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Abstract: Traditional historical scholarship struggles to keep up with the rapid pace of

modern scientific publication trends. Even focusing on a particular scientific field, the

rate of new publications far outpaces even the most studious historian’s research capacity.

This essay summarizes an approach to this problem that uses computational techniques

of network analysis. As a complement to close analysis of particular documents, network

analysis can give a large-scale perspective on the history of science, identifying relational

patterns across a vast number of documents that might otherwise require an entire career

to digest. To demonstrate the power of the approach, the essay applies network theory to a

corpus of publications in evolutionary medicine. Four distinct networks, including those

focused on authors, keywords, and citations, quickly unearth a range of relevant historical

information. The essay illustrates how interpretable historical conclusions are drawn from

a variety of quantitative metrics. The aim is to provide an overview of network tech-

niques for historians looking to add robust network analysis to their research repertoire.

BACKGROUND MATERIALS

Making things digital means representing them as bit strings. By itself, this is not yet very
helpful. It can serve as a basis to extract structure by computational methods. The questions

then are what structure to extract, what structure to expect to emerge from the data, and how to
make that structure interpretable for humans. We are in the humanities, after all.
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To achieve this, we need to start with some structural hypotheses. That is, we need to agree
on some class of structures and then see what specific features and properties the particular struc-
ture possesses.

A general such class is that of networks. The basic idea is that the system to be analyzed con-
sists of elements that stand in pairwise relations. The relations may simply be qualitative (present
vs. absent); they may also be directed (from A to B, but not necessarily also from B to A); and
they may also be quantitative—that is, they may possess strengths or weights.

An easy example: data about the email exchanges within a certain group of people. These
people constitute the elements or agents—or, in the formal terms of network analysis, the vertices
or nodes—of the network. There is a relation—formally, a link or an edge in the network—between
A and B if an email message between them has been recorded. We can just leave it at that and
formally analyze the resulting network, or we can decide to represent more details. For instance,
we can distinguish whether there has been a message from A to B, one from B to A, or both. That
would yield a directed network. We can also count how many emails have passed in either di-
rection; assigning that number to the corresponding edge would produce a weighted network.

We can then analyze the network and draw conclusions about the underlying social struc-
ture. People that receive many emails may be important, and those that send many emails might
be influential. We can look at whether important people preferentially exchange emails with each
other or whether they instead communicate with less well connected people. In the first case,
the network, or by implication the underlying social structure, would be called assortative; in
the second case it is disassortative.

This example is drawn from the social sciences, not by accident or chance, but because so-
cial scientists were the first to represent relations in terms of networks systematically and analyze
the large-scale structural features of those networks. This started with work of Jacob L. Moreno
and Helen H. Jennings in the 1930s. Stanley Milgram pointed out the important “small world”
property of social networks. Social networks, while not necessarily very regular, do not follow a
simple random connectivity pattern but share a particular structural property. This property is
the fact that even though the network may be quite large, when one picks two arbitrary nodes
one needs only a relatively small number of edges to get from one to the other. This property
was formalized by Duncan J. Watts and Steven H. Strogatz and identified as a nearly universal
property of empirical networks, not only social ones. Mark S. Granovetter recognized the impor-
tance of weak ties for the cohesion of social networks.1 A social network may be modularized—
that is, it may consist of a couple of subcommunities that are internally well connected but have
only relatively few links with other communities. When an agent wants to establish an indirect
connection—that is, a connection via intermediaries to another community—he or she typically
needs to go through certain other agents to which only weak ties exist. To establish distant con-
nections, then, one should not necessarily approach one’s own closest friends but should in-
stead seek certain people that one is only weakly acquainted with. Of course, in hindsight, much
of this does not look so surprising; the important point is that these things can not only be de-
tected as universal features of social systems but also quantified via formal network analysis.

CREAT ING OUR CORPUS

Network analysis in the digital humanities typically begins by defining a specific corpus of texts.
This definition may be chosen, for example, to represent a specific scientific field or group of

1 J. L. Moreno and H. H. Jennings, “Statistics of Social Configurations,” Sociometry, 1938, 1(3–4):342–374; Jeffrey Travers

and Stanley Milgram, “An Experimental Study of the Small World Problem,” ibid., 1969, 32:425–443; Duncan J. Watts and

Steven H. Strogatz, “Collective Dynamics of ‘Small-World’ Networks,” Nature, 1998, 393:440–442; and Mark S. Granovetter,

“The Strength of Weak Ties,” American Journal of Sociology, 1973, 78:1360–1380.
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people or set of ideas. A careful definition of the corpus is nontrivial and is key to creating mean-
ingful conclusions.2

