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Abstract

This article presents resource-guided synthesis, a technique
for synthesizing recursive programs that satisfy both a func-
tional speciication and a symbolic resource bound. The tech-
nique is type-directed and rests upon a novel type system that
combines polymorphic reinement types with potential an-
notations of automatic amortized resource analysis. The type
system enables eicient constraint-based type checking and
can express precise reinement-based resource bounds. The
proof of type soundness shows that synthesized programs
are correct by construction. By tightly integrating program
exploration and type checking, the synthesizer can leverage
the user-provided resource bound to guide the search, ea-
gerly rejecting incomplete programs that consume too many
resources. An implementation in the resource-guided synthe-
sizer ReSyn is used to evaluate the technique on a range of re-
cursive data structure manipulations. The experiments show
that ReSyn synthesizes programs that are asymptotically
more eicient than those generated by a resource-agnostic
synthesizer. Moreover, synthesis with ReSyn is faster than a
naive combination of synthesis and resource analysis. ReSyn
is also able to generate implementations that have a constant
resource consumption for ixed input sizes, which can be used
to mitigate side-channel attacks.

CCS Concepts · Software and its engineering→Auto-

matic programming; · Theory of computation→ Auto-

mated reasoning;

Keywords Program Synthesis, Automated Amortized Re-
source Analysis, Reinement Types
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1 Introduction

In recent years, program synthesis has emerged as a promis-
ing technique for automating low-level aspects of program-
ming [24, 61, 66]. Synthesis technology enables users to create
programs by describing desired behavior with input-output
examples [18ś20, 22, 47, 60, 70, 71], natural language [72], and
partial or complete formal speciications [35, 39, 51, 52, 63]. If
the input is a formal speciication, synthesis algorithms can
not only create a program but also a proof that the program
meets the given speciication [39, 51, 52, 63].

Oneof thegreatest challenges in softwaredevelopment is to
write programs that are not only correct but also eicientwith
respect to memory usage, execution time, or domain speciic
resource metrics. For this reason, automatically optimizing
program performance has long been a goal of synthesis, and
several existing techniques tackle this problem for low-level
straight-line code [9, 49, 50, 56, 57] or add eicient synchro-
nization to concurrent programs [11, 12, 21, 28]. However, the
developed techniques are not applicable to recent advances in
the synthesis of high-level looping or recursive programs ma-
nipulating customdata structures [22, 35, 39, 47, 51, 52]. These
techniques lack the means to analyze and understand the re-
sourceusageof the synthesizedprograms.Consequently, they
cannot take into account the program’s eiciency and simply
return the irst program that arises during the search and
satisies the functional speciication.

In this work, we study the problem of synthesizing high-level

recursive programs given both a functional speciication of

a program and a bound on its resource usage. A naive solu-
tion would be to irst generate a program using conventional
program synthesis and then use existing automatic static re-
source analyses [15, 32, 48] to check whether its resource
usage satisies the bound. Note, however, that for recursive
programs, both synthesis and resource analysis are undecid-
able in theory and expensive in practice. Instead, in this paper
wepropose resource-guided synthesis: an approach that tightly
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integrates program synthesis and resource analysis, and uses
the resource bound to guide the synthesis process, generating
programs that are eicient by construction.

Type-Driven Synthesis In a nutshell, the idea of this work

is to combine type-driven program synthesis, pioneered in the
work on Synquid [51], with type-based automatic amortized

resource analysis (AARA) [31, 33, 34, 37] as implemented in

Resource Aware ML (RaML) [30]. Type-driven synthesis and
AARA are a perfect match because they are both based on
decidable, constraint-based type systems that can be easily
checked with of-the-shelf constraint solvers.
In Synqid, program speciications are written as reine-

ment types [41, 68]. The key to eicient synthesis is round-trip
type checking,whichuses anSMTsolver to aggressivelyprune
the search space by rejecting partial programs that do not
meet the speciication (seeSec. 2.1).Until now, typeshaveonly
been used in the context of synthesis to specify functional
properties.
AARA is a type-based technique for automatically deriv-

ing symbolic resource bounds for functional programs. The
idea is to add resource annotations to data types, in order
to specify a potential function that maps values of that type
to non-negative numbers. The type system ensures that the
initial potential is suicient to cover the cost of the evaluation.
By a priori ixing the shape of the potential functions, type
inference can be reduced to linear programming (see Sec. 2.2).

The Re2 Type System The irst contribution of this paper

is a new type system, which we dub Re2Ðfor reinements and

resourcesÐthat combines polymorphic reinement types with

AARA (Sec. 3). Re2 is a conservative extension of Synqid’s
reinement type system and RaML’s aine type systemwith
linear potential annotations. As a result, Re2 can express log-
ical assertions that are required for efectively specifying
program synthesis problems. In addition, the type system
features annotations of numeric sort in the same reinement
language to express potential functions. Using such annota-
tions, programmers can express precise resource bounds that
go beyond the template potential functions of RaML.
The features that distinguish Re2 from other reinement-

based type systems for resource analysis [15, 48, 53] are (1) the
combinationof logicalandquantitativereinementsand(2) the
use of AARA, which simpliies resource constraints and natu-
rally applies tonon-monotone resources likememory that can
become available during the execution. These features also
pose nontrivial technical challenges: the interaction between
substructural and dependent types is known to be tricky [42,
43], while polymorphism and higher-order functions are chal-
lenging for AARA (one solution is proposed in [37], but their
treatment of polymorphism is not fully formalized).

In addition to the design of Re2, we prove the soundness of
the type systemwith respect to a small-step cost semantics. In
the formal development, we focus on a simple call-by-value

functional language with Booleans and lists, where type re-
inements are restricted to linear inequalities over lengths
of lists. However, we structure the formal development to
emphasize that Re2 can be extended with user-deined data
types, more expressive reinements, or non-linear potential
annotations. The proof strategy itself is a contribution of this
paper. The type soundness of the logical reinement part of the
systemis inspiredbyTiML[48].Themainnovelty is thesound-
ness proof of the potential annotations using a small-step cost
semantics instead of RaML’s big-step evaluation semantics.

Type-Driven Synthesis with Re2 The second contribution

of this paper is a resource-guided synthesis algorithm based on

Re2. In Sec. 4, we irst develop a system of synthesis rules that
prescribe how to derive well-typed programs from Re2 types,
and prove its soundness wrt. the Re2 type system. We then
show how to algorithmically derive programs using a combi-
nation of backtracking search and constraint solving. In par-
ticular this requires solving a new form of constraints we call
resource constraints, which are constrained linear inequalities
over unknown numeric reinement terms. To solve resource
constraints, we develop a custom solver based on counter-
example guided inductive synthesis [62] and SMT [17].

TheReSyn Synthesizer The third contribution of this paper

is the implementation and experimental evaluation of the irst

resource-aware synthesizer for recursive programs.We imple-
mented our synthesis algorithm in a tool called ReSyn, which
takes as input (1) a goal type that speciies the logical reine-
mentsandresource requirementsof theprogram,and (2) types
of components (i.e. library functions that the program may
call). ReSyn then synthesizes a program that provably meets
the speciication (assuming the soundness of components).
To evaluate the scalability of the synthesis algorithm and

the quality of the synthesized programs, we compare ReSyn
with baseline Synqid on a variety of general-purpose data
structure operations, such as eliminating duplicates from a
list or computing common elements between two lists. The
evaluation (Sec. 5) shows that ReSyn is able to synthesize
programs that are asymptotically more eicient than those
generated by Synqid. Moreover, the tool scales better than
a naive combination of synthesis and resource analysis.

2 Background and Overview

This section provides the necessary background on type-
driven program synthesis (Sec. 2.1) and automatic resource
analysis (Sec. 2.2).We then describe andmotivate their combi-
nation in Re2 and showcase novel features of the type system
(Sec. 2.3). Finally, we demonstrate how Re2 can be used for
resource-guided synthesis (Sec. 2.4).

2.1 Type-Driven Program Synthesis

Type-driven program synthesis [51] is a technique for auto-
matically generating functional programs from their high-
level speciications expressed as reinement types [41, 54].



Resource-Guided Program Synthesis PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA

1 common = λ l1 . λ l2 . match l1 with Nil → Nil

2 Cons x xs → if ¬(member x l2)

3 then common xs l2

4 else Cons x (common xs l2)

Figure 1. Synthesized program that computes common
elements between two lists

For example, a programmer might describe a function that
computes the common elements between two lists using the
following type signature:

common : : l1: List a → l2: List a

→ {ν : List a | elems ν = elems l1 ∩ elems l2}

Here, the return type of common is reined with the predicate
elems ν = elems l1 ∩ elems l2, which restricts the set of el-
ements of the output listν1 to be the intersection of the sets of
elements of the two arguments. Here elems is a user-deined
logic-level function, also calledmeasure [38, 68]. In addition
to the synthesis goal above, the synthesizer takes as input a
component library: signatures of data constructors and func-
tions it can use. In our example, the library includes the list
constructors Nil and Cons and the function

member : : x: a → l: List a → {Bool | ν = (x in elems l)}

which determines whether a given value is in the list. Given
this goal and components, the type-driven synthesizer Syn-
qid [51] produces an implementation of common in Fig. 1.

The Synthesis Mechanism Type-driven synthesis works
by systematically exploring the space of programs that can
be built from the component library and validating candidate
programsagainst thegoal typeusingavariantof liquid type in-
ference [54]. To validate a program against a reinement type,
liquid type inference generates a system of subtyping con-
straints over reinement types. The subtyping constraints are
then reduced to implications between reinement predicates.
For example, checking common xs l2 in line 3 of Fig. 1 against
the goal type reduces to validating the following implication:

(elems l1= {x}∪elems xs)∧(x <elems l2)∧

(elems ν =elems xs∩elems l2) =⇒ elems ν =elems l1∩elems l2

Since this formula belongs to a decidable theory of uninter-
preted functions and arrays, its validity can be checked by
an SMT solver [17]. In general, the generated implications
may contain unknown predicates. In this case, type inference
reduces to a system of constrained horn clauses [6], which can
be solved via predicate abstraction.

