1. Let o satisfy (9). For € > 0, let ac, b, he, and uc be the solutions to the Robin
problem (1) and (11) as defined above. Then, for e > 0,

G(uc;ac,be,he) < G(v;ac, be,he), forallo € H'(Q). (14)

Moreover, if € > 0, then
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G(ue;ac,be,he) < G(vyae,be,he), forallv € BV,(Q), (15)

ue € CH1/2 (Q) is the unique minimizer, and the exact conductivity can be recovered from a. by

Qe

o= 7|Vu5\' (16)

Proof. Lete > 0. Forany v € H'({2), we estimate

G('U, de, be, he) = /

Q
1
:/J|Vu€||Vv|dx+f/ be(vfhe)zds
Q 2 Jaq

1
aE\VU|dx+f/ be(v — he)*ds
2 oN

1
>/JVME~Vde+f/ be(v — he)*ds
Q 2 onN

1
= / (=beue + c)vds + = / be(v — he)*ds
0 2 Joo

1 1
= 7/ be(v—ue)zds—i—f/ be(h? — u?)ds
2 Jaq 2 Joq
1
> 7/ be(h? — u?)ds = G(uc; ac, be, he), 7
2 Jog

where the second equality uses (12), the third equality uses the divergence theorem and the
fact the u, solves the Robin problem (1) and (11). This proves (14).

Now let € > 0. We show first that u. is a global minimizer of the functional over the larger
set BV,(Q). Let v € BV,(f2) be arbitrary. By mollification (e.g. [6, remark 2.12]), there exists
a sequence {v,} C H' () with v,|p0 = v|sq (as traces in L' (9Q)), and such that v, — v in
L'(£2), and

lim | a.|Vo,|dx = |Do|(a.). (18)
Q

n— 00
Since (14) now holds,
Ge (ue; Ae, be, he) < Ge(vn; Ae, bE? he)

:/a5|VU,,|dx+/ be(v — he)*ds,
Q 90

where the equality above uses the fact that v,|gq = v|gq. By taking the limit with n — oo in
(19), and using (18), we conclude that

19)

Ge(uc;ac,be,he) < |Dv|(a;) + / be(v — he)*ds = G(v; ac, be, he).
o

Next we prove uniqueness. Let v € BV,(2) be another minimizer of G(-; ac, be, k), and
consider a mollified sequence {v,} C H'(Q), v,|aa = v|sq as above to estimate
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1
G(v;ac,be,he) = |DU|(a6)+f/ be(v — he)*ds
2 o0
1
= lim /U|Vu6|\VU,,|dx+f/ be(v — he)*ds
"= Ja 2 Jog
1
2limsup/ UVuE-andx—i—i/ be(v — he)*ds
Q

n— o0 o

1
= lim sup/ (=beue + co)vpds + = / be(v — he)*ds
o9 2 Jaq

n—oo
1
:/ (—beue—i-cg)vds—i—f/ be(v — he)*ds
a0 2 Joq
1 1
:7/ be(v—ue)zds—i—f/ be(h? — u?)ds
2 Joa 2 Joa
1
> 7/ be(h? — u?)ds = G (uc; ac, be, he).
2 Joa

Since v is also a minimizer G(; dc, be, he) = Ge(ue; ae, be, he) and all the inequalities above
hold with equality, in particular

/ be(v — uc)*ds = 0.
o0
Since the weight b, is essentially positive on the boundary, we conclude that

0]on = Ueloq. (20)

Next, we note that, for competitors restricted to the affine subspace

D, = {U c BVZ(Q) : Z)|aQ = u5|ag},
the minimization problem min {G.(v; ac, b, h.) : v € D.} is equivalent to

min {|Dv|(a.) : v € BV(Q), v|aq = ucloa} - (21)
Since u, € C/ 2(5) is a solution, we apply the uniqueness result [21, theorem 1.1] to the
minimization problem (21) to conclude that

v=u., in{.

