
This paper is included in the Proceedings of the
16th USENIX Conference on File and Storage Technologies.

February 12–15, 2018 • Oakland, CA, USA
ISBN 978-1-931971-42-3

Open access to the Proceedings of
the 16th USENIX Conference on
File and Storage Technologies

is sponsored by USENIX.

Towards Robust File System Checkers
Om Rameshwar Gatla, Muhammad Hameed, and Mai Zheng,

New Mexico State University; Viacheslav Dubeyko, Adam Manzanares,
Filip Blagojevic, Cyril Guyot, and Robert Mateescu, Western Digital Research

https://www.usenix.org/conference/fast18/presentation/gatla

https://www.usenix.org/conference/fast18/presentation/gatla

Towards Robust File System Checkers

Om Rameshwar Gatla†, Muhammad Hameed†, Mai Zheng†,
Viacheslav Dubeyko‡, Adam Manzanares‡, Filip Blagojevic‡, Cyril Guyot‡, Robert Mateescu‡

†New Mexico State University ‡Western Digital Research

Abstract
File systems may become corrupted for many reasons

despite various protection techniques. Therefore, most
file systems come with a checker to recover the file sys-
tem to a consistent state. However, existing checkers
are commonly assumed to be able to complete the repair
without interruption, which may not be true in practice.

In this work, we demonstrate via fault injection ex-
periments that checkers of widely used file systems may
leave the file system in an uncorrectable state if the re-
pair procedure is interrupted unexpectedly. To address
the problem, we first fix the ordering issue in the undo
logging of e2fsck, and then build a general logging li-
brary (i.e., rfsck-lib) for strengthening checkers. To
demonstrate the practicality, we integrate rfsck-lib

with existing checkers and create two new checkers: (1)
rfsck-ext, a robust checker for Ext-family file systems,
and (2) rfsck-xfs, a robust checker for XFS file sys-
tem, both of which require only tens of lines of modi-
fication to the original versions. Both rfsck-ext and
rfsck-xfs are resilient to faults in our experiments.
Also, both checkers incur reasonable performance over-
head (i.e., up to 12%) comparing to the original unre-
liable versions. Moreover, rfsck-ext outperforms the
patched e2fsck by up to nine times while achieving the
same level of robustness.

1 Introduction
Achieving data integrity is critical for computer systems
ranging from a single desktop to large-scale distributed
storage clusters [21]. In order to make sense of the ever
increasing amount of data stored, it is common to use
local (e.g., Ext4 [4], XFS [70], F2FS [49]) and multi-
node file systems (e.g., HDFS [66], Ceph [74], Lus-
tre [9]) to organize the data on top of storage devices.
Although file systems are designed to maintain the data
integrity [36, 38, 45, 60, 72, 75], situations arise when
the file system metadata needs to be checked for in-
tegrity. Such situations may be caused by power out-

ages, server crashes, latent sector errors, software bugs,
etc [19, 20, 31, 51, 54].

File system checkers, such as e2fsck for Ext-family
file systems [3], serve as the last line of defense to re-
cover a corrupted file system back to a healthy state [54].
They contain intimate knowledge of file system metadata
structures, and are commonly assumed to be able to com-
plete the repair without interruption.

Unfortunately, the same issues that lead to file system
inconsistencies (e.g., power outages or crashes), can also
occur during file system repair. One real-world example
happened at the High Performance Computing Center in
Texas [17]. In this accident, multiple Lustre file systems
suffered severe data loss after power outages: the first
outage triggered the Lustre checker (lfsck [6]) after the
cluster was restarted, while another outage interrupted
lfsck and led to the downtime and data loss. Because
Lustre is built on top of a variant of Ext4 (ldiskfs [9]),
and lfsck relies on e2fsck to fix local inconsistencies
on each node, the checking and repairing is complicated
(e.g., requiring several days [17]). As of today, it is still
unclear which step of lfsck/e2fsck caused the uncor-
rectable corruptions. With the trend of increasing the
storage capacity and scaling to more and more nodes,
checking and repairing file systems will likely become
more time-consuming and thus more vulnerable to faults.
Such accidents and observation motivate us to remove
the assumption that file system checkers can always fin-
ish normally without interruption.

Previous research has demonstrated that file system
checkers themselves are error-prone [27, 42]. File sys-
tem specific approaches have also been developed that
use higher level languages to elegantly describe file sys-
tem repair tasks [42]. In addition, efforts have also been
made to speed up the repair procedure, which leads to
a smaller window of potential data loss due to an inter-
ruption [54]. Although these efforts improve file system
checkers, they do not address the fundamental issue of
improving the resilience of checkers in the face of unex-

USENIX Association 16th USENIX Conference on File and Storage Technologies 105

pected interruptions.
In this work, we first demonstrate that the check-

ers of widely used file systems (i.e., e2fsck [3] and
xfs repair [14]) may leave the file system in an uncor-
rectable state if the repair procedure is unexpectedly in-
terrupted. We collect corrupted file system images from
file system developers and additionally generate test im-
ages to trigger the repair procedure. Moreover, we de-
velop rfsck-test, an automatic fault injection tool, to
systematically inject faults during the repair, and thus
manifest the vulnerabilities.

To address the problem exposed in our study, we an-
alyze the undo logging feature of e2fsck in depth, and
identify an ordering issue which jeopardizes its effective-
ness. We fix the issue and create a patched version called
e2fsck-patch which is truly resilient to faults.

However, we find that e2fsck-patch is inherently
suboptimal as it requires extensive sync operations. To
address the limitation, and to improve the checkers of
other file systems, we design and implement rfsck-lib,
a general logging library with a simple interface. Based
on the similarities among checkers, rfsck-lib decou-
ples the logging from the repairing, and provides an in-
terface to log the repairing writes in fine granularity.

To demonstrate the practicality, we integrate
rfsck-lib with existing checkers and create two
new checkers: (1) rfsck-ext, a robust checker for Ext-
family file systems, which adds 50 lines of code (LoC)
to e2fsck; and (2) rfsck-xfs, a robust checker for
XFS file system, which adds 15 LoC to xfs repair.1

Both rfsck-ext and rfsck-xfs are resilient to faults
in our experiments. Also, both checkers incur reasonable
performance overhead (i.e., up to 12%) compared to
the original unreliable versions. Moreover, rfsck-ext
outperforms e2fsck-patch by up to nine times while
achieving the same level of fault resilience.

The rest of the paper is organized as follows. First, we
introduce the background of file system checkers (§2).
Next, we describe rfsck-test and study e2fsck and
xfs repair (§3). We analyze the ordering issue of
the undo logging of e2fsck in §4. Then, we introduce
rfsck-lib and integrate it with existing checkers (§5).
We evaluate rfsck-ext and rfsck-xfs in §6, and dis-
cuss several issues in §7. Finally, we discuss related work
(§8) and conclude (§9).

2 Background
Most file systems employ checkers to check and repair
inconsistencies. The checkers are usually file system
specific, and they examine different consistency rules de-
pending on the metadata structures. We use two rep-
resentative checkers as concrete examples to illustrate

1The prototypes of rfsck-test, e2fsck-patch, rfsck-lib,
rfsck-ext, and rfsck-xfs are publicly available [10].

the complexity as well as the potential vulnerabilities of
checkers in this section.

2.1 Workflow of e2fsck
e2fsck is the checker of the widely used Ext-family file
systems. It first replays the journal (in case of Ext3 and
Ext4) and then restarts itself. Next, e2fsck runs the fol-
lowing five passes in order:
Pass-1: Scan the file system and check inodes. e2fsck
scans the entire volume and stores information of all in-
odes into a set of bitmaps. In addition, it performs four
sub-passes to generate a list of duplicate blocks and their
owners, check the integrity of extent trees, etc.
Pass-2: Check directory structure. Based on the
bitmap information, e2fsck iterates through all direc-
tory inodes and checks a set of rules for each directory.
Pass-3: Check directory connectivity. e2fsck first
checks if a root directory is available; if not, a new root
directory is created and is marked “done”. Then it tra-
verses the directory tree, checks the reachability of each
directory inode, breaks directory loops, etc.
Pass-4: Check reference counts. e2fsck iterates over
all inodes to validate the inode link counts. Also, it
checks the connectivity of the extended attribute blocks
and reconnects them if necessary.
Pass-5: Recalculate checksums and flush updates. Fi-
nally, e2fsck checks the repaired in-memory data struc-
tures against on-disk data structures and flushes neces-
sary updates to the disk.

2.2 Workflow of xfs repair

xfs repair is the checker of the popular XFS file sys-
tem.2 Similar to e2fsck, xfs repair fixes incon-
sistencies in seven passes (or phases), including: Pass-
1, superblock verification; Pass-2, replay logs, validate
maps and the root inode; Pass-3, check inodes in each
allocation group; Pass-4, check duplicate block alloca-
tions; Pass-5, rebuild the allocation group structure and
superblock; Pass-6, check inode connectivity; Pass-7,
verify and correct link counts.

Unlike e2fsck which is single-threaded,
xfs repair employs multi-threading in passes 2,
3, 6 and 7 to improve the performance. Nevertheless,
we can see that both checkers are complicated and may
be vulnerable to faults. For example, later passes may
depend on previous passes, and there is no atomicity
guarantee for related updates. We describe our method
for systematically exposing the vulnerabilities in §3.

2There is another utility called xfs check [14], which checks the
consistency without repairing; we do not evaluate it in this work as it is
impossible for the read-only utility to introduce additional corruption.

106 16th USENIX Conference on File and Storage Technologies USENIX Association

2.3 The Logging Support of Checkers
Some file system developers have envisioned the poten-
tial need of reverting the changes done to the file system.
For example, the “undo io manager” has been added to
the utilities of Ext-family file systems since 2007 [3, 15].
It can save the content of the location being overwritten
to an undo log before committing the overwrite.