Synthesis and Program Eiciency The program in Fig. 1
is correct, but not particularly eicient: it runs roughly in time
n·m, wherem is the length of l1 andn is the length of l2, since
it calls the member function (a linear scan) for every element of
l1. The programmermight realize that keeping the input lists

1Hereafter the bound variable of the reinement is always called ν and the
binding is omitted.

1 common' = λ l1 . λ l2 . match l1 with SNil → Nil

2 SCons x xs → match l2 with SNil → Nil

3 SCons y ys →

4 if x < y then common' xs l2

5 else if y < x then common' l1 ys

6 else Cons x (common' xs ys)

Figure 2. A more eicient version of the program in Fig. 1
for sorted lists

sorted would enable computing common elements in linear
timeby scanning the two lists in parallel. To communicate this
intent to the synthesizer, they can deine the type of (strictly)
sorted lists by augmenting a traditional list deinition with a
simple reinement:

data SList a where SNil : : SList a

SCons : : x: a → xs: SList {a | x < ν} → SList a

This deinition says that a sorted list is either empty, or is con-
structed from a head element x and a tail list xs, as long as xs is
sorted and all its elements are larger than x.2Given anupdated
synthesis goal (where selems is a version of elems for SList)

common' : : l1: SList a → l2: SList a

→ {ν : List a | elems ν = selems l1 ∩ selems l2}

and a component library that includes List, SList, and < (but
not member!), Synqid can synthesize an eicient program
shown in in Fig. 2.
However, if the programmer leaves the function member

in the library, Synqidwill synthesize the ineicient imple-
mentation in Fig. 1. In general, Synqid explores candidate
programs in the order of size and returns the irst one that
satisies the goal reinement type. This can lead to suboptimal
solutions, especially as the component library grows larger
and allows for many functionally correct programs. To avoid
ineicient solutions, the synthesizer has to be aware of the
resource usage of the candidate programs.

2.2 Automatic Amortized Resource Analysis

To reason about the resource usage of programswe take inspi-
ration from automatic amortized resource analysis (AARA) [31,
33, 34, 37]. AARA is a state-of-the-art technique for auto-
matically deriving symbolic resource bounds on functional
programs, and is implemented for a subset of OCaml in Re-
source Aware ML (RaML) [30, 33]. For example, RaML is able
to automatically derive the worst-case bound 2m+n·m on the
number of recursive calls for the function common andm+n
for common' 3.

2Following Synqid, our language imposes an implicit constraint on all
type variables to support equality and ordering. Hence, they cannot be
instantiated with arrow types. This could be lifted by adding type classes.
3In this section we assume for simplicity that the resource of interest is
the number of recursive calls. Both AARA and our type system support
user-deined cost metrics (see Sec. 3 for details).
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Potential Annotations AARA is inspired by the potential
method for manually analyzing the worst-case cost of a se-
quenceof operations [64]. It uses annotated types to introduce
potential functions that map program states to non-negative
numbers. To derive a bound, we have to statically ensure that
the potential at every program state is suicient to cover the
cost of the next transition and the potential of the following
state. In this way, we ensure that the initial potential is an
upper bound on the total cost.
The key to making this approach efective is to closely in-

tegrate the potential functions with data structures [34, 37].
For instance, in RaML the type L1(int) stands for a list that
contains one unit of potential for every element. This type de-
ines the potential functionϕ(ℓ:L1(int))=1· |ℓ |. The potential
can be used to pay for a recursive call (or, in general, cover
resource usage) or to assign potential to other data structures.

Bound Inference Potential annotations can be derived au-
tomatically by starting with a symbolic type derivation that
contains fresh variables for the potential annotations of each
type, and applying syntax directed type rules that impose
local constraints on the annotations. The integration of data
structures and potential ensures that these constraints are
linear even for polynomial potential annotations.

2.3 Bounding Resources with Re2

To reason about resource usage in type-driven synthesis, we
integrate AARA’s potential annotations and reinement types
into a novel type system that we call Re2. In Re2, a reinement
type can be annotated with a potential termϕ of numeric sort,
which is drawn from the same logic as reinements. Intuitively,
the typeRϕ denotes valuesof reinement typeRwithϕ units of
potential. In the rest of this sectionwe illustrate featuresofRe2

on a series of examples, and delay formal treatment to Sec. 3.
With potential annotations, users can specify that common'

must run in time at mostm+n, by giving it the following type
signature:

common' : : l1: SList a1 → l2: SList a1

→ {ν : List a | elems ν = selems l1 ∩ selems l2}

This type assigns one unit of potential to every element of
the arguments l1 and l2, and hence only allows making one
recursive call per element of each list. Whenever resource
annotations are omitted, the potential is implicitly zero: for
example, the elements of the result carry no potential.

Our type checkeruses the following reasoning to argue that
this potential is suicient to cover the eicient implementa-
tion in Fig. 2. Consider the recursive call in line 4, which has a
cost of one. Pattern-matching l1 against SCons x xs transfers
the potential from l1 to the binders, resulting in types x :a1

and xs : SList ({a | x<ν }1). The unit of potential associated
with x can now be used to pay for the recursive call. Moreover,
the types of the arguments, xs and l2, match the required type
SLista1, which guarantees that the potential stored in the tail

append : : xs: List a1 → ys: List a

→ {List a | len ν = len xs + len ys}

triple : : l: List Int2 → {List n | len ν = 3*(len l)}

triple = λ l . append l (append l l)

tripleSlow : : l: List Int3 → {List n | len ν = 3*(len l)}

tripleSlow = λ l . append (append l l) l

Figure 3. Append three copies of a list. The type of append
speciies that it returns a list whose length is the sum of the
lengths of its arguments. It also requires one unit of potential
on each element of the irst list. Moreover, append has a
polymorphic type and can be applied to lists with diferent
element types, which is crucial for type-checking tripleSlow.

and the second list are suicient to cover the rest of the eval-
uation. Other recursive calls are checked in a similar manner.

Importantly, the ineicient implementation in Fig. 1 would
not type-check against this signature. Assuming that member
is soundly annotated with

member : : x: a → l: List a1 → {Bool | ν = (x in elems l)}

(requiring a unit of potential per element of l), the guard in
line 2 consumes all the potential stored in l2; hence the oc-
currence of l2 in line 3 has the type List a0, which is not a
subtype of List a1.

Dependent Potential Annotations In combination with
logical reinements and parametric polymorphism, this sim-
ple extension to the Synqid’s type system turns out to be
surprisingly powerful. Unlike in RaML, potential annotations
in Re2 can be dependent, i.e.mention program variables and
the special variableν . Dependent annotations can encodeine-
grainedbounds,whichareoutof reach forRaML.Asoneexam-
ple, consider functionrange a b thatbuildsa listof all integers
betweena andb;we canexpress that it takes atmostb−a steps
by giving the argument b a type {Int |ν ≥a}ν−a . As another
example, consider insertion into a sorted list insert x xs;
we can express that it takes at most as many steps as there
are elements in xs that are smaller than x , by giving xs the
type SList α ite(ν<x,1,0) (i.e. only assigning potential to ele-
ments that are smaller than x ). These ine-grained bounds are
checked completely automatically inour system, by reduction
to constraints in SMT-decidable theories.

Polymorphism Another source of expressiveness in Re2 is
parametric polymorphism: since potential annotations are
attached to types, type polymorphism gives us resource poly-
morphism for free. Consider two functions in Fig. 3, triple
and tripleSlow, which implement two diferent ways to ap-
pend a list l to two copies of itself. Both of them make use
of a component function append, whose type indicates that
it makes a linear traversal of its irst argument. Intuitively,
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triple is more eicient that tripleSlow because in the for-
mer both calls to append traverse a list of length n, whereas
in the latter the outer call traverses a list of length 2·n. This
diference is relected in the signatures of the two functions:
tripleSlow requires three units of potential per list element,
while triple only requires two.

Checking that tripleSlow satisies this bound is somewhat
nontrivial because the two applications of appendmust have
diferent types: the outer application must return List Int,
while the inner application must return List Int1 (i.e. carry
enoughpotential tobe traversedbyappend).RaML’smonomor-
phic type system is unable to assign a single general type to
append, which can be used at both call sites. So the function
has be reanalyzed at every (monomorphic) call site. Re2, on
the other hand, handles this example out of the box, since
the type variable a in the type of append can be instantiated
with Int for the outer occurrence and with Int1 for the inner
occurrence, yielding the type

xs: List Int2 → ys: List Int1 → {List Int1 | ...}

As a inal example, consider the standard map function:

map : : (a → b) → List a → List b

Although this type has no potential annotations, it implicitly
tells us something about the resource behavior of map: namely,
that map applies a function to each list element at most once.
This is because a can be instantiated with a type with an ar-
bitrary amount of potential, and the only way to pay for this
potential is with a list element (which also has type a).

2.4 Resource-guided Synthesis withReSyn

We have extended Synqidwith support for Re2 types in a
new program synthesizerReSyn. Given a resource-annotated
signature for common' from Sec. 2.3 and a component library
that includes member, ReSyn is able to synthesize the eicient
implementation in Fig. 2. The key to eicient synthesis is
type-checking each program candidate incrementally as it
is being constructed, and discarding an ill-typed program
preix as early as possible. For example, while enumerating
candidates for the function common', we can safely discard the
ineicient version from Fig. 1 even before constructing the
second branch of the conditional (because the irst branch
together with the guard use up too many resources). Hence,
as we explain in more detail in Sec. 4, a key technical chal-
lenge in ReSyn has been a tight integration of resources into
Synqid’s round-trip type checking mechanism, which ag-
gressively propagates type information top-down from the
goal and solves constraints incrementally as they arise.