Following from the definition of a. in (12), and the strict positivity of the conductivity, the
set of critical points {x € Q : |Vu.| = 0} coincide with the set of zeros of a.. Since u. is a
solution of an elliptic equation. The set of critical points is negligible in €2, the equality (16)
holds almost everywhere. Since o is assumed continuous, the equality (16) must then hold at
all points in 2.

O

We stress here that, for € > 0, the uniqueness of the minimizer is not a consequence of the
classical methods in the theory of augmented Lagrangian, e.g., in [5], but rather of the unique-
ness result in [21].

4. Regularization of the weighted least gradient problem

The results of theorem 1 cannot apply directly to recover o: on the one hand, for € = 0, the
minimizer u is not unique, on the other hand for e > 0, we are not given the coefficient a., but
rather its approximate ao, and the existence pf minimizers for v — G(v; ao, b, a.) is not clear

7
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in general. This motivates to consider the regularized functional v — G (v;a,b,h)in (8) and
study the continuous dependence of its minimizer with respect to a and 4.

To simplify notation, since b and # are fixed, we drop the explicit dependence in the nota-
tion of the functional G® and work with

G°(v;a) ::/a|w\dx+/ b(v—h)zds—l—é/ |V (v — h)|*dx. (22)
Q o0 2 Jo

In this section we assume that a € L*(Q) is bounded away from zero,

1
0<S<b< -, ae 90, (23)
z Z
while h € H'(Q) is arbitrarily fixed.
The sum
5 1 2 4 2
F°(v):= = bv'ds+ 5 | |Vo|“dx (24)
2 Jaq 2 Ja
of the quadratic terms in (22) defines an equivalent square norm in H'(£2), since
0 1 4
min {5 bl < 20 < ma { .5 4l 25)
where

a2 ;:/ |u|2ds+/ IVu[2dx.
o Q

Existence and uniqueness of the minimizer in H'(f2) of the functional (22) follows from
classical convex minimization arguments, recalled below for completeness.

Proposition 1. For €, > 0 arbitrarily fixed, and a € L*(Y) positive, let G°(-,a) be the
functional in (22). The minimization problem

min{G’(v;a) : v H'(Q)}
has a unique solution.

Proof. We show first that G°(-; a) is weakly lower semi-continuous. Let v, — v be a weak-
ly convergent sequence in H' (). We need to show that

Sl ) < T $(0.: ).
G°(v;a) < hnrgng (vy;a) (26)
The weak lower semicontinuity of F? : H'(Q) — R follows from its convexity

F(0) > F(0) + /

b.o(v, —v)ds + 5/ Vv -V(v, —v)dx,
a9 Q

and Fatou’s lemma. The weak lower semicontinuity of the weighted gradient functional

v— [ a|Voldx (27)
o9

also follows from standard arguments: let {a,, } be an increasing sequence of bounded continu-
ous functions, which converges in L?(2) sense to a. For each fixed index m, let f € C}(Q; RY)

8
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be arbitrary with |[f| < a,,. Since v, — v in L*(£2) we have

/UV~fdx: lim vnv.fdx:nminf/vnv-fdx
Q Q

n—o0 Q n— o0

< lim inf sup{/ v,V-gdx: g€ C(I)(Q;R"), lg| < am}
Q

n—oQ

= lim inf/ an|Vo,|dx < lim inf/ a|Vu,|dx, (28)
n— o0 Q n—oo Q

where the last inequality above uses the fact that a,, < a. By taking the supremum in (28) over

all £ € CJ(Q;RY) with[f| < a,, we get

/ava|dx=sup{/ oV -fdx: f € CLQRY), |f] < am}
Q Q

< II,IHHILI.}f /Q a0|Vv,,|dx. (29)
By letting m — oo in (29) we obtain the weakly lower semi-continuity for (27).

Therefore v — G®(v;a) : H'(Q) — R is weakly lower semi-continuous in H'(Q). Since
the G‘s(-; a) is also strictly convex (as a sum of a convex with a strictly convex), it has a unique
minimizer. O

In is worth noting that if, for some fixed € > 0, the functional v — G(v; ao, b, h.) has a
C'(Q)-minimizer then the uniqueness part of the proof of theorem 1 yields that it would be
unique among all minimizers in BV,(2). As a consequence any minimization algorithm for
G‘s(-; ag, be, he) with § — 0% would produce that unique solution, regardless of the choice of
the H'(Q)-extension of ..