Here, we use as an example a corpus of publications from individuals who self-identify as
interested in evolutionary medicine. These individuals were identified through the International
Society for Evolution, Medicine, and Public Health global directory (EvMed Network) and the
editors and contributing authors for two major evolutionary medicine textbooks. We used the
Thomson Reuters Web of Science (WoS) to identify and download all available PDFs, result-
ing in a corpus of 6,456 publications that appeared from 1971 through 2017.3

In this essay, we examine a single time period within the overall corpus: the year 2007. We
use metadata for each publication gathered from WoS, including author names, institutional
affiliations, publication journal, and date. Even using this corpus for a single year, we can con-
struct a variety of useful networks to explore various relations among authors, their publications,
the content, and citations. Though we will not focus here on changes over time, the dynamics of
a particular corpus can also be studied by concatenating networks in a time series.4

As emphasized in other contributions to this Focus section, most corpora require a substantial
amount of human attention to reach a state sufficiently clean for analysis.5 For instance, a surpris-
ingly thorny issue is that of ambiguous mappings from names in the database to actual people. A
single scientist may publish using slight variants of the same name, and, conversely, two distinct
individuals may carry and publish under the same name. Automated tools can help sort this
out, but human effort is currently still necessary. In our corpus, we disambiguated names man-
ually. We should note, though, that it was previously found with a disambiguated corpus that
such errors will amount to only a few percent overall.6

ORGANIZ ING DATA AS NETWORKS

After the texts are gathered and disambiguated, it is time to begin organizing the data to create
networks.

Organizing data in a network is obviously a process of abstraction. The network represents
only a formal structure of relations; it dismisses all their content. Analyzing such data as net-
works allows researchers to study massive amounts of data and glean novel insights otherwise
obfuscated when using traditional techniques, which cannot easily handle the same number of

2 Randi Reppen, “Building a Corpus: What Are the Key Considerations?” in The Routledge Handbook of Corpus Linguistics, ed.

Anne O’Keeffe and Michael McCarthy (New York: Routledge, 2010), pp. 59–65; Sue Atkins, Jeremy Clear, and Nicholas Ostler,

“Corpus Design Criteria,” Literary and Linguistic Computing, 1992, 7:1–16; and William Crawford and Eniko Csomay, Doing

Corpus Linguistics (New York: Routledge, 2015).
3 Randolph M. Nesse, EvMed Network, 2018, https://isemph.org/evmednetwork; Wenda R. Trevathan, Elucid O. Smith, and

James J. McKenna, Evolutionary Medicine, 2nd ed. (Oxford: Oxford Univ. Press, 1999); Peter D. Gluckman, Alan A. Beedle,

and Mark A. Hanson, Principles of Evolutionary Medicine, 1st ed. (Oxford: Oxford Univ. Press, 2009); and Kai Li, Jason Rollins,

and Erjia Yan, “Web of Science Use in Published Research and Review Papers, 1997–2017: A Selective, Dynamic, Cross-

Domain, Content-Based Analysis,” Scientometrics, 2018, 115:1–20.
4 Norbert Marwan et al., “Complex Network Approach for Recurrence Analysis of Time Series,” Physics Letters A, 2009,

373:4246–4254; Reik V. Donner et al., “Recurrence-Based Time Series Analysis by Means of Complex Network Methods,” In-

ternational Journal of Bifurcation and Chaos, 2011, 21:1019–1046; and Yue Yang and Huijie Yang, “Complex Network-Based

Time Series Analysis,” Physica A: Statistical Mechanics and Its Applications, 2008, 387(5–6):1381–1386.
5 Kenneth D. Aiello and Michael Simeone, “Triangulation of History Using Textual Data”; Julia Damerow and Dirk

Wintergrün, “Hitchhiker’s Guide to Data in the History of Science”; and Abraham Gibson and Cindy Ermus, “The History

of Science and the Science of History: Computational Methods, Algorithms, and the Future of the Field”: all in this Focus

section.
6 M. E. J. Newman, “The Structure of Scientific Collaboration Networks,” Proceedings of the National Academy of Sciences,

2001, 98:404–409; and Albert-Laszlo Barabási et al., “Evolution of the Social Network of Scientific Collaborations,” Physica

A, 2002, 311:590–614.
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people and texts. In social networks, the elements or agents are usually people, but the type of
relation or interaction may vary. Moreover, the data usually provide only proxies for the social
relations one is really interested in, like friendship. For instance, one may have the number of
phone or email exchanges between pairs of people, but not their content. Or one may have
coauthorship between scientists as an indication of collaborations or citations of papers as in-
dicators of scientific communities.7 In many cases such proxies work remarkably well, because
statistical fluctuations average out, and there are basic correlations between the underlying re-
lations and their traces in the data.