Termination Checking In addition to making the synthe-
sizer resource-aware, Re2 types also subsume and generalize
Synqid’s termination checking mechanism. To avoid gener-
ating diverging functions, Synqid uses a simple termination

metric (the tuple of function’s arguments), and checks that
thismetric decreases at every recursive call. Using thismetric,

aF x | true | false |nil | cons(âh ,at )

âF a |λ(x .e0) | fix(f .x .e0)

eF â | if(a0,e1,e2) |matl(a0,e1,xh .xt .e2) | app(â1,â2)

| let(e1,x .e2) | impossible | tick(c,e0)

vF true | false |nil | cons(vh ,vt ) |λ(x .e0) | fix(f .x .e0)

Figure 4. Syntax of the core calculus

Synqid is not able to synthesize the function range from
Sec. 2.3, because it requires a recursive call that decreases the
diference between the arguments, b−a. In contrast, ReSyn
need not reason explicitly about termination, since potential
annotations already encode an upper bound on the number of
recursive calls. Moreover, the lexibility of these annotations
enables ReSyn to synthesize programs that require nontrivial
termination metrics, such as range.

3 The Re2 Type System
In this section, we deine a subset of Re2 as a formal calcu-
lus to prove type soundness. This subset includes Booleans
that are reined by their values, and lists that are reined by
their lengths. The programs in Sec. 1 and Sec. 2 use Synqid’s
surface syntax. The gap from the surface language to the
core calculus involves inductive types and reinement-level
measures. The restriction to this subset in the technical de-
velopment is only for brevity and proofs carry over to all the
features of Synqid.

Syntax Fig. 4 presents the grammar of terms in Re2 via ab-
stract binding trees [29]. The core language is basically the
standard lambda calculus augmented with Booleans and lists.
A value v ∈Val is either a boolean constant, a list of values,
or a function. Expressions in Re2 are in a-normal-form [55],
which means that syntactic forms occurring in non-tail po-
sition allow only atoms â ∈ Atom, i.e., variables and values;
this restriction simpliies typing rules for applications, as
we explain below. We identify a subset SimpAtom of Atom
that contains atoms interpretable in the reinement logic. In-
tuitively, the value of an a ∈ SimpAtom should be either a
Boolean or a list. The syntactic form impossible is introduced
as a placeholder for unreachable code, e.g., the else-branch
of a conditional whose predicate is always true.
The syntactic form tick(c,e0) is used to specify resource

usage, and it is intended to cost c ∈ Z units of resource and
then reduce to e0. If the cost c is negative, then −c units of
resource will become available in the system. tick terms sup-
port lexible user-deined cost metrics: for example, to count
recursive calls, the programmer may wrap every such call in
tick(1,·); to keep track of memory consumption, they might
wrap every data constructor in tick(c,·), wherec is the amount
of memory that constructor allocates.

Operational Semantics The resource usage of a program
is determined by a small-step operational cost semantics.
The semantics is a standard one augmented with a resource
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Reinement
ψ ,ϕF x | ⊤ | ¬ψ |ψ1∧ψ2 |n |ψ1 ≤ψ2 |ψ1+ψ2 |ψ1=ψ2

Sort
∆F B |N |δα

Base Type Resource-Annotated Type

BF bool |L(T ) |m ·α T F Rϕ

Reinement Type Type Schema

RF {B |ψ } |m ·(x :Tx→T ) SFT |∀α .S

Figure 5. Syntax of the type system

parameter. A step in the evaluation judgment has the form
⟨e,q⟩ 7→ ⟨e ′,q′⟩ where e and e ′ are expressions and q,q′ ∈Z+0
are nonnegative integers. For example, the following is the
rule for tick(c,e0).

⟨tick(c,e0),q ⟩ 7→ ⟨e0,q−c ⟩

Themulti-step evaluation relation 7→∗ is the relexive transi-
tive closure of 7→. The judgment ⟨e,q⟩ 7→∗ ⟨e ′,q′⟩ expresses
that with q units of available resources, e evaluates to e ′ with-
out running out of resources and q′ resources are left. Intu-
itively, the high-water mark resource usage of an evaluation
of e to e ′ is the minimal q such that ⟨e,q⟩ 7→∗ ⟨e ′,q′⟩. For
monotone resources like time, the cost is the sum of costs
of all the evaluated tick expressions. In general, this net cost
is invariant, that is, p − p ′ = q − q′ if ⟨e,p⟩ 7→n ⟨e ′,p ′⟩ and
⟨e,q⟩ 7→n ⟨e ′,q′⟩, where 7→n is the relation obtained by self-
composing 7→ for n times.

Reinements WenowcombineSynqid’s type systemwith
AARA to reason about resource usage. Fig. 5 shows the syn-
tax of the Re2 type system. Reinementsψ are distinct from
program terms and classiied by sorts ∆. Re2’s sorts include
BooleansB, natural numbersN, and uninterpreted symbols δα .
Reinements can be logical formulas and linear expressions,
which may reference program variables. Logical reinements
ψ have sortB, while potential annotations ϕ have sortN. Re2

interprets a variable of Boolean type as its value, list type as
its length, and type variable α as an uninterpreted symbol
with a corresponding sort δα . We use the following interpre-
tation I(·) to relect interpretable atoms a ∈SimpAtom in the
reinement logic:

I(x) = x

I(true) = ⊤ I(nil) = 0
I(false) = ⊥ I(cons(_,at )) = I(at )+1

Types We classify types into four categories. Base types B
includeBooleans, lists and type variables. Typevariablesα are
annotated with amultiplicitym ∈Z+0 ∪{∞}, which denotes
an upper bound on the number of usages of a variable like
in bounded linear logic [23]. For example, L(2 ·α) denotes a
universal list whose elements can be used at most twice.
Reinement types are subset types and dependent arrow

types. The inhabitants of the subset type {B |ψ } are values

of type B that satisfy the reinementψ . The reinementψ is
a logical predicate over program variables and a special value
variable ν , which does not appear in the program and stands
for the inhabitant itself. For example, {bool | ν } is a type of
true, and {L(bool) |ν ≤ 5} represents Boolean lists of length at
most 5. Dependent arrow types x :Tx→T are function types
whose return type may reference the formal argument x . As
type variables, these function types are also annotated with
a multiplicitym ∈Z+0 ∪{∞} restricting the number of times
the function may be applied.
To apply the potential method of amortized analysis [65],

weneed todeinepotentialswith respect to thedata structures
in the program.We introduce resource-annotated types as a re-
inement typeaugmentedwithapotential annotation,written
Rϕ . Intuitively, Rϕ assignsϕ units of potential to values of the
reinement type R. The potential annotationϕ may also refer-
ence the value variable ν . For example, L(bool)5×ν describes
Boolean lists ℓ with 5|ℓ | units of potential where |ℓ | is the
length of ℓ. The same potential can be expressed by assigning
5 units of potential to every element using the type L(bool5).

Typeschemasrepresent (possibly)polymorphic types.Note
that the type quantiier∀ can only appear outermost in a type.
Similar to Synqid, we introduce a notion of scalar types,

which are resource-annotated base types reined by logical
constraints. Intuitively, interpretable atoms are scalars and
Re2 only allows the reinement-level logic to reason about
values of scalar types. We will abbreviate 1·α as α , {B | ⊤} as
B,∞·(x :Tx→T ) as x :Tx→T , and R0 as R.

Typing Rules In Re2, the typing context Γ is a sequence of
variable bindingsx :S , type variablesα , path conditionsψ , and
free potentials ϕ. Our type system consists of ive judgments:
sorting, well-formedness, subtyping, sharing, and typing. We
omit sorting and well-formedness rules and include them in
the technical report [40]. The sorting judgment Γ ⊢ψ ∈∆ states
that a reinementψ has a sort ∆ under a context Γ. A type S
is said to be well-formed under a context Γ, written Γ ⊢S type,
if every referenced variable in it is in the correct scope.
Fig. 6 presents selected typing rules for Re2. The typing

judgment Γ ⊢ e :: S states that the expression e has type S in
context Γ. The intuitive meaning is that if there is at least the
amount resources as indicated by the potential in the context
Γ then this suices to evaluate e to a value v , and after the
evaluation there are at least as many resources available as
indicated by the potential in S . The auxiliary typing judgment
Γ ⊢ a : B assigns base types to interpretable atoms. Atomic
typing is useful in the rule (T-SimpAtom), which uses the
interpretation I(·) to derive a most precise reinement type
for interpretable atoms.