5. Compactness of the regularized minimizing sequence

In this section we assume a € C(£2) N L>(2),

inf(a) =1 a >0, (30)
b € L*(09) with
€ 1
0<-<b< —, ae. 09, 3D
b4 b4

and h € H'(Q) arbitrarily fixed.
Recall the functional v — G(v;a, b, h) in (5). Similar to the notation in (22), since b and &
will be fixed, we drop the dependence from the notation and work with

G(v;a) ::/a|Vv|dx+/ b(v — h)%. (32)
Q o9

If v € BV,(f), then the first integral is understood as a Radon measure applied to a.
We assume that v — G(v; a) satisfies the existence and uniqueness hypothesis (7), i.e. there
is some u € H'(Q), such that

G(u;a) < G(v;a), Vv € BV,(Q), (33)
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and u is the unique minimizer in BV,(12).
We will often use the trivial identity

/a|w|dx:/a|w|dx+/(a—a)|w|dx, (34)
Q Q Q

which allows us to exchange two arbitrary weights a,a € L*(Q). By || - || we denote the
L?(Q)-norm, and by || - ||; the H'(£2)-norm.
The following result provides the theoretical basis of our reconstruction method.

Theorem 2. Let Q C R? be a bounded Lipschitz domain with connected boundary, and
a € C(Q) N L>(Q) satisfy (30). Assume that the functional G(-;a) in (32) satisfy the hypoth-
esis (7), and let u € H'(Q) be the unique minimizer

u = argmin{G(v;a) : v € BV,(Q)}. (35)

Let {a,} C L*(Q) be a sequence of positive functions, with

||@, —a|| — 0, asn — oo (36)

and 9, | 0 be a decreasing sequence such that

la —al? _

lim 0. (37)
n—oo n

Corresponding to each n, consider the regularized functional v — G (v, a,) as in (22), and
let

u, = argmin{G* (v,a,) : ve H'(Q)} (38)
be the corresponding minimizer provided by proposition 1. Then

lim G%(u,;a,) = Jim G(uy;a) = Gusa). (39)

n—oo

Moreover, on a subsequence {it,} of {u,},

iln — U, inLq(Q), 0 < q < %,

and, for any open subset O C (,
lim [ a,|Vi,|dx = lim /a|Vftn\dx = / a|Vuldx. (40)
n— 00 1o) n—oo Io) 1o)

Proof. Despite the fact that ||u,||; may not be uniformly bounded, we prove first that

lim [ (a—a,)|Vu,|dx=0. (41)

n—oo Q

Let n be sufficiently large so that ||a,| < 2||a| Recall the functional F% (-;a,) in (24) with
§ = b, and a = a,, and the induced norm on H'(£) in (25). We estimate

10
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On
min {6 } |y — h|? < FO (u, — hiay)
z

< F‘;"(un —hyay,) +/ a,|Vu,|dx
Q

= G" (un; )
< G* (h; ay)

_ / a,[Vhldx
Q

< 2]lall ||Vl @2
where the third inequality uses the minimizing property defining u,. Note that the right hand
side of (42) is independent of §, to yield

2z 2}1/2

lualls < Cmax{6,6 43)

for some constant C dependent on ||a|| and ||A|;. In particular since §, — 0, for sufficiently
large n, we obtained

1
lualli < C—=, 44
s .
where C depends only on ||a|| and the ||k||;. The rate of decay (37) together with (44) yields
41). O
Since u is a minimizer of G(+; a), we estimate
G(usa) < lirginf G(uy;a) < limsup G(u,; a)
= lim sup {G(u,,;a,,) + / (a— a,,)|Vu,,|dx}
n—00 Q
< limsup {G(u,,;a,,) + %" |V (u, — h)|*dx + / (a— a,,)|Vu,,|dx}
n—00 Q Q
= lim sup {G‘s"(un;a,,) + / (a— an)|Vu,,|dx}
n— o0 Q
= lim sup G (u,; a,) (45)

where the first equality uses (34), the next to the last equality uses the definition of Gf", and
the last equality uses (41). Similarly,

