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Abstract

Numerous single image deraining algorithms have been
recently proposed. However, these algorithms are mainly
evaluated using certain type of synthetic images, assuming
a specific rain model, plus a few real images. It is thus
unclear how these algorithms would perform on rainy im-
ages acquired “in the wild” and how we could gauge the
progress in the field. This paper aims to bridge this gap.
We present a comprehensive study and evaluation of exist-
ing single image deraining algorithms, using a new large-
scale benchmark consisting of both synthetic and real-
world rainy images of various rain types. This dataset high-
lights diverse rain models (rain streak, rain drop, rain and
mist), as well as a rich variety of evaluation criteria (full-
and no-reference objective, subjective, and task-specific)
Our evaluation and analysis indicate the performance gap
between synthetic rainy images and real-world images and
allow us to better identify the strengths and limitations of
each method as well as future research directions.

1. Introduction

Images captured in rainy days suffer from noticeable
degradation of scene visibility. The goal of single image de-
raining algorithms is to generate sharp images from a rainy
image input. Image deraining can potentially benefit both
the human visual perception quality of images, and many
computer vision applications, such as outdoor surveillance
systems and intelligent vehicles.

The recent years have witnessed significant progress in
single image deraining. The progress in this field can be
attributed to various natural image priors [, 2, 3, 4, 5] and
deep convolutional neural network (CNN)-based models [6,

, 8]. However, a fair comprehensive study of the problem,
the existing algorithms, and the performance metrics have
been absent so far, which is the goal of this paper.

*The first two authors contributed equally.
tindicates corresponding author.

1.1. Rainy Image Formulation Models

As a complicated atmospheric process, rain could cause
several different types of visibility degradations, due to a
magnitude of environmental factors including raindrop size,
rain density, and wind velocity [9]. When a rainy image is
taken, the visual effects of rain on that digital image further
hinges on many camera parameters, such as exposure time,
depth of field, and resolution [10]. Most existing deraining
works assume one rain model (usually rain streak), which
might have oversimplified the problem. We group existing
rain models in literature into three major categories: rain
streak, raindrop, as well as rain and mist.

A rain streak image R ¢ can be modeled as a linear super-
imposition of the clean background scene B and the sparse,
line-shape rain streak component S:

R, =B +S. (1)

Rain streaks S accumulated throughout the scene reduce the
visibility of the background B. This is the most common
model assumed by the majority of deraining algorithms.

Adherent raindrops [11] that fall and flow on camera
lenses or a window glasses can obstruct and/or blur the
background scenes. The raindrop degraded image R4 can
be modeled as the combination of the clean background B,
and the blurry or obstruction effect of the raindrops D in
scattered, small-sized local coherent regions:

Ry=(1-M)©B+D. @)

M is a binary mask and ® means element-wise multiplica-
tion. In the mask, a pixel x is part of a raindrop region if
M(z) = 1, and otherwise belongs to the background.
Further, rainy images often contain both rain and mist
in real cases [12]. In addition, distant rain streaks accumu-
lated throughout the scene reduce the visibility in a manner
more similarly to fog, creating a mist-like phenomenon in
the image background. Concerning this, we can define the
rain and mist model for the captured image R,,, based on
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Figure 1. Example images from the MPID dataset. The proposed dataset contains both synthetic and real-wold rainy images of rain streak,
raindrops, and rain & mist. In addition, we also annotate two sets of real-world images with object bounding boxes from autonomous

driving and video surveillance scenarios.

a composition of the rain streak model and the atmospheric
scattering haze model [13]:

R, =Bot+A(1l—1t)+S8, 3)

where S is the rain streak component; ¢ and A are the
transmission map and atmospheric light that determines the
fog/mist component, respectively.

