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Abstract

This article presents resource-guided synthesis, a technique
for synthesizing recursive programs that satisfy both a func-
tional specification and a symbolic resource bound. The tech-
nique is type-directed and rests upon a novel type system that
combines polymorphic refinement types with potential an-
notations of automatic amortized resource analysis. The type
system enables efficient constraint-based type checking and
can express precise refinement-based resource bounds. The
proof of type soundness shows that synthesized programs
are correct by construction. By tightly integrating program
exploration and type checking, the synthesizer can leverage
the user-provided resource bound to guide the search, ea-
gerly rejecting incomplete programs that consume too many
resources. An implementation in the resource-guided synthe-
sizer RESYN is used to evaluate the technique on a range of re-
cursive data structure manipulations. The experiments show
that RESYN synthesizes programs that are asymptotically
more efficient than those generated by a resource-agnostic
synthesizer. Moreover, synthesis with RESyN is faster than a
naive combination of synthesis and resource analysis. RESYN
is also able to generate implementations that have a constant
resource consumption for fixed input sizes, which can be used
to mitigate side-channel attacks.

CCS Concepts Software and its engineering — Auto-
matic programming; - Theory of computation — Auto-
mated reasoning;

Keywords Program Synthesis, Automated Amortized Re-
source Analysis, Refinement Types
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1 Introduction

In recent years, program synthesis has emerged as a promis-
ing technique for automating low-level aspects of program-
ming [24, 61, 66]. Synthesis technology enables users to create
programs by describing desired behavior with input-output
examples [18-20, 22,47, 60, 70, 71], natural language [72], and
partial or complete formal specifications [35, 39, 51, 52, 63]. If
the input is a formal specification, synthesis algorithms can
not only create a program but also a proof that the program
meets the given specification [39, 51, 52, 63].

One of the greatest challenges in software development is to
write programs that are not only correct but also efficient with
respect to memory usage, execution time, or domain specific
resource metrics. For this reason, automatically optimizing
program performance has long been a goal of synthesis, and
several existing techniques tackle this problem for low-level
straight-line code [9, 49, 50, 56, 57] or add efficient synchro-
nization to concurrent programs [11, 12, 21, 28]. However, the
developed techniques are not applicable to recent advances in
the synthesis of high-level looping or recursive programs ma-
nipulating custom data structures [22, 35, 39,47, 51, 52]. These
techniques lack the means to analyze and understand the re-
source usage of the synthesized programs. Consequently, they
cannot take into account the program’s efficiency and simply
return the first program that arises during the search and
satisfies the functional specification.

In this work, we study the problem of synthesizing high-level
recursive programs given both a functional specification of
a program and a bound on its resource usage. A naive solu-
tion would be to first generate a program using conventional
program synthesis and then use existing automatic static re-
source analyses [15, 32, 48] to check whether its resource
usage satisfies the bound. Note, however, that for recursive
programs, both synthesis and resource analysis are undecid-
able in theory and expensive in practice. Instead, in this paper
we propose resource-guided synthesis: an approach that tightly
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integrates program synthesis and resource analysis, and uses
the resource bound to guide the synthesis process, generating
programs that are efficient by construction.

Type-Driven Synthesis In a nutshell, the idea of this work
is to combine type-driven program synthesis, pioneered in the
work on SYNQUID [51], with type-based automatic amortized
resource analysis (AARA) [31, 33, 34, 37] as implemented in
Resource Aware ML (RaML) [30]. Type-driven synthesis and
AARA are a perfect match because they are both based on
decidable, constraint-based type systems that can be easily
checked with off-the-shelf constraint solvers.

In SYNQUID, program specifications are written as refine-
ment types [41, 68]. The key to efficient synthesis is round-trip
type checking, which uses an SMT solver to aggressively prune
the search space by rejecting partial programs that do not
meet the specification (see Sec. 2.1). Until now, types have only
been used in the context of synthesis to specify functional
properties.

AARA is a type-based technique for automatically deriv-
ing symbolic resource bounds for functional programs. The
idea is to add resource annotations to data types, in order
to specify a potential function that maps values of that type
to non-negative numbers. The type system ensures that the
initial potential is sufficient to cover the cost of the evaluation.
By a priori fixing the shape of the potential functions, type
inference can be reduced to linear programming (see Sec. 2.2).

The Re? Type System The first contribution of this paper
is a new type system, which we dub Re?—for refinements and
resources—that combines polymorphic refinement types with
AARA (Sec. 3). Re? is a conservative extension of SYNQUID’s
refinement type system and RaML’s affine type system with
linear potential annotations. As a result, Re? can express log-
ical assertions that are required for effectively specifying
program synthesis problems. In addition, the type system
features annotations of numeric sort in the same refinement
language to express potential functions. Using such annota-
tions, programmers can express precise resource bounds that
go beyond the template potential functions of RaML.

The features that distinguish Re? from other refinement-
based type systems for resource analysis [15, 48, 53] are (1) the
combination oflogical and quantitative refinements and (2) the
use of AARA, which simplifies resource constraints and natu-
rally applies to non-monotone resources like memory that can
become available during the execution. These features also
pose nontrivial technical challenges: the interaction between
substructural and dependent types is known to be tricky [42,
43], while polymorphism and higher-order functions are chal-
lenging for AARA (one solution is proposed in [37], but their
treatment of polymorphism is not fully formalized).

In addition to the design of Re?, we prove the soundness of
the type system with respect to a small-step cost semantics. In
the formal development, we focus on a simple call-by-value
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functional language with Booleans and lists, where type re-
finements are restricted to linear inequalities over lengths
of lists. However, we structure the formal development to
emphasize that Re? can be extended with user-defined data
types, more expressive refinements, or non-linear potential
annotations. The proof strategy itself is a contribution of this
paper. The type soundness of the logical refinement part of the
systemisinspired by TiML [48]. The main novelty is the sound-
ness proof of the potential annotations using a small-step cost
semantics instead of RaML’s big-step evaluation semantics.

Type-Driven Synthesis withRe?  The second contribution
of this paper is a resource-guided synthesis algorithm based on
Re?. In Sec. 4, we first develop a system of synthesis rules that
prescribe how to derive well-typed programs from Re? types,
and prove its soundness wrt. the Re? type system. We then
show how to algorithmically derive programs using a combi-
nation of backtracking search and constraint solving. In par-
ticular this requires solving a new form of constraints we call
resource constraints, which are constrained linear inequalities
over unknown numeric refinement terms. To solve resource
constraints, we develop a custom solver based on counter-
example guided inductive synthesis [62] and SMT [17].

The RESYN Synthesizer The third contribution of this paper
is the implementation and experimental evaluation of the first
resource-aware synthesizer for recursive programs. We imple-
mented our synthesis algorithm in a tool called RESYN, which
takes as input (1) a goal type that specifies the logical refine-
ments and resource requirements of the program, and (2) types
of components (i.e. library functions that the program may
call). RESyN then synthesizes a program that provably meets
the specification (assuming the soundness of components).

To evaluate the scalability of the synthesis algorithm and
the quality of the synthesized programs, we compare RESYN
with baseline SYNQUID on a variety of general-purpose data
structure operations, such as eliminating duplicates from a
list or computing common elements between two lists. The
evaluation (Sec. 5) shows that RESyYN is able to synthesize
programs that are asymptotically more efficient than those
generated by SYNQUID. Moreover, the tool scales better than
a naive combination of synthesis and resource analysis.

2 Background and Overview

This section provides the necessary background on type-
driven program synthesis (Sec. 2.1) and automatic resource
analysis (Sec. 2.2). We then describe and motivate their combi-
nation in Re? and showcase novel features of the type system
(Sec. 2.3). Finally, we demonstrate how Re? can be used for
resource-guided synthesis (Sec. 2.4).

2.1 Type-Driven Program Synthesis

Type-driven program synthesis [51] is a technique for auto-
matically generating functional programs from their high-
level specifications expressed as refinement types [41, 54].
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1 common = A11. A12 . match 11 with Nil — Nil

2 Cons x xs — if —(member x 12)
3 then common xs 12
4 else Cons x (common xs 12)

Figure 1. Synthesized program that computes common
elements between two lists

For example, a programmer might describe a function that
computes the common elements between two lists using the
following type signature:

common::11: List a — 12:List a

— {v:List a | elems v = elems 11 N elems 12}

Here, the return type of common is refined with the predicate
elems v = elems 11 N elems 12, which restricts the set of el-
ements of the output list v! to be the intersection of the sets of
elements of the two arguments. Here elems is a user-defined
logic-level function, also called measure [38, 68]. In addition
to the synthesis goal above, the synthesizer takes as input a
component library: signatures of data constructors and func-
tions it can use. In our example, the library includes the list
constructors Nil and Cons and the function

member::x:a — l:List a — {Bool | Y = (x in elems 1)}
which determines whether a given value is in the list. Given
this goal and components, the type-driven synthesizer Syn-
QuID [51] produces an implementation of common in Fig. 1.