However, due to the degraded performance as well as
the log format issues [2, 16], the undo feature has not
been integrated into e2fsck until recently. Starting from
v1.42.12, e2fsck includes a “-z” option to allow the
user to specify the path of the log file and enable log-
ging [3]. When enabled, e2fsck maintains an undo log
during the checking and repairing, and writes an undo
block to the log before updating any block of the im-
age. If e2fsck fails unexpectedly, the undo log can be
replayed via e2undo [3] to revert the undesired changes.

Given the undo logging, one might expect that an in-
terrupted e2fsck will not cause any issue. As we will
see in the next section, however, this is not true.

3 Are the Existing Checkers Resilient to
Faults?

In this section, we first describe our method for analyz-
ing the fault resilience of file system checkers (§3.1 -
§3.3), and then present our findings on e2fsck (§3.4)
and xfs repair (§3.5) .

3.1 Generating Corrupted Test Images
File system checkers are designed to repair corrupted file
systems, so the first step of testing checkers is to generate
a set of corrupted file system images to trigger the target
checker. We call this set of images as test images.

To generate test images, we use two methods. First,
some file system developers may provide test images to
perform regression testing of their checkers, which usu-
ally cover the most representative corruption scenarios as
envisioned by the developers [3]. We collect such default
test images to trigger the target checker if they are avail-
able. Additionally, we create test images by ourselves
using the debug tools provided by the file system devel-
opers (e.g., debugfs [3] and xfs db [14]). These tools
allow “trashing” specific metadata structures with ran-
dom bits, which may cover corruption scenarios beyond
the default test images.

In both cases, the test images are generated as regu-
lar files instead of real physical disks, which makes the
testing more efficient.

3.2 Interrupting Checkers
Generating corrupted test images solves only one part of
the problem. Another challenge in evaluating the fault
resilience is how to interrupt checkers in a systematic and

controllable way. To this end, we emulate the effect of
faults using software.

To make the emulation precise and reasonable, we fol-
low the “clean power fault” model [80], which assumes
that there is a minimal atomic unit of write operations
(e.g., 512B or 4KB). Under this model, the size of data
written to the on-disk file system is always an integer
multiple of the minimal atomic block. A fault can occur
at any point during the repair procedure of the checker;
once a fault happens, all atomic blocks committed before
the fault are durable without corruption, and all blocks
after the fault have no effect on the media.

Apparently, this is an idealized model under power
outages or system crashes. More severe damage (e.g.,
reordering or corruption of committed blocks) may hap-
pen in practice [61, 73, 77, 81, 82]. However, such clear
model can serve as a conservative lower bound of the
failure impact. In other words, file system checkers must
be able to handle this fault model gracefully before ad-
dressing more aggressive fault models.

Based on the fault model, we build a fault injection
tool called rfsck-test using a customized driver [8],
which has two modes of operation as follows:

Basic mode: This is used for testing a checker without
logging support. In this mode, the target checker writes
to the test image and generates I/O commands through
the customized driver. rfsck-test records the I/O com-
mands generated during the execution of the checker in
a command history file, and replays a prefix of the com-
mand history (i.e., partial commands) to a copy of the
initial test image, which effectively generates the effect
of an interrupted checker on the test image. For each
command history, we exhaustively replay all possible
prefixes, and thus generate a set of interrupted images
which correspond to injecting faults at different points
during the execution of the checker.

Advanced mode: This is used for testing a checker with
logging support. In this mode, the target checker writes
to the test image as well as its log file. rfsck-test

records the commands sent to both the image and the log
in the command history. During the replay, rfsck-test
selects a prefix of the command history, and replays the
partial commands either to a copy of the initial test image
or to a copy of the initial log, depending on the original
destination of the commands. In this way, rfsck-test
generates the effect of an interrupted checker on both the
test image and the log. Moreover, rfsck-test replays
the log to the test image, which is necessary for the log-
ging to take effect.

3.3 Summary of Testing Framework
Putting it all together, we summarize our framework for
testing the fault resilience of checkers with and without

USENIX Association 16th USENIX Conference on File and Storage Technologies 107

partial cmd

I/O cmd

test
img

(1)
copy

(3) reference img

(7) interrupted img

(5)
copy

(9) repaired img

(10) compare
(4)

record
(6)
replay

rfsck-test (basic mode)

(8) fsck
log

I/O cmd
rfsck-test (advanced mode)

fsck w/ logging

test
img

(a) (b)

(2) fsck

record & replay of log

Figure 1: (a) Testing the fault resilience of a file system checker (fsck) without logging support. There are ten
steps: (1) make a copy of the test image which contains a corrupted file system; (2) run fsck on the test image copy;
(3) store the image generated in step 2 as the reference image; (4) record the I/O commands generated during the
fsck; (5) make another copy of the test image; (6) replay partial commands to emulate the effect of an interrupted fsck;
(7) store the image generated in step 6 as the interrupted image; (8) run fsck on the interrupted image; (9) store the
image generated in step 8 as the repaired image; (10) compare the repaired image with the reference image to identify
mismatches. (b) Testing fsck with logging support. The workflow is similar except that rfsck-test interrupts the I/O
commands sent to both the test image and the log, and the log is replayed between steps 7 and 8.

logging support as follows:

Testing checkers without logging support: As shown
in Figure 1a, there are ten steps: (1) we make a copy
of the test image which contains a corrupted file system;
(2) the target checker (i.e., fsck) is executed to check
and repair the original corruption on the copy of the test
image; (3) after fsck finishes normally in the previ-
ous step, the resulting image is stored as the reference
image;3 (4) during the checking and repairing of fsck,
the fault injection tool rfsck-test operates in the ba-
sic mode, which records the I/O commands generated
by fsck in a command history file; (5) we make an-
other copy of the original test image; (6) rfsck-test
replays partial commands recorded in step 4 to the new
copy of the test image, which emulates the effect of an
interrupted fsck; (7) the image generated in step 6 is
stored as the interrupted image; (8) fsck is executed
again on the interrupted image to fix any repairable is-
sues; (9) the image generated in step 8 is stored as the
repaired image; (10) finally, we compare the file system
on the repaired image with that on the reference image to
identify any mismatches.

The comparison in step 10 is first performed via the
diff command. If a mismatch is reported, we further
verify it manually. Note that in step 8 we have run fsck

without interruption, so a mismatch implies that there is
some corruption which cannot be recovered by fsck.

Testing checkers with logging support: The workflow
of testing a checker with logging support is similar. As
shown in Figure 1b, rfsck-test operates in the ad-
vanced mode, which records the I/O commands sent to
both the test image and the log and emulates the effect of

3It is possible that a checker may not be able to fully repair a cor-
rupted file system even without interruption [27, 42]. So we simply use
the result of an uninterrupted repair as a criterion in this work.

interruption on both places. Also, between steps 7 and 8,
the (interrupted) log is replayed to the test image to make
the logging take effect. The other steps are the same.

3.4 Case Study I: e2fsck

In this section, we apply the testing framework to study
e2fsck. As discussed in §2.3, e2fsck has recently
added the undo logging support. For clarity, we name the
original version without undo logging as e2fsck, and the
version with undo logging as e2fsck-undo.

To trigger the checker, we collect 175 Ext4 test im-
ages from e2fsprogs v1.43.1 [3] as inputs. The sizes
of these images range from 8MB to 128MB, and the file
system block size is 1KB. To emulate faults on storage
systems with different atomic units, we inject faults at
two granularities: 512B and 4KB. In other words, we in-
terrupt e2fsck/ e2fsck-undo after every 512B or 4KB
of an I/O transfer command. Since the file system block
is 1KB, we do not break file system blocks when inject-
ing faults at the 4KB granularity.

First, we study e2fsck using the method in Figure 1a.
As described in §3.3, for each fault injected (i.e., each
interruption) we run e2fsck again and generate one re-
paired image. Because the repair procedure usually re-
quires updating multiple file system blocks, it can of-
ten be interrupted at multiple points depending on the
fault injection granularity. Therefore, we usually gener-
ate multiple repaired images from one test image.

For example, to fix the test image “f dup” (block
claimed by two inodes), e2fsck needs to update 16KB
in total. At the fault injection granularity of 512B, we
generate 32 interrupted images (and consequently 32 re-
paired images). The last fault is injected after all 16KB
blocks, which leads to a repaired image equivalent to the

108 16th USENIX Conference on File and Storage Technologies USENIX Association

Fault injection # of Ext4 # of repaired # of images reporting corruption
granularity test images images generated test images repaired images

512 B 175 25,062 34 240
4 KB 175 3,192 17 37

Table 1: Counts of images in testing e2fsck at two fault injection granularities. This table shows the number of re-
paired images (3rd column) generated from the 175 Ext4 test images when injecting faults at 512B/4KB granularities;
the last two columns show the number of test images and repaired images reporting corruption respectively.

Corruption test images repaired images
Type 512 B 4 KB 512 B 4 KB

cannot mount 20 1 41 3
data corruption 9 5 107 10
misplacement 9 11 82 23

others 1 1 10 1

Table 2: Classification of corruption. This table shows
the number of test images and repaired images reporting
different corruptions at two fault injection granularities.

reference image without interruption. Similarly, at the
4KB granularity, we generate 4 repaired images.

For every test image, we generate a number of re-
paired images and compare each of them with the cor-
responding reference image. If the comparison reports
a mismatch, it implies that the repaired image contains
uncorrectable corruption. We count the number of re-
paired images reporting such corruption. Moreover, if at
least one repaired image contains uncorrectable corrup-
tion, we mark the test image as reporting corruption, too.

Table 1 summarizes the counts of images in testing
e2fsck at the two fault injection granularities. The to-
tal number of repaired images generated from the 175
Ext4 test images is shown in the third column. We can
see that at the 512B granularity there are more repaired
images (25,062) because the repairing procedure is in-
terrupted more frequently, while at the 4KB granularity
only 3,192 repaired images are generated. Also, more
test images report corruption at the 512B granularity (34
> 17). This is because the repair commands are broken
into smaller pieces, and thus it is more challenging to
maintain consistency when interrupted.