1.2. Our Contribution

Regardless of what rain models to follow, image derain-
ing is a heavily ill-posed problem. Despite many impres-
sive methods published in recent few years, the lack of a
large dataset and algorithm benchmarking makes it difficult
to evaluate the progress made, and how practically useful
those algorithms are. There are several unclear and unsatis-
factory aspects of current deraining algorithm development,
including but not limited to: i) the modeling of rain is over-
simplified, i.e., each method considers and is evaluated with

one type of rain only, e.g., rain streak; ii) most quantitative
results are reported on synthetic images, which often fail to
capture the complexity and characteristics of real rain; iii)
as a result of the last point, the evaluation metrics have been
mostly limited to (the full-reference) PSNR and SSIM for
image restoration purposes. They may become poorly re-
lated when it comes to other task purposes, such as human
perception quality [14] or computer vision utility [15].

In this paper, we aim to systematically evaluate state-
of-the-art single image deraining methods, in a comprehen-
sive and fair setting. To this end, we construct a large-
scale benchmark, called Multi-Purpose Image Deraining
(MPID). An overview of MPID could be found in Table 1,
and image examples are displayed in Figure 1. Compared
with existing synthetic sets, the MPID dataset covers a
much larger diversity of rain models (rain streak, raindrop,
and rain and mist), including both synthetic and real-world



images for evaluation, and featuring diverse contents and
sources (for real rainy images). In addition, as the first-of-
its-kind efforts in image deraining, we have annotated two
sets of real-world rainy images with object bounding boxes
from autonomous driving and video surveillance scenarios,
respectively, for task-specific evaluation.

Using the MPID benchmark, we evaluate six state-of-
the-art single image deraining algorithms. We adopt a
wide range of full-reference metrics (PSNR and SSIM), no-
reference metrics (NIQE, BLIINDS-II, and SSEQ), as well
as human subjective scores to thoroughly examine the per-
formance of image deraining methods. A human subjec-
tive study is also conducted. Furthermore, as image derain-
ing might be expected as a preprocessing step for mid- and
high-level computer vision tasks, we also evaluate current
algorithms in terms of their impact on subsequent object
detection tasks, as a “task-specific” evaluation criterion. We
reveal the performance gap in various aspects, when these
algorithms are applied on synthetic and real images. By
extensively comparing the state-of-the-art single image de-
raining algorithms on the MPID dataset, we gain insights
into new research directions for image deraining.

2. Related Work
2.1. Overview of Deraining Algorithms

Multi-frame based approaches: Early methods often re-
quire multiple frames to deal with the deraining problem
[4,16,17,18,19,5,20, 11]. Garg and Nayar [2 1] proposed
a rain streak detection and removal method from a video by
taking the average intensity of the detected rain streaks from
the previous and subsequent frames. [10] further improved
the performance by selecting camera parameters without
appreciably altering the scene appearance. However, those
methods are not applicable to single image deraining.
Prior based algorithms: Many deraining methods capi-
talize on clean image or rain type priors to remove rain
[22, 1, 23, 24, 25]. Kang et al. [2] decomposed an input
image into its low and high frequency components. Then
they separated the rain streak frequencies from the high fre-
quency layer via sparse coding. Zhu et al. [26] introduced a
rain removal method based on the prior that rain streaks typ-
ically span a narrow range of directions. Chen and Hsu [3]
decomposed the background and rain streak layers based
on low-rank priors. Li et al. [27] use patch-based priors
for both the clean background and rain layers in the form
of Gaussian mixture models. All of the above approaches
rely on good (and relatively simple) crafted priors. As a re-
sult, they tend to have unsatisfactory performances on real
images with complicated scenes and rain forms.
Data-driven CNN models: Recently, CNNs have achieved
dominant success for image restoration [28, 29] including
single image deraining [30, 31]. Fu et al. [6] proposed a
deep detail network (DDN) for removing rain from single

images with detailed preserved. Yang et al. [32] presented
a CNN based method to jointly detect and remove rain
streaks, using a multi-stream network to capture the rain
streak component. A density-aware multi-stream densely
connected convolutional neural network was introduced in
[8] for joint rain density estimation and image deraining.
Qian et al. [7] addressed a different problem of removing
raindrops from single images, using visual attention with a
generative adversarial network (GAN). Despite the progress
of deep-learning-based approaches compared with prior-
based rain removal methods, their performance hinge on the
synthetic training data, which may become problematic if
real rainy images show a domain mismatch.