Usually, there is still some freedom in constructing the network. When we want to represent
the semantic structure of a text, we may look at word co-occurrences in sentences, paragraphs,
or pages.8 The words will be the elements of the network, but we still need to decide whether to
consider different grammatical forms of the same root as different words. We may set a thresh-
old and link two words in the network if they co-occur at least five times on a page of our text.
When we want to have a more detailed representation, we can also consider a weighted net-
work, with the weight of a link given by the number of co-occurrences.

We then come to a fundamental question. When we construct such networks—say, word
co-occurrence networks for different texts or different languages—the resulting networks will
not be identical. The question then is whether a class of networks from a particular domain,
like the coauthorship networks, still typically have some formal properties in common that dis-
tinguish them from networks from other domains, like email contacts between students. And,
conversely, are there systematic relations between different networks formed by the same class
of agents, like citation relations and joint attendance at conferences? Or, for instance, are net-
works from Indo-European languages more similar to each other than to language networks
from other families?

These questions are qualitative in nature, but network analysis can make them quantitative
and often visual.

VISUALIZATION

Network analysis still depends on human guidance and interpretation. The network structure
and the results of the network analysis have to be made accessible to a human observer. In prin-
ciple, there is an easy scheme: draw the network as a graph. One chooses positions for the nodes
and connects two nodes that are linked in the network by a line.

While in some cases it may be obvious how to place the nodes in such a drawing, in partic-
ular when the network is as regular as Network A in Figure 1, this has some pitfalls. Just chang-
ing the position of a single node, as in Network B, without changing the connectivity of the
network, may make the network look very different. More generally, important structural fea-
tures of a network, like the community structure, can be blurred or highlighted, depending
on how the network is depicted. Therefore, network visualizations should be interpreted with

7 Nini Gu, “Metadata: Reidentification Using Telephone Data Is Easier Than You Think,” Chicago Policy Review (Online), 2016;

Sarika Sharma et al., “Using an Ethnography of Email to Understand Distributed Scientific Collaborations,” iConference, 2015;

Sameer Kumar, “Co-Authorship Networks: A Review of the Literature,” Aslib Journal of Information Management, 2015, 67:55–

73; Marjan Cugmas, Anuška Ferligoj, and Luka Kronegger, “Scientific Co-Authorship Networks,” arXiv:1711.00770, 2017; Ted A.

Skolarus et al., “Assessing Citation Networks for Dissemination and Implementation Research Frameworks,” Implementation Science,

2017, 12:97; and Jason Portenoy, Jessica Hullman, and JevinD.West, “Leveraging CitationNetworks to Visualize Scholarly Influence

over Time,” Frontiers in Research Metrics and Analytics, 2017, 2:8.
8 Mehri Sedighi, “Application of Word Co-Occurrence Analysis Method in Mapping of the Scientific Fields (Case Study: The

Field of Informetrics),” Library Review, 2016, 65(1/2):52–64; and Anne Veling and Peter Van Der Weerd, “Conceptual Group-

ing in Word Co-Occurrence Networks,” IJCAI, 1999, 99:694–701.
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caution.9 Other representations of a network—for instance, through its curvature or eigenvalue
distribution—may be more indirect and abstract but can be readily standardized and therefore
allow for a better comparison between different networks.

CONCEPTS AND TOOLS OF NETWORK ANALYS IS

Let us assume, then, that we have organized our data in a network and that we want to extract
some qualitative formal properties—or, better, that we have networks for different datasets from
the same domain and that we want to extract some common properties of those networks that
distinguish them from networks from other domains.

Two networks constructed from different datasets from the same domain are not expected
to be identical, but at best similar, and we want to quantify the degree of similarity. The meth-
ods typically depend on the comparison of large-scale statistical properties. These statistical fea-
tures allow for a quick coarse comparison and for the identification of particular features that
distinguish networks from a particular domain.

In particular, such questions can be approached by measuring appropriate statistics: we will
make use of mathematical functions that transform a detailed structure (in this case, a network)
into single informative numbers. These can be network-level statistics (e.g., average number of con-
nections per individual), statistics describing the local structure (e.g., the number of connections
emanating from a particular individual or connection), or the contribution of a single piece of
the network to the global structure (e.g., the centrality of a particular connection).

We consider first a simple coauthorship network, which can be represented by an unweighted
and undirected graph. That is, for two nodes A and B, there is either an edge between them, in
which case we write A ∼ B and call A and B neighbors (indicating that the two authors have
published a paper together), or they are not connected (indicating that they have not). The degree
of a node is defined as the number of its neighbors.

Figure 1. Two grid networks. Network A is a regular grid, with one node and its neighbors empha-

sized. Network B is the same regular grid with the position of one node changed, preserving all neigh-

borhood relations.