Table 2 further classifies the corruption into four types
and shows the number of test images and repaired im-
ages reporting each type. Among the four types, data
corruption (i.e., a file’s content is corrupted) and mis-
placement (i.e., a file is either in the“lost+found” folder
or completely missing) are the common ones. The most
severe corruption is cannot mount (i.e., the whole file
system volume becomes not mountable). Such corrup-
tion has been observed at both fault injection granulari-
ties. In other words, interrupting e2fsck may lead to an
unmountable image, even when a fault cannot break the

Fault injection # of images reporting corruption
granularity e2fsck e2fsck-undo

512 B 34 34
4 KB 17 15

Table 3: Comparison of e2fsck and e2fsck-undo. This
table compares the number of test images reporting cor-
ruption under e2fsck and e2fsck-undo.

superblock because the 4KB fault granularity is larger
than the 1KB superblock.

Next, to see if the undo logging can avoid the cor-
ruption, we use the method in Figure 1b to study
e2fsck-undo. We focus on the test images which re-
port corruption when testing e2fsck (i.e., the 34 and 17
test images in Table 1).

Table 3 compares the number of test images reporting
corruption under e2fsck and e2fsck-undo. Surpris-
ingly, we observe a similar amount of corruption. For
example, all 34 images which report corruption when
testing e2fsck at the 512B granularity still report cor-
ruption under e2fsck-undo. We defer the analysis of
the root cause to §4.

3.5 Case Study II: xfs repair

We have also applied the testing framework to study
xfs repair. Since xfs repair does not support log-
ging, only the method in Figure 1a is used.

To generate test images, we create 20 clean XFS im-
ages first. Each image is 100MB, and the file system
block size is 1KB (same as the Ext4 test images). We
use the blocktrash command of xfs db [14] to flip 2
random bits on the metadata area of each image. In this
way, we generate 20 corrupted XFS test images in total.

Table 4 summarizes the total number of repaired im-
ages generated from the XFS test images at two fault in-
jection granularities. We use 3 test images to inject faults
at the 512B granularity, and 17 images for the 4KB gran-
ularity. Similar to the Ext4 case, the smaller granularity
(i.e., 512B) leads to more repaired images (i.e., 3 test im-
ages lead to 1,127 repaired images). The table also shows
the number of test images and repaired images reporting
corruption. We can see that there are uncorrectable cor-
ruptions under both granularities, same as the Ext4 case.

USENIX Association 16th USENIX Conference on File and Storage Technologies 109

Fault injection # of XFS # of repaired # of images reporting corruption
injection test images images generated test images repaired images

512 B 3 1,127 2 443
4 KB 17 1,409 12 737

Table 4: Counts of images in testing xfs repair at two fault injection granularities. This table shows the number
of repaired images (3rd column) generated from the XFS test images when injecting faults at 512B/4KB granularities;
the last two columns show the number of test images and repaired images reporting corruption respectively.

/*open undo log*/
undo_open(...){

open(...); /*no O_SYNC*/
}
...
/*fix 1st inconsistency*/
undo_write_blk64(...){

/*write to undo log asynchronously*/
undo_write_tdb(...){

...
pwrite(...); /*no fsync()*/

}
/*write to fs image asynchronously*/
io_channel_write_blk64(...){...}

}
/*fix 2nd, 3rd, ... inconsistencies*/
...

/*sync buffered writes to fs image*/
ext2fs_flush(...){...}
/*close undo log*/
undo_close(...){...}

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.

Figure 2: Workflow of the undo logging in e2fsck-
undo. The writes to the log (line 9 -12) and the writes
to the file system image (line 14) are asynchronous, and
there is no ordering guarantee between the writes.

4 Why Does the Existing Undo Logging
Not Work?

The study in §3 shows that even the checkers of some
most popular file systems are not resilient to faults. This
is consistent with other studies on the catastrophic fail-
ures of real-world systems [41, 44], which find that the
recovery procedures themselves are often imperfect, and
sometimes “the cure is worse than the disease” [44].

One way to handle the faults and provide crash consis-
tency is write-ahead logging (WAL) [58], which has been
widely used in databases [12] and journaling file sys-
tems [72] for transactional recovery. While it is perhaps
not surprising that file system checkers without crash
consistency support (e.g., e2fsck and xfs repair) may
introduce additional corruptions upon interruption, it is
counterintuitive that e2fsck-undo, which has the undo
logging support, still cannot prevent cascading damage.

To understand the root cause, we analyze the source
code of e2fsck-undo as well as the runtime traces (e.g.,
system calls and I/O commands), and have found that
there is no ordering guarantee between the writes to the

undo log and the writes to the image being fixed, which
essentially invalidates the WAL mechanism.

To better illustrate the issue, Figure 2 shows a simpli-
fied workflow of the undo logging in e2fsck-undo. At
the beginning of checking (line 2-4), the undo log file
is opened without the O SYNC flag. To fix an inconsis-
tency, e2fsck-undo first gets the original content of the
block being repaired (not shown) and then writes it as an
undo block to the log asynchronously (line 9-12). Af-
ter the write to the log, it updates the file system image
asynchronously (line 14). The same pattern (i.e., locate
the block that needs to be repaired, copy the old content
to the log, and update the file system image) is repeated
for fixing every inconsistency. At the end, e2fsck-undo
flushes all buffered writes of the image to the persistent
storage (line 20) and closes the undo log (line 22).

While the extensive asynchronous writes (line 6-17) is
good for performance, it is problematic from the WAL’s
perspective. All asynchronous writes are buffered in
memory. Since the dirty pages may be flushed by ker-
nel threads due to memory pressure or timer expiry
(e.g., dirty writeback centisecs), or by the inter-
nal flushing routine of the host file system, there is no
strict ordering guarantee among the buffered writes. In
other words, for every single fix, the writes to the log
and the writes to the file system image may reach the
persistent storage in an arbitrary order. Consequently,
when e2fsck-undo is interrupted, the file system image
may have been modified without the appropriate undo
blocks recorded. Because the WAL mechanism works
only if a log block reaches the persistent storage before
the updated data block it describes, the lack of ordering
guarantee between the writes to the log and the writes to
the image invalidates the WAL mechanism. As a result,
the existing undo logging does not work as expected.

5 Robust File System Checkers
In this section, we describe our method to address the
problem exposed in §3 and §4.

First, we fix the ordering issue of e2fsck-undo by en-
forcing necessary sync operations. For clarity, we name
the version with our patch as e2fsck-patch.

Next, we observe that although e2fsck-patch may
provide the desired robustness, it inherently requires ex-
tensive synchronized I/O, which may hurt the perfor-

110 16th USENIX Conference on File and Storage Technologies USENIX Association

(a) e2fsck-undo (b) e2fsck-patch (c) rfsck-lib

time fs
img log

a block written
to the fs img

a sync
operation

a safe
transaction

a sync operation b/w
safe transactionslog

repair blk1

log

repair blk2

repair blk3

undo blk1

undo blk2

undo blk3

repair blk1

repair blk2

repair blk3

undo blk1

undo blk2

undo blk3
repair blk1

repair blk2

repair blk3

redo blk1

redo blk2

redo blk3
a block written
to the log

Figure 3: Comparison of different logging schemes. This figure compares different logging schemes using a
sequence of blocks written to the file system image (i.e., “fs img”) and the log: (a) e2fsck-undo is the logging scheme
of e2fsck, which does not have the necessary ordering guarantee between the writes to the log and the writes to the file
system image; (b) e2fsck-patch guarantees the correct ordering between each undo block (e.g., “undo blk1”) and the
corresponding repair block (e.g., “repair blk1”) by enforcing a sync operation (i.e., the red line) after each write of
an undo block; (c) rfsck-lib uses redo logging to eliminate the frequent sync required in e2fsck-patch, and only syncs
after a safe transaction which includes a set of blocks constituting a consistent update.

mance severely. To address the limitation, and to pro-
vide a generic solution to the checkers of other file
systems, we design and implement rfsck-lib, a gen-
eral logging library with a simple interface. Different
from e2fsck-patch which interleaves the writes to the
log (i.e., log writes) and the writes to the image being
repaired (i.e., repair writes), rfsck-lib makes use of
the similarities among checkers to decouple the logging
from the repairing of the file system, and provides fine-
grained control of logging.

To demonstrate the practicality, we use rfsck-lib to
strengthen existing checkers and create two new check-
ers: (1) rfsck-ext, a robust checker for Ext-series file
systems, and (2) rfsck-xfs, a robust checker for XFS
file system, both of which require only a few lines of
modification to the original versions.

5.1 Goals
While there are many desired objectives, rfsck-lib is
designed to meet the three key goals as follows:

Robustness: Unlike existing checkers which may in-
troduce uncorrectable corruptions when interrupted, we
expect checkers integrated with rfsck-lib to be re-
silient to faults. We believe such robustness should be
of prime concern for file system practitioners besides the
heavily studied performance issue [54].

Performance: Guaranteeing the robustness may come
at the cost of performance, because it almost inevitably
requires additional operations. However, the perfor-
mance overhead should be reduced to minimum, which
is particularly important for production environments.

Compatibility: We expect rfsck-lib to be compati-
ble to existing file systems and checkers. For example,
no change to the existing on-disk layouts or repair rules
is needed. While such compatibility may sacrifice some
flexibility and optimization opportunities, it directly en-
ables improving the robustness of many widely used sys-
tems in practice.