The subtyping judgment Γ ⊢T1<:T2 is deined in a standard
way,with the extra requirement that the potential inT1 should
be greater than or equal to that inT2. Subtyping is often used
to łforgetž some program variables in the type to ensure the
result type does not reference any locally introduced variable,
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Γ ⊢a :B

(SimpAtom-Var)

Γ(x )= {B |ψ }ϕ

Γ ⊢x :B

(SimpAtom-True)

Γ ⊢ true :bool

(SimpAtom-False)

Γ ⊢ false :bool

(SimpAtom-Nil)

Γ ⊢T type

Γ ⊢nil :L(T )

(SimpAtom-Cons)

⊢Γ.Γ1 | Γ2 Γ1 ⊢ âh ::T Γ2 ⊢at :L(T )

Γ ⊢cons(âh,at ) :L(T )

Γ ⊢e ::S

(T-SimpAtom)

Γ ⊢a :B

Γ ⊢a :: {B |ν =I(a)}

(T-Var)

Γ(x )=S

Γ ⊢x ::S

(T-Imp)

Γ |=⊥ Γ ⊢T type

Γ ⊢ impossible ::T

(T-Consume-P)

c ≥ 0 Γ ⊢e0 ::T

Γ,c ⊢ tick(c,e0) ::T

(T-Consume-N)

c < 0 Γ,−c ⊢e0 ::T

Γ ⊢ tick(c,e0) ::T

(T-Cond)

Γ ⊢a0 :bool

Γ,I(a0)⊢e1 ::T Γ,¬I(a0)⊢e2 ::T

Γ ⊢ if(a0,e1,e2) ::T

(T-MatL)

⊢Γ.Γ1 | Γ2 Γ ⊢T ′ type Γ1 ⊢a0 :L(T )

Γ2,I(a0)=0⊢e1 ::T
′

Γ2,xh :T ,xt :L(T ),I(a0)=xt +1⊢e2 ::T
′

Γ ⊢matl(a0,e1,xh .xt .e2) ::T
′

(T-Let)

⊢Γ.Γ1 | Γ2 Γ ⊢T2 type

Γ1 ⊢e1 ::S1 Γ2,x :S1 ⊢e2 ::T2

Γ ⊢ let(e1,x .e2) ::T2

(T-App-SimpAtom)

⊢Γ.Γ1 | Γ2 Γ1 ⊢ â1 :: 1 ·(x :{B |ψ }
ϕ→T ) Γ2 ⊢a2 :: {B |ψ }

ϕ

Γ ⊢app(â1,a2) :: [I(a2)/x ]T

(T-App)

⊢Γ.Γ1 | Γ2 Γ1 ⊢ â1 :: 1 ·(x :Tx→T ) Γ2 ⊢ â2 ::Tx Γ ⊢T type

Γ ⊢app(â1, â2) ::T

(T-Abs)

Γ ⊢Tx type Γ,x :Tx ⊢e0 ::T ⊢Γ.Γ | Γ

Γ ⊢λ(x .e0) ::x :Tx→T

(T-Abs-Lin)

Γ ⊢Tx type Γ,x :Tx ⊢e0 ::T

m ·Γ ⊢λ(x .e0) ::m ·(x :Tx→T )

(T-Fix)

R=x :Tx→T Γ ⊢R type

Γ,f :R,x :Tx ⊢e0 ::T ⊢Γ.Γ | Γ

Γ ⊢ fix(f .x .e0) ::R

(S-Gen)

v ∈Val Γ,α ⊢v ::S

Γ,α ⊢S .S |S

Γ ⊢v ::∀α .S

(S-Inst)

Γ ⊢e ::∀α .S Γ ⊢ {B |ψ }ϕ type

Γ ⊢e :: [{B |ψ }ϕ /α ]S

(S-Subtype)

Γ ⊢e ::T1 Γ ⊢T1 <:T2

Γ ⊢e ::T2

(S-Transfer)

Γ
′ ⊢e ::S

Γ |=Φ(Γ)=Φ(Γ′)

Γ ⊢e ::S

(S-Relax)

Γ ⊢e ::Rϕ Γ ⊢ϕ′ ∈N

Γ,ϕ′ ⊢e ::Rϕ+ϕ
′

Γ ⊢S.S1 |S2

(Share-Bool)

Γ ⊢bool.bool |bool

(Share-List)

Γ ⊢T .T1 |T2

Γ ⊢L(T ).L(T1) |L(T2)

(Share-TVar)

α ∈ Γ m=m1+m2

Γ ⊢m ·α .m1 ·α |m2 ·α

(Share-Poly)

Γ,α ⊢S .S |S

Γ ⊢∀α .S .∀α .S |∀α .S

(Share-Subset)

Γ ⊢B.B1 |B2 Γ ⊢ {B |ψ } type

Γ ⊢ {B |ψ }. {B1 |ψ } | {B2 |ψ }

(Share-Arrow)

Γ ⊢(x :Tx→T ) type m=m1+m2

Γ ⊢(m ·(x :Tx→T )). (m1 ·(x :Tx→T )) | (m2 ·(x :Tx→T ))

(Share-Pot)

Γ ⊢R.R1 |R2 Γ,ν :R |=ϕ =ϕ1+ϕ2

Γ ⊢Rϕ .R1
ϕ1 |R2

ϕ2

Γ ⊢T1<:T2

(Sub-List)

Γ ⊢T1 <:T2

Γ ⊢L(T1)<:L(T2)

(Sub-TVar)

α ∈ Γ m1 ≥m2

Γ ⊢m1 ·α <:m2 ·α

(Sub-Subset)

Γ ⊢B1 <:B2
Γ,ν :B1 |=ψ1 =⇒ψ2

Γ ⊢ {B1 |ψ1 }<: {B2 |ψ2 }

(Sub-Arrow)

Γ ⊢T ′x <:Tx Γ,x :T ′x ⊢T <:T ′ m ≥m′

Γ ⊢m ·(x :Tx→T )<:m′ ·(x :T ′x→T ′)

(Sub-Pot)

Γ ⊢R1 <:R2
Γ,ν :R1 |=ϕ1 ≥ϕ2

Γ ⊢R1
ϕ1 <:R2

ϕ2

Figure 6. Selected typing rules of the Re2 type system

e.g., the result type of let(e1,x .e2) cannot have x in it and the
result type ofmatl(a0,e1,xh .xt .e2) cannot reference xh or xt .

To reason about logical reinements, we introduce validity
checking, written Γ |=ψ , to state that a logical reinementψ is
always true under any instance of the context Γ. The validity
checking relation is established upon a denotational seman-
tics for reinements. Validity checking in Re2 is decidable
because it can be reduced to Presburger arithmetic. The full
development of validity checking is included in the technical
report [40].
We reason about inductive invariants for lists in rule (T-

MatL), using interpretation I(·). In our formalization, lists
are reined by their length thus the invariants are: (i) nil has
length 0, and (ii) the length of cons(_,at ) is the length of at

plus one. The type system can be easily enriched with more
reinements and data types (e.g., the elements of a list are
the union of its head and those of its tail) by updating the
interpretation I(·) as well as the premises of rule (T-MatL).

Finally, notable are the two typing rules for applications: (T-
App) and (T-App-SimpAtom). In the former case, the function
return typeT does not mention x , and hence can be directly
used as the type of the application (this is the case e.g. for all
higher-order applications, since our well-formedness rules
prevent functions fromappearing in reinements). In the latter
case,T mentions x , but luckily any argument of a scalar type
must be a simple atom a, so we can substitute x with its inter-
pretation I(a). The ability to derive precise types for depen-
dent applications motivates the use of a-normal-form in Re2.
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Resources The rule (T-Consume-P) states that an expres-
sion tick(c,e0) is only well-typed in a context that contains a
free potential term c . To transform the context into this form,
we can use the rule (S-Transfer) to transfer potential within
the context betweenvariable types and freepotential terms, as
longaswecanprove that the total amountofpotential remains
the same. For example, the combination of (S-Transfer) and
(S-Relax) allows us to derive both x : bool1 ⊢ x :: bool1 and
x :bool1 ⊢ tick(1,x) ::bool (but not x :bool1 ⊢ tick(1,x) ::bool1).

The typing rules of Re2 form an aine type system [69]. To
use a program variable multiple times, we have to introduce
explicit sharing to ensure that the program cannot gain po-
tential. The sharing judgment Γ ⊢S.S1 |S2 means that in the
context Γ, the potential indicated by S is apportioned into two
parts to be associated with S1 and S2. We extend this notion to
context sharing, written ⊢Γ.Γ1 | Γ2, which states that Γ1,Γ2 has
the same sequence of bindings as Γ, but the potentials of type
bindings in Γ are shared point-wise, and the free potentials
in the Γ are also split. A special context sharing ⊢ Γ. Γ | Γ is
used in the typing rules (T-Abs) and (T-Fix) for functions. The
self-sharing indicates that the function can only reference
potential-free free variables in the context. This is also used to
ensure that the program cannot gain more potential through
free variables by applying the same function multiple times.
Restricting functions to be deined under potential-free

contexts is undesirable in some situations. For example, a
curried function of type x :Tx → y:Ty → T might require
nonzero units of potential on its irst argument x , which is
not allowed by rule (T-Abs) or (T-Fix) on the inner function
type y:Ty → T . We introduce another rule (T-Abs-Lin) to
relax the restriction. The rule associates a multiplicitymwith
the function type, which denotes the number of times that
the function could be applied. Instead of context self-sharing,
we require the potential in the context to be enough form
function applications. Note that in ReSyn’s surface syntax
used in the Sec. 2, every curried function type implicitly has
multiplicity 1 on the inner function: x :Tx→1·(y:Ty→T ).

Example Recall the function triple from Fig. 3, which can
be written as follows in Re2 core syntax:

triple :: ℓ:L(bool2)→{L(bool) |ν =3×ℓ}
triple = λ(ℓ.let(app(app(append,ℓ),ℓ),ℓ′.

app(app(append,ℓ),ℓ′))

Next, we illustrate how Re2 uses the signature of append:
append :: ∀α .xs:L(α1)→1·(ys:L(α)→{L(α) |ν =xs+ys})

to justify the resource bound 2|ℓ | on triple. Suppose Γ is
a typing context that contains the signature of append. The
argument ℓ is used three times, so we need to use sharing re-
lations to apportion the potential of ℓ. We have Γ ⊢L(bool2).
L(bool1) | L(bool1), Γ ⊢ L(bool1) . L(bool1) | L(bool0), and
we assign L(bool1), L(bool0), and L(bool1) to the three oc-
currences of ℓ respectively in the order they appear in the
program. To reason about e1 = app(app(append,ℓ),ℓ), we in-
stantiate appendwith α 7→bool0, inferring its type as

xs:L(bool1)→1·(ys:L(bool0)→{L(bool0) |ν =xs+ys})

and by (T-App-SimpAtom)we derive the following:

Γ,ℓ :L(bool1)⊢e1 :: {L(bool
0) |ν =ℓ+ℓ}.