9 Gibson and Ermus, “History of Science and the Science of History” (cit. n. 5).
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In Network A of Figure 2, for instance, A ∼ B, but A is not connected to E, F, or G. A has
three neighbors, B, C, and D, and therefore its degree is 3. Nodes B and E are best connected,
having degree 5, whereas H, possessing only a single neighbor (E), has degree 1. One can then
calculate statistics for how many nodes there are of a given degree; in our example, there are
two nodes (F and G) of degree 2 and two nodes (C and D) of degree 4. For a general network,
we denote by d(n) the number of nodes of degree n. It turns out that for empirical networks,
this degree distribution typically behaves like a power of n (such that d[n] is proportional to na),
with exponent a between −3 and −2.10 Thus we have examples of both a node-level property
(the degree) and a corresponding network-level property (the degree distribution).

Beyond the degree, which provides information about local connectivity, there is a zoo of
network statistics that capture properties both of individual nodes and edges and of larger con-
nectivity patterns. Particularly useful in the context of digital humanities are measures of clus-
tering, assortativity, and centrality. In social and conceptual networks, the neighbors of a particular
node are often also neighbors of each other (quantified by the clustering coefficient); nodes with
large degree are often more likely to connect to one another (quantified by assortativity measures
such as the rich club coefficient); and we are often interested in the nodes and edges that are
central in that they connect otherwise disconnected areas of the network (quantified by cen-
trality measures such as betweenness centrality).

Many network statistics are computed with respect to nodes. Yet edges are what make a net-
work a network, and it therefore seems more appropriate to look at a statistic for edge rather than
node properties. The simplest such quantity is the so-called Ricci curvature of a graph. Originally
introduced by R. Robin Forman in 2003, it has been forged into an efficient tool for network
analysis in work by R. P. Sreejith and colleagues in 2007 and by Emil Saucan and colleagues in
2018.11 The curvature of an edge between two nodes X and Y is defined as

R X; Yð Þ ¼ 4 − degX − degY: (1)

The minus signs and the 4 come from the origin of this concept in Riemannian geometry
(see, e.g., Jürgen Jost’s Riemannian Geometry and Geometric Analysis), and for our present

Figure 2. Two similar networks. Network A is a graph with nodes A, B, C, D, E, F, G, and H.

Network B is the same network with the edge (B,E) cut, emphasizing triangles.

10 Réka Albert and Albert-László Barabási, “Statistical Mechanics of Complex Networks,” Reviews of Modern Physics, 2002,

74:47–97.
11 R. Robin Forman, “Bochner’s Method for Cell Complexes and Combinatorial Ricci Curvature,” Discrete and Computational

Geometry, 2003, 29:323–374; R. P. Sreejith et al., “Systematic Evaluation of a New Combinatorial Curvature for Complex Net-

works,” Chaos Solitons and Fractals, 2017, 101:50–67; and Emil Saucan et al., “Discrete Curvatures and Network Analysis,”

MATCH Communications in Mathematical and in Computer Chemistry, 2018, 80:605–622.
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purposes we can simply consider them as historical conventions.12 For Network A in Figure 2, for
instance,

R A; Bð Þ ¼ −4; R E; Hð Þ ¼ −2; R D; Eð Þ ¼ −5; R B; Eð Þ ¼ −6; (2)

and in fact the edge (B, E) has the most negative value of the curvature. We may suspect that
this is the most important edge in the network, as it connects two highly connected nodes. This
is a general heuristic principle of network analysis.13 Another empirical finding is that the cur-
vature distribution of a network typically has more than one hump and that this corresponds
to a superposition of a structural and a functional network.14 This feature seems to hold quite
generally, from biological to social and linguistic networks, and this merits closer examination.

Returning to the claim that (B, E) is the most important edge for the network: that claim
is somewhat mitigated by the observation that even if we cut that edge, we could still easily get
from B to E by going through either D or F as a single intermediate step. For instance, if B and
E are authors, in the new network they would no longer be direct coauthors but would still share
the two coauthors D and F. This is indicated in Network B of Figure 2.

As a simple example of larger connectivity patterns, consider Figure 3. Cutting the edge (A,B)
would disconnect the left graph into two pieces with three nodes each, whereas cutting the edge
(G,H) in the right graph would have no such effect. One might say that the left graph consists
of two modules or communities, (A,C,D) and (B,E,F), that are connected only by the single
edge (A,B).