5.2 e2fsck-patch: Fixing the Ordering Is-
sue in e2fsck-undo

As discussed in §4, e2fsck-undo does not guarantee the
necessary ordering between log writes and repair writes.
Figure 3a illustrates the scenario using a sequence of
writes. In this example, three blocks are written to the
file system image (i.e., “fs img”) to repair inconsisten-
cies (i.e., “repair blk1” to “repair blk3”). Meanwhile,
three blocks are written to the undo log (i.e., “undo blk1”
to “undo blk3”) to save the original content of the blocks
being overwritten, for the purpose of undoing changes in
case the repair fails. Because all blocks are written asyn-
chronously, the repair blocks may reach the persistent
storage before the corresponding undo blocks, which es-
sentially invalidate the undo logging scheme. Although
there is a sync operation at the end to the file system im-
age (i.e., the red solid line), it cannot prevent the previous
buffered blocks from reaching the persistent storage out
of the desired order.

A naive way to solve the issue is to use a synchronous
write for each block. However, this is overkill. As long
as an undo block (e.g., “undo blk1”) becomes persistent ,
it is unnecessary for the corresponding repair block (e.g.,

USENIX Association 16th USENIX Conference on File and Storage Technologies 111

“repair blk1”) to be written synchronously. Therefore,
we only enforce synchronized I/O for the undo log file.

Specifically, we add the O SYNC flag when opening the
undo log file, which is equivalent to adding an fsync

call after each write to the log [7]. As shown in Fig-
ure 3b, the simple patch guarantees that a repair block
is always written after the corresponding undo block be-
comes persistent. On the other hand, all repair blocks are
still written asynchronously. In this way, e2fsck-patch
fixes e2fsck-undo with minimum modification.

5.3 rfsck-lib: A General Library for
Strengthening File System Checkers

While the logging scheme of e2fsck-patch may im-
prove the fault resilience, it has two limitations. First, the
log writes and the repair writes are interleaved. Conse-
quently, it requires extensive synchronized I/O to main-
tain the correct ordering (e.g., three sync operations are
required in Figure 3b), which may incur severe perfor-
mance overhead. Second, as part of e2fsck, the logging
feature is closely tied to Ext-family file systems, and thus
it cannot benefit other file system checkers directly. We
address the limitations by building a general logging li-
brary called rfsck-lib.

5.3.1 Similarities Among File System Checkers
Different file systems usually vary a lot in terms of on-
disk layouts and consistency rules. However, there are
similarities among different checkers, which makes de-
signing a general and efficient solution possible.

First of all, as a user-level utility, file system checkers
always repair corrupted images through a limited number
of system calls, which are irrelevant to file systems’ inter-
nal structures and consistency rules. Moreover, based on
our survey on popular file system checkers (e.g., e2fsck,
xfs repair, fsck.f2fs), we find that they always use
write system calls (e.g., pwrite and its variants) instead
of other memory-based system calls (e.g., mmap, msync).
Therefore, only a few writes may cause potential cascad-
ing corruptions under faults. In other words, by focusing
on the writes, we may improve different checkers.

Second, there is natural locality in checkers. Simi-
lar to the cylinder groups of FFS [56], many modern
file systems have a layout consisting of relatively in-
dependent areas with an identical structure (e.g., block
groups of Ext4 [4], allocation groups of XFS [70], and
cubes of IceFS [52]). Among others, such common de-
sign enables co-locating related files to mitigate file sys-
tem aging [33, 68] while isolating unrelated files. From
the checker’s perspective, most consistency rules within
each area may be checked locally without referencing
other areas. Also, each type of metadata usually has its
unique structure and consistency rules (e.g., the rec len

of each directory entry in an Ext4 inode should be within

a range). These local consistency rules may be checked
independently without cross-checking other metadata.

Due to the locality, checkers usually consist of rela-
tively self-contained components. For example, e2fsck
includes five passes for checking different sets of consis-
tency rules (§2.1). Similarly, xfs repair includes seven
passes, and it forks multiple threads to check multiple al-
location groups separately (§2.2). Such locality exists
even without changing the file system layout or reorder-
ing the checking of consistency rules [54]. Therefore, it
is possible to split an existing checker into several pieces
and isolate their impact under faults.

Based on the observations above, we describe
rfsck-lib’s design in the following subsections.

5.3.2 Basic Redo Logging
A corrupted file system image is repaired by a checker
through a set of repair writes. If the checker finishes
without interruption, the set of writes turn the image back
to a consistent state. On the other hand, if the checker
is interrupted, only a subset of writes changes the im-
age, and the resulting state may become uncorrectable.
Therefore, the key of preventing uncorrectable states is
to maintain the atomicity of the checker’s writes. To this
end, rfsck-lib redirects the checker’s writes to a log
first, and then repairs the image based on the log. Essen-
tially, it implements a redo logging scheme [58].

As shown in Figure 3c, all repair writes are issued to
the redo log first (i.e., “redo blk1” to “redo blk3”). After
the write of the last redo block (i.e., “redo blk3”), a sync
operation (i.e., the red solid line) is issued to make the
redo blocks persistent. After the sync operation returns,
the image is repaired (i.e., “repair blk1” to “repair blk3”)
based on the redo log. Compared with e2fsck-patch

in Figure 3b, the log writes and the repair writes are sep-
arated, and the required number of sync operations is re-
duced from three to one. Such improvement in terms of
sync overhead can be more significant if more blocks on
the image need to be repaired.

5.3.3 Fine-grained Logging with Safe Transactions
While the basic redo logging scheme reduces the order-
ing constraint to minimum, there is one limitation: if a
fault happens before the final sync operation finishes, all
checking and repairing effort may be lost. In some com-
plicated cases where the checker may take hours to fin-
ish [54], the waste is undesirable. On the other hand, a
checker may be split into relatively independent pieces
due to the locality (§5.3.1). Therefore, rfsck-lib ex-
tends the basic redo logging with safe transactions.

A safe transaction is a set of repair writes which will
not lead to uncorrectable inconsistencies if they are writ-
ten to the file system image atomically. In the simplest
case, the whole checker (i.e., the complete set of all re-

112 16th USENIX Conference on File and Storage Technologies USENIX Association

header super-block in
de
x0

in
de
x1

in
de
x2

in
de
x3

in
de
x4

... redo
blk1

redo
blk2

redo
blk3

a fixed-sized index block variable-sized redo blocks

txn begin
txn end

header super-block in
de
x0

in
de
x1

in
de
x2

in
de
x3

in
de
x4

... redo
blk1

redo
blk2

redo
blk3

another fixed-sized index block

variable-sized redo blocks
Figure 4: The log format of rfsck-lib. The log includes a header, a superblock, fixed-sized index blocks, and
variable-sized redo blocks. Each index block includes a fixed number of indexes. Each index can either describe the
beginning/end of a transaction (i.e.,“txn begin”/“txn end”), or describe one variable-sized redo block. “index0” to
“index4” describe one safe transaction with three redo blocks (i.e.,“redo blk1” to “redo blk3”) in this example.

pair writes) is one safe transaction. At a finer granularity,
each pass of the checker (or the check of each allocation
group) may be considered as one safe transaction. While
a later pass may depend on the result of a previous pass,
the previous pass is executed without any dependency on
the later passes. Therefore, by guaranteeing the atomic-
ity of each pass as well as the ordering among pass-based
safe transactions, the repair writes may be committed in
several batches without introducing uncorrectable incon-
sistencies. In the extreme case, the checking and repair-
ing of each individual consistency rule may be consid-
ered as one safe transaction.

Figure 3c illustrates the safe transactions. In the sim-
plest case, all three redo blocks (i.e., “redo blk1” to “redo
blk3”) constitute one safe transaction, and only one sync
operation (i.e., the red solid line) is needed, same as the
basic redo logging (§5.3.2). At a finer granularity, the
first two redo blocks (i.e., “redo blk1” and “redo blk2”)
may constitute one safe transaction (e.g., updating an in-
ode and the corresponding bitmap), and the third block
itself (i.e., “redo blk3”) may be another safe transaction
(e.g., updating another inode). Another sync operation
(i.e., the red dash line) is issued between the two trans-
actions to guarantee the correct ordering. If a crash hap-
pens between the two sync operations, the first safe trans-
action (i.e., “redo blk1” and “redo blk2”) is still valid.
In this case, instead of re-calculating the rules and re-
generating the blocks, the checker can directly replay the
valid transaction from the log after restart.

In summary, a checker may be logged as one or more
safe transactions. Compared to the basic redo logging,
such fine-grained control avoids losing all recovery ef-
fort before the fault. On the other hand, maintaining the
atomicity as well as the ordering requires additional sync
operations. So there is a tradeoff between the transaction
granularity and the transaction overhead. Since differ-
ent systems may have different preferences, rfsck-lib
simply provides an interface to define safe transactions,
without restricting the number of transactions.

5.3.4 Log Format

To support the redo logging with safe transactions,
rfsck-lib uses a special log format extended from
e2fsck-undo. As shown in Figure 4, the log includes
a header, a superblock, fixed-sized index blocks, and
variable-sized redo blocks.

The header starts with a magic number to distinguish
the log from other files. Besides, it includes the offsets of
the superblock and the first index block, the total number
of index blocks, a flag showing whether the log has been
replayed, and a checksum of the header itself.

The superblock is copied from the file system image
to be repaired, which is used to match the log with the
image to avoid replaying an irrelevant log to the image.

The index block includes a fixed number of indexes.
Each index can describe the beginning of a transaction
(i.e., “txn begin”), the end of a transaction (i.e., “txn
end”), or one variable-sized redo block. Therefore, a
group of indexes can describe one safe transaction to-
gether. For example, in Figure 4 five indexes (i.e., “in-
dex0” to “index4”) describe one safe transaction with
three redo blocks (i.e.,“redo blk1” to “redo blk3”).

As shown in Table 5, an index has 16 bytes consisting
of three fields. To describe one redo block, the first field
(i.e., uint32 t cksum) stores a checksum of the redo
block, the second field (i.e., uint32 t size) stores its
size, and the third field (i.e., uint64 t fs lba) stores
its logical block address (LBA) in the file system image.