The Synthesis Mechanism Type-driven synthesis works
by systematically exploring the space of programs that can
be built from the component library and validating candidate
programs against the goal type using a variant of liquid type in-
ference [54]. To validate a program against a refinement type,
liquid type inference generates a system of subtyping con-
straints over refinement types. The subtyping constraints are
then reduced to implications between refinement predicates.
For example, checking common xs 12 in line 3 of Fig. 1 against
the goal type reduces to validating the following implication:

(elems [} ={x}Uelems xs)A(x ¢elems o)A

(elems v=elems xsNelems [2) = elems v=elems [ Nelems [,

Since this formula belongs to a decidable theory of uninter-
preted functions and arrays, its validity can be checked by
an SMT solver [17]. In general, the generated implications
may contain unknown predicates. In this case, type inference
reduces to a system of constrained horn clauses [6], which can
be solved via predicate abstraction.

Synthesis and Program Efficiency The program in Fig. 1
is correct, but not particularly efficient: it runs roughly in time
n-m, where m is the length of 11 and n is the length of 12, since
it calls the member function (a linear scan) for every element of
11. The programmer might realize that keeping the input lists

1Hereafter the bound variable of the refinement is always called v and the
binding is omitted.
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1 common' = All. A12 . match 11 with SNil — Nil

2 SCons x xs — match 12 with SNil — Nil

3 SCons y ys —

4 if x <y then common' xs 12

5 else if y < x then common' 11 ys

6 else Cons x (common' Xxs ys)

Figure 2. A more efficient version of the program in Fig. 1
for sorted lists

sorted would enable computing common elements in linear
time by scanning the two lists in parallel. To communicate this
intent to the synthesizer, they can define the type of (strictly)
sorted lists by augmenting a traditional list definition with a
simple refinement:

data SList a where SNil::SList a
SCons::x:a — xs:SList {a | x < v} — SList a

This definition says that a sorted list is either empty, or is con-
structed from a head element x and a tail list xs, as long as xs is
sorted and all its elements are larger than x.? Given an updated
synthesis goal (where selens is a version of elems for SList)

common' ::11: SList a — 12:SList a
— {v:List a | elems v = selems 11 N selems 12}

and a component library that includes List, SList, and < (but
not member!), SYNQUID can synthesize an efficient program
shown in in Fig. 2.

However, if the programmer leaves the function member
in the library, SynQuID will synthesize the inefficient imple-
mentation in Fig. 1. In general, SYNQUID explores candidate
programs in the order of size and returns the first one that
satisfies the goal refinement type. This can lead to suboptimal
solutions, especially as the component library grows larger
and allows for many functionally correct programs. To avoid
inefficient solutions, the synthesizer has to be aware of the
resource usage of the candidate programs.

2.2 Automatic Amortized Resource Analysis

To reason about the resource usage of programs we take inspi-
ration from automatic amortized resource analysis (AARA) [31,
33, 34, 37]. AARA is a state-of-the-art technique for auto-
matically deriving symbolic resource bounds on functional
programs, and is implemented for a subset of OCaml in Re-
source Aware ML (RaML) [30, 33]. For example, RaML is able
to automatically derive the worst-case bound 2m+n-m on the
number of recursive calls for the function common and m+n
for common' 3.

ZFollowing SYNQUID, our language imposes an implicit constraint on all
type variables to support equality and ordering. Hence, they cannot be
instantiated with arrow types. This could be lifted by adding type classes.
3In this section we assume for simplicity that the resource of interest is
the number of recursive calls. Both AARA and our type system support
user-defined cost metrics (see Sec. 3 for details).
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Potential Annotations AARA is inspired by the potential
method for manually analyzing the worst-case cost of a se-
quence of operations [64]. It uses annotated types to introduce
potential functions that map program states to non-negative
numbers. To derive a bound, we have to statically ensure that
the potential at every program state is sufficient to cover the
cost of the next transition and the potential of the following
state. In this way, we ensure that the initial potential is an
upper bound on the total cost.

The key to making this approach effective is to closely in-
tegrate the potential functions with data structures [34, 37].
For instance, in RaML the type L!(int) stands for a list that
contains one unit of potential for every element. This type de-
fines the potential function ¢(¢:L!(int))=1-|€|. The potential
can be used to pay for a recursive call (or, in general, cover
resource usage) or to assign potential to other data structures.

Bound Inference Potential annotations can be derived au-
tomatically by starting with a symbolic type derivation that
contains fresh variables for the potential annotations of each
type, and applying syntax directed type rules that impose
local constraints on the annotations. The integration of data
structures and potential ensures that these constraints are
linear even for polynomial potential annotations.

2.3 Bounding Resources with Re?

To reason about resource usage in type-driven synthesis, we
integrate AARA’s potential annotations and refinement types
into a novel type system that we call Re?. In Re?, a refinement
type can be annotated with a potential term ¢ of numeric sort,
which is drawn from the same logic as refinements. Intuitively,
the type R? denotes values of refinement type R with ¢ units of
potential. In the rest of this section we illustrate features of Re?
on a series of examples, and delay formal treatment to Sec. 3.
With potential annotations, users can specify that common'
must run in time at most m+n, by giving it the following type
signature:

1 1

— 12:SList a
— {v:List a | elems v = selems 11 N selems 12}

common' ::11: SList a

This type assigns one unit of potential to every element of
the arguments 11 and 12, and hence only allows making one
recursive call per element of each list. Whenever resource
annotations are omitted, the potential is implicitly zero: for
example, the elements of the result carry no potential.

Our type checker uses the following reasoning to argue that
this potential is sufficient to cover the efficient implementa-
tion in Fig. 2. Consider the recursive call in line 4, which has a
cost of one. Pattern-matching 11 against SCons x xs transfers
the potential from 11 to the binders, resulting in types x: a!
and xs : SList ({a|x <v}'). The unit of potential associated
with x can now be used to pay for the recursive call. Moreover,
the types of the arguments, xs and 12, match the required type
SList a', which guarantees that the potential stored in the tail

Tristan Knoth, Di Wang, Nadia Polikarpova, and Jan Hoffmann

1

append::xs: List a° — ys:List a

— {List a | len v = len xs + len ys}

triple:: l: List Int® — {List n | len v = 3x(len 1)}
triple = A1 . append 1 (append 1 1)

tripleSlow:: 1l: List Int3 — {List n | len v = 3x(len 1)}
tripleSlow = A 1. append (append 1 1) 1

Figure 3. Append three copies of a list. The type of append
specifies that it returns a list whose length is the sum of the
lengths of its arguments. It also requires one unit of potential
on each element of the first list. Moreover, append has a
polymorphic type and can be applied to lists with different
element types, which is crucial for type-checking tripleStlow.

and the second list are sufficient to cover the rest of the eval-
uation. Other recursive calls are checked in a similar manner.

Importantly, the inefficient implementation in Fig. 1 would
not type-check against this signature. Assuming that member
is soundly annotated with

1

member::x:a — l:List a- — {Bool | Vv = (x in elems 1)}

(requiring a unit of potential per element of 1), the guard in
line 2 consumes all the potential stored in 12; hence the oc-
currence of 12 in line 3 has the type List a°, which is not a
subtype of List a'.

Dependent Potential Annotations In combination with
logical refinements and parametric polymorphism, this sim-
ple extension to the SYNQUID’s type system turns out to be
surprisingly powerful. Unlike in RaML, potential annotations
in Re? can be dependent, i.e. mention program variables and
the special variable v. Dependent annotations can encode fine-
grained bounds, which are out of reach for RaML. As one exam-
ple, consider function range a bthatbuildsalistofallintegers
between a and b; we can express that it takes at most b—a steps
by giving the argument b a type {Int|v>a}""?. Asanother
example, consider insertion into a sorted list insert x xs;
we can express that it takes at most as many steps as there
are elements in xs that are smaller than x, by giving xs the
type SList a*V<%10) (j¢ only assigning potential to ele-
ments that are smaller than x). These fine-grained bounds are
checked completely automatically in our system, by reduction
to constraints in SMT-decidable theories.

Polymorphism Another source of expressiveness in Re? is
parametric polymorphism: since potential annotations are
attached to types, type polymorphism gives us resource poly-
morphism for free. Consider two functions in Fig. 3, triple
and tripleSlow, which implement two different ways to ap-
pend a list 1 to two copies of itself. Both of them make use
of a component function append, whose type indicates that
it makes a linear traversal of its first argument. Intuitively,
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triple is more efficient that tripleSlow because in the for-
mer both calls to append traverse a list of length n, whereas
in the latter the outer call traverses a list of length 2-n. This
difference is reflected in the signatures of the two functions:
tripleSlow requires three units of potential per list element,
while triple only requires two.