2.2. Datasets

Several datasets were used to measure and compare the
performance of image deraining algorithms. Li et al. [27]
introduced a set of 12 images using photo-realistic render-
ing techniques. Zhang et al. [33] synthesized a set of train-
ing and testing images with rain streak, using the same way
in [27]. The training set consists of 700 images and the
testing set consists of 100 images. In addition, [33] also
collects a dataset of 50 real-world rainy images downloaded
from the web for qualitative visual comparison. [7] released
a set of clean and rain-drop corrupted image pairs, using a
special lens equipment. However, existing datasets are ei-
ther too small in scale and limited to one rain type (streak or
drop), or lack sufficient real-world images for diverse eval-
uations. Besides, none of them has any semantic annotation
nor consider any subsequent task performance.

3. New Benchmark: Multi-Purpose Image De-
raining (MPID)

We present a new benchmark as a comprehensive plat-
form, for evaluating single image deraining algorithms from
a variety of perspectives. Our evaluation angles range from
traditional PSNR/SSIM, to no-reference perception-driven
metrics and human subjective quality, to “task-driven met-
rics” [15, 34] indicating how well a target computer vi-
sion task can be performed on the derained images. Fitting
those purposes, we generate/collect images in large scale,
from both synthesis and real world sources, covering di-
verse real-life scenes, and annotate them when needed. The
new benchmark, dubbed Multi-Purpose Image Deraining
(MPID), is introduced below in details. An overview of
MPID can be found in Table 1.

3.1. Training Sets: Three Synthesis Models

Following the three rain models in Section 1.1, we cre-
ate three training sets, named Rain streak (T), Rain drop
(T) and Rain and mist (T) sets (T short for “training”), re-
spectively. All three sets are synthesized in controlled set-



Table 1. Overview of the proposed MPID dataset.

Training Set

Subset Number of Images  Real/synthetic Annotations Metrics
Rain streak (T) 2400 (pairs) synthetic No /
Raindrop (T) 861 (pairs) synthetic No /
Rain and mist (T) 700 (pairs) synthetic No /
Testing Set
Subset Number of Images  Real/synthetic Annotations Metrics
Rain streak (S) 200 (pairs) synthetic No PSNR, SSIM, NIQE, BLIINDS-II, SSEQ
Rain streak (R) 50 real No NIQE, BLIINDS-II, SSEQ
Raindrop (S) 149 (pairs) synthetic No PSNR, SSIM, NIQE, BLIINDS-II, SSEQ
Raindrop (R) 58 real No NIQE, BLIINDS-II, SSEQ
Rain and mist (S) 70 (pairs) synthetic No PSNR, SSIM, NIQE, BLIINDS-II, SSEQ
Rain and mist (R) 30 real No NIQE, BLIINDS-II, SSEQ
Task-Driven Evaluation Set
Subset Number of Images  Real/synthetic Annotations Metrics
RID 2496 real Yes (bounding boxes) mAP
RIS 2048 real Yes (bounding boxes) mAP

tings from clean images.'. All clean images used are col-
lected from the web, and we specifically pick those outdoor
rain-free, haze-free photos taken in cloudy daylight, so that
the synthesized rainy images look more realistic in terms of
lighting condition (for example, there will be no rainy photo
in a sunny daylight background).

The Rain streak (T) set contains 2,400 pairs of clean and
rainy images, where the rainy images are generated from the
clean ones using (1), with the identical protocol and hyper-
parameters to [27, 33]. The Rain drop (T) set was borrowed
from [7]’s released training set consisting of 861 pairs of
clean and rain-drop corrupted images, upon their authors’
consent. The Rain and mist (T) set is synthesized by first
adding haze using the atmospheric scattering model: for
each clean image, we estimate depth using the algorithm in
[35, 36] as recommended by [37], set different atmospheric
lights A by choosing each channel uniformly randomly be-
tween [0.7, 1.0], and select 3 uniformly at random between
[0.6,1.8]. Then from the synthesized hazy version, we fur-
ther add rain streaks in the same way as Rain streak (T). We
end up with 700 pairs for the Rain and mist (T) set.