To describe “txn begin” or “txn end”, the first field
of the index is repurposed to store a transaction ID in-
stead of a checksum, which marks the boundary of in-
dexes belonging to the same transaction. The second
field (size) is set to zero. Since a valid redo block must
have a non-zero size, rfsck-lib can differentiate “txn
begin” or “txn end” indexes from those describing redo
blocks even if a transaction ID happens to collide with
a checksum. In addition, the “txn begin” index uses the
third field to denote whether the transaction has been re-
played or not, and the “txn end” index uses the third field
to store a checksum of all indexes in the transaction.

USENIX Association 16th USENIX Conference on File and Storage Technologies 113

Field Description
uint32 t cksum checksum of the redo block
uint32 t size size of the redo block
uint64 t fs lba LBA in the file system image

Table 5: The structure of an index.

Function Description
rfsck get sb get the superblock
rfsck open create a redo log
rfsck txn begin begin a safe transaction
rfsck write write a redo block
rfsck txn end end of a safe transaction
rfsck replay replay the redo log
rfsck close close the redo log

Table 6: The interface of rfsck-lib. rfsck get sb is a
wrapper function for invoking file-system-specific pro-
cedure to get the superblock, while the others are file-
system agnostic.

For each write of the checker, rfsck-lib creates an
index in the index block and then append the content of
the write to the area after the index block as a redo block.
Since the writes may have different sizes, the redo blocks
may vary in size as well. However, since all other meta-
data blocks (i.e., header, superblock, index blocks) have
known fixed sizes, the offset of a redo block in the log
can be identified by accumulating the sizes of all previ-
ous blocks. In other words, there is no need to maintain
the offsets of redo blocks in the log.

When an index block becomes full, another index
block is allocated after the previous redo blocks (which
are described by the previous index block). In this way,
rfsck-lib can support various numbers of writes and
transactions.

5.3.5 Interface

To enable easy integration with existing checkers,
rfsck-lib provides a simple interface. As shown in
Table 6, there are seven function calls in total. The
first function (rfsck get sb) is a wrapper for invoking
a file-system-specific procedure to get the superblock,
which is written to the second part of the log (Figure 4).
Since all checkers need to read the superblock anyway,
rfsck get sb can wrap around the existing procedure.
rfsck open is used to create a log file at a given path

at the beginning of the checker procedure. Internally,
rfsck-lib initializes the metadata blocks of the log.
rfsck txn begin is used to denote the beginning

of a safe transaction, which creates a “txn begin” in-
dex in the log. Similarly, rfsck txn end denotes the
end of a transaction, which generates a “txn end” in-
dex and sync all updates to the log. All writes be-

tween rfsck txn begin and rfsck txn end are re-
placed with rfsck write, which creates a redo block
and the corresponding index in the log.
rfsck replay is used to replay logged transactions

to the file system image. Besides, similar to the e2undo
utility [3], the replay functionality is also implemented
as an independent utility called rfsck-redo, which can
replay an existing (potentially incomplete) log to a file
system image (e.g., after the checker is interrupted).
rfsck-redo first verifies if the log belongs to the image
(based on the superblock). If yes, rfsck-redo further
verifies the integrity of the log based on metadata and
then replays valid transactions. Note that the additional
verifications are only needed when the log is replayed
by rfsck-redo. The rfsck replay function can skip
these verifications as it is invoked directly after the log-
ging by the (uninterrupted) checker.

Finally, rfsck close is used at the end of the checker
to release all resources used by rfsck-lib and exist.

5.3.6 Limitations
The current prototype of rfsck-lib is not thread-
safe. Therefore, if a checker is multi-threaded (e.g.,
xfs repair), using rfsck-lib may require additional
attention to avoid race conditions on logging. However,
as we will demonstrate in §5.4 and §6, rfsck-lib can
still be applied to strengthen xfs repair.

In addition, rfsck-lib only provides an interface,
which requires manual modification of the source code.
Since the modification is simple, we expect the manual
effort to be acceptable. Also, it is possible to use com-
piler infrastructures [11, 13] to automate the code instru-
mentation, which we leave as future work.

5.4 Integration with Existing Checkers
Strengthening an existing checker using rfsck-lib

is straightforward given the simple interface (§5.3.5).
To demonstrate the practicality, we first integrate
rfsck-lib with e2fsck, and create a robust checker
for Ext-family file systems (i.e., rfsck-ext).

There are potential writes to the file system image in
each pass of e2fsck (including the first scanning pass),
so we create a safe transaction for each pass. More-
over, within Pass-1 and Pass-2 (§2.1), there are a few
places where e2fsck explicitly flushes the writes to
the image and restarts scanning from the beginning (via
goto statement). In other words, the restarted scanning
(and subsequent passes) requires the previous writes to
be visible on the image. In this case, we insert ad-
ditional rfsck txn end and rfsck replay before the
goto statement to guarantee that previous writes are vis-
ible on the image for re-scanning. We add a “-R” option
to allow the user to specify the log path via command
line. In total, we add 50 LoC to e2fsck.

114 16th USENIX Conference on File and Storage Technologies USENIX Association

0

50

100

150

200

250

300

100	GB 200	GB 500	GB
File	System	Size

Ex
ec
ut
io
n	
Ti
m
e	
(s
ec
)

e2fsck e2fsck-undo e2fsck-patch rfsck-ext

1 1.09X

9.69X

1.12X
1 1.03X

5.92X

1.05X
1 1.01X 1.02X

9.18X

Figure 5: Performance comparison of e2fsck, e2fsck-
undo, e2fsck-patch, and rfsck-ext. This figure com-
pares the execution time of e2fsck, e2fsck-undo, e2fsck-
patch, and rfsck-ext. The y-axis shows the execution time
in seconds. The x-axis shows file system sizes. The num-
ber above each bar indicates the normalized time (rel-
ative to e2fsck). Note: e2fsck and e2fsck-undo are not
resilient to faults.

Similarly, we also integrate rfsck-lib with
xfs repair, and create a robust checker for XFS file
system (i.e., rfsck-xfs). As mentioned in (§2.2),
one feature of xfs repair is multi-threading: it forks
multiple threads to repair multiple allocation groups
in parallel. The threads update in-memory structures
concurrently, and the main thread writes all updates
to the image at the end. Although it is possible to
encapsulate each repair thread into one safe transaction,
doing so requires additional concurrency control. To
minimize the modification, we simply treat the whole
repair procedure as one transaction. Since all writes are
issued by the main thread, there is no race condition for
rfsck-lib. We also add a “-R” command line option.
In total, we add 15 LoC to xfs repair.

6 Evaluation
In this section, we evaluate rfsck-ext and rfsck-xfs

in terms of robustness (§6.1) and performance (§6.2).
Our experiments were conducted on a machine with

a Intel Xeon 3.00GHz CPU, 8GB main memory, and
two WD5000AAKS hard disks. The operating system
is Ubuntu 16.04 LTS with kernel v4.4. To evaluate the
robustness, we used the test images reporting corrup-
tion under e2fsck-undo (§3.4) and xfs repair (§3.5).
To evaluate the performance, we created another set of
images with practical sizes, and measured the execu-
tion time of e2fsck, e2fsck-undo, e2fsck-patch,
rfsck-ext, xfs repair, and rfsck-xfs. For each
checker, we report the average time of three runs.

In general, we demonstrate that both rfsck-ext

and rfsck-xfs can survive fault injection experi-
ments. Also, both checkers incur reasonable perfor-
mance overhead (i.e., up to 12%) compared to the orig-
inal unreliable versions. Moreover, rfsck-ext outper-

0
100
200
300
400
500
600

100	GB 200	GB 500	GB
File	System	Size

Ex
ec
ut
io
n	
Ti
m
e	
(s
ec
) xfs_repair rfsck-xfs

1 1.008X 1 1.002X

1 1.00004X

Figure 6: Performance comparison of xfs repair and
rfsck-xfs. This figure compares the execution time of
xfs repair and rfsck-xfs. The y-axis shows the execution
time in seconds. The x-axis shows file system sizes. The
number above each bar indicates the normalized time
(relative to xfs repair). Note: xfs repair is not resilient
to faults.

forms e2fsck-patch by up to 9 times while achieving
the same level of robustness.

6.1 Robustness
As discussed in §3, when injecting faults at the 4KB
granularity, 17 Ext4 test images report corruptions under
e2fsck (Table 1), and 12 XFS test images report cor-
ruptions under xfs repair (Table 4). We use these test
images to trigger rfsck-ext and rfsck-xfs, respec-
tively. Since both checkers have the logging support, we
use the method in Figure 1b to evaluate them.

For rfsck-ext, all 17 test images report no corrup-
tions. Similarly, for rfsck-xfs, all 12 test images report
no corruptions. This result verifies that rfsck-lib can
help improve the fault resilience of existing checkers.

6.2 Performance
The test images used in §3 are created as regular files, and
they are small in size (i.e., 8MB to 128MB). Therefore,
they are unsuitable for evaluating the execution time of
checkers. So we create another set of Ext4 and XFS test
images with practical sizes (i.e., 100G, 200GB, 500GB)
on real hard disks. We first fill up the entire file system by
running fs mark [5] for five times. Each time fs mark

fills up 20% of the capacity by creating directories and
files with a certain size. The file size is a random value
between 4KB to 1MB, which is relatively small in or-
der to maximize the number of inodes used. After filling
up the entire file system, we inject 2 random bit corrup-
tions to the metadata using either debugfs [1] (for Ext4)
or blocktrash [14] (for XFS). We measure the execu-
tion time of checkers on corrupted images, and verify
that the repair results of rfsck-ext and rfsck-xfs are
the same as that of the original checkers.