G(u;a) < liminf G(u,; a)
n— o0

n— 00

= lim inf {G(un;an) + / (a— a,,)\Vu,,|dx}
Q

n—o00

guminf{c(un;an)+%/ |V(u,,—h)|2dx+/(a—a,,)|Vun|dx}
Q Q

= lim inf {Gé"(un;an) + / (a— an)\Vu,,|dx}
Q

n—oo

= liminf G% (u,; a,) < liminf G% (uy; ay). (46)

n—o0o n—o0o

1
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The reverse inequality also holds:

lim sup G% (u,; a,) < limsup G (u; ay,)

n— o0 n—oo

= limsup {G‘S"(u; a) + / (an — a)|Vu|dx}

n—oo

Q
limsup{G(u;a)Jr(;"/Q|V(uh)zdx+/ﬂ(ana)|Vudx}

n— oo

= G(u;a). “7)

In the estimate (47), the first inequality uses (38), while the last equality uses (36) and the
assumption u € H'(€2).
The inequalities (45)—(47) prove the identity (39). In particular, we showed that

lim (/ a|Vuy,|dx + / b(u, — h)%is) = / a|Vu|dx + / b(u — h)?ds.
n=oo \JQ 0 Q o0
(48)
Note that both the regularization parameter and the coefficients in the functional are chang-
ing with n. In particular, the sequence u, may not be bounded in H'(£2). However, we show

next that {u, } is bounded in W'!(Q); endowed with the norm

lleel1.1 ::/ uds+/ |Vu|dx.
1) Q

Recall the lower bound « in (30) to estimate
min{ ey, 2vb }|un]] 1.1 g/a|vu,,|dx+/ 2vVb|u,|ds
Q o0
g/a|vu,,|dx+/ 2\/17€|un—h\ds+/ 2v'b|h|ds
Q o0 o0
</a|vu,,|dx+/ be(u,,—h)zds+|8(2|+/ 2v'b|h|ds
Q o0 o
< G(uy; a) + 09| —|—/ 2v/'b|h|ds
o

= G(up; an) —|—/

(a — a,)|Vuy,|dx + |09 +/ 2v'b|h|ds
Q o9

la — a|| /
<G(hya,) + C—0 1109 + | 2Vb|h|ds
(h; ay) N |09 - ||
:G(h;a)+/(an—a)|Vh|dx+CM+|8§2| +/ 2v/b|h|ds
Q V6n 20
lla — a||

— G(h:a) + |la, — al| | V]| + € + |00 + / 2v/blhds,
o0

Vo
(49)

where the fifth inequality uses the bound (44). By the hypothesis (37) on the rate of decay of
dn, the right hand side above is uniformly bounded in n.

Since min{a, essinf(b)} > 0 we showed that ||u,||1,; is uniformly bounded. An applica-
tion of Rellich—-Kondrachov’s compactness embedding (e.g. [36]) shows the existence of a
convergent subsequence {i,}, with iz, — u*in LI(Q2) for all 1 < g < d/(d — 1). Moreover,
since {it, } is bounded in W"!(£2), the limit «* € BV(Q) and u*|5q € L' (0R), see e.g. [6].

12
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Also following from the estimate (49), the sequence of traces {u,|sq } is uniformly bounded
in L?(99). In particular, u*|sq € L*(92), and, possibly passing to a subsubsequence, {i, }
converges weakly in L?(9Q) to u*|sq.