Checking that tripleSlow satisfies this bound is somewhat
nontrivial because the two applications of append must have
different types: the outer application must return List Int,
while the inner application must return List Int! (i.e. carry
enough potential to be traversed by append). RaML’s monomor-
phic type system is unable to assign a single general type to
append, which can be used at both call sites. So the function
has be reanalyzed at every (monomorphic) call site. Re?, on
the other hand, handles this example out of the box, since
the type variable a in the type of append can be instantiated
with Int for the outer occurrence and with Int! for the inner
occurrence, yielding the type

xs: List Int? — ys:List Int' — {List Int! | ...}
As a final example, consider the standard map function:
map::(a — b) — List a — List b

Although this type has no potential annotations, it implicitly
tells us something about the resource behavior of map: namely,
that map applies a function to each list element at most once.
This is because a can be instantiated with a type with an ar-
bitrary amount of potential, and the only way to pay for this
potential is with a list element (which also has type a).

2.4 Resource-guided Synthesis with RESYN

We have extended SYnQuip with support for Re? types in a
new program synthesizer RESYN. Given a resource-annotated
signature for common' from Sec. 2.3 and a component library
that includes member, RESYN is able to synthesize the efficient
implementation in Fig. 2. The key to efficient synthesis is
type-checking each program candidate incrementally as it
is being constructed, and discarding an ill-typed program
prefix as early as possible. For example, while enumerating
candidates for the function common', we can safely discard the
inefficient version from Fig. 1 even before constructing the
second branch of the conditional (because the first branch
together with the guard use up too many resources). Hence,
as we explain in more detail in Sec. 4, a key technical chal-
lenge in RESYN has been a tight integration of resources into
SYNQUID’s round-trip type checking mechanism, which ag-
gressively propagates type information top-down from the
goal and solves constraints incrementally as they arise.

Termination Checking In addition to making the synthe-
sizer resource-aware, Re? types also subsume and generalize
SYNQUID’s termination checking mechanism. To avoid gener-
ating diverging functions, SYNQUID uses a simple termination
metric (the tuple of function’s arguments), and checks that
this metric decreases at every recursive call. Using this metric,
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a = x| true|false|nil | cons(dy,a;)
a = alA(x.e) | fix(f.x.e)
e := d|if(ag,e1,ez) | matl(ag,eq1,xp,.x¢.€2) | app(ds,dz)
| let(er,x.ez)|impossible|tick(c,eo)
v = true|false | nil | cons(vp,v;) | A(x.€0) | fix(f.x.ep)

Figure 4. Syntax of the core calculus

SYNQUID is not able to synthesize the function range from
Sec. 2.3, because it requires a recursive call that decreases the
difference between the arguments, b—a. In contrast, RESYN
need not reason explicitly about termination, since potential
annotations already encode an upper bound on the number of
recursive calls. Moreover, the flexibility of these annotations
enables RESYN to synthesize programs that require nontrivial
termination metrics, such as range.

3 The Re? Type System

In this section, we define a subset of Re? as a formal calcu-
lus to prove type soundness. This subset includes Booleans
that are refined by their values, and lists that are refined by
their lengths. The programs in Sec. 1 and Sec. 2 use SYNQUID’s
surface syntax. The gap from the surface language to the
core calculus involves inductive types and refinement-level
measures. The restriction to this subset in the technical de-
velopment is only for brevity and proofs carry over to all the
features of SYNQUID.

Syntax Fig. 4 presents the grammar of terms in Re? via ab-
stract binding trees [29]. The core language is basically the
standard lambda calculus augmented with Booleans and lists.
A value v € Val is either a boolean constant, a list of values,
or a function. Expressions in Re? are in a-normal-form [55],
which means that syntactic forms occurring in non-tail po-
sition allow only atoms a@ € Atom, i.e., variables and values;
this restriction simplifies typing rules for applications, as
we explain below. We identify a subset SimpAtom of Atom
that contains atoms interpretable in the refinement logic. In-
tuitively, the value of an a € SimpAtom should be either a
Boolean or alist. The syntactic form impossible is introduced
as a placeholder for unreachable code, e.g., the else-branch
of a conditional whose predicate is always true.

The syntactic form tick(c,eq) is used to specify resource
usage, and it is intended to cost ¢ € Z units of resource and
then reduce to e. If the cost c is negative, then —c units of
resource will become available in the system. tick terms sup-
port flexible user-defined cost metrics: for example, to count
recursive calls, the programmer may wrap every such call in
tick(1,-); to keep track of memory consumption, they might
wrap every data constructor in tick(c,-), where c is the amount
of memory that constructor allocates.

Operational Semantics The resource usage of a program
is determined by a small-step operational cost semantics.
The semantics is a standard one augmented with a resource
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V¢ o= x| T~y [ Az [ nlYr <o |1+ Y =1,

A :=B|N|5,
Base Type ‘ Resource-Annotated Type ‘
B = bool | L(T)|m-a T :=R?

‘ Refinement Type ‘ Type Schema
R:={B|y}|m-(x:Txy—>T) Su:=T|Va.S

Figure 5. Syntax of the type system

parameter. A step in the evaluation judgment has the form
(e,q) — (e’,q") where e and e’ are expressions and ¢,q’ € Z;
are nonnegative integers. For example, the following is the
rule for tick(c,ep).

(tick(c, €0), q) > (e0,q—c)

The multi-step evaluation relation " is the reflexive transi-
tive closure of . The judgment (e,q) —* (¢’,q") expresses
that with g units of available resources, e evaluates to e’ with-
out running out of resources and ¢’ resources are left. Intu-
itively, the high-water mark resource usage of an evaluation
of e to e’ is the minimal ¢ such that (e,q) —* (¢’,q’). For
monotone resources like time, the cost is the sum of costs
of all the evaluated tick expressions. In general, this net cost
is invariant, that is, p —p’ = g — ¢’ if (e,p) =" (¢’,p’) and
(e,q) —" {e’,q"), where " is the relation obtained by self-
composing — for n times.

Refinements Wenow combine SYNQUID’s type system with
AARA to reason about resource usage. Fig. 5 shows the syn-
tax of the Re? type system. Refinements 1 are distinct from
program terms and classified by sorts A. Re?’s sorts include
Booleans B, natural numbers N, and uninterpreted symbols & .
Refinements can be logical formulas and linear expressions,
which may reference program variables. Logical refinements
i have sort B, while potential annotations ¢ have sort N. Re?
interprets a variable of Boolean type as its value, list type as
its length, and type variable « as an uninterpreted symbol
with a corresponding sort d,. We use the following interpre-
tation I (-) to reflect interpretable atoms a € SimpAtom in the
refinement logic:

I(x) = x
I(true) = T I(nil) =0
I (false) = L I (cons(,a;p)) = I(ap)+1

Types We classify types into four categories. Base types B
include Booleans, lists and type variables. Type variables « are
annotated with a multiplicity m € Zj U{co}, which denotes
an upper bound on the number of usages of a variable like
in bounded linear logic [23]. For example, L(2- ) denotes a
universal list whose elements can be used at most twice.
Refinement types are subset types and dependent arrow
types. The inhabitants of the subset type {B | ¢/} are values
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of type B that satisfy the refinement /. The refinement i/ is
alogical predicate over program variables and a special value
variable v, which does not appear in the program and stands
for the inhabitant itself. For example, {bool | v} is a type of
true, and {L(bool) | v <5} represents Boolean lists of length at
most 5. Dependent arrow types x:T, — T are function types
whose return type may reference the formal argument x. As
type variables, these function types are also annotated with
a multiplicity m € Z; U{co} restricting the number of times
the function may be applied.

To apply the potential method of amortized analysis [65],
we need to define potentials with respect to the data structures
in the program. We introduce resource-annotated types as a re-
finement type augmented with a potential annotation, written
R?.Intuitively, R? assigns ¢ units of potential to values of the
refinement type R. The potential annotation ¢ may also refer-
ence the value variable v. For example, L(bool)>" describes
Boolean lists ¢ with 5|¢| units of potential where |{| is the
length of €. The same potential can be expressed by assigning
5 units of potential to every element using the type L(bool®).

Type schemas represent (possibly) polymorphic types. Note
that the type quantifier V can only appear outermost in a type.

Similar to SYNQUID, we introduce a notion of scalar types,
which are resource-annotated base types refined by logical
constraints. Intuitively, interpretable atoms are scalars and
Re? only allows the refinement-level logic to reason about
values of scalar types. We will abbreviate 1-« as a, {B| T} as
B, co-(x:Ty = T)as x:Tx —T,and R® as R.