This suggests a general principle of community detection. Try to disconnect the network
into large subnetworks by cutting as few edges as possible. The rationale is that a community
or module should be well connected within but only sparsely connected to other modules. For
larger networks, identifying those edges may become computationally difficult, and there exist
many heuristics for that purpose.15

2007 EVOLUTIONARY MEDIC INE COAUTHORSHIP NETWORK

Let us now return to our evolutionary medicine corpus and examine how statistics at both the
local and the network level, as well as clustering techniques for community detection, can help
investigators create a large-scale, robust understanding. First, we examine the overall coauthorship
network. To visualize the network we use VOSviewer, and we calculate network statistics using
Cytoscape and ORA.16

The coauthorship network, visualized in Figure 4, contains 397 nodes in 49 separate con-
nected components. The average individual actively worked with approximately 8 other co-
authors, a statistic that describes the research practices from fields contributing to evolutionary
medicine.17

12 Jürgen Jost, Riemannian Geometry and Geometric Analysis (Cham: Springer, 2017).
13 See Sreejith et al., “Systematic Evaluation of a New Combinatorial Curvature for Complex Networks” (cit. n. 11).
14 Saucan et al., “Discrete Curvatures and Network Analysis” (cit. n. 11).
15 Santo Fortunato, “Community Detection in Graphs,” Physics Reports, 2010, 486(3–5):75–174.
16 Nees Jan Van Eck and Ludo Waltman, VOSviewer Manual (Leiden: Univ. Leiden, 2009); Paul Shannon et al., “Cytoscape: A

Software Environment for Integrated Models of Biomolecular Interaction Networks,” Genome Research, 2003, 13:2498–2504;

and Kathleen M. Carley, “ORA: A Toolkit for Dynamic Network Analysis and Visualization,” in Encyclopedia of Social Network

Analysis and Mining, ed. Reda Alhajj and Jon Rokne (New York: Springer, 2018), pp. 1–10.
17 Barabási et al., “Evolution of the Social Network of Scientific Collaborations” (cit. n. 6); Newman, “Structure of Scientific

Collaboration Networks” (cit. n. 6); and M. E. J. Newman, “Coauthorship Networks and Patterns of Scientific Collaboration,”

Proc. Nat. Acad. Sci., 2004, 101(suppl. 1):5200–5205.
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An immediate benefit of a network representation is the number of basic metrics quickly
available. For instance, ranking authors by degree identifies Dan J. Stein as the author who
collaborated with the most individuals, 94. Combining the coauthorship network with data
about the number of publications and citations for each author (indicated by the thickness
of edges and size of nodes in Figure 4) begins to reveal other key authors and publications.
Keith D. Lindor and Stein both published more than any other author from our corpus, with
21 separate publications, followed by Jacobus J. Boomsma, with 14 publications.

F
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Figure 3. Connectivity patterns. Two networks with structurally different edges and the same R.

Figure 4. The 2007 evolutionary medicine coauthorship network. The size of the labels and nodes

is scaled to the number of documents for the individual. The network image excludes authors with

fewer than 5 publications in 2007, and nodes are selectively labeled to increase visibility. A thicker

edge represents multiple papers coauthored by the two individuals.
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Collaborative groups are shown by clusters in a coauthorship network.18 Betweenness cen-
trality can bring out this structure, measuring the extent to which an individual acts as a bridge
between otherwise isolated clusters.19 Quantifying a node’s betweenness centrality involves the
idea of a shortest path: given any two nodes s and t, there is at least one shortest path that con-
nects them by moving along edges of the networks. The betweenness centrality of a node v is
then defined as the fraction of all of the network’s shortest paths that pass through node v :

b
u
¼ o

jstðuÞ

jst

; (3)

where rst represents the total number of shortest paths between nodes s and t, rst(v) represents
the number of those paths that pass through v, and the sum runs over all possible other nodes s
and t.

The complete coauthorship network indicates that Kathleen Carole Barnes connected two
well-established collaborative group clusters. The network also indicated that Sir Peter D. Gluck-
man and Dyanne Wilson were central in connecting several working-group clusters with their
work on the effect of in vitro fertilization on childhood growth.

The Forman-Ricci curvature can similarly be used to identify important edges by finding
those that, if removed, would greatly lessen the flow of information. Calculating the Forman-
Ricci curvature of the edges in Figure 4, we find that the edge connecting Rasmus Nielsen and
Melissa J. Hubrisz, a pair that published together 7 times in 2007, has the most negative cur-
vature, −1165. Forman-Ricci curvature is significantly negatively correlated to edge betweenness
centrality.20 Thus we infer that he cooperation between Nielsen and Hubrisz connects disparate
communities in the network. Also, while computing betweenness centrality is expensive, as all
paths need to be evaluated, Forman-Ricci curvature as a local quantity is very easy to compute,
and it is often a good proxy for betweenness centrality.

PARS ING COAUTHOR RELAT IONSHIPS US ING METADATA

Identifying important individuals and publications in the whole of evolutionary medicine pro-
vides a macroscopic field-wide view. We can also gain insight by limiting our scope and parsing
the corpus into smaller pieces. In particular, the interdisciplinary nature of evolutionary med-
icine lends itself to analysis of partial coauthorship networks. This allows for comparison between
networks as well as the discovery of specific types of collaborations.