We recall the weak lower semi-continuity properties on each of the two functionals in G.
The first one is the lower semi-continuity of the total variations. For any a € C(Q) N L>*((2),

|Du*|(a) < liminf/ a|Vii,|dx. (50)
n— o0 O
The second is the weak lower semi-continuity of the quadratic term,
1 1
- / b(u* — h)*ds < liminf = [ b(u, — h)*ds. (51)
2 Jaq n—oo o0

By adding (50) and (51) and using (48) we get

G(u*,a) < linﬁlinf G(ity;a) = G(u; a). (52)
Since u was assumed the unique minimizer of G in BV,(2), we conclude that equality must
hold in (52), i.e. G(u*; a) = ]in_1>inf G(iiy; a), and that

u=u". (53)

Moreover, each of the inequalities (50) and (51) must also be equalities. By possibly passing
to a further sub-subsequence, we have shown that

|Du|(a) = lim /a|Vﬁn|dx,
n— o0 Q

/ b(u — h)*ds = lim b(it, — h)*ds. (54)
o

n—oo o0

For any O an open subset of €2, the arguments of [36, theorem 5.2.3] carries verbatim to con-
clude the upper semi-continuity property,

limsup/a|Vz~4n|dx</a|Vu|dx.
0 0

n— o0

Now (40) follows by an application of (41). O

6. The minimizing property in successive iterations

To minimize (22) we propose an iterative procedure, where at each step we solve an appropri-
ate Robin problem for the updated conductivity. The iterative procedure is similar to those
developed earlier in [23] in connection to the Dirichlet problem or in [26] in connection to the
complete electrode model. A marked difference in here is due to the regularizing term, which
involves an extension of the given boundary function /4 inside the domain. While in theorem 3
no particular extension was relevant, in the arguments below we essentially use the harmonic
extension uy,:

Au, =0inQ, u, = hon 09. (55)

More precisely, since fQ Vuy, - Vodx = f 50 %Uds, one can check that

S (vy0) = % {/QU|VZJ|2dx—i-/6Q b(v—h)zds—HS/Q |V(v— uh)|2dx}

13
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Figure 1. Comparison of the reconstructed mean conductivity distributions. The level
of the roundoff and truncation errors in the interior data does not exceed 107>, The
parameters € = 5 - 10™* and § = 3 - 1073 are chosen.

is the energy functional for

V(0 +8)Vu=0inQ, (56)
(a—i—&)% = —bu—i—é% on JN. (57)

In particular, if u € H'(£2) is the solution to (56) and (57), then
S (u;0) < JP(v;0), forallv € H'(Q). (58)

Recall the functional G® in (22), which depends on the data, and contrast with J % above,
which depends on the unknown conductivity. The minimization of G algorithm by successive
iterations is based on the following result.

Theorem 3. Letd > 0,a € L*(Q), and b € L>°(9) be positive. Let also u, € H' () be the
harmonic extension of some h € H'/*(9Q) in (55). Let v € H'(Q) be such that & € L= (1),

[Vol
and let u € H'(Q) be the solution to the Robin problem
a
Vil =4+ Vu=0in(,
(5 +9) va=oi >
a Ou Ouy,
—— 40 ) — = —bu+d—— on IN.
<|VU + ) EY u + o 0 (60)
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Figure 2. Comparison of the recovered conductivity from noisy interior data.

Then
G°(u;a) < G°(v;a). (61)

Moreover, if the equality in (61) holds, then u = v.

Proof. On the one hand, since u is a global minimizer of J?(u; o) in H'(£2), we obtain

Gé(v;a)z/a|w|dx+1/ b(v—h)2ds+§/ |V (v — h)[*dx
Q 2 oN 2 Q
1 § . a
_ E/Qa|Vv|dx+J (v, |w|>
1 a
> - de+J° (u; — ). 62
o (s ) @

On the other hand, representing the first term in G°(v; a) in the form

a \1/2 a \1/2
aVudx:/<—> VU~<—> YVu|dx
/Q|| (=) 7o () v
a ) 1/2 a ) 1/2
< —|Vo dx> (/ —|Vu dx)
</Q o] V7 o Vol VY

1 1 a
<3 dr+ = [ == |Vuldx,
2/Qa|Vv| + 2 s Ivv||Vu|

we obtain

15
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1
G5(u;a):/a\Vu|dx—|—é/ |V(u—h)|2dx—|—f/ b(u — uy)*ds
Q 2 Jq 2 Joq

1 5 a s
< = \V/ — < “a). 63
< 2/ch| vldx +J <u, |Vv|) < G°(v;a) (63)
The estimates (62) and (63) implies (61). O

Suppose now that the equality in (61) holds. Then the equality holds also in (62), in

particular,
a a
Pl — ) =0 v; — ).
(“ Vv|> < |w|>

Thus v is also a global minimizer in H'(§2) of J° (~; ol ) The uniqueness of the minimizer
for J° yields u = v. |

7. The algorithm and reconstruction

In this section we present the algorithm and demonstrate its computational feasibility in
numerical experiments.