Typing Rules InRe?, the typing context T is a sequence of
variable bindings x : S, type variables a, path conditions ¢/, and
free potentials ¢. Our type system consists of five judgments:
sorting, well-formedness, subtyping, sharing, and typing. We
omit sorting and well-formedness rules and include them in
the technical report [40]. The sorting judgmentI'F i € A states
that a refinement 1 has a sort A under a contextT'. A type S
is said to be well-formed under a context I', written T'+ S type,
if every referenced variable in it is in the correct scope.

Fig. 6 presents selected typing rules for Re?. The typing
judgment I'+-e = S states that the expression e has type S in
context I'. The intuitive meaning is that if there is at least the
amount resources as indicated by the potential in the context
I then this suffices to evaluate e to a value v, and after the
evaluation there are at least as many resources available as
indicated by the potential in S. The auxiliary typing judgment
I' + a : B assigns base types to interpretable atoms. Atomic
typing is useful in the rule (T-StmpATOM), which uses the
interpretation J (-) to derive a most precise refinement type
for interpretable atoms.

The subtyping judgment I'+-T; <:T; is defined in a standard
way, with the extra requirement that the potential in T; should
be greater than or equal to that in T,. Subtyping is often used
to “forget” some program variables in the type to ensure the
result type does not reference any locally introduced variable,
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(StmPATOM-NIL) (StMpPATOM-CONS)

I(x)={B|y }</> (StMPATOM-TRUE) (StMPATOM-FALSE) TFT type FTYT T Tokap =T Tray: I(T)
I'+x:B T'+true:bool I'+false:bool Trnil: L(T) T'+cons(ay,az): L(T)
(T-StmPATOM) (T-VAR) (T-Imp) (T-CoNSUME-P) (T-CoNsuME-N)
Tra:B T(x)=S TEL I'+T type c>0 Trey:T c<0 T,—crey=T
Tta=z{B|v=I(a)} Ikx:=S T'+impossible=T T,crtick(c,ep) =T T'+tick(c,eq)=T
(T-Conb) (T-MATL) (T-LET)
T'+ay:bool FLYT I, T+T' type Titao:L(T) FLYT Iz T+T; type
I,7(ap)re1 =T I,-I(ap)rex=T I, 7 (ag)=0re =T’ o, xp: T, x¢:L(T), T(ag)=x;+1+ ey =T’ NFe =S [,x:S1key= T,

T+ if(ag,el,ez)::T

T'+matl(ag, e1,xp.x;.€3) =T’

T'+let(er,x.e2)=To

(T-App-S1MPATOM) (T-App)
FTYLL  Tras1-(ea{B|y}? >T) Tiray:={B|y}? FIVL G, Drasl-(xTe—T) Trag=Ty  TrTtype
T'rapp(as, az)=[1(az)/x]T T'rapp(dy, dg)=T
(T-Fix)
(T-ABs) (T-ABs-LIN) R=x:Ty—>T I'+Rtype
T'+Tx type T,x:Tytey=T FLYT|T T'+ Ty type T,x:Tytey:T If:Rx:Txrey:T FLCYT|T
THA(x.ep):x:Tx > T m-TrA(x.ep):m-(x:Tx —T) T'Hfix(f.x.e0) =R
(S-Gen) (S-TRANSFER)
v eVal Tarov:S (S-InsT) (S-SUBTYPE) I're:S (S-ReLAX)
LarSYS|S Tre:Va.S  TH{B|y}? type Tre:Ty TrTi<Tp T ()=o) Tre:R?  Trg¢ eN
Tro:Va.S Tre:[{B|y}?/alS Tre:T, The:S I,¢'re:RSHY

stysl |Sz

(SHARE-LIST)
(SHARE-BooL)

TFTY Ty | T2
T+L(T)YL(Ty) | L(T3)

T'+boolY bool | bool

(SHARE-SUBSET) (SHARE-ARROW)

I'+BYB; | B I'H{B|y}type

TH(x:Tx — T) type

(SHARE-TVAR)
acel m=mi+my

(SHARE-POLY)
LarSYS|S

I'+Va.SYVa.S|Va.S

I'tm-aYmy-a|my-a
(SHARE-POT)

m=my+my FFRYRi|R,  T,viRE¢=¢i1+¢;

TH{B|y}Y{Bi|y}|{B:]y}

(SuB-LisT) (SuB-TVAR)
T'v+T <: T, acel

(SUB-SUBSET)
I'tB; <:By
mip >my

Tr(m-(x:Tx > T))Y (my-(x:Tx = T)) |(mz-(x:Tx > T))

LviBiFy1 = y»

FFR¢YR1¢1 |R2¢2

(Sus-Por)
I'tR; <:R;
I,v:Rq |:(;51 Z(}Sz

(SuB-ARROW)

[+T <:Tx Lx:Tpb T<iT' m>m’

'+ L(Ty) <:L(T3) T'rmi-a<imy-«a

TH{Bi|y1} <:{Bz|y2}

Trm-(x:Tx > T)<:m'-(x:Ty. > T) TR 1 <:R, %2

Figure 6. Selected typing rules of the Re? type system

e.g., the result type of let(e;,x.ez) cannot have x in it and the
result type of matl(ag,e1,xp.x;.€2) cannot reference xj, or x;.

To reason about logical refinements, we introduce validity
checking, written I' |= ¢/, to state that a logical refinement ¢ is
always true under any instance of the context I'. The validity
checking relation is established upon a denotational seman-
tics for refinements. Validity checking in Re? is decidable
because it can be reduced to Presburger arithmetic. The full
development of validity checking is included in the technical
report [40].

We reason about inductive invariants for lists in rule (T-
MartL), using interpretation 7 (-). In our formalization, lists
are refined by their length thus the invariants are: (i) nil has
length 0, and (ii) the length of cons(_,a;) is the length of a;

plus one. The type system can be easily enriched with more
refinements and data types (e.g., the elements of a list are
the union of its head and those of its tail) by updating the
interpretation 7 (-) as well as the premises of rule (T-MATL).
Finally, notable are the two typing rules for applications: (T-
Arp) and (T-Arr-SiMPATOM). In the former case, the function
return type T does not mention x, and hence can be directly
used as the type of the application (this is the case e.g. for all
higher-order applications, since our well-formedness rules
prevent functions from appearing in refinements). In the latter
case, T mentions x, but luckily any argument of a scalar type
must be a simple atom a, so we can substitute x with its inter-
pretation 7 (a). The ability to derive precise types for depen-
dent applications motivates the use of a-normal-form in Re?.
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Resources The rule (T-CoNsUME-P) states that an expres-
sion tick(c,ep) is only well-typed in a context that contains a
free potential term c. To transform the context into this form,
we can use the rule (S-TRANSFER) to transfer potential within
the context between variable types and free potential terms, as
long as we can prove that the total amount of potential remains
the same. For example, the combination of (S-TRANSFER) and
(S-ReLAX) allows us to derive both x : bool® + x = bool' and
x:bool! Ftick(1,x) = bool (but not x : bool®  tick(1,x) = bool?).
The typing rules of Re? form an affine type system [69]. To
use a program variable multiple times, we have to introduce
explicit sharing to ensure that the program cannot gain po-
tential. The sharing judgment I'+ SY' S; | S; means that in the
context I', the potential indicated by S is apportioned into two
parts to be associated with S; and S,. We extend this notion to
context sharing, written - I' YT} | I, which states that I}, I has
the same sequence of bindings as T', but the potentials of type
bindings in I are shared point-wise, and the free potentials
in the I are also split. A special context sharing +I'YT'| T is
used in the typing rules (T-ABs) and (T-F1x) for functions. The
self-sharing indicates that the function can only reference
potential-free free variables in the context. This is also used to
ensure that the program cannot gain more potential through
free variables by applying the same function multiple times.
Restricting functions to be defined under potential-free
contexts is undesirable in some situations. For example, a
curried function of type x:Tx — y:Ty, — T might require
nonzero units of potential on its first argument x, which is
not allowed by rule (T-ABs) or (T-F1x) on the inner function
type y:T, — T. We introduce another rule (T-ABs-LIN) to
relax the restriction. The rule associates a multiplicity m with
the function type, which denotes the number of times that
the function could be applied. Instead of context self-sharing,
we require the potential in the context to be enough for m
function applications. Note that in RESYN’s surface syntax
used in the Sec. 2, every curried function type implicitly has
multiplicity 1 on the inner function: x:Ty — 1-(y:T, — T).