Evolutionary medicine is the combination of two distinct scientific disciplines, evolutionary
biology and human health and disease. Evolutionary medicine began with the publications
“The Dawn of Darwinian Medicine” and Why We Get Sick: The New Science of Darwinian
Medicine, defining a new field that brought the core tenets of evolution into human health and
disease.21 In order to evaluate this endeavor, we categorized authors and the journals contain-
ing their publications. Each individual from the EvMed Network was assigned to one of three
categories, “evolution” or “medicine” or “other,” depending on his or her professional interests.

18 Wolfgang Glänzel and Andras Shubert, Measuring and Evaluating Science–Technology Connections and Interactions (Dor-

drecht: Elsevier, 2005), pp. 695–716; and Eldon Y. Li, Chien Hsiang Liao, and Hsiuju Rebecca Yen, “Co-Authorship Networks

and Research Impact: A Social Capital Perspective,” Research Policy, 2013, 42:1515–1530.
19 M. Barthélemy, “Betweenness Centrality in Large Complex Networks,” European Physical Journal B, 2004, 38:163–168; Ste-

phen P. Borgatti, “Centrality and Network Flow,” Social Networks, 2005, 27:55–71; and M. E. J. Newman, “A Measure of Be-

tweenness Centrality Based on Random Walks,” ibid., pp. 39–54.
20 Sreejith et al., “Systematic Evaluation of a New Combinatorial Curvature for Complex Networks” (cit. n. 11).
21 George C. Williams and Randolph M. Nesse, “The Dawn of Darwinian Medicine,” Quarterly Review of Biology, 1991, 66:1–22;

and Nesse and Williams, Why We Get Sick: The New Science of Darwinian Medicine (New York: Vintage, 2012).
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Individuals with a clinical career focus were assigned to “medicine,” and researchers with a
primary focus on evolutionary biology were assigned to “evolution.” Remaining scientists and
members of the general public were categorized as “other.” Similarly, journals were assigned
a category (“evolution,” “medicine,” “general interest,” or “other”) on the basis of their assumed
reader base. Then each publication could be categorized, for instance, as appearing in an evo-
lution journal while its authors specialized in medicine.

In 2007, individuals with an evolution background published 219 times in evolution jour-
nals and 238 times in medical journals. By isolating individuals from the EvMed Network with
an evolution background who published in medical journals, we identified individuals who
were bringing the principles of evolution into the medical domain. This illustrates how mul-
tiple questions are addressed using one corpus.

Dan J. Stein published more than any other author, with 18 publications in medical jour-
nals. He was followed by Sir Peter D. Gluckman, Suzanna Lewis, Charles E. Matthews, and
William M. Pierce, Jr., with 8 publications each. Stein also accrued the most citations, with
624, followed by Lewis with 459 citations. Additionally, Stein collaborated with the most re-
searchers, 72. He also collaborated with Sing Lee, a professor at the University of Hong Kong,
which produced the smallest Forman-Ricci curvature, −96.

KNOWLEDGE MAPS FOR EVOLUTIONARY MEDICINE

Looking deeper into our dataset, we can move beyond the authors to explore the ideas presented
in each publication.

Keyword analysis offers a simple way to capture words and short phrases that appear most
frequently. Connecting keywords into a network of those that appear in the same publication
gives insight into the landscape of knowledge.

The keyword co-occurrence network (KCN) in Figure 5 was created using publications
from our partial “evolution to medicine” coauthorship network (discussed in the previous sec-
tion) and identifying keywords in each document. Keywords are defined as words that appear
significantly more frequently than in a relevant reference corpus, here the Baker-Brown Corpus
for General American English. For this study, we used WordSmith Tools.22 For an in-depth
discussion of WordSmith Tools, please refer to the section “Computational Responsibility” in
“Triangulation of History Using Textual Analysis,” in this Focus section.

In a KCN, the nodes represent unique keywords and the edges between represent a shared
document. KCNs identify large-scale ideas and, if analyzed in a time series, trends in those
ideas.

By definition, keywords from the same document form a completely connected subnet-
work, or clique. Sangyoon Yi and Jinho Choi showed in 2012 that keyword networks might
not exhibit a small-world network structure but instead tend toward locally clustered, scale-free
networks.23 This is different from coauthorship networks, whch tend toward small-world, scale-
free networks.24 When two or more documents share a keyword, these cliques become loosely
connected, thus creating several subgraphs connected through a shared language.