3.2. Testing Sets: From Synthetic To Real

Corresponding to three training sets, we generate three
synthetic testing set in the same way: denoted as Rain streak
(S), Rain drop (S), and Rain and mist (S) (S short for “syn-
thetic testing”), consisting of 200, 149, and 70 pairs, re-
spectively. On each testing set, we evaluate the restoration
performance of deraining algorithms, using classical PSNR
and SSIM metrics. Further, to predict the derained image’s
perceptual quality to human viewers, we introduce the us-
age of three no-reference IQA models: Naturalness Image
Quality Evaluator (NIQE) [38], spatial-spectral entropy-
based quality (SSEQ) [39], and blind image integrity no-
tator using DCT statistics (BLIINDS-II) [40], to comple-
ment the shortness of PSNR/SSIM. NIQE is a well-known

Note that for Rain drop (T), the data generation used physical simula-
tion [7], i.e., with/without lens, rather than algorithm simulation.

no-reference image quality score to indicate the perceived
“naturalness” of an image: a smaller score indicates better
perceptual quality. The score of SSEQ and BLIINDS-II that
we used range from 0 (worst) to 100 (best).>

Besides the three above synthetic test sets, we col-
lect three sets of real-world images, that fall into each of
three defined rain categories, to evaluate the deraining algo-
rithms’ real-world generalization. The three sets, denoted
as Rain streak (R), Raindrop (R), and Rain and mist (R) (R
short for “real-world testing”), are collected from the Inter-
net and are carefully inspected to ensure that images in each
set fit the pre-defined rain type well. Due to the unavailabil-
ity of ground truth clean images in real world, we evaluate
NIQE, SSEQ, and BLIINDS-II on the three real-world sets.
In addition, we also pick a small set of real-world images
for human subjective rating of derained results.

3.3. Task-Driven Evaluation Sets

As pointed out by several recent works [41, 15, 42, 43],
the performance of high-level computer vision tasks, such
as object detection and recognition, will deteriorate in the
presence of various sensory and environmental degrada-
tions. While deraining could be used as pre-processing for
many computer vision tasks executed in the rainy condi-
tions, there has been no systematical study on deraining
algorithms’ impact on those target tasks. We consider the
resulting task performance after deraining as an indirect in-
dicator of the deraining quality. Such a “task-driven” eval-
uation way has received little attention and can have great
implications for outdoor applications.

To conduct such task-driven evaluations, realistic anno-
tated datasets are necessary. To our best knowledge, there
has been no dataset available serving the purpose of evaluat-

2Note that in [39] and [40], a smaller SSEQ/BLIINDS-II score indi-
cates better perceptual quality. We reverse the two scores (100 minus) to
make their trends look consistent to full-reference metrics: in our tables
the bigger the two values, the better the perceptual quality. We did not do
the same to NIQE, because NIQE has no bounded maximum value.



Table 2. Object Statistics in RID and RIS sets.
Categories [ Car [ Person [ Bus [ Bicycle [ Motorcycle

RIDSet [ 7332 [ 1135 [ 613 [ 268 [ 968
Categories [ Car [ Person [ Bus [ Truck [ Motorcycle
RIS Set [ 11415 [ 2687 [ 488 [ 673 [ 275