Figure 5 compares the execution time of e2fsck,
e2fsck-undo, e2fsck-patch, and rfsck-ext on dif-
ferent images. For each size of image, the bars represent
the execution time in seconds (y-axis). Also, the number

USENIX Association 16th USENIX Conference on File and Storage Technologies 115

above each bar shows the normalized execution time (rel-
ative to e2fsck). We can see that rfsck-ext incurs up
to 12% overhead, while e2fsck-patch may incur more
than 8 times overhead due to extensive sync operations.

Also, we can see that as the size of file system in-
creases, the overhead of rfsck-ext decreases. This
is because the execution time of rfsck-ext is largely
dominated by the scanning in Pass-1 (§2.1) which is pro-
portional to the file system size, similar to e2fsck [54].

Similarly, Figure 6 compares the execution time
of xfs repair and rfsck-xfs. We can see that
rfsck-xfs incurs up to 0.8% overhead, and the over-
head also decreases as the file system size increases.

Note that our aging method is relatively simple com-
pared to other aging techniques [33, 68]. Also, the 2-
random-bit corruption may not necessarily lead to exten-
sive repair operations of checkers. Therefore, the execu-
tion time measured here may not reflect the complexity
of checking and repairing real-world file systems (which
may take hours [35, 34, 54, 69]). We leave generating
more representative file systems as future work.

7 Discussion
Co-designing file systems and checkers. Recent work
has demonstrated the benefits of co-designing file sys-
tems and checkers. For example, by co-designing
rext3 and ffsck, ffsck may be 10 times faster than
e2fsck [54]. In contrast, rfsck-lib is designed to
be file system agnostic, which makes it directly appli-
cable to existing systems. We believe checkers may be
improved further in terms of both reliability and perfor-
mance by co-designing, and we leave it as future work.

Other reliability techniques. There are other tech-
niques which may mitigate the impact of an inconsistent
file system image or the loss of an entire image (e.g.,
replication [39]). However, maintaining the consistency
of local file systems and improving the checkers is still
important for many reasons. For example, a consistent
local file system is the building block of large-scale file
systems, and the local checker may be the foundation
of higher-level recovery procedures (e.g., lfsck [6]).
Therefore, our work is orthogonal to these other efforts.

Robustness. We evaluate the robustness of checkers
based on fault injection experiments in this work. The
test images we use are limited, and may not cover all cor-
ruption scenarios or trigger all code paths of the check-
ers. There are other techniques (e.g., symbolic execution
and formal verification) which might provide more cov-
erage, and we leave it as future work.

8 Related Work
Reliability of file system checkers. Gunawi et al. [42]
find that the Ext2 checker may create inconsistent or
even insecure repairs; they then propose a more elegant

checker (i.e., SQCK) based on a declarative query lan-
guage. Carreira et al. [27] propose a tool (i.e., SWIFT) to
test checkers using a mix of symbolic and concrete exe-
cution; they tested five popular checkers and found bugs
in all of them. Ma et al. [54] change the structure of Ext3
and co-design the checker, which enables faster checking
and thus narrows the window of vulnerability. Generally,
these studies consider the behavior of checkers during
normal executions (i.e., no interruption). Complimentar-
ily, we study checkers under faults.
Reliability of file systems. Great efforts have been put
towards improving the reliability of file systems [23, 29,
32, 36, 43, 51, 55, 57, 62, 67, 77, 79]. For example, Prab-
hakaran et al. [62] analyze the failure policies of four file
systems and propose the IRON file system which im-
plements a family of novel recovery techniques. Fryer
et al. [36] transform global consistency rules to local
consistency invariants and enable fast runtime checking.
CrashMonkey [55] provides a framework to automati-
cally test the crash consistency of file systems. Overall,
these research help understand and improve the reliabil-
ity of file systems, which may reduce the need for check-
ers. However, despite these efforts, checkers remain a
necessary component for most file systems.
Reliability of storage devices. In terms of storage de-
vices, research efforts are also abundant [19, 20, 30, 47,
63, 64]. For example, Bairavasundaram et al. [19, 20] an-
alyze the data corruption and latent sector errors in pro-
duction systems containing a total of 1.53 million HDDs.
Besides HDDs, more recent work has been focused on
flash memory and solid state drives (SSDs) [18, 22, 24,
25, 26, 28, 37, 40, 46, 48, 50, 53, 59, 65, 71, 73, 76, 78,
81, 82]. These studies provide valuable insights for un-
derstanding file system corruptions caused by hardware.

9 Conclusion
We have studied the behavior of file system checkers un-
der faults. We find that running the checker after an in-
terrupted repair may not return the file system to a valid
state. To address the issue, we have built a general log-
ging library which can help strengthen existing check-
ers with little modification. We hope our work will raise
the awareness of reliability vulnerabilities in storage sys-
tems, and facilitate building truly fault-resilient systems.

10 Acknowledgements
We thank the anonymous reviewers and Keith Smith (our
shepherd) for their insightful feedback. We also thank
Linux practitioners including Theodore Ts’o and Ric
Wheeler for the invaluable discussion. This work was
supported in part by NSF under grants CNS-1566554 and
CCF-1717630. Any opinions, findings, and conclusions
expressed in this material are those of the authors and do
not necessarily reflect the views of NSF.

116 16th USENIX Conference on File and Storage Technologies USENIX Association

References

[1] debugfs. http://man7.org/linux/man-pages/man8/
debugfs.8.html.

[2] Discussion with Theodore Ts’o at Linux FAST
Summit’17. https://www.usenix.org/conference/
linuxfastsummit17.

[3] E2fsprogs: Ext2/3/4 Filesystem Utilities. http:
//e2fsprogs.sourceforge.net/.

[4] Ext4 File System. https://ext4.wiki.kernel.org/
index.php/Main Page.

[5] fs mark: Benchmark file creation. https://github.
com/josefbacik/fs mark.

[6] LFSCK: an online file system checker for Lus-
tre. https://github.com/Xyratex/lustre-stable/blob/
master/Documentation/lfsck.txt.

[7] Linux Programmer’s Manual: O SYNC flag
for open. http://man7.org/linux/man-pages/man2/
open.2.html.

[8] Linux SCSI target framework (tgt). http://stgt.
sourceforge.net/.

[9] Lustre File System. http://opensfs.org/lustre/.

[10] Prototypes of rfsck-test, e2fsck-patch, refsck-lib,
refsck-ext, rfsck-xfs. https://www.cs.nmsu.edu/
∼mzheng/lab/lab.html.

[11] ROSE Compiler Infrastructure. http://rosecompiler.
org/.

[12] SQLite documents. http://www.sqlite.org/docs.
html.

[13] The LLVM Compiler Infrastructure. https://llvm.
org/.

[14] XFS File System Utilities. https:
//access.redhat.com/documentation/en-
US/Red Hat Enterprise Linux/6/html/
Storage Administration Guide/xfsothers.html.

[15] [PATCH 1/3] e2fsprogs: Add undo I/O man-
ager. http://lists.openwall.net/linux-ext4/2007/07/
25/2, 2007.

[16] [PATCH 16/31] e2undo: ditch tdb file, write every-
thing to a flat file. http://lists.openwall.net/linux-
ext4/2015/01/08/1, 2015.

[17] High Performance Computing Center (HPCC)
Power Outage Event. Email Annoucement by
HPCC, Monday, January 11, 2016 at 8:50:17
AM CST. https://www.cs.nmsu.edu/∼mzheng/
docs/failures/2016-hpcc-outage.pdf, 2016.

[18] Nitin Agarwal, Vijayan Prabhakaran, Ted Wobber,
John D. Davis, Mark Manasse, and Rina Panigrahy.
Design tradeoffs for SSD performance, 2008.

[19] Lakshmi N. Bairavasundaram, Andrea C. Arpaci-
Dusseau, Remzi H. Arpaci-Dusseau, Garth R.
Goodson, and Bianca Schroeder. An analysis of
data corruption in the storage stack. ACM Transac-
tions on Storage, 4(3):8:1–8:28, November 2008.

[20] Lakshmi N. Bairavasundaram, Garth R. Goodson,
Shankar Pasupathy, and Jiri Schindler. An analysis
of latent sector errors in disk drives. In Proceed-
ings of the 2007 ACM International Conference on
Measurement and Modeling of Computer Systems
(SIGMETRICS’07), pages 289–300, 2007.

[21] Luiz Andre Barroso and Urs Hoelzle. The Datacen-
ter As a Computer: An Introduction to the Design
of Warehouse-Scale Machines. Morgan and Clay-
pool Publishers, 1st edition, 2009.

[22] Hanmant P Belgal, Nick Righos, Ivan Kalastirsky,
Jeff J Peterson, Robert Shiner, and Neal Mielke. A
new reliability model for post-cycling charge reten-
tion of flash memories. In Proceedings of the 40th
Annual Reliability Physics Symposium, pages 7–20.
IEEE, 2002.

[23] James Bornholt, Antoine Kaufmann, Jialin
Li, Arvind Krishnamurthy, Emina Torlak, and
Xi Wang. Specifying and checking file system
crash-consistency models. Proceedings of the 21st
International Conference on Architectural Sup-
port for Programming Languages and Operating
Systems (ASPLOS’16), 51(4):83–98, 2016.

[24] Adam Brand, Ken Wu, Sam Pan, and David Chin.
Novel read disturb failure mechanism induced by
FLASH cycling. In Proceedings of the 31st An-
nual Reliability Physics Symposium, pages 127–
132. IEEE, 1993.

[25] Yu Cai, Erich F. Haratsch, Onur Mutlu, and Ken
Mai. Error Patterns in MLC NAND Flash Memory:
Measurement, Characterization, and Analysis. In
Proceedings of the Conference on Design, Automa-
tion and Test in Europe (DATE’12), pages 521–526,
2012.