22 Paul Baker, Baker-Brown Corpus for General American English (Edinburgh: Edinburgh Univ. Press, 2006); Mike Scott, Word-

Smith Tools Version 5 (2008), p. 122; and Aiello and Simeone, “Triangulation of History Using Textual Data” (cit. n. 5).
23 Sangyoon Yi and Jinho Choi, “The Organization of Scientific Knowledge: The Structural Characteristics of Keyword Net-

works,” Scientometrics, 2012, 90:1015–1026.
24 Watts and Strogatz, “Collective Dynamics of ‘Small-World’ Networks” (cit. n. 1); L. A. N. Amaral et al., “Classes of Small-

World Networks,” Proc. Nat. Acad. Sci., 2000, 97:11149–11152; and Albert-László Barabási and Eric Bonabeau, “Scale-Free

Networks,” Scientific American, 2003, 288(5):60–69.
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In the “evolution to medicine” KCN shown in Figure 5, “Alzheimer’s disease” and “evolu-
tion” occur the most frequently, with 5 occurrences, and they are followed by “hemodynam-
ics” and “rats” (not labeled), both with 4 occurrences. This indicates that a large number of
individuals interested in evolution are publishing about Alzheimer’s disease in medical jour-
nals. “Antibody,” “biosynthesis,” “HIV,” “macrophage,” “mycobacterium,” “regulatory,” “sero-
diagnosis,” and “t cell” had the highest citation count, with 198 each. “Alzheimer’s disease”
occurs the most and averages 46.8 citations per occurrence within the corpus. The number
of occurrences illustrates the level of attention from individuals in the EvMed Network, and
the number of citations quantifies importance within the broader scientific community.

“Exercise” and “Alzheimer’s disease” have the highest betweenness centrality, with 0.708
and 0.655, respectively. A high betweenness centrality in a KCN indicates that a node creates
a bridge between two separate parts of the network. Bridge keywords connect different knowl-
edge areas and create conceptual connections between major research themes using common
language. By examining the Forman-Ricci curvature of edges, we identify the “evolution”– “ex-
pression” and “evolution”–“behavior” edges as having the most negative curvature values, −778

Figure 5. The 2007 keyword co-occurrence network for evolutionary biologists publishing in med-

ical journals. The size of the labels and nodes is scaled to the number of occurrences of the keyword.

The network image is selectively labeled to increase visibility. The thickness of the edges represents

the number of shared documents. This network contains keywords from publications in a medical

journal by authors who focus primarily on evolution, the same individuals mentioned in the section

“Parsing Coauthor Relationships Using Metadata.”
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and −682, respectively. This confirms the assumption that evolution is important to the cohe-
sion of evolutionary medicine as a field.

BIBL IOGRAPHIC COUPLING NETWORK

Up to this point, our study has focused on how individuals and keywords relate to one another.
In the final two sections, we focus on how publications relate to one another, using two differ-
ent kinds of networks. Bibliographic coupling and co-citation networks are similar because they
both use citation as a means to measure similarity. Bibliographic coupling networks represent
publications as nodes and a shared citation in their bibliographies as an edge. Co-citation net-
works represent the references from those publications as nodes, with edges representing pub-
lications that cite both references. That is, in the bibliographic network two papers are linked if
they cite the same paper, whereas in the co-citation network two papers are linked when they
are cited by the same paper. As we show, the differences in how these networks use citations
create different descriptions of evolutionary medicine.

First, we examine the bibliographic coupling network, a type of knowledge map.25 A cluster
of publications all tightly linked together indicates a level of shared knowledge. This could be
shared citations of an experimental technique, bedrock citations in a particular field, or differ-
ent insights built on a similar foundation of citations. Core areas of a bibliographic coupling
network represent the status quo. The denser regions of the network imply a level of accep-
tance or standards between the nodes. A forthcoming study shows that innovative publications
are more likely to appear in the loosely connected areas of a bibliographic coupling network.26

The loosely connected publications (bottom left in Figure 6) contain more unique biblio-
graphic citations than the core (right side in Figure 6), therefore increasing the possibility of
innovation by building on unique work. By incorporating fewer ubiquitous citations and in-
cluding unique citations, publications are able to incorporate new knowledge areas into exist-
ing schools of thought.

In Figure 6, “Gluckman (2007b)” is connected to “Godfrey (2007).” The two publications
share 22 citations in common. In contrast, “Gluckman (2007b)” and “Ellison (2007)” share only
3 citations. On the sole basis of how many citations their bibliographies have in common, the
Gluckman and Godfrey publications appear to be more similar to each other than the Gluckman
andEllison publications.When the two pairings are examinedmore closely, it is revealed that both
the Gluckman and the Godfrey papers involve early life development and its relationship to dis-
ease origin. Meanwhile, the Gluckman and Ellison articles share only the commonality of dis-
ease in a general sense. Thus bibliographic coupling is a relatively quick and accurate measure
of similarity between two documents.27 Clearly, the measure is not perfect: two documents might
still be similar despite citing different literature.