ing deraining algorithms in task-driven ways. We therefore
collect two sets by our own: a Rain in Driving (RID) set
collected from car-mounted cameras when driving in rainy
weathers, and a Rain in surveillance (RIS) set collected
from networked traffic surveillance cameras in rainy days.
For either set, we annotate object bounding boxes, and
evaluate object detection performance after applying de-
raining. A summary with object statistics on both RID and
RIS sets can be found in Table 2. The two sets differ in
many ways: rain type, image quality, object size and an-
gle, and so on. They are representative of real application
scenarios where deraining may be desired.
Rain in Driving (RID) Set This set contains 2,495 real
rainy images from high-resolution driving videos. As we
observe, its rain effect is closest to “raindrops” on camera
lens. They were captured in diverse real traffic locations and
scenes during multiple drives. We label bounding boxes for
selected traffic objects: car, person, bus, bicycle, and mo-
torcycle, that commonly appear on the roads of all images.
Most images are of 1920 x 990 resolution, with a few ex-
ceptions of 4023 x 3024 resolution.
Rain in Surveillance (RIS) Set This set contains 2,048
real rainy images from relatively lower-resolution surveil-
lance video cameras. They were extracted from a total of
154 surveillance cameras in daytime, ensuring diversity in
content (for example, we do not consider frames too close in
time). As we observe, its rain effect is closest to “rain and
mist” (many cameras have mist condensation during rain,
and the low resolution will also cause more foggy effects).
We selected and annotated the most common objects in the
traffic surveillance scenes: car, person, bus, truck, and mo-
torcycle. The vast majority of cameras have the resolution
of 640 x 368, with a few exceptions of 640 x 480.

4. Experimental Comparison

We evaluate six representative state-of-the-art algorithms
on MPID: Gaussian mixture model prior (GMM) [27],
JOint Rain DEtection and Removal (JORDER) [32], Deep
Detail Network (DDN) [6], Conditional Generative Adver-
sarial Network (CGAN) [33], Density-aware Image De-
raining method using a Multistream Dense Network (DID-
MDN) [8], and DeRaindrop [7]. All except GMM are state-
of-the-art CNN-based deraining algorithms.
Evaluation Protocol. The first five models are specifically
developed for removing rain streaks, while the last one tar-
gets at removing rain drops. Therefore, we compare them
for rain streak sets. Since DeRaindrop is the only recent
published method for raindrop removal, to provide more

baselines for its performance, we also re-train and eval-
uate the other five models on the raindrop sets. Finally,
since no published method was targeted for removing rain
and mist together, we create a cascaded pipeline, by first
running each of the five rain streak removal algorithms,
followed by feeding into a pre-trained MSCNN dehazing
network [28]. MSCNN was chosen because recent dehaz-
ing studies [15, 48] endorsed it both to produce the best
human-favorable, artifact-free dehazing results, and to ben-
efit subsequent high-level task in haze most. Such cascaded
pipeline can be tuned from end to end, and we freeze the
MSCNN part during tuning in order to focus on compar-
ing deraining components. All models will be re-trained on
the corresponding MPID training set, when evaluated on a
certain rain type.

4.1. Objective Comparison

We first compare the derained results on the synthetic
images using two full-reference (PSNR and SSIM) and
three no-reference metrics (NIQE, SSEQ, and BLIINDS-
IT). As seen from Table 3, the results have high consensus
levels on synthetic data. First, DDN is the obvious winner
on the rain streak (S) set, followed by JORDER; the same
two methods also perform consistently the best on the rain
and mist (S) set. Second, DerainDrop performs the best
on the rain drop (S) set, especially significantly surpass-
ing the others in terms of PSNR and SSIM, showing that
its specific structure indeeds suits this problem. Other rain
streak removal models seem to even hurt PSNR, SSIM and
BLINDS-II, compared to the degraded images.

The effectiveness of the winners can be ascribed to the
two-step strategy of rain detection and removal. We note
that DDN focuses on high frequency details during train-
ing stage, while JORDER also first detects the locations of
rain streak, then removes rain based on the estimated rain
streak regions. Coincidentally, DeRaindrop also uses an at-
tentive generative network to generate raindrops mask first
then derain images capitalizing on the masks. Therefore,
removing background interference and attentively focusing
on rain regions seem to be the main reason of the winners.