For a given conductivity o, the interior data was simulated by solving the forward problem
subject to the complete electrode model (CEM) boundary conditions and setting

ACEM -— U|Vu|,

where u is the unique solution to (1) subject to (A.1)—(A.3) in the appendix. In solving the
CEM problem we used the Galerkin finite element method.

The noisy data a was obtained by adding to the exact coefficient acgym a normally distrib-
uted noise

R

a=acem + A - ——,
[IRIl2

(64)
where A > 0 is the prescribed level of error, R = R(0, 1) is the normally distributed pseudo-
random matrix with the zero mean and standard deviation one.

We also assume an a priori known upper bound for the conductivity

o <7 (65)

To solve the inverse problem, we use the iterative algorithm below, which produces a mini-
mizing sequence based on successive applications of the result in theorem 3. At each step, a
Robin problem is solved by the finite difference method (e.g. [29]), which is different from the
method used to generate the data.

o Initialization. Given a, b, h, A, T, and a decreasing sequence 6, — 0F. Precompute the
harmonic function uy, of trace h at the boundary, and set oy = 1.
e Step 1. Solve the problem
V(004 6;1)Vu=0in{,
ou

ov

and let ug be its solution.

0
(o0 + 1) :fbu+51£ on 05}

16



Inverse Problems 35 (2019) 045006 A Tamasan and A Timonov

o Step 2. Assume that the (k — 1)st iteration was made. Update to

. a
Ok —mln{|vuk1|,0},

and solve the problem

V - (0k + %+1)Vu=0in Q,

% on 0f2.

ou
(O‘k + 5k+1)7 = —bu ~+ di41 By

ov

Let uy, be its solution.
o Step 3. Verify the stopping criteria

max || V| — |Viug_1]| <

Q| >

and

llox — or—1ll2

< TOL,
ol

where TOL is the tolerance level. If they are not satisfied, reassign the quantities for
k — 1 := k and repeat Step 2.

Otherwise, compute the approximate conductivity o and interior voltage potential u® as

0'5 = Ok, u5 = Ug.

For the electrical conductivity o we use an abdominal CT image (shown in the left upper
corner in figure 1), which is scaled to the typical range [1, 1.8] S m ™! of values of the electrical
conductivity of biological tissues. The upper conductivity bound is set to @ = 2 S m~ .. The
electrodes are placed on the opposite sides of the unit square containing the image, so that the
electrode supports are given by

e— ={(x1,0): 1}
er ={(x1,1): 1}.
The electrode aperture b — a varies from 1 to few step sizes, and —[_ =1, =5 1073 A,
z=8-103Q - m’.

Our method is able to image a minimum residue conductivity without any appeal to the
voltage potential at the boundary (and it is the first of this kind). In addition to comparing the
reconstructed conductivity with the exact one, we also compare it with the results that would
be obtained by the iterative method of alternating split Bregman (ASB) type in [19], had
the boundary values also been known. Originally introduced for finding common extrema of
general convex functionals in [4], the application of ASB type algorithms to image analysis
are far more recent, see [28]. The choice of the algorithm in [19] for comparison is motivated
by its regularizing ability at singular points of the electric field (critical points of the voltage
potential).

Since in the numerical experiments the simulated data a is perturbed, we perform recon-
structions for samples of 20 realizations of the perturbed interior data, so that a regularized
solution is represented by the mean conductivity distribution. The relative errors of these

a<0,0<b

< <
<a<0,0<b<
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means in the l,-norm are computed. The regularization parameter is chosen as 6 = CA!/2,
where C = const > 0.