Example Recall the function triple from Fig. 3, which can
be written as follows in Re? core syntax:
triple = ¢:L(bool?)— {L(bool)|v=3x¢}
triple = A(C.let(app(app(append,f),f),t’.
app(app(append,{),’))
Next, we illustrate how Re? uses the signature of append:
append :: Yar.xs:L(a!) — 1-(ys:L(ar) = {L(@) | v =xs+ys})

to justify the resource bound 2|£| on triple. Suppose T is
a typing context that contains the signature of append. The
argument ¢ is used three times, so we need to use sharing re-
lations to apportion the potential of £. We have I'+- L(bool?) Y
L(bool) | L(bool'), T + L(bool*) Y L(bool') | L(bool®), and
we assign L(bool'), L(bool®), and L(bool) to the three oc-
currences of ¢ respectively in the order they appear in the
program. To reason about e; = app(app(append,?),£), we in-
stantiate append with a + bool’, inferring its type as
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xs:L(bool') — 1-(ys:L(bool’) — {L(bool®) | v = xs+ys})
and by (T-App-SiMPATOM) we derive the following:
I,¢:L(bool")Fe; = {L(bool®) | v=£+£}.

We then can typecheck e, = app(app(append,?),£’) with the
same instantiation of append:

T,¢:L(bool),t’ : Ty r ey {L(bool®) | v =xs+(xs+xs)}.

(where T; is the type of e;). Finally, by subtyping and the
following valid judgment in the refinement logic

T,¢:L(bool?),v:L(bool®) |z v="_£+(0+6) = v=3X{,
we conclude I' triple:£:L(bool®) — {L(bool) | v=3x{}.

Soundness The type soundness for Re? is based on progress
and preservation. The progress theorem states that if we de-
rive a bound q for an expression e with the type system and
p > q resources are available, then (e,p) can make a step if e is
not a value. In this way, progress shows that resource bounds
are indeed bounds on the high-water mark of the resource us-
age since states (e,p) in the small step semantics can be stuck
based on resource usage if, for instance, p =0 and e = tick(1,e’).

Theorem 1 (Progress). IfgFe:Sandp > g, then either e € Val
or there exist e’ and p’ such that (e,p) — (e’ ,p’).

Proof. By strengthening the assumption to I't-e =S where I’
is a sequence of type variables and free potentials, and then
inductiononT'Fex:S. O

The preservation theorem accounts for resource consump-
tion by relating the left over resources after a computation to
the type judgment of the new term.

Theorem 2 (Preservation). If g+ e = S, p > g and (e,p) >
(e’ ,p’), thenp’re’:S.

Proof. By strengthening the assumption to I +- e :: S where
I is a sequence of free potentials, and then induction on
I'+e= S, followed by inversion on the evaluation judgment

(e.p) = (e’ ,p). o

The proof of preservation makes use of the following cru-
cial substitution lemma.

Lemma 1 (Substitution). If I',x : {B] ¢}¢,F’ bezS bkt
{B|y}? teValand v T YT | Ty, then T,[Z (¢)/x]T” F [t/x]e =
[Z(®)/x]S.

Proof. By induction on It,x: {B|y}?.I"+e:S. O

Since we found the purely syntactic soundness statement
about results of computations (they are well-typed values)
somewhat unsatisfactory, we also introduced a denotational
notation of consistency. For example, a list of values ¢ =
[1,+,0, ] is consistent with g+ £ : L({bool | =v})"*°,if g > n+5
and each value v; of the list is false. We then show that well-
typed values are consistent with their typing judgement.
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=:|Dix e
¢ = e|o|app(x,0)|if(x,0,0) | matl(x,0,xp.x;.0) | lets(D.€)
T:=R?|?

Figure 7. Extended syntax

Lemma 2 (Consistency). If gFv:S, then v satisfies the con-
ditions indicated by S and q is greater than or equal to the
potential stored in v with respect to S.

As aresult, we derive the following theorem.

Theorem 3 (Soundness). If gre:S and p > g the either
o (e,p)y—"(v,p’) and v is consistent with p’Fv::S or
o for every n there is (e’,p’) such that (e,p) =" (e’,p").

Complete proofs can be found in the technical report [40].

Inductive Datatypes and Measures We can generalize
R —

our development of list types for inductive types uX.C: Tx X,
where C is the constructor name, T is the element type that
does not contain X, and X* is the k-element product type
X xXx--xX. The introduction rules and elimination rules
are almost the same as (T-N1r), (T-Cons) and (T-MATL), respec-
tively, except that we need to capture inductive invariants for
each constructor C in the rules correspondingly. In SYNQUID,
these invariants are specified by inductive measures that map
values to refinements. We can introduce new sorting rules for
inductive types to embed values as their related measures in
the refinement logic.

Constant Resource Our type system infers upper bounds
on resource usage. Recently, AARA has been generalized to
verify constant-resource behavior [46]. A program is said to
be constant-resource if its executions on inputs of the same
size consume the same amount of resource. We can adapt
the technique in [46] to Re? by (i) changing the subtyping
rules to keep potentials invariant (i.e. replacing > with = in
(SuB-TVAR), (SuB-ARROW), (SUB-POT)), and (ii) changing the
rule (S1MP-ATOM-VAR) to require ¢ = 0. Based on the modi-
fied type system, our synthesis algorithm can also synthesize
constant-time implementations (see Sec. 5.2 for more details).

4 Type-Driven Synthesis with Re?

In this section, we first show how to turn the type checking
rules of Re? into synthesis rules, and then leverage these rules
to develop a synthesis algorithm.

4.1 Synthesis Rules

Extended Syntax To express synthesis rules, we extend Re?
with a new syntactic form é for expression templates. As shown
in Fig. 7, templates are expressions that can contain holes o
in certain positions. The flat let form lets(D.¢), where D is a
sequence of bindings, is a shortcut for a nest of let-expressions
let(x,d;....let(x,,dy,.€)); we write fold(lets(D.e)) to convert
a flat let (without holes) back to the original syntax. We also
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extend the language of types with an unknown type ?, which is
used to build partially defined goal types, as explained below.

Synthesis for A-Normal-Form Our synthesisrelation con-
sists of two mutually recursive judgments: the synthesis judg-
ment [+ ¢S~ e intuitively means that the template ¢ can
be completed into an expression e such that I't-e : S; the pur-
pose of the auxiliary atomic synthesis judgment is explained
below. Selected rules for both judgments are given in Fig. 8;
the full technical development can be found in the technical
report [40].

The synthesis rule (SYN-GEN) handles polymorphic goal
types. The rules (Syn-Fix) and (SYn-ABs) handle arrow types
and derive either a fixpoint term or an abstraction. The rule
(Syn-Imp) derives impossible inan inconsistent context (which
may arise e.g. in a dead branch of a pattern match). The rest
of the rules handle the common case when the goal type T is
scalar and the context is consistent; in this case the target ex-
pression can be either a conditional, a match, or an E-term [51],
i.e. a term made of variables, applications, and constructors.
Special care must be taken to ensure that these expressions
are in a-normal-form: generally, a-normalizing an expression
requires introducing fresh variables and let-bindings for them.
To retain completeness, our synthesis rules need to do the
same: intuitively, in addition to an expression e, a rule might
also need to produce a sequence of let-bindings D that de-
fine fresh variables in e. To this end, we introduce the atomic
synthesis judgment '+ é : T~ lets(D.a), which synthesizes
normalized E-terms, where a is an atom and each definition
in D is an application or a constructor in a-normal-form.

As an example, consider the rule (Syn-ConD) for synthesiz-
ing conditionals: ideally, we would like to synthesize a guard e
of type bool, and then synthesize the two branches under the
assumptions that e evaluates to true and false, respectively.
Recall, however, that the guard must be atomic; hence, to
synthesize a well-formed conditional, we use atomic synthe-
sis to produce a guard lets(D.x). Now to get a well-scoped
program we must place the whole conditional inside the bind-
ings D; to that end, the second premise of (SYN-CoND) uses a
nontrivial template lets(D.if(x,0,0)). The rules (FILL-LET) and
(FiLL-Conp) handle this template by integrating it into the typ-
ing context and exposing the hole; along the way (FILL-LET)
takes care of context sharing, which accounts for the potential
consumed by the definitions in D. Synthesis of matches works
similarly using (Syn-MatL) and (Fill-MatL).