We then show the derained results on the real-world im-
ages in Table 4, using three no-reference metrics (NIQE,
SSEQ, and BLIINDS-II). The rain streak (R) and raindrop
(R) sets show consistent results with their synthetic cases:
JORDER and DDN rank top-two on the former, while De-
rainDrop still dominates on the raindrop set. However,
some different tendency is observed on the rain and mist
(R) set: CGAN becomes the dominant winner on those real
images, outperforming both DDN and JORDER with large
margins. As we observed, since CGAN is most free of
physical priors or rain type assumptions, it has the largest
flexibility for re-training to fit different data. Its results is
also most photo-realistic due to the adversarial loss. Addi-
tionally, the result might also suggest a larger domain gap



Table 3. Average full- and no-reference evaluations results on synthetic rainy images. We use bold and underline to indicate the best and

suboptimal performance, respectively.

Degraded [ GMM [27] [ JORDER [32] [ DDN [6] [ CGAN [33] [ DID-MDN [8] [ DeRaindrop [7]
rain streak
PSNR 25.95 26.88 26.26 29.39 21.86 26.80 /
SSIM 0.7565 0.7674 0.8089 0.7854 0.6277 0.8028 /
SSEQ 70.24 67.46 73.70 75.95 70.02 60.05 /
NIQE 5.4529 4.4248 4.2337 3.9834 4.6189 4.8122 /
BLINDS-IT 78.89 75.95 84.21 91.71 79.29 67.90 /
raindrops
PSNR 25.40 24.85 27.52 25.23 21.35 24.76 31.57
SSIM 0.8403 0.7808 0.8239 0.8366 0.7306 0.7930 0.9023
SSEQ 78.48 64.73 84.32 77.62 63.15 58.42 72.42
NIQE 3.8126 5.1098 4.3278 4.1462 3.3551 4.1192 5.0047
BLINDS-II 92.50 75.95 88.05 91.95 73.85 64.70 96.45
rain and mist
PSNR 26.84 29.37 30.37 32.98 22.44 28.77 /
SSIM 0.8520 0.8960 0.9262 0.9350 0.7636 0.8430 /
SSEQ 72.37 65.39 70.55 69.80 68.71 65.33 /
NIQE 3.4548 32117 2.8595 2.9970 2.8336 3.0871 /
BLINDS-II 82.95 74.90 83.75 85.75 80.20 76.35 /

Table 4. Average no-reference evaluations results of derained results on real rainy images. We use bold and underline to indicate the best

and suboptimal performance except the degraded inputs, respectively.

Degraded | GMM [27] [ JORDER [32] | DDN [6] [ CGAN [33] | DID-MDN [8] | DeRaindrop [7]
rain streak
SSEQ 65.77 61.63 64.00 63.51 59.32 55.11 /
NIQE 3.5236 3.2117 3.5371 3.5811 3.5374 5.1255 /
BLINDS-IT | 78.04 75.54 82.62 85.81 78.42 66.65 /
raindrops
SSEQ 78.23 64.77 69.26 67.62 62.18 60.65 79.83
NIQE 3.8229 4.3801 3.6579 3.8290 4.4692 4.5631 3.5953
BLINDS-II |  84.46 71.21 80.04 71.75 66.29 66.63 87.13
rain and mist
SSEQ 73.86 59.51 65.18 64.56 70.04 63.85 /
NIQE 3.2602 4.4808 3.3238 3.7261 2.9532 3.2260 /
BLINDS-II | 84.00 62.70 78.62 81.67 84.91 76.08 /

between synthetic and real rain and mist data.

4.2. Subjective Comparison

We next conduct a human subjective survey to evaluate
the performance of image deraining algorithms. We follow
a standard setting that fits a Bradley-Terry model [49] to es-
timate the subjective score for each method so that they can
be ranked, with the exactly same routine as described in pre-
vious similar works [15]. We select 10 images from Rain
streak (R), 6 images from Rain drop (R), and 11 images
from Rain and mist (R), taking all possible care to ensure
that they have very diverse contents and quality. Each rain
streak or rain & mist image is processed with each of the
five deraining algorithms (except DerainDrop), and the five
deraining results, together with the original rainy image, are
sent for pairwise comparison to construct the winning ma-
trix. For a rain drop image, the procedure is the same ex-
cept that it will be processed by all six methods. We collect
the pair comparison results of human subject studies from
11 human raters. Despite the relatively small numbers of
raters, we observed good consensus and small inter-person

variances among raters, on same pairs’ comparison results,
which make scores trustworthy.