We then can typecheck e2 = app(app(append,ℓ),ℓ′)with the
same instantiation of append:

Γ,ℓ :L(bool1),ℓ′ :T1 ⊢e2 :: {L(bool
0) |ν =xs+(xs+xs)}.

(where T1 is the type of e1). Finally, by subtyping and the
following valid judgment in the reinement logic

Γ,ℓ :L(bool2),ν :L(bool0) |=ν =ℓ+(ℓ+ℓ) =⇒ ν =3×ℓ,

we conclude Γ ⊢triple ::ℓ:L(bool2)→{L(bool) |ν =3×ℓ}.

Soundness The type soundness for Re2 is based onprogress
and preservation. The progress theorem states that if we de-
rive a bound q for an expression e with the type system and
p ≥q resources are available, then ⟨e,p⟩ can make a step if e is
not a value. In this way, progress shows that resource bounds
are indeed bounds on the high-water mark of the resource us-
age since states ⟨e,p⟩ in the small step semantics can be stuck
based on resource usage if, for instance,p=0 ande= tick(1,e ′).

Theorem1 (Progress). Ifq ⊢e ::S andp ≥q, then eithere ∈Val
or there exist e ′ and p ′ such that ⟨e,p⟩ 7→ ⟨e ′,p ′⟩.

Proof. By strengthening the assumption to Γ ⊢e ::S where Γ
is a sequence of type variables and free potentials, and then
induction on Γ ⊢e ::S . □

The preservation theorem accounts for resource consump-
tion by relating the left over resources after a computation to
the type judgment of the new term.

Theorem 2 (Preservation). If q ⊢ e :: S , p ≥ q and ⟨e,p⟩ 7→
⟨e ′,p ′⟩, then p ′⊢e ′ ::S .

Proof. By strengthening the assumption to Γ ⊢ e :: S where
Γ is a sequence of free potentials, and then induction on
Γ ⊢ e ::S , followed by inversion on the evaluation judgment
⟨e,p⟩ 7→ ⟨e ′,p ′⟩. □

The proof of preservation makes use of the following cru-
cial substitution lemma.

Lemma 1 (Substitution). If Γ1,x : {B |ψ }
ϕ
,Γ′ ⊢ e :: S , Γ2 ⊢ t ::

{B |ψ }ϕ , t ∈ Val and ⊢ Γ . Γ1 | Γ2, then Γ,[I(t)/x]Γ′ ⊢ [t/x]e ::
[I(t)/x]S .

Proof. By induction on Γ1,x : {B |ψ }
ϕ
,Γ′⊢e ::S . □

Since we found the purely syntactic soundness statement
about results of computations (they are well-typed values)
somewhat unsatisfactory, we also introduced a denotational
notation of consistency. For example, a list of values ℓ =
[v1,···,vn] is consistentwithq ⊢ℓ ::L({bool | ¬ν })

ν+5, ifq≥n+5
and each valuevi of the list is false. We then show that well-
typed values are consistent with their typing judgement.
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DF · |D;x←e

e̊F e | ◦ | app(x ,◦) | if(x ,◦,◦) |matl(x ,◦,xh .xt .◦) | lets(D.e̊)

T F Rϕ | ?

Figure 7. Extended syntax

Lemma 2 (Consistency). If q ⊢v ::S , thenv satisies the con-
ditions indicated by S and q is greater than or equal to the
potential stored inv with respect to S .

As a result, we derive the following theorem.

Theorem 3 (Soundness). If q ⊢e ::S and p ≥q the either

• ⟨e,p⟩ 7→∗ ⟨v,p ′⟩ andv is consistent with p ′⊢v ::S or
• for every n there is ⟨e ′,p ′⟩ such that ⟨e,p⟩ 7→n ⟨e ′,p ′⟩.

Complete proofs can be found in the technical report [40].

Inductive Datatypes and Measures We can generalize

ourdevelopmentof list types for inductive types µX .
−−−−−−−→
C :T ×X k ,

whereC is the constructor name,T is the element type that
does not contain X , and X k is the k-element product type
X ×X ×···×X . The introduction rules and elimination rules
are almost the sameas (T-Nil), (T-Cons) and (T-MatL), respec-
tively, except that we need to capture inductive invariants for
each constructorC in the rules correspondingly. In Synqid,
these invariants are speciied by inductivemeasures that map
values to reinements.We can introduce new sorting rules for
inductive types to embed values as their related measures in
the reinement logic.

Constant Resource Our type system infers upper bounds
on resource usage. Recently, AARA has been generalized to
verify constant-resource behavior [46]. A program is said to
be constant-resource if its executions on inputs of the same
size consume the same amount of resource. We can adapt
the technique in [46] to Re2 by (i) changing the subtyping
rules to keep potentials invariant (i.e. replacing ≥ with = in
(Sub-TVar), (Sub-Arrow), (Sub-Pot)), and (ii) changing the
rule (Simp-Atom-Var) to require ϕ = 0. Based on the modi-
ied type system, our synthesis algorithm can also synthesize
constant-time implementations (see Sec. 5.2 for more details).

4 Type-Driven Synthesis with Re2

In this section, we irst show how to turn the type checking
rules of Re2 into synthesis rules, and then leverage these rules
to develop a synthesis algorithm.

4.1 Synthesis Rules

ExtendedSyntax Toexpress synthesis rules,we extendRe2

with anewsyntactic form e̊ for expression templates. As shown
in Fig. 7, templates are expressions that can contain holes ◦
in certain positions. The lat let form lets(D.e̊), whereD is a
sequence of bindings, is a shortcut for a nest of let-expressions
let(x1,d1....let(xn ,dn .e̊)); we write fold(lets(D.e)) to convert
a lat let (without holes) back to the original syntax. We also

extend the language of typeswith anunknown type ?,which is
used to build partially deined goal types, as explained below.

Synthesis forA-Normal-Form Our synthesis relation con-
sists of two mutually recursive judgments: the synthesis judg-
ment Γ ⊢ e̊ ::S⇝e intuitively means that the template e̊ can
be completed into an expression e such that Γ ⊢e ::S ; the pur-
pose of the auxiliary atomic synthesis judgment is explained
below. Selected rules for both judgments are given in Fig. 8;
the full technical development can be found in the technical
report [40].
The synthesis rule (Syn-Gen) handles polymorphic goal

types. The rules (Syn-Fix) and (Syn-Abs) handle arrow types
and derive either a ixpoint term or an abstraction. The rule
(Syn-Imp)derives impossible inan inconsistentcontext (which
may arise e.g. in a dead branch of a pattern match). The rest
of the rules handle the common case when the goal typeT is
scalar and the context is consistent; in this case the target ex-
pression canbe either a conditional, amatch, or anE-term [51],
i.e. a termmade of variables, applications, and constructors.
Special care must be taken to ensure that these expressions
are in a-normal-form: generally, a-normalizing an expression
requires introducing fresh variables and let-bindings for them.
To retain completeness, our synthesis rules need to do the
same: intuitively, in addition to an expression e , a rule might
also need to produce a sequence of let-bindings D that de-
ine fresh variables in e . To this end, we introduce the atomic

synthesis judgment Γ ⊢ e̊ ::T
a
⇝ lets(D.a), which synthesizes

normalized E-terms, where a is an atom and each deinition
inD is an application or a constructor in a-normal-form.

As an example, consider the rule (Syn-Cond) for synthesiz-
ing conditionals: ideally,wewould like to synthesize a guarde
of type bool, and then synthesize the two branches under the
assumptions that e evaluates to true and false, respectively.
Recall, however, that the guard must be atomic; hence, to
synthesize a well-formed conditional, we use atomic synthe-
sis to produce a guard lets(D.x). Now to get a well-scoped
programwemust place the whole conditional inside the bind-
ingsD; to that end, the second premise of (Syn-Cond) uses a
nontrivial template lets(D.if(x ,◦,◦)). The rules (Fill-Let) and
(Fill-Cond)handle this template by integrating it into the typ-
ing context and exposing the hole; along the way (Fill-Let)
takes care of context sharing,which accounts for the potential
consumed by the deinitions inD. Synthesis ofmatchesworks
similarly using (Syn-MatL) and (Fill-MatL).