Atomic Synthesis The first four rules of atomic synthesis
generate a simple atom if its type matches the goal; the rest of
the rules deal with the hardest part: normalized applications.
Consider the rule (ASyN-APP): given a goal type T for the
application app(es,ez), we need to construct goal types for e
and e, to avoid enumerating them blindly. Following SYN-
QUID’s round-trip type checking idea, we use the type _:? —T
as the goal for e, (i.e. a function from unknown type to T). The
subtyping rules for ? are such that '+ (y:T; = T3) <: (_:? —T)
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Lf:(x:Tx >T),x:TyrozT~~e
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(Syn-ABs)

FLYT|T T,x:TxtouzT~e

(Syn-GEN) (Syn-Fix)
T,arSYS|S T,ato:S~e
TroxVa.S~e
(Syn-Conp)
T'+o:bool <5 lets(D.x) T+lets(D.if(x,0,0))=:T ~~e

Trou(x:Ty = T)~fix(f.x.e)
(Syn-MaTL)
T+T type

Trox:(1-(x:Tx = T))~ A(x.e)

Tro:L(T)%lets(D.x) I'+lets(D.matl(x,0,xp.x;.0)) =T~ e

TtouT~~e

(FiLL-MaTL)
T y 1"1 | 1“2

(FiLL-ConD)

T+x:bool T,xrtouT~el I,-xtouT~e2

Likx:L(T)

TtouT~~e

Trif(x,0,0)=T~~if(x,el,e2)

(FrLL-LET)
|—Fy1“1 |F2 Tite =Ty

Trlets(x < ey;D.é3) =T~ let(er, x.ez)

Iy, x:Ti+lets(D.ey) =T~ ey

Tré:T~%lets(D.a)

(ASYN-VAR)
Trx=T

(ASYN-TRUE)

T'rtrue=T
Tro:T % lets(-.x) Tro:T % lets(-.true)

(ASYn-App)
Troz1-(_:?2—>T) % lets(Dy.x)

Tk lets(D;.app(x,0)) = T~ lets(D.x")

I,x=0ro:zT~~~el D, xp:T,xp : L(T),x=1+xsr0:T~~e2
T'+matl(x,0,xp.x;.0)= T ~>matl(x,el,xp.x;.e2)
(SYN-ImP) (SyN-ATom)

el Tro:T%lets(D.a)

Tro:T~impossible T+o:T~~fold(lets(D.a))

(ASYN-FALSE)
I'+false:T

(ASYN-NIL)
Tknil=T

Tro:T % lets(-.false) Tro:T % lets(-.nil)

(AFILL-LET)

FTYT T, DirerszTy Dpx:Tiklets(D.éy)=T <5 lets(Dy.a)

Tro:T % lets(D.x")

(AF1LL-APP)

Ttx:1-(:Ty—T) Ty non-scalar TtouzTi~a

Tklets(x «— e1;D.65) = T <> lets(x «— e1;D3.a)

(AF1LL-APP-SIMPATOM)
Trx:1-(y:T1 > T)

Ty scalar Tro:Ty S lets(D.a) T'+fold(lets(D.app(x,a)))=T

I, 1rapp(x,0)=T "3 lets(x” « tick(1,app(x, @)).x")

T,1rapp(x,0)=T 4 lets(D;x” « tick(1,app(x, a)).x")

Figure 8. Selected synthesis rules

holds if T and T agree in shape and those refinements that do
not mention y; hence this goal type filters out those functions
e; that cannot fulfill the desired goal type T, independently
of the choice of e,. One difference with SYNQUID is that the
goal type for e; is linear, reflecting that we intend to use e;
only once and allowing it to capture positive potential.
Similarly to the conditional case explained above, the syn-
thesized left-hand side of the application, e;, has the form
lets(D;.x),and the argument e, must be synthesized inside the
bindings D;. These bindings are processed by (AF1LL-LET), and
the actual argument synthesis happens in either (AF1LL-ApP)
or (AF1LL-S1MPATOM), depending on whether the argument
type is a scalar. The former corresponds to a higher-order
application: here T; is an arrow type, and hence the argument
cannot occur in the function’s return type; in this case, syn-
thesizing an expression of type T; must yield an abstraction
or fixpoint (since T is an arrow), both of which are atoms. The
latter corresponds to a first-order application: here the return
type T’ can mention y, so after synthesizing an argument of
type T, we still need to check whether the resulting appli-
cation lets(D.app(x,a)) has the right type T. Note how both
(AF1LL-APP) or (AFILL-SIMPATOM) return normalized E-terms
by generating a fresh variable and binding it to an application.

Cost Metrics In the context of synthesis we cannot rely on
programmer-written tick terms to model cost. Instead in our

formalization we use a simple cost metric where each func-
tion application consumes one unit of resource; hence every
application generated by (AF1LL-APP) or (AFILL-SIMPATOM)
is wrapped in tick(1,-). Our implementation provides more
flexibility and allows the programmer to annotate any arrow
type with a non-negative cost c to denote that applying a
function of this type should incur cost c.

Soundness Thesynthesisrulesalwaysproduce awell-typed
expression (proof can be found in the technical report [40]).

Theorem 4 (Soundness of Synthesis). If '+ oS ~~ e then
I'ke:S.

4.2 Synthesis Algorithm

In this section we discuss how to turn the declarative syn-
thesis rules of Sec. 4.1 into a synthesis algorithm, which takes
as input a goal type S, a context I', and a bound k on the pro-
gram depth, and either returns a program e of depth at most k
such that I'+e =S, or determines that no such program exists.
The core algorithm follows the recipe from prior work on
type-driven synthesis [47, 51] and performs a fairly standard
goal-directed backtracking proof search withT' oz e ~~ S
as the top-level goal. In the rest of this section, we explain
how to make such proof search feasible by reducing the core
sources of non-determinism to constraint solving.
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‘ Subtyping constraints ‘

COTrmy-a<imp-a)={T|=m;—my >0}
CTH{B1 1} <:{Bz|¥2})={T,v:B1|Fy1 = 2} UC(T'F By <: By)
C(FI-R1¢1 <:R2¢2)= {F,V:Rl |=¢1—¢2 ZO}UC(FI—Rl <:R2)

‘ Sharing constraints ‘

C(Trm-aYmy-a|mg-a)={T|=m—(mi+my) >0,
I'=mi+my—m=>0}

CIFRYY R [R?) =T §—($1+$2) 20T g1 +d2—§ 20}
UC(T+RYR1|Rs)

‘ Transfer constraints ‘

C(DI)=d(I")={T Ed(T)-d(") > 0,0(T")-®(T) >0}

Figure 9. Selected cases for translating typing constraints
to validity constraints.

Typing constraints The main sources of non-determinism
in a synthesis derivation stem from the following premises
of synthesis and typing rules: (1) whenever a given context I’
is shared as T+ YT | I, we need to guess how to apportion
potential annotations in I'; (2) whenever potential in a given
context I is transfered, we need to guess potential annotations
inT” such that ®(T') =®(I'"’); and finally (3) whenever {B| ¢}¢
is used to instantiate a type variable, we need to guess both ¢
and ¢. All three amount to inference of unknown refinement
terms of either Boolean or numeric sort. To infer these terms
efficiently, we use the following constraint-based approach.
First, we build a symbolic synthesis derivation, which may
contain unknown refinement terms U%, and collect all subtyp-
ing, sharing, and transfer premises from the derivation into a
system of typing constraints. Here A records the desired sort
of the unknown refinement term, and I' records the context in
which it must be well-formed. A solution to a system of typing
constraints, is a map £ :U — ¢/ such that for every unknown
UrA, I't L(U) € A and substituting L(U) for U within the typ-
ing constraints yields valid subtyping, sharing, and transfer
judgments.

Constraint Solving To solve typing constraints, the algo-
rithm first transforms them into validity constraints of one of
two forms: I'|=y = ¢’ or I |= ¢ > 0; the interesting cases of
this translation are shown in Fig. 9. Then, using the definition
of validity (in the technical report [40]), we further reduce
these into a system of:

1. Horn constraints of the form 1 A...AY,, = 1, and
2. resource constraints of the form Yy A... Ay, = $ > 0.

Here any ¢; can be either a Boolean unknown UI_B or aknown
refinement term, and ¢ is a sum of zero or more numeric un-
knowns UrN and aknown (linear) refinement term. While prior
work has shown how to efficiently solve Horn constraints us-
ing predicate abstraction [51, 54], resource constraints present
anew challenge, since they contain unknown terms of both
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Boolean and numeric sorts. In the interest of efficiency, our
synthesis algorithm does not attempt to solve for both Boolean
and numeric terms at the same time. Instead, it uses existing
techniques to find a solution for the Horn constraints, and
then plugs this solution into the resource constraints. Note
that this approach does not sacrifice completeness, as long
as the Horn solver returns the least-fixpoint (i.e. strongest)
solution for each U, since Boolean unknowns only appear
negatively in resource constraints®.