Figure 1 aims to compare the original conductivity distribution (in the left upper corner)
with the conductivity means recovered from the interior data a. The level of errors in a is
estimated as 107>, and C = 1 is chosen. In the upper row we show the conductivity means
obtained from the interior data simulated for the full electrode aperture size. The conductivity
mean obtained by the proposed iterative procedure is shown in the middle of the upper row. Its
relative error is 4 - 1073, whereas the relative error of the conductivity mean obtained by the
alternating split Bregman algorithm shown in the right upper corner is 1.5 - 1072, In the lower
row we show the conductivity means for the reduced electrode aperture sizes: half aperture
(the left corner), two step sizes 2A (the middle—the proposed algorithm, the right corner—the
alternating split Bregman algorithm). The corresponding relative /;-errors of reconstruction
are 3-1073,6- 1073, and 3 - 1072, respectively.

Figure 2 demonstrates the performance of the proposed algorithm when recovering the
conductivity from the simulated noisy interior data a. We set C =1, C = 2.5, and C = 3,
respectively, when choosing the regularization parameter. In the upper row we show the con-
ductivity means for the full electrode aperture size and perturbed with the noise levels 1073,
1072, and 5 - 10~2 (from left to right). The corresponding relative l,-errors of reconstruction
are 4.5-1073,7.9-1073, and 4.3 - 10~2. In the lower row we show the conductivity means
recovered from the data a simulated for the reduced electrode aperture sizes (in the left corner
its size equals 1/2, in the middle—1/4, and in the right corner—2#) with the noise of the level
10~2 (from left to right). For all these configurations C = 2.5. The corresponding relative
I,-errors of reconstruction are 1.1 - 1072,1.8 - 1072, and 5.3 - 1072, respectively.

Regardless of the method, the significant deterioration in quality of the reconstructed
images (in the lower rows in both figures from left to right) is noted. This is due to the shrink-
ing size of the electrode aperture, which yields a redistribution of equipotential lines with
higher curvatures. In turn this effects the numerical computation of the gradient field used by
the algorithms in the update step.

8. Conclusions

We demonstrate that it is possible to image the electrical conductivity using the magnitude of
one current density field, without any voltage information at the boundary. The new method
recovers an approximate conductivity within a given residual error. The method is based on
solving a minimum weighted gradient problem corresponding to some Robin boundary condi-
tions, which is further regularized to mitigate for the elliptic degeneracy present in the prob-
lem. A compactness property of the minimizing sequence is shown in the space of functions of
bounded total variation. Numerical experiments are conducted to demonstrate the feasibility
of the method, and they are also compared to one of the method that uses full knowledge of
the voltage potential at the boundary.
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Appendix. On the equivalence between the Robin and complete electrode
model (CEM)

We note here that, in the case of two electrodes the Robin and CEM boundary problems are
equivalent up to a scaling factor. Not essential, but simplifying the exposition, we assume
the the electrodes have equal surface areas, |e| := |e+|. In the complete electrode model the
voltage potential v solution of (1) inside €2, and an unknown constant voltage V satisfy the
boundary conditions

v—l—za@ =4V, one4, (A.1)
ov
ov
Li U@ds—:l:l, (Az)
v
% = O, on 0f) \ (€+ U E_). (A3)

Under the assumptions that €2 is a Lipschitz domain, o is essentially bounded away from zero
and infinity, the electrodes e+ have positive impedance and are (relatively) open connected sub-
sets of O with disjoint closure, the CEM problem has a unique solution (v; V) € H'(Q) x R,
see [31], or the appendix in [26]. For an arbitrary A > 0 the pair (Aug, AzI) clearly solves (1)
and (A.1) (with V = zAI), and (A.3). An application of Green’s theorem in the Robin model

yields fe+ upds = — [ uods, which well defines the scaling choice

1 1
A= |e|f—/ upds | = |e|+—/ upds | .
d J., d J.

With this choice of scaling, one can check that Aup also satisfies (A.2), and thus
Aug = v, and ag = Ao |Vv|. Therefore, if we use to magnitude of the current density field
corresponding to the Robin problem or to the CEM, we would recover the same conductivity
o =ay/|Vuy| = |oVo|/|Vo|.
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