Atomic Synthesis The irst four rules of atomic synthesis
generate a simple atom if its typematches the goal; the rest of
the rules deal with the hardest part: normalized applications.
Consider the rule (ASyn-App): given a goal type T for the
application app(e1,e2), we need to construct goal types for e1
and e2, to avoid enumerating them blindly. Following Syn-
qid’s round-trip type checking idea, we use the type _:?→T

as the goal for e1 (i.e. a function fromunknown type toT ). The
subtyping rules for ? are such that Γ ⊢(y:T1→T2)<: (_:?→T )
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Γ ⊢ e̊ ::S⇝e

(Syn-Gen)

Γ,α ⊢S .S |S Γ,α ⊢◦ ::S⇝e

Γ ⊢◦ ::∀α .S⇝e

(Syn-Fix)

Γ,f : (x :Tx→T ),x :Tx ⊢◦ ::T⇝e ⊢Γ.Γ | Γ

Γ ⊢◦ :: (x :Tx→T )⇝ fix(f .x .e)

(Syn-Abs)

Γ,x :Tx ⊢◦ ::T⇝e

Γ ⊢◦ :: (1 ·(x :Tx→T ))⇝λ(x .e)

(Syn-Cond)

Γ ⊢◦ ::bool
a
⇝ lets(D .x ) Γ ⊢ lets(D .if(x,◦,◦)) ::T⇝e

Γ ⊢◦ ::T⇝e

(Syn-MatL)

Γ ⊢T type Γ ⊢◦ ::L(T )
a
⇝ lets(D .x ) Γ ⊢ lets(D .matl(x,◦,xh .xt .◦)) ::T⇝e

Γ ⊢◦ ::T⇝e

(Fill-Cond)

Γ ⊢x :bool Γ,x ⊢◦ ::T⇝e1 Γ,¬x ⊢◦ ::T⇝e2

Γ ⊢ if(x,◦,◦) ::T⇝ if(x,e1,e2)

(Fill-MatL)

⊢Γ.Γ1 | Γ2 Γ1 ⊢x :L(T ) Γ2,x =0⊢◦ ::T⇝e1 Γ2,xh :T ,xt :L(T ),x =1+xt ⊢◦ ::T⇝e2

Γ ⊢matl(x,◦,xh .xt .◦) ::T⇝matl(x,e1,xh .xt .e2)

(Fill-Let)

⊢Γ.Γ1 | Γ2 Γ1 ⊢e1 ::T1 Γ2,x :T1 ⊢ lets(D .e̊2) ::T⇝e2

Γ ⊢ lets(x←e1;D .e̊2) ::T⇝ let(e1,x .e2)

(Syn-Imp)

Γ |=⊥

Γ ⊢◦ ::T⇝ impossible

(Syn-Atom)

Γ ⊢◦ ::T
a
⇝ lets(D .a)

Γ ⊢◦ ::T⇝ fold(lets(D .a))

Γ ⊢ e̊ ::T
a
⇝ lets(D.a)

(ASyn-Var)

Γ ⊢x ::T

Γ ⊢◦ ::T
a
⇝ lets(·.x )

(ASyn-True)

Γ ⊢ true ::T

Γ ⊢◦ ::T
a
⇝ lets(·.true)

(ASyn-False)

Γ ⊢ false ::T

Γ ⊢◦ ::T
a
⇝ lets(·.false)

(ASyn-Nil)

Γ ⊢nil ::T

Γ ⊢◦ ::T
a
⇝ lets(·.nil)

(ASyn-App)

Γ ⊢◦ :: 1 ·(_:?→T )
a
⇝ lets(D1 .x ) Γ ⊢ lets(D1 .app(x,◦)) ::T

a
⇝ lets(D .x ′)

Γ ⊢◦ ::T
a
⇝ lets(D .x ′)

(AFill-Let)

⊢Γ.Γ1 | Γ2 Γ1 ⊢e1 ::T1 Γ2,x :T1 ⊢ lets(D .e̊2) ::T
a
⇝ lets(D2 .a)

Γ ⊢ lets(x←e1;D .e̊2) ::T
a
⇝ lets(x←e1;D2 .a)

(AFill-App)

Γ ⊢x :: 1 ·(_:T1→T ) T1 non-scalar Γ ⊢◦ ::T1⇝ â

Γ,1⊢app(x,◦) ::T
a
⇝ lets(x ′← tick(1,app(x, â)).x ′)

(AFill-App-SimpAtom)

Γ ⊢x :: 1 ·(y :T1→T ′) T1 scalar Γ ⊢◦ ::T1
a
⇝ lets(D .a) Γ ⊢ fold(lets(D .app(x,a))) ::T

Γ,1⊢app(x,◦) ::T
a
⇝ lets(D ;x ′← tick(1,app(x,a)).x ′)

Figure 8. Selected synthesis rules

holds ifT2 andT agree in shape and those reinements that do
not mentiony; hence this goal type ilters out those functions
e1 that cannot fulill the desired goal typeT , independently
of the choice of e2. One diference with Synqid is that the
goal type for e1 is linear, relecting that we intend to use e1
only once and allowing it to capture positive potential.

Similarly to the conditional case explained above, the syn-
thesized left-hand side of the application, e1, has the form
lets(D1.x), and theargumente2mustbe synthesized inside the
bindingsD1. Thesebindingsareprocessedby (AFill-Let), and
the actual argument synthesis happens in either (AFill-App)
or (AFill-SimpAtom), depending on whether the argument
type is a scalar. The former corresponds to a higher-order
application: hereT1 is an arrow type, and hence the argument
cannot occur in the function’s return type; in this case, syn-
thesizing an expression of typeT1 must yield an abstraction
or ixpoint (sinceT1 is an arrow), both ofwhich are atoms. The
latter corresponds to a irst-order application: here the return
typeT ′ can mentiony, so after synthesizing an argument of
typeTy , we still need to check whether the resulting appli-
cation lets(D.app(x ,a)) has the right typeT . Note how both
(AFill-App) or (AFill-SimpAtom) return normalized E-terms
by generating a fresh variable and binding it to an application.

CostMetrics In the context of synthesis we cannot rely on
programmer-written tick terms to model cost. Instead in our

formalization we use a simple cost metric where each func-
tion application consumes one unit of resource; hence every
application generated by (AFill-App) or (AFill-SimpAtom)
is wrapped in tick(1,·). Our implementation provides more
lexibility and allows the programmer to annotate any arrow
type with a non-negative cost c to denote that applying a
function of this type should incur cost c .

Soundness Thesynthesis rulesalwaysproduceawell-typed
expression (proof can be found in the technical report [40]).

Theorem 4 (Soundness of Synthesis). If Γ ⊢ ◦ :: S⇝ e then
Γ ⊢e ::S .

4.2 Synthesis Algorithm

In this section we discuss how to turn the declarative syn-
thesis rules of Sec. 4.1 into a synthesis algorithm, which takes
as input a goal type S , a context Γ, and a bound k on the pro-
gram depth, and either returns a program e of depth at mostk
such that Γ ⊢e ::S , or determines that no such program exists.
The core algorithm follows the recipe from prior work on
type-driven synthesis [47, 51] and performs a fairly standard
goal-directed backtracking proof search with Γ ⊢ ◦ :: e⇝ S

as the top-level goal. In the rest of this section, we explain
how to make such proof search feasible by reducing the core
sources of non-determinism to constraint solving.



Resource-Guided Program Synthesis PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA

Subtyping constraints

C(Γ ⊢m1 ·α <:m2 ·α)= {Γ |=m1−m2 ≥ 0}

C(Γ ⊢ {B1 |ψ1}<: {B2 |ψ2})= {Γ,ν :B1 |=ψ1 =⇒ψ2}∪C(Γ ⊢B1<:B2)

C(Γ ⊢R1
ϕ1 <:R2

ϕ2 )= {Γ,ν :R1 |=ϕ1−ϕ2 ≥ 0}∪C(Γ ⊢R1<:R2)

Sharing constraints

C(Γ ⊢m ·α .m1 ·α |m2 ·α)= {Γ |=m−(m1+m2)≥ 0,

Γ |=m1+m2−m≥ 0}

C(Γ ⊢Rϕ .R1
ϕ1 |R2

ϕ2 )= {Γ |=ϕ−(ϕ1+ϕ2)≥ 0,Γ |=ϕ1+ϕ2−ϕ ≥ 0}

∪C(Γ ⊢R.R1 |R2)

Transfer constraints

C(Φ(Γ)=Φ(Γ′))= {Γ |=Φ(Γ)−Φ(Γ′)≥ 0,Φ(Γ′)−Φ(Γ)≥ 0}

Figure 9. Selected cases for translating typing constraints
to validity constraints.

Typing constraints Themain sources of non-determinism
in a synthesis derivation stem from the following premises
of synthesis and typing rules: (1) whenever a given context Γ
is shared as Γ ⊢Γ.Γ1 | Γ2, we need to guess how to apportion
potential annotations in Γ; (2) whenever potential in a given
context Γ is transfered,weneed toguess potential annotations
in Γ′ such thatΦ(Γ)=Φ(Γ′); and inally (3) whenever {B |ψ }ϕ

is used to instantiate a type variable, we need to guess both ϕ
andψ . All three amount to inference of unknown reinement
terms of either Boolean or numeric sort. To infer these terms
eiciently, we use the following constraint-based approach.
First, we build a symbolic synthesis derivation, which may
contain unknown reinement termsU ∆

Γ
, and collect all subtyp-

ing, sharing, and transfer premises from the derivation into a
system of typing constraints. Here ∆ records the desired sort
of the unknown reinement term, and Γ records the context in
which it must bewell-formed. A solution to a system of typing
constraints, is a mapL :U→ψ such that for every unknown
U ∆

Γ
, Γ ⊢L(U ) ∈∆ and substitutingL(U ) forU within the typ-

ing constraints yields valid subtyping, sharing, and transfer
judgments.

Constraint Solving To solve typing constraints, the algo-
rithm irst transforms them into validity constraints of one of
two forms: Γ |=ψ =⇒ψ ′ or Γ |=ϕ ≥ 0; the interesting cases of
this translation are shown in Fig. 9. Then, using the deinition
of validity (in the technical report [40]), we further reduce
these into a system of:

1. Horn constraints of the formψ1∧...∧ψn =⇒ψ0, and
2. resource constraints of the formψ1∧...∧ψn =⇒ ϕ ≥ 0.

Here anyψi can be either a Boolean unknownU BΓ or a known
reinement term, and ϕ is a sum of zero or more numeric un-
knownsU N

Γ
andaknown(linear) reinement term.Whileprior

work has shown how to eiciently solve Horn constraints us-
ingpredicateabstraction [51, 54], resourceconstraintspresent
a new challenge, since they contain unknown terms of both

Boolean and numeric sorts. In the interest of eiciency, our
synthesis algorithmdoesnotattempt tosolve forbothBoolean
and numeric terms at the same time. Instead, it uses existing
techniques to ind a solution for the Horn constraints, and
then plugs this solution into the resource constraints. Note
that this approach does not sacriice completeness, as long
as the Horn solver returns the least-ixpoint (i.e. strongest)
solution for eachU B

Γ
, since Boolean unknowns only appear

negatively in resource constraints4.