The subjective scores are reported in Table 5. Note that
we did not normalize the scores: so it is the score rank rather
than the absolute score values that makes sense here. On the
rain streak images, it seems that most human viewers prefer
CGAN first, and then DDN. As shown in the first row of
Figure 2, the derained result generated by CGAN is more
smooth than others. On the raindrop images, it is somehow
to our surprise that DerainDrop is not favored by users; in-
stead, the non-CNN-based GMM method, which showed no
advantage under previous objective metrics, was highly pre-
ferred by users. We conjecture that the patch-based Gaus-
sian mixture prior can treat and remove both rain streaks
and raindrops as “outliers”, and is less sensitive to train-
ing/testing data domain difference. Finally on the rain and
mist images, DID-MDN receives the highest scores, while
CGAN is next to it. This is mainly thanks to incorporating
th rain-density subnetwork or GAN, that can provide more
information of the scene context and hence improve gener-
alization to complex rain conditions.



Table 5. Average subjective scores of derained results on 10 real images.

rainy | GMM [27] | JORDER [32] | DDN [6] | CGAN [33] | DID-MDN [&] | DeRaindrop [7]
rain streak 0.64 0.80 0.91 1.15 1.26 0.97 -
raindrops 0.80 1.14 0.75 0.83 0.85 0.95 0.80

rain and mist | 0.44 1.00 0.70 0.90 1.22 1.40 -

Table 6. Detection results (mAP) on the RID and RIS sets. Detailed results for each class can be found in the supplementary material.

Rainy | JORDER [32] | DDN [6] | CGAN [33] | DID-MDN [8] | DeRaindrop [7]
FRCNN [44] 16.52 16.97 18.36 2342 16.11 15.58
RID YOLO-V3 [45] | 27.84 26.72 26.20 23.75 24.62 24.96
SSD-512 [46] 17.71 17.06 16.93 16.71 16.70 16.69
RetinaNet [47] | 23.92 21.71 21.60 19.28 20.08 19.73
FRCNN [44] 22.68 21.41 20.76 18.02 18.93 19.97
RIS YOLO-V3 [45] | 23.27 20.45 21.80 18.71 21.50 20.43
SSD-512 [46] 8.19 7.94 8.29 7.10 8.21 8.13
RetinaNet [47] | 12.81 10.71 10.39 9.36 10.33 10.85

While we are in the process of recruiting more human
raters to solidify our subject score results more, our re-
sults seem to be consistent so far, and might in turn imply
that off-the-shelf no-reference perceptual metrics (SSEQ,
NIQE, BLINDS-II) do not align well with the real human
perception quality of deraining results. In fact, recent works
[50] already discovered similar misalignments, when apply-
ing standard no-reference metrics to estimating defogging
perceptual quality, and proposed fog-specific metrics. Sim-
ilar efforts have not been found for deraining yet, and we
expect this worthy effort to take place in near future.

4.3. Task-driven Comparison

We first apply all deraining algorithms except GMM?, to
pre-processing the two task-driven testing sets. Due to their
different rain characteristics, for the RID set, we use de-
raining algorithms trained on the rain and mist case; for the
RIS set, we use deraining algorithms trained on the rain-
drop case. We visually inspected the derained results and
found the rains to be visually attenuated after applying the
selected deraining algorithms. We show some derained re-
sults on the RID and RIS sets in the supplementary material.