Resource Constraints The main new challenge then is to
solve a system of resource constraints of the form y = ¢ >0,
where ¢ is now a known formula of the refinement logic.
Since potential annotations in Re? are restricted to linear
terms over program variables, we can replace each unknown
term UrN in ¢ with a linear template ), xC;-x, where each
C; is an unknown integer coefficient and X is the set of all
variables in T such that I' + x € N. After normalization, the
system of resource constraints is reduced to the following
doubly-quantified system of linear inequalities:

3C,.Vx. \r(€%)
rer
N

where each clause r is of the form tﬁ(?) = >.f(C;)-x=>0,¢
is a known formula over the program variables ¥, and each
f is alinear function over unknown integer coefficients a

Note a crucial difference between these constraints and
those generated by RaML: since RaML’s potential annotations
are not dependent—i.e. r cannot mention program variables

X —its resource constraints reduce to plain linear inequalities:

ﬁ. A2.C; > ¢ (where c is a known constant), which can be
handled by an LP solver. In our case, the challenge stems both
from the double quantification and the fact that individual
clauses r are bounded by formulas i, which are often nontriv-
ial. For example, synthesizing the function range from Sec. 2
gives rise to the following (simplified) resource constraints:

ElCO...Cg.Va,b,V.
(=(a=b)Av=b) = (Cy+1)-a+Ci-b+(Cy;—1)-v+C3>0
(=(a=b)Av=b) = Cy-a+C1-b+Cy-v+C3>0

where a solution only exists if the bounds are taken into ac-
count. One solution is [Cy — —1,C; +— 0,Cy — 1,C3 +— 0],
which stands for the potential term v—a.

Incremental Solving Constraints of this form can be solved
using counter-example guided synthesis (CEGIS) [62], which s,
however, relatively expensive. We observe that in the context
of synthesis we have to repeatedly solve similar systems of
resource constraints because a program candidate is type-
checked incrementally as it is being constructed, which corre-
sponds to an incrementally growing set of clauses R. Moreover,

4Our implementation uses SYNQUID's default greatest-fixpoint Horn solver,
which technically renders this technique incomplete, however we observed
that it works well in practice.
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Algorithm 1 Incremental solver for resource constraints

Input: Constraints R, current solution C, examples &
Output: New solutionand examples(C,&E) or L ifno solution
procedure SOLVE(R, C, &)
e—SMT(IX.-R(C, X))

if e=1 then
return (C,&)
else
E'«—&EUe
R’ —{reR|-r(C,e)}
—> —
C’' —SMT(3C;. A ,cs R'(Cire))
if C’'=1 thenreturn L
else SoLvE(R,C U C’, &)

> No counter-example

> No solution

we observe that as new clauses are added, only a few exist-
ing coefficients C; are typically invalidated, so we can avoid
solving for all the coefficients from scratch. To this end, we de-
velop an incremental version of the CEGIS algorithm, shown
in Algorithm 1.

The goal of the algorithm is to find a solution C : C; — Z that

maps unknown coefficients to integers such that WC.R(C X)
holds (we write R(C,X ) as a shorthand for A\ ,cxr(C,%)). The
algorithm takes as input a set of clauses R (which includes
both old and new clauses), the current solution C (new coef-
ficients C; are mapped to 0) and the current set of examples &,
where an example e € & is a partial assignment to universally-
quantified variables e: X — N.

The algorithm first queries the SMT solver for a counter-
example e to the current solution. If no such counter-example
exists, the solution is still valid (this happens surprisingly
often, since many resource constraints are trivial). Other-
wise, the current solution needs to be updated. To this end,
a traditional CEGIS algorithm would query the SMT solver

with the following synthesis constraint: Ha. Neesr R(a,e),
which enforces that all clauses are satisfied on the extended
set of examples. Instead, our incremental algorithm picks out
only those clauses R’ that are actually violated by the new
counter-example; since in our setting R is typically small, this
optimization significantly reduces the size of the synthesis
constraint and synthesis times for programs with dependent
annotations (as we demonstrate in Sec. 5).

4.3 Implementation

We implemented the resource-guided synthesis algorithm in
RESYN, which extends SyNQUID with support for resource-
annotated types and a resource constraint solver. Note that
while our formalization is restricted to Booleans and length-
indexed lists, our implementation supports the full expres-
siveness of SYNQUID's types: types include integers and user-
defined algebraic datatypes, and refinement formulas support
sets and can mention arbitrary user-defined measures. More
importantly, resource terms in RESYN can mention integer
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variables and use subtraction, multiplication, conditional ex-
pressions, and numeric measures; finally, multiplicities on
type variables can be dependent (mention variables). These
changes have the following implications: (1) resource terms
are not syntactically guaranteed to be non-negative, so we
emit additional well-formedness constraints to enforce this;
(2) resource terms are not syntactically restricted to be lin-
ear; our implementation is incomplete, and simply rejects the
program if a nonlinear term arises; (3) subtyping and sharing
constraints with conditional resource terms are decomposed
into unconditional ones by moving the guard to the context,
so the search space for all numeric unknowns remains un-
conditional; (4) to handle measure applications in resource
constraints, we replace them with fresh integer variables, and
avoid spurious counter-examples by explicitly instantiating
the congruence axiom with all applications in the constraint.

5 Evaluation

We evaluated RESYN using the following criteria:

Relative performance: How do RESYN’s synthesis times
compare to SYNQUID's? How much does the additional bur-
den of solving resource constraints affect its performance?

Efficacy of resource analysis: Can RESyN discover more
efficient programs than SynQuip?

Value of round-trip type checking: Does round-trip type
checking afforded by the tight integration of resource anal-
ysis into SYNQUID effective at pruning the search space?
How does it compare to the naive combination of synthesis
and resource analysis?

Value of incremental solving: To what extent does incre-
mental solving of resource constraints improve RESYN’s
performance?

5.1 Relative Performance

To evaluate RESYN’s performance relative to SYNQUID, we se-
lected 43 problems from SYNQUID’s original suite, annotated
them with resource bounds, and re-synthesized them with
RESYN. The rest of the original 64 benchmarks require non-
linear bounds, and thus are out of scope of Re?. The details of
this experiment are shown in Tab. 1, which compares RESYN’s
synthesis times against SYNQUID’s on these linear-bounded
benchmarks.

Unsurprisingly, due to the additional constraint-solving,
RESYN generally performs worse than SYNQUID: the median
synthesis time is about 2.5% higher. Note, however, that in
return it provides provable guarantees about the performance
of generated code. RESYN was able to discover a more effi-
cient implementation for only one of the original SyNQUID
benchmarks (compress, discussed below). In general, these
benchmarks contain only the minimal set of components re-
quired to produce a valid implementation, which makes it
hard for SynQUID to find a non-optimal version. Four of the
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Group ‘ Description ‘ Components Code Time  TimeNR
is empty true, false 16 0.2 0.2
member true, false, =, # 41 0.2 0.2
duplicate each element 39 0.5 0.3
replicate 0,inc, dec, <, # 31 2.9 0.2
append two lists 38 1.5 0.5
take first n elements 0, inc, dec, <, # 34 2.4 0.2
drop first n elements 0, inc, dec, <, # 30 20.4 0.3
concat list of lists append 49 3.3 0.8
delete value =% 49 0.8 0.3
zip 32 0.4 0.2
List zip with 35 0.5 0.2
i-th element 0,inc, dec, <, # 30 0.3 0.2
index of element 0, inc, dec, =, # 43 0.5 0.3
insert at end 42 0.4 0.3
balanced split fst, snd, abs 64 9.6 1.7
reverse insert at end 35 0.4 0.3
insert (sorted) <, # 57 2.0 0.7
extract minimum <, # 71 18.1 8.3
foldr 43 1.8 0.6
length using fold 0, inc, dec 39 0.3 0.2
append using fold 42 0.3 0.3
map 27 0.3 0.2
insert = # 49 0.8 0.4
Unique delete =% 45 0.5 0.3
list compress =, # 64 5.0 1.9
integer range 0,inc, dec, <, # 46 88.4 5.1
partition < 71 13.0 5.5
Sorted insert < 64 1.6 0.6
list delete < 52 0.5 0.3
intersect < 71 17.0 0.8
node count 0,1, + 34 3.8 0.5
Tree preorder append 45 3.0 0.6
to list append 45 3.0 0.5
member false, not, or, = 63 2.2 0.6
member true, false, <, # 72 0.5 0.3
BST insert <, # 90 4.5 1.6
delete <, #F 103 26.8 9.3
BST sort <, # 191 9.0 4.3
insert <, #F 90 3.2 1.0
Binary member false, not, or, <, # 78 2.3 0.8
Heap 1-element constructor <, # 44 0.2 0.2
2-element constructor <, # 91 0.7 0.3
3-element constructor <, #F 274 21.4 4.0

Table 1. Comparison of RESYN and Synguip. For each
benchmark, we report the set of provided Components;
cumulative size of synthesized Code (in AST nodes) for all
goals; as well as running times (in seconds) for RESYN (Time)
and SYNQUID (TimeNR).

benchmarks in Tab. 1 use advanced features of Re?: for exam-
ple, any function using natural numbers to index or construct
a data structure requires dependent potential annotations.

5.2 Case Studies

The value of resource-guided synthesis becomes clear when
the library of components grows. To confirm this intuition,
we assembled a suite of 16 case studies shown in Tab. 2, each
exemplifying some feature of RESyN.