USENIX Association 16th USENIX Conference on File and Storage Technologies 117

http://man7.org/linux/man-pages/man8/debugfs.8.html
http://man7.org/linux/man-pages/man8/debugfs.8.html
 https://www.usenix.org/conference/linuxfastsummit17
 https://www.usenix.org/conference/linuxfastsummit17
 http://e2fsprogs.sourceforge.net/
 http://e2fsprogs.sourceforge.net/
https://ext4.wiki.kernel.org/index.php/Main_Page
https://ext4.wiki.kernel.org/index.php/Main_Page
 https://github.com/josefbacik/fs_mark
 https://github.com/josefbacik/fs_mark
 https://github.com/Xyratex/lustre-stable/blob/master/Documentation/lfsck.txt
 https://github.com/Xyratex/lustre-stable/blob/master/Documentation/lfsck.txt
 http://man7.org/linux/man-pages/man2/open.2.html
 http://man7.org/linux/man-pages/man2/open.2.html
http://stgt.sourceforge.net/
http://stgt.sourceforge.net/
 http://opensfs.org/lustre/
 https://www.cs.nmsu.edu/~mzheng/lab/lab.html
 https://www.cs.nmsu.edu/~mzheng/lab/lab.html
 http://rosecompiler.org/
 http://rosecompiler.org/
http://www.sqlite.org/docs.html
http://www.sqlite.org/docs.html
 https://llvm.org/
 https://llvm.org/
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Storage_Administration_Guide/xfsothers.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Storage_Administration_Guide/xfsothers.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Storage_Administration_Guide/xfsothers.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Storage_Administration_Guide/xfsothers.html
 http://lists.openwall.net/linux-ext4/2007/07/25/2
 http://lists.openwall.net/linux-ext4/2007/07/25/2
 http://lists.openwall.net/linux-ext4/2015/01/08/1
 http://lists.openwall.net/linux-ext4/2015/01/08/1
 https://www.cs.nmsu.edu/~mzheng/docs/failures/2016-hpcc-outage.pdf
 https://www.cs.nmsu.edu/~mzheng/docs/failures/2016-hpcc-outage.pdf

[26] Yu Cai, Gulay Yalcin, Onur Mutlu, Erich F
Haratsch, Osman Unsal, Adrian Cristal, and Ken
Mai. Neighbor-cell assisted error correction for
MLC NAND flash memories. In ACM SIGMET-
RICS Performance Evaluation Review, volume 42,
pages 491–504. ACM, 2014.

[27] João Carlos Menezes Carreira, Rodrigo Rodrigues,
George Candea, and Rupak Majumdar. Scalable
testing of file system checkers. In Proceedings of
the 7th ACM European Conference on Computer
Systems (EuroSys’12), pages 239–252, 2012.

[28] Feng Chen, David A. Koufaty, and Xiaodong
Zhang. Understanding intrinsic characteristics and
system implications of flash memory based solid
state drives. In Proceedings of the ACM Joint Inter-
national Conference on Measurement and Model-
ing of Computer Systems (SIGMETRICS’09), 2009.

[29] Haogang Chen, Daniel Ziegler, Tej Chajed, Adam
Chlipala, M Frans Kaashoek, and Nickolai Zel-
dovich. Using crash hoare logic for certifying the
fscq file system. In Proceedings of the 25th Sympo-
sium on Operating Systems Principles (SOSP’15),
pages 18–37. ACM, 2015.

[30] Peter M. Chen, Edward K. Lee, Garth A. Gib-
son, Randy H. Katz, and David A. Patterson.
RAID: high-performance, reliable secondary stor-
age. ACM Computing Surveys, 26(2):145–185,
June 1994.

[31] Vijay Chidambaram, Thanumalayan Sankara-
narayana Pillai, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. Optimistic Crash Con-
sistency. In Proceedings of the 24th ACM Sympo-
sium on Operating Systems Principles (SOSP’13),
Farmington, PA, November 2013.

[32] Vijay Chidambaram, Tushar Sharma, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau.
Consistency Without Ordering. In Proceedings of
the 10th Conference on File and Storage Technolo-
gies (FAST’12), February 2012.

[33] Alex Conway, Ainesh Bakshi, Yizheng Jiao,
William Jannen, Yang Zhan, Jun Yuan, Michael A.
Bender, Rob Johnson, Bradley C. Kuszmaul, Don-
ald E. Porter, and Martin Farach-Colton. File sys-
tems fated for senescence? nonsense, says science!
In Proceedings of the 15th USENIX Conference on
File and Storage Technologies (FAST’17), pages
45–58, 2017.

[34] GParted Forum. e2fsck is taking forever.
http://gparted-forum.surf4.info/viewtopic.php?id=
13613, 2009.

[35] JaguarPC Forum. How long does it take FSCK
to run?! http://forums.jaguarpc.com/hosting-
talk-chit-chat/14217-how-long-does-take-fsck-
run.html, 2006.

[36] Daniel Fryer, Kuei Sun, Rahat Mahmood, TingHao
Cheng, Shaun Benjamin, Ashvin Goel, and An-
gela Demke Brown. Recon: Verifying File Sys-
tem Consistency at Runtime. In Proceedings of the
10th Conference on File and Storage Technologies
(FAST’12), February 2012.

[37] Ryan Gabrys, Eitan Yaakobi, Laura M. Grupp,
Steven Swanson, and Lara Dolecek. Tackling intra-
cell variability in TLC flash through tensor product
codes. In Proceedings of IEEE International Sym-
posium of Information Theory, pages 1000–1004,
2012.

[38] Gregory R Ganger, Marshall Kirk McKusick,
Craig AN Soules, and Yale N Patt. Soft updates:
a solution to the metadata update problem in file
systems. ACM Transactions on Computer Systems
(TOCS’00), 18(2):127–153, 2000.

[39] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak
Leung. The Google File System. In Proceedings
of the 9th ACM Symposium on Operating Systems
Principles (SOSP’03), pages 29–43, 2003.

[40] Laura M. Grupp, Adrian M. Caulfield, Joel Coburn,
Steven Swanson, Eitan Yaakobi, Paul H. Siegel,
and Jack K. Wolf. Characterizing flash mem-
ory: anomalies, observations, and applications. In
Proceedings of the 42nd Annual IEEE/ACM In-
ternational Symposium on Microarchitecture (MI-
CRO’09), pages 24–33, 2009.

[41] Haryadi S Gunawi, Mingzhe Hao, Riza O Suminto,
Agung Laksono, Anang D Satria, Jeffry Adity-
atama, and Kurnia J Eliazar. Why does the cloud
stop computing? lessons from hundreds of service
outages. In Proceedings of ACM Symposium on
Cloud Computing (SoCC’16), pages 1–16, 2016.

[42] Haryadi S. Gunawi, Abhishek Rajimwale, An-
drea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. Sqck: A declarative file system checker.
In Proceedings of the 8th USENIX Conference
on Operating Systems Design and Implementation
(OSDI’08), pages 131–146, 2008.

[43] Haryadi S Gunawi, Cindy Rubio-González, An-
drea C Arpaci-Dusseau, Remzi H Arpaci-Dusseau,
and Ben Liblit. Eio: Error handling is occasionally
correct. In Proceedings of the 6th USENIX Confer-
ence on File and Storage Technologies (FAST’08),
volume 8, pages 1–16, 2008.

118 16th USENIX Conference on File and Storage Technologies USENIX Association

 http://gparted-forum.surf4.info/viewtopic.php?id=13613
 http://gparted-forum.surf4.info/viewtopic.php?id=13613
 http://forums.jaguarpc.com/hosting-talk-chit-chat/14217-how-long-does-take-fsck-run.html
 http://forums.jaguarpc.com/hosting-talk-chit-chat/14217-how-long-does-take-fsck-run.html
 http://forums.jaguarpc.com/hosting-talk-chit-chat/14217-how-long-does-take-fsck-run.html

[44] Zhenyu Guo, Sean McDirmid, Mao Yang,
Li Zhuang, Pu Zhang, Yingwei Luo, Tom Bergan,
Madan Musuvathi, Zheng Zhang, and Lidong
Zhou. Failure Recovery: When the Cure Is Worse
Than the Disease. In Proceedings of the 14th
Workshop on Hot Topics in Operating Systems
(HotOS’13), 2013.

[45] Cheng Huang, Huseyin Simitci, Yikang Xu, Aaron
Ogus, Brad Calder, Parikshit Gopalan, Jin Li, and
Sergey Yekhanin. Erasure coding in windows azure
storage. In Proceedings of the 2012 USENIX Con-
ference on Annual Technical Conference (USENIX
ATC’12), pages 15–26, 2012.

[46] Xavier Jimenez, David Novo, and Paolo Ienne.
Wear unleveling: improving nand flash lifetime
by balancing page endurance. In Proceedings of
the 12th USENIX Conference on File and Storage
Technologies (FAST’14), pages 47–59, 2014.

[47] Andrew Krioukov, Lakshmi N Bairavasundaram,
Garth R Goodson, Kiran Srinivasan, Randy Thelen,
Andrea C Arpaci-Dusseau, and Remzi H Arpaci-
Dusseau. Parity lost and parity regained. In Pro-
ceedings of the 13th USENIX Conference on File
and Storage Technologies (FAST’08), volume 8,
pages 1–15, 2008.

[48] H Kurata, K Otsuga, A Kotabe, S Kajiyama, T Os-
abe, Y Sasago, S Narumi, K Tokami, S Kamohara,
and O Tsuchiya. The impact of random telegraph
signals on the scaling of multilevel flash memories.
In Proceedings of the 2006 Symposium on VLSI
Circuits, pages 112–113. IEEE, 2006.

[49] Changman Lee, Dongho Sim, Joo-Young Hwang,
and Sangyeun Cho. F2fs: A new file system
for flash storage. In Proceedings of the 13th
USENIX Conference on File and Storage Technolo-
gies (FAST’15), pages 273–286, 2015.

[50] Jiangpeng Li, Kai Zhao, Xuebin Zhang, Jun Ma,
Ming Zhao, and Tong Zhang. How much can
data compressibility help to improve nand flash
memory lifetime? In Proceedings of the 13th
USENIX Conference on File and Storage Technolo-
gies (FAST’15), pages 227–240, 2015.