We then study object detection performance on the de-
rained sets, using several state-of-the-art object detection
models: Faster R-CNN (FRCNN) [44], YOLO-V3 [45],
SSD-512 [46], and RetinaNet [47]. Finally, we compare
all deraining algorithms via the mean Average Precision
(mAP) results achieved. It is important to note that our pri-
mary goal is not to optimize detection performance in rainy
days, but to use a strong detection model as a fixed, fair
metric on comparing deraining performance from a com-
plementary perspective. In this way, the object detectors
should not be adapted for rainy or derained images, and we
use all authors’ pre-trained models on MS COCO. The un-
derlying hypothesis is: i) an object detector trained on clean

3We did not include GMM for the two sets, because (1) it did not yield
promising results when we tried to apply it to (part of) the two sets; (2) it
runs very slow, given we have two large sets.

natural images will perform the best, when the input is also
from the clean image domain or close; ii) for detection in
rain, the better the rain is removed, the better an object de-
tection model (trained on clean images) will then perform.
Such task-specific evaluation philosophy follows [34, 15].

Table 6 reports the mAP results comparison for different
deraining algorithms, achieved using four different detec-
tion models, on both RID and RIS sets. We find that quite
aligned conclusions could be drawn from the two sets.

Perhaps surprisingly at the first glance, we find that al-
most all existing deraining algorithms will deteriorate
the detection performance compared to directly using
the rainy images*, for YOLO-V3, SSD-512, and Reti-
naNet. Our observation concurs the conclusion of another
recent study (on dehazing) [51]: since those deraining algo-
rithms were not trained/optimized towards the end goal of
object detection, they are unnecessary to help this goal, and
the deraining process itself might have lost discriminative,
semantically meaningful true information.

Both results on RID and RIS sets in Table 6 show that
YOLO-V3 achieves best detection performance, indepen-
dently of deraining algorithms applied. Figure 3 shows de-
tections using YOLO-V3 on the respectives rainy images
and their derained results for all deraining algorithms con-
sidered in this comparison. Since both RID and RIS have
many small objects due to their relative long distance from
the camera, we believe that here YOLO-V3 benefits from
its new multi-scale prediction structure, that is known to im-
prove small object detection dramatically [45]. We further
notice a fairly weak correlation between the mAP results
with the no-reference evaluation results of the derained im-
ages: see supplementary for more details.

4The only exception is FRCNN on the RID set. However, its overall
mAP result is the worst compared to the other three. That implies a strong
domain mismatch, suggesting that FRCNN results might not be as reliable
an indicator for RID deraining performance as the other three.
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Figure 2. Examples of derained results on real images: rain streak (first row), raindrop (second row), and rain and mist (third row).

(a) Rainy input (b) JORDER [32] (c) DDN [6]

5. Conclusions and Future Work

This paper proposes a new large-scale benchmark and
presents a thorough survey of state-of-the-art single image
deraining methods. Based on our evaluation and analysis,
we present overall remarks and hypotheses below, which
we hope can shed some light on future deraining research:

e Rain types are diverse and call for specialized mod-
els. Certain models or components are revealed to be
promising for specific rain types, e.g., rain detection
/attention, GANs, and priors like patch-level GMM.
We also advocate a combination of appropriate priors
and data-driven methods.

e There is no single best deraining algorithm for all
rain types. To deal with the real complicated, vary-
ing rains, one might need consider a mixture model of
experts. Another practically useful direction is to de-
velop scene-specific deraining, e.g., for traffic views.

e There is also no single best deraining algorithm under
all metrics. When designing a deraining algorithm,
one needs be clear about its end purpose. Moreover,

(d) CGAN [33]

(e) DID-MDN [8]
Figure 3. Visualization of object detection results after applying different deraining algorithms on two images (first two rows) from the
RID dataset and two examples (last two rows) from the RIS dataset.

(f) DeRaindrop [7] (g) Ground-truths

classical perceptual metrics themselves might be prob-
lematic to evaluate deraining. Developing new metrics
could be as important as new algorithms.

e Algorithms trained on synthetic paired data may gen-
eralize poorly to real data, especially on complicated
rain types such as rain and mist. Unpaired training [52]
on all real data could be interesting to explore.

e No existing deraining method seems to directly help
detection. That may encourage the community to
develop new robust algorithms to account for high-
level vision problems on real-world rainy images. On
the other hand, to realize the goal of robust detec-
tion in rain does not have to adopt a de-raining pre-
processing; there are other domain adaptation type op-
tions, e.g., [53], which we will discuss in future work.
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