Optimization The first six benchmarks showcase RESYN’s
ability to generate faster code than SYNQUID (the cost metric
in each case is the number of recursive calls). Benchmark
11is triple from Sec. 2.3, where both SynouiD and RESYN
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generate the same efficient solution; benchmark 2 is slight
modification of this example: it uses a component append’,
which traverses its second argument (unlike append, which
traverses its first). In this case, RESYN generates the efficient
solution, associating the two calls to append" to the left, while
SynQuID still generates the same—now inefficient—solution,
associating these calls to the right. In benchmark 3 RESyn
makes the optimal choice of accumulator to avoid a quadratic-
time implementation. Benchmark 4 is compress from Tab. 1:
the task is to remove adjacent duplicated from a list. Here
SyNoQuID makes an unnecessary recursive call, resulting in a
solution that is slightly shorter but runs in exponential time!

In other cases, RESYN drastically changes the structure of
the program to find an optimal implementation. Benchmark 5
is common from Sec. 2.1, where RESYN must find an implemen-
tation that does not call member. Benchmark 6 works similarly,
but computes the difference between two lists instead of their
intersection. On these benchmarks, the performance disparity
between RESYN and SYNQUID is much worse, as RESYN must
reject many more programs before it finds an appropriate
implementation. On the other hand, these benchmarks also
showcase the value of round-trip type checking: the column
T-EAC reports synthesis times for a naive combination of
synthesis and resource analysis, where we simply ask SYN-
QUID to enumerate functionally correct programs until one
type-checks under Re?. As you can see, for benchmarks 5 and
6 this naive version times out after ten minutes.

Dependent Potentials Benchmarks 7-13 showcase fine-
grained bounds that leverage dependent potential annota-
tions. The first three of those synthesize a function insert
that inserts an element into a sorted list. In benchmark 7 we
use a simple linear bound (the length of the list), while bench-
marks 8 and 9 specify a tighter bound: insert x xs can only
make one recursive call per element of xs larger than x. These
two examples showcase two different styles of specifying
precise bounds: in 8 we define a custom measure numgt that
counts list elements greater than a certain value; in 9, we
instead annotate each list element with a conditional term
indicating that it carries potential only if its value is larger
than x. As discussed in Sec. 2, benchmark 13 (range) cannot
be synthesized by SyNQuID at all, because of restrictions on
its termination checking mechanism, while RESYN handles
this benchmark out of the box.

For benchmarks 8—13, which make use of dependent poten-
tial annotations, we also report the synthesis times without
incremental solving of resource constraints (7-Ninc), which
are up to 2x higher.

Constant Resource As discussed in Sec. 3, a simple exten-
sion to Re? enables it to verify constant-resource implementa-
tions. We showcase this feature in benchmarks 14-16. Bench-
mark 15 is an example from [46], which compares a public
list ys with a secret list zs. By allotting potential only to ys,
we guarantee that the resource consumption of the generated
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Description ‘ Type Signature ‘ Components ‘ T T-NR T-EAC  T-NInc ‘ B B-NR
1 triple Va.xs:L(a?)— {L(a)|len v="1en xs+1len xs+1len xs} append 0.9 0.4 0.4 - [xs| |xs|
2 triple’ Va.xs:L(a?)— {L(a)|len v=T1en xs+1len xs+1len xs} append’ 2.8 0.4 1.2 - [xs| |xs |?
3 concat list of lists Va.xxs:L(L(a'))— acc:L(a) = {L(a) | sunLen xs =1env} append 3.2 0.9 1.1 - |xxs| |xxs|?
4 compress Va.xs:L(a')— {CL(a)|elems xs =elems v} =# 3.8 1.1 4.1 - [xs| 2lxs|
5 common Va.ys:SL(a')— zs:SL(a') — {L(«) | elems v =elems ysNelems zs} <, member 30.8 1.1 TO lys|+lzs| |ys|lzs|
6 list difference Vea.ys:SL(a')— zs:SL(a') — {L(a)|elens v =elems ys—elems zs} <, member 173.5 1.3 TO lys|+lzs| |ys||zs|
7 insert Va.x:a— xs:SL(a')— {SL(a) |elems v=[x]Uelens xs} < 1.3 0.4 - - |xs | |xs|
8 insert’ Var.x:o— xs:SL(a)™ ™85 Y) 5 (SL(a) |elems v=[x]Uelens xs} < 49.6 0.7 - 102.2 numgt(x, xs) |xs |
9 insert” Ya.x:a — xs:SL(a*>V:10) 5 (ST (a)|elems v=[x]|Uelems xs} < 7.7 0.4 - 13.7 numgt(x, xs) |xs|
10 replicate Ya.n:Nat - x:nxa™ — {L(a)|lenv=n} zero, inc, dec 1.4 0.2 - 2.7 n n
11 take Va.niNat > xs:{L(a)|lenv >n}" — {L(«)|lenv=n} zero, inc, dec 1.2 0.1 - 2.4 n n
12 drop Va.nNat— xs:{L(a)|lenv > n}" — {L(a)|lenv=1lenxs—n} zero, inc, dec 12.9 0.2 - 17.1 n n
13 range lo:Int— hi:{Int" 12 |v> 1o} — {SL({Int|lo <v <hi})|lenv=hi—lo} inc,dec,> 11.8 0.2 - - hi-lo
14 CT insert Va.x:a— xs:SL(a')— {SL(a) |elems v =[x]Uelems xs} < 2.2 0.6 0.8 - |xs | |xs|
15 CT compare Va.ys:L(a')— zs:L(a)— {bool | v=(len ys =1len zs)} true, false, and 14.3 0.5 9.1 - lys| lys|
16 compare Va.ys:L(a')— zs:L(a)— {bool | v=(len ys =len zs)} true, false, and 1.0 0.3 - - lys| lys|

Table 2. Case Studies. For each synthesis problem, we report: the run time of RESyN (T), SYNQUID (T-NR), naive combination
of SYNQUID and resource analysis (T-EAC), RESYN without incremental solving (T-NInc); as well as the tightest resource bound
for the code generated by RESyN (B) and by SynQuiD (B-NR). Here, SL is the type of sorted lists, and CL refers to the type of
lists without adjacent duplicates. TO is 10 min; all benchmarks count recursive calls.

program is independent of the length of zs. If this requirement
isrelaxed (as in benchmark 16), the generated program indeed
terminates early, potentially revealing the length of zs to an
adversary (in case zs is the shorter of the two lists). Benchmark
14 is a constant-time version of benchmark 7 (insert), which
is forced to make extra recursive calls so as not to reveal the
length of the list.

6 Related Work

Resource Analysis Automatic static resource analysis has
been extensively studied and is an active area of research.
Many advanced techniques for imperative integer programs
apply abstract interpretation to generate numerical invari-
ants. The obtained size-change information forms the basis for
the computation of actual bounds on loop iterations and re-
cursion depths; using counter instrumentation [26], ranking
functions [2, 4, 10, 59], recurrence relations [1, 3], and abstract
interpretationitself 13, 73]. Automatic resource analysis tech-
niques for functional programs are based on sized types [67],
recurrence relations [16], term-rewriting [5], and amortized
resource analysis [31, 34, 37, 58]. There exist several tools that
can automatically derive loop and recursion bounds for imper-
ative programs including SPEED [26, 27], KoAT [10],PUBS [1],
Rank [4], ABC [7] and LOOPUS [59, 73]. These techniques
are passive in the sense that they provide feedback about a
program without actively synthesizing or repairing programs.

Domain-Specific Program Synthesis Most program syn-
thesis techniques [18-20, 22, 35, 39, 47, 51, 52, 60, 63, 70, 71]
do not explicitly take resource usage into account during
synthesis. Many of them, however, leverage domain knowl-
edge to restrict the search space to only include efficient pro-
grams [14, 25] or to encode domain-specific performance con-
siderations as part of the functional specification [36, 44, 45].

Synthesis with Quantitative Objectives Twolinesofprior
work on synthesis are explicitly concerned with optimizing re-
source usage. One is quantitative automata-theoretic synthesis,
whichhasbeen used to synthesize optimal Mealy machines [8]
and place synchronization in concurrent programs [11, 12, 28].
In contrast, we focus on synthesis of high-level programs that
can manipulate custom data structures, which are out of reach
for automata-theoretic synthesis.

The second relevant line of work is synthesis-aided com-
pilation [49, 50, 56, 57]. This work is limited to generating
low-level straight-line code, which is an easy target for cor-
rectness validation and cost estimation. Perhaps the closest
work to ours is the Synapse tool [9], which supports a richer
space of programs, but requires extensive guidance from the
user (in the form of meta-sketches), and relies on bounded
reasoning, which can only provide correctness and optimality
guarantees for a finite set of inputs. In contrast, we use type-
based verification and resource analysis techniques, which
enable RESYN to handle high-level recursive programs and
provide guarantees for an unbounded set of inputs.
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