Resource Constraints The main new challenge then is to
solve a system of resource constraints of the formψ =⇒ ϕ ≥ 0,
where ψ is now a known formula of the reinement logic.
Since potential annotations in Re2 are restricted to linear
terms over program variables, we can replace each unknown
termU N

Γ
in ϕ with a linear template

∑
x ∈XCi ·x , where each

Ci is an unknown integer coeicient and X is the set of all
variables in Γ such that Γ ⊢ x ∈ N. After normalization, the
system of resource constraints is reduced to the following
doubly-quantiied system of linear inequalities:

−−→
∃Ci .
−→
∀x .

∧

r ∈R

r (
−→
Ci ,
−→x )

where each clause r is of the formψ (−→x ) =⇒
∑
f (
−→
Ci )·x ≥ 0,ψ

is a known formula over the program variables −→x , and each

f is a linear function over unknown integer coeicients
−→
Ci .

Note a crucial diference between these constraints and
those generated byRaML: sinceRaML’s potential annotations
are not dependentÐi.e. r cannot mention program variables
−→x Ðits resource constraints reduce to plain linear inequalities:
−−→
∃Ci .

∧∑
Ci ≥ c (where c is a known constant), which can be

handled by an LP solver. In our case, the challenge stems both
from the double quantiication and the fact that individual
clauses r are bounded by formulasψ , which are often nontriv-
ial. For example, synthesizing the function range from Sec. 2
gives rise to the following (simpliied) resource constraints:

∃C0...C3.∀a,b,ν .

(¬(a≥b)∧ν =b) =⇒ (C0+1)·a+C1·b+(C2−1)·ν+C3 ≥ 0

(¬(a≥b)∧ν =b) =⇒C0·a+C1·b+C2·ν+C3 ≥ 0

where a solution only exists if the bounds are taken into ac-
count. One solution is [C0 7→ −1,C1 7→ 0,C2 7→ 1,C3 7→ 0],
which stands for the potential term ν−a.

IncrementalSolving Constraintsof this formcanbesolved
using counter-example guided synthesis (CEGIS) [62],which is,
however, relatively expensive. We observe that in the context
of synthesis we have to repeatedly solve similar systems of
resource constraints because a program candidate is type-
checked incrementally as it is being constructed, which corre-
sponds toan incrementallygrowingsetof clausesR.Moreover,

4Our implementation uses Synqid’s default greatest-ixpoint Horn solver,
which technically renders this technique incomplete, however we observed
that it works well in practice.
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Algorithm 1 Incremental solver for resource constraints

Input: Constraints R, current solution C, examples E
Output: Newsolutionandexamples (C,E)or⊥ ifnosolution
procedure Solve(R, C, E)

e←SMT(∃−→x .¬R(C,−→x ))

if e=⊥ then ▷No counter-example
return (C,E)

else

E ′← E ∪ e

R′←{r ∈R | ¬r (C,e)}

C′←SMT(∃
−→
Ci .

∧
e ∈E′ R

′(
−→
Ci ,e))

if C′=⊥ then return⊥ ▷No solution
else Solve(R, C ∪ C′, E ′)

we observe that as new clauses are added, only a few exist-
ing coeicientsCi are typically invalidated, so we can avoid
solving for all the coeicients from scratch. To this end, we de-
velop an incremental version of the CEGIS algorithm, shown
in Algorithm 1.

Thegoal of the algorithm is toind a solutionC :Ci→Z that

maps unknown coeicients to integers such that
−→
∀x .R(C,−→x )

holds (wewriteR(C,−→x ) as a shorthand for
∧
r ∈Rr (C,

−→x )). The
algorithm takes as input a set of clauses R (which includes
both old and new clauses), the current solution C (new coef-
icientsCi are mapped to 0) and the current set of examples E,
where an example e ∈E is a partial assignment to universally-
quantiied variables e :X→N.
The algorithm irst queries the SMT solver for a counter-

example e to the current solution. If no such counter-example
exists, the solution is still valid (this happens surprisingly
often, since many resource constraints are trivial). Other-
wise, the current solution needs to be updated. To this end,
a traditional CEGIS algorithmwould query the SMT solver

with the following synthesis constraint: ∃
−→
Ci .

∧
e ∈E′ R(

−→
Ci ,e),

which enforces that all clauses are satisied on the extended
set of examples. Instead, our incremental algorithm picks out
only those clauses R′ that are actually violated by the new
counter-example; since in our settingR′ is typically small, this
optimization signiicantly reduces the size of the synthesis
constraint and synthesis times for programs with dependent
annotations (as we demonstrate in Sec. 5).

4.3 Implementation

We implemented the resource-guided synthesis algorithm in
ReSyn, which extends Synqid with support for resource-
annotated types and a resource constraint solver. Note that
while our formalization is restricted to Booleans and length-
indexed lists, our implementation supports the full expres-
siveness of Synqid’s types: types include integers and user-
deined algebraic datatypes, and reinement formulas support
sets and can mention arbitrary user-deined measures. More
importantly, resource terms in ReSyn can mention integer

variables and use subtraction, multiplication, conditional ex-
pressions, and numeric measures; inally, multiplicities on
type variables can be dependent (mention variables). These
changes have the following implications: (1) resource terms
are not syntactically guaranteed to be non-negative, so we
emit additional well-formedness constraints to enforce this;
(2) resource terms are not syntactically restricted to be lin-
ear; our implementation is incomplete, and simply rejects the
program if a nonlinear term arises; (3) subtyping and sharing
constraints with conditional resource terms are decomposed
into unconditional ones by moving the guard to the context,
so the search space for all numeric unknowns remains un-
conditional; (4) to handle measure applications in resource
constraints, we replace themwith fresh integer variables, and
avoid spurious counter-examples by explicitly instantiating
the congruence axiomwith all applications in the constraint.

5 Evaluation

We evaluated ReSyn using the following criteria:

Relative performance:How do ReSyn’s synthesis times
compare to Synqid’s? Howmuch does the additional bur-
den of solving resource constraints afect its performance?

Eicacy of resource analysis: Can ReSyn discover more
eicient programs than Synqid?

Valueof round-trip type checking:Does round-trip type
checking aforded by the tight integration of resource anal-
ysis into Synqid efective at pruning the search space?
How does it compare to the naive combination of synthesis
and resource analysis?

Value of incremental solving: To what extent does incre-
mental solving of resource constraints improve ReSyn’s
performance?

5.1 Relative Performance

To evaluate ReSyn’s performance relative to Synqid, we se-
lected 43 problems from Synqid’s original suite, annotated
them with resource bounds, and re-synthesized them with
ReSyn. The rest of the original 64 benchmarks require non-
linear bounds, and thus are out of scope of Re2. The details of
this experiment are shown in Tab. 1, which comparesReSyn’s
synthesis times against Synqid’s on these linear-bounded
benchmarks.
Unsurprisingly, due to the additional constraint-solving,

ReSyn generally performs worse than Synqid: the median
synthesis time is about 2.5× higher. Note, however, that in
return it provides provable guarantees about the performance
of generated code. ReSyn was able to discover a more ei-
cient implementation for only one of the original Synqid

benchmarks (compress, discussed below). In general, these
benchmarks contain only the minimal set of components re-
quired to produce a valid implementation, which makes it
hard for Synqid to ind a non-optimal version. Four of the
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Group Description Components Code Time TimeNR

List

is empty true, false 16 0.2 0.2

member true, false, =, , 41 0.2 0.2

duplicate each element 39 0.5 0.3

replicate 0, inc, dec, ≤, , 31 2.9 0.2

append two lists 38 1.5 0.5

take irst n elements 0, inc, dec, ≤, , 34 2.4 0.2

drop irst n elements 0, inc, dec, ≤, , 30 20.4 0.3

concat list of lists append 49 3.3 0.8

delete value =, , 49 0.8 0.3

zip 32 0.4 0.2

zip with 35 0.5 0.2

i-th element 0, inc, dec, ≤, , 30 0.3 0.2

index of element 0, inc, dec, =, , 43 0.5 0.3

insert at end 42 0.4 0.3

balanced split fst, snd, abs 64 9.6 1.7

reverse insert at end 35 0.4 0.3

insert (sorted) ≤, , 57 2.0 0.7

extract minimum ≤, , 71 18.1 8.3

foldr 43 1.8 0.6

length using fold 0, inc, dec 39 0.3 0.2

append using fold 42 0.3 0.3

map 27 0.3 0.2

Unique
list

insert =, , 49 0.8 0.4

delete =, , 45 0.5 0.3

compress =, , 64 5.0 1.9

integer range 0, inc, dec, ≤, , 46 88.4 5.1

partition ≤ 71 13.0 5.5

Sorted
list

insert < 64 1.6 0.6

delete < 52 0.5 0.3

intersect < 71 17.0 0.8

Tree

node count 0, 1, + 34 3.8 0.5

preorder append 45 3.0 0.6

to list append 45 3.0 0.5

member false, not, or, = 63 2.2 0.6

BST

member true, false, ≤, , 72 0.5 0.3

insert ≤, , 90 4.5 1.6

delete ≤, , 103 26.8 9.3

BST sort ≤, , 191 9.0 4.3

Binary
Heap

insert ≤, , 90 3.2 1.0

member false, not, or, ≤, , 78 2.3 0.8

1-element constructor ≤, , 44 0.2 0.2

2-element constructor ≤, , 91 0.7 0.3

3-element constructor ≤, , 274 21.4 4.0

Table 1. Comparison of ReSyn and Synqid. For each
benchmark, we report the set of provided Components;
cumulative size of synthesized Code (in AST nodes) for all
goals; as well as running times (in seconds) for ReSyn (Time)
and Synqid (TimeNR).

benchmarks in Tab. 1 use advanced features of Re2: for exam-
ple, any function using natural numbers to index or construct
a data structure requires dependent potential annotations.