[51] Lanyue Lu, Andrea C. Arpaci-Dusseau, Remzi H.
Arpaci-Dusseau, and Shan Lu. A study of linux
file system evolution. In Proceedings of the 11th
USENIX Conference on File and Storage Technolo-
gies (FAST’13), pages 31–44, 2013.

[52] Lanyue Lu, Yupu Zhang, Thanh Do, Samer
Al-Kiswany, Andrea C. Arpaci-Dusseau, and

Remzi H. Arpaci-Dusseau. Physical disentangle-
ment in a container-based file system. In Proceed-
ings of the 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI’14),
pages 81–96, 2014.

[53] Youyou Lu, Jiwu Shu, Weimin Zheng, et al. Ex-
tending the lifetime of flash-based storage through
reducing write amplification from file systems.
In Proceedings of the 11th USENIX Conference
on File and Storage Technologies (FAST’13), vol-
ume 13, 2013.

[54] Ao Ma, Chris Dragga, Andrea C. Arpaci-Dusseau,
and Remzi H. Arpaci-Dusseau. ffsck: The fast
file system checker. In Proceedings of the 11th
USENIX Conference on File and Storage Technolo-
gies (FAST’13), pages 1–15, 2013.

[55] Ashlie Martinez and Vijay Chidambaram. Crash-
Monkey: A Framework to Automatically Test File-
System Crash Consistency. In Proceedings of the
9th USENIX Workshop on Hot Topics in Storage
and File Systems (HotStorage’17), 2017.

[56] Marshall K. McKusick, William N. Joy, Samuel J.
Leffler, and Robert S. Fabry. A fast file system
for unix. Proceedings of the ACM Transactions on
Computer Systems (TOCS’84), 2(3):181–197, Au-
gust 1984.

[57] Changwoo Min, Sanidhya Kashyap, Byoungyoung
Lee, Chengyu Song, and Taesoo Kim. Cross-
checking semantic correctness: The case of finding
file system bugs. In Proceedings of the 25th Sympo-
sium on Operating Systems Principles (SOSP’15),
pages 361–377. ACM, 2015.

[58] C. Mohan, Don Haderle, Bruce Lindsay, Hamid Pi-
rahesh, and Peter Schwarz. ARIES: A Transac-
tion Recovery Method Supporting Fine-granularity
Locking and Partial Rollbacks Using Write-ahead
Logging. ACM Transactions on Database Systems
(TODS’92), 1992.

[59] T. Ong, A. Frazio, N. Mielke, S. Pan, N. Righos,
G. Atwood, and S. Lai. Erratic Erase In ETOX/sup
TM/ Flash Memory Array. In Proceedings of the
Symposium on VLSI Technology (VLSI’93), 1993.

[60] Lluis Pamies-Juarez, Filip Blagojević, Robert Ma-
teescu, Cyril Gyuot, Eyal En Gad, and Zvonimir
Bandić. Opening the chrysalis: On the real re-
pair performance of MSR codes. In Proceedings of
the 14th USENIX Conference on File and Storage
Technologies (FAST’16), pages 81–94, 2016.

USENIX Association 16th USENIX Conference on File and Storage Technologies 119

[61] Thanumalayan Sankaranarayana Pillai, Vijay
Chidambaram, Ramnatthan Alagappan, Samer
Al-Kiswany, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. All file systems are
not created equal: On the complexity of crafting
crash-consistent applications. In Proceedings
of the 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI’14),
October 2014.

[62] Vijayan Prabhakaran, Lakshmi N. Bairavasun-
daram, Nitin Agrawal, Haryadi S. Gunawi, An-
drea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. IRON File Systems. In Proceedings of the
20th ACM Symposium on Operating Systems Prin-
ciples (SOSP’05), pages 206–220, October 2005.

[63] Abhishek Rajimwale, Vijay Chidambaram, Deepak
Ramamurthi, Andrea C Arpaci-Dusseau, and
Remzi H Arpaci-Dusseau. Coerced cache evic-
tion and discreet mode journaling: Dealing with
misbehaving disks. In Proceedings of the 2011
IEEE/IFIP 41st International Conference on De-
pendable Systems & Networks (DSN’11), pages
518–529. IEEE, 2011.

[64] Bianca Schroeder and Garth A. Gibson. Disk fail-
ures in the real world: What does an MTTF of
1,000,000 hours mean to you? In Proceedings of
the 5th USENIX Conference on File and Storage
Technologies (FAST’07), 2007.

[65] Bianca Schroeder, Raghav Lagisetty, and Arif Mer-
chant. Flash reliability in production: The expected
and the unexpected. In Proceedings of the 14th
USENIX Conference on File and Storage Technolo-
gies (FAST’16), pages 67–80, February 2016.

[66] Konstantin Shvachko, Hairong Kuang, Sanjay Ra-
dia, and Robert Chansler. The hadoop distributed
file system. In Proceedings of the IEEE 26th Sym-
posium on Mass Storage Systems and Technologies
(MSST’10), pages 1–10. IEEE, 2010.

[67] Helgi Sigurbjarnarson, James Bornholt, Emina Tor-
lak, and Xi Wang. Push-button verification of file
systems via crash refinement. In Proceedings of
12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI’16), 2016.

[68] Keith A. Smith and Margo I. Seltzer. File system
aging—increasing the relevance of file sys-
tem benchmarks. In Proceedings of the 1997 ACM
SIGMETRICS International Conference on Mea-
surement and Modeling of Computer Systems (SIG-
METRICS’97), pages 203–213, 1997.

[69] V. Svanberg. Fsck takes too long on multiply-
claimed blocks. http://old.nabble.com/Fsck-
takes-too-long-on-multiply-claimed-blocks-
td21972943.html, 2009.

[70] Adam Sweeney, Doug Doucette, Wei Hu, Curtis
Anderson, Mike Nishimoto, and Geoff Peck. Scal-
ability in the XFS File System. In Proceedings
of the 1996 USENIX Annual Technical Conference
(USENIX ATC’96), volume 15, 1996.

[71] Huang-Wei Tseng, Laura M. Grupp, and Steven
Swanson. Understanding the impact of power loss
on flash memory. In Proceedings of the 48th Design
Automation Conference (DAC’11), 2011.

[72] Stephen C. Tweedie. Journaling the linux ext2fs
filesystem. In Proceedings of the 4th Annual Linux
Expo, 1998.

[73] Simeng Wang, Jinrui Cao, Danny V Murillo, Yil-
iang Shi, and Mai Zheng. Emulating Realistic Flash
Device Errors with High Fidelity. In Proceedings of
the IEEE International Conference on Networking,
Architecture and Storage (NAS’16). IEEE, 2016.

[74] Sage A. Weil, Scott A. Brandt, Ethan L. Miller,
Darrell D. E. Long, and Carlos Maltzahn. Ceph:
A Scalable, High-performance Distributed File
System. In Proceedings of the 7th Symposium
on Operating Systems Design and Implementation
(OSDI’06), pages 307–320, 2006.

[75] Mingyuan Xia, Mohit Saxena, Mario Blaum, and
David A. Pease. A tale of two erasure codes in
HDFS. In Proceedings of the 13th USENIX Confer-
ence on File and Storage Technologies (FAST’15),
pages 213–226, 2015.

[76] Gala Yadgar, Eitan Yaakobi, and Assaf Schuster.
Write once, get 50% free: Saving ssd erase costs
using wom codes. In Proceedings of the 13th
USENIX Conference on File and Storage Technolo-
gies (FAST’15), pages 257–271, 2015.

[77] Junfeng Yang, Can Sar, and Dawson Engler. EX-
PLODE: a lightweight, general system for finding
serious storage system errors. In Proceedings of
the Seventh Symposium on Operating Systems De-
sign and Implementation (OSDI’06), pages 131–
146, November 2006.

[78] Yiying Zhang, Leo Prasath Arulraj, Andrea C
Arpaci-Dusseau, and Remzi H Arpaci-Dusseau.
De-indirection for flash-based ssds with nameless
writes. In Proceedings of the 10th USENIX Confer-
ence on File and Storage Technologies (FAST’12),
2012.

120 16th USENIX Conference on File and Storage Technologies USENIX Association

 http://old.nabble.com/Fsck-takes-too-long-on-multiply-claimed-blocks-td21972943.html
 http://old.nabble.com/Fsck-takes-too-long-on-multiply-claimed-blocks-td21972943.html
 http://old.nabble.com/Fsck-takes-too-long-on-multiply-claimed-blocks-td21972943.html

[79] Yupu Zhang, Abhishek Rajimwale, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau.
End-to-end Data Integrity for File Systems: A
ZFS Case Study. In Proceedings of the 8th
USENIX Conference on File and Storage Technolo-
gies (FAST’10), pages 29–42, 2010.

[80] Mai Zheng, Joseph Tucek, Dachuan Huang, Feng
Qin, Mark Lillibridge, Elizabeth S. Yang, Bill W
Zhao, and Shashank Singh. Torturing Databases for
Fun and Profit. In Proceedings of the 11th USENIX
Symposium on Operating Systems Design and Im-
plementation (OSDI’14), pages 449–464, 2014.

[81] Mai Zheng, Joseph Tucek, Feng Qin, and Mark Lil-
libridge. Understanding the robustness of SSDs
under power fault. In Proceedings of the 11th
USENIX Conference on File and Storage Technolo-
gies (FAST’13), 2013.

[82] Mai Zheng, Joseph Tucek, Feng Qin, Mark Lillib-
ridge, Bill W Zhao, and Elizabeth S. Yang. Re-
liability Analysis of SSDs under Power Fault. In
Proceedings of the ACM Transactions on Computer
Systems (TOCS’16), 2016.

USENIX Association 16th USENIX Conference on File and Storage Technologies 121