5.2 Case Studies

The value of resource-guided synthesis becomes clear when
the library of components grows. To conirm this intuition,
we assembled a suite of 16 case studies shown in Tab. 2, each
exemplifying some feature of ReSyn.

Optimization The irst six benchmarks showcase ReSyn’s
ability to generate faster code than Synqid (the cost metric
in each case is the number of recursive calls). Benchmark
1 is triple from Sec. 2.3, where both Synqid and ReSyn

generate the same eicient solution; benchmark 2 is slight
modiication of this example: it uses a component append',
which traverses its second argument (unlike append, which
traverses its irst). In this case, ReSyn generates the eicient
solution, associating the two calls to append' to the left, while
Synqid still generates the sameÐnow ineicientÐsolution,
associating these calls to the right. In benchmark 3 ReSyn
makes the optimal choice of accumulator to avoid a quadratic-
time implementation. Benchmark 4 is compress from Tab. 1:
the task is to remove adjacent duplicated from a list. Here
Synqidmakes an unnecessary recursive call, resulting in a
solution that is slightly shorter but runs in exponential time!
In other cases, ReSyn drastically changes the structure of

the program to ind an optimal implementation. Benchmark 5
is common from Sec. 2.1, where ReSynmust ind an implemen-
tation that does not call member. Benchmark 6 works similarly,
but computes the diference between two lists instead of their
intersection.On these benchmarks, theperformancedisparity
between ReSyn and Synqid is much worse, as ReSynmust
reject many more programs before it inds an appropriate
implementation. On the other hand, these benchmarks also
showcase the value of round-trip type checking: the column
T-EAC reports synthesis times for a naive combination of
synthesis and resource analysis, where we simply ask Syn-
qid to enumerate functionally correct programs until one
type-checks under Re2. As you can see, for benchmarks 5 and
6 this naive version times out after ten minutes.

Dependent Potentials Benchmarks 7ś13 showcase ine-
grained bounds that leverage dependent potential annota-
tions. The irst three of those synthesize a function insert

that inserts an element into a sorted list. In benchmark 7 we
use a simple linear bound (the length of the list), while bench-
marks 8 and 9 specify a tighter bound: insert x xs can only
make one recursive call per element of xs larger than x. These
two examples showcase two diferent styles of specifying
precise bounds: in 8 we deine a custommeasure numgt that
counts list elements greater than a certain value; in 9, we
instead annotate each list element with a conditional term
indicating that it carries potential only if its value is larger
than x. As discussed in Sec. 2, benchmark 13 (range) cannot
be synthesized by Synqid at all, because of restrictions on
its termination checking mechanism, while ReSyn handles
this benchmark out of the box.

For benchmarks 8ś13, whichmake use of dependent poten-
tial annotations, we also report the synthesis times without
incremental solving of resource constraints (T-NInc), which
are up to 2× higher.

Constant Resource As discussed in Sec. 3, a simple exten-
sion to Re2 enables it to verify constant-resource implementa-
tions. We showcase this feature in benchmarks 14ś16. Bench-
mark 15 is an example from [46], which compares a public
list ys with a secret list zs . By allotting potential only to ys ,
we guarantee that the resource consumption of the generated
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Description Type Signature Components T T-NR T-EAC T-NInc B B-NR

1 triple ∀α .xs :L(α 2)→ {L(α ) | len ν =len xs+len xs+len xs } append 0.9 0.4 0.4 - |xs | |xs |

2 triple’ ∀α .xs :L(α 2)→ {L(α ) | len ν =len xs+len xs+len xs } append’ 2.8 0.4 1.2 - |xs | |xs |2

3 concat list of lists ∀α .xxs :L(L(α 1))→acc :L(α )→ {L(α ) | sumLen xs =lenν } append 3.2 0.9 1.1 - |xxs | |xxs |2

4 compress ∀α .xs :L(α 1)→ {CL(α ) | elems xs =elems ν } =,, 3.8 1.1 4.1 - |xs | 2|xs |

5 common ∀α .ys :SL(α 1)→zs :SL(α 1)→ {L(α ) | elems ν =elemsys∩elems zs } <, member 30.8 1.1 TO - |ys |+ | zs | |ys | | zs |

6 list diference ∀α .ys :SL(α 1)→zs :SL(α 1)→ {L(α ) | elems ν =elemsys−elems zs } <, member 173.5 1.3 TO - |ys |+ | zs | |ys | | zs |

7 insert ∀α .x :α→xs :SL(α 1)→ {SL(α ) | elems ν = [x ]∪elems xs } < 1.3 0.4 - - |xs | |xs |

8 insert’ ∀α .x :α→xs :SL(α )numgt(x,ν )→{SL(α ) | elems ν = [x ]∪elems xs } < 49.6 0.7 - 102.2 numgt(x,xs) |xs |

9 insertž ∀α .x :α→xs :SL(α ite(x>ν ,1,0))→ {SL(α ) | elems ν = [x ]∪elems xs } < 7.7 0.4 - 13.7 numgt(x,xs) |xs |

10 replicate ∀α .n:Nat→x :n×αn→{L(α ) | len ν =n } zero, inc, dec 1.4 0.2 - 2.7 n n

11 take ∀α .n:Nat→xs :{L(α ) | lenν ≥n }n→{L(α ) | lenν =n } zero, inc, dec 1.2 0.1 - 2.4 n n

12 drop ∀α .n:Nat→xs :{L(α ) | lenν ≥n }n→{L(α ) | lenν =lenxs−n } zero, inc, dec 12.9 0.2 - 17.1 n n

13 range lo:Int→hi :{Intν−lo |ν ≥ lo }→ {SL({Int | lo ≤ν ≤hi }) | lenν =hi−lo } inc,dec,≥ 11.8 0.2 - - hi−lo -
14 CT insert ∀α .x :α→xs :SL(α 1)→ {SL(α ) | elems ν = [x ]∪elems xs } < 2.2 0.6 0.8 - |xs | |xs |

15 CT compare ∀α .ys :L(α 1)→zs :L(α )→ {bool |ν = (lenys =len zs)} true, false, and 14.3 0.5 9.1 - |ys | |ys |

16 compare ∀α .ys :L(α 1)→zs :L(α )→ {bool |ν = (lenys =len zs)} true, false, and 1.0 0.3 - - |ys | |ys |

Table 2. Case Studies. For each synthesis problem, we report: the run time of ReSyn (T ), Synqid (T-NR), naive combination
of Synqid and resource analysis (T-EAC), ReSynwithout incremental solving (T-NInc); as well as the tightest resource bound
for the code generated by ReSyn (B) and by Synqid (B-NR). Here, SL is the type of sorted lists, andCL refers to the type of
lists without adjacent duplicates. TO is 10 min; all benchmarks count recursive calls.

program is independent of the length ofzs . If this requirement
is relaxed (as in benchmark 16), the generated program indeed
terminates early, potentially revealing the length of zs to an
adversary (in casezs is the shorter of the two lists). Benchmark
14 is a constant-time version of benchmark 7 (insert), which
is forced to make extra recursive calls so as not to reveal the
length of the list.

6 RelatedWork

Resource Analysis Automatic static resource analysis has
been extensively studied and is an active area of research.
Many advanced techniques for imperative integer programs
apply abstract interpretation to generate numerical invari-
ants. The obtained size-change information forms the basis for
the computation of actual bounds on loop iterations and re-
cursion depths; using counter instrumentation [26], ranking
functions [2, 4, 10, 59], recurrence relations [1, 3], and abstract
interpretation itself [13, 73].Automatic resourceanalysis tech-
niques for functional programs are based on sized types [67],
recurrence relations [16], term-rewriting [5], and amortized
resource analysis [31, 34, 37, 58]. There exist several tools that
can automatically derive loop and recursionbounds for imper-
ativeprograms includingSPEED[26, 27],KoAT[10], PUBS[1],
Rank [4], ABC [7] and LOOPUS [59, 73]. These techniques
are passive in the sense that they provide feedback about a
programwithout actively synthesizing or repairing programs.

Domain-Speciic Program Synthesis Most program syn-
thesis techniques [18ś20, 22, 35, 39, 47, 51, 52, 60, 63, 70, 71]
do not explicitly take resource usage into account during
synthesis. Many of them, however, leverage domain knowl-

edge to restrict the search space to only include eicient pro-
grams [14, 25] or to encode domain-speciic performance con-
siderations as part of the functional speciication [36, 44, 45].

SynthesiswithQuantitativeObjectives Twolinesofprior
workon synthesis are explicitly concernedwithoptimizing re-
sourceusage.One is quantitativeautomata-theoretic synthesis,
whichhasbeenused tosynthesizeoptimalMealymachines [8]
andplace synchronization in concurrent programs [11, 12, 28].
In contrast, we focus on synthesis of high-level programs that
canmanipulate customdata structures,which are out of reach
for automata-theoretic synthesis.
The second relevant line of work is synthesis-aided com-

pilation [49, 50, 56, 57]. This work is limited to generating
low-level straight-line code, which is an easy target for cor-
rectness validation and cost estimation. Perhaps the closest
work to ours is the Synapse tool [9], which supports a richer
space of programs, but requires extensive guidance from the
user (in the form of meta-sketches), and relies on bounded
reasoning,which can only provide correctness and optimality
guarantees for a inite set of inputs. In contrast, we use type-
based veriication and resource analysis techniques, which
enable ReSyn to handle high-level recursive programs and
provide guarantees for an unbounded set of inputs.
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