The Ricci curvature helps to identify connections bridging tightly connected regions. We
discovered that “Gluckman (2007)” and “Boomsma (2007)” exhibited a Forman-Ricci curvature

25 M. M. Kessler, “Bibliographic Coupling between Scientific Papers,” American Documentation, 1963, 14:10–25; and Dangzhi

Zhao and Andreas Strotmann, “The Knowledge Base and Research Front of Information Science, 2006–2010: An Author Co-

Citation and Bibliographic Coupling Analysis,” Journal of the Association of Information Science and Technology, 2018, 85:348–

357.
26 Deryc T. Painter, Bryan C. Daniels, and Manfred D. Laubichler, “Innovations Are Disproportionately Likely in the Periphery

of a Scientific Network,” Theory in Biosciences (forthcoming).
27 Rey Long Liu, “A New Bibliographic Coupling Measure with Descriptive Capability,” Scientometrics, 2017, 110:915–935;

Kevin W. Boyack and Richard Klavans, “Co-Citation Analysis, Bibliographic Coupling, and Direct Citation: Which Citation

Approach Represents the Research Front Most Accurately?” Journal of the American Society for Information Science and Tech-

nology, 2010, 61:2389–2404; and Thierson Couto et al., “A Comparative Study of Citations and Links in Document Classifi-

cation,” in Proceedings of the 6th ACM/IEEE-CS Joint Conference on Digital Libraries (2006), pp. 75–84.
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Figure 6. Bibliographic coupling network for the 2007 evolutionary medicine corpus. The size of the nodes and labels is scaled to the number of citations received

by each publication. The network is selectively labeled to increase visibility. Thicker edges indicate more shared citations in the bibliographies. The right side of the

network shows an example of a highly connected core (or rich club), and the bottom left is the periphery.
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of −62. “Comas (2007)” and “Coscolla (2007)” also had −62. Ricci curvature has not been sys-
tematically studied in relation to innovation. This is an area that requires further attention.
The negative curvature might indicate that these two edges connect two otherwise loosely con-
nected subgraphs, making them important for the cohesive knowledge structure of evolutionary
medicine.

Bibliographic coupling networks offer insight into the thinking of the authors as expressed
in their choice to cite particular papers. The negative Forman-Ricci curvatures show us the
edges of these schools of thought. The networks also illuminate properties of the community
as a whole, differentiating works into core versus peripheral areas.

CO-CITAT ION NETWORK

In a co-citation network, each node represents a publication cited within the corpus, and an
edge between nodes indicates that both are cited in the same corpus publication. In this way,
co-citation edges represent the evolutionary medicine publications connecting two pieces of
foundational knowledge.

These cited publications are the foundation of knowledge on which the ideas in the corpus
were based. With metrics like betweenness centrality and clustering coefficient, we use our co-
citation network to identify foundational knowledge areas.28

The clustering coefficient estimates the likelihood that a particular node will have shared
neighbors. Nodes with a large clustering coefficient are locally part of a highly connected
clique, while those with a small clustering coefficient connect neighbors that are not them-
selves connected. Specifically, the clustering coefficient for node v is defined as

C vð Þ ¼
number of closed triplets involving v

total number of  triplets involving v
; (4)

where a “triplet” is any set of three nodes and a “closed triplet” forms a triangle in which all
three edges between the three nodes are present. This measure can be used in a co-citation
network to identify areas of similar content.

Figure 7 displays the co-citation network for the 2007 EvMed corpus. In the displayed image,
we constrain the network to publications cited a minimum of 50 times in the corpus. The image
contains 404 nodes with 7,093 connections, while the unthresholded, complete co-citation
network boasts 22,231 nodes. This is substantially larger than the 618 documents from the orig-
inal corpus.

The complete co-citation network reveals that “Thompson et al. (1994)” was cited by the
most publications in the corpus, 17, followed by “Posada and Crandall (1998)” and “Thomp-
son et al. (1997),” with 16 and 11, respectively. These three publications deal primarily with
bioinformatics tools and techniques. The Forman-Ricci curvature allows us to identify edges
that connect different groups. The edge between “Posada (1998)” and “Thompson (1994)”
had the most negative Forman-Ricci curvature, −270. “Posada (1998)” and “Tajima (1989)”
followed, with the edge at −265. Here, then, we see “Posada (1998)” with multiple important
edges. It is difficult to credit any one publication from the original corpus for these edges, as
multiple articles are responsible for both edges. “Schwander et al. (2005)” has the highest be-
tweenness centrality. While betweenness centrality can identify important foundational bridge

28 Matteo Pontecorvi and Vijaya Ramachandran, “A Faster Algorithm for Fully Dynamic Betweenness Centrality,” Journal

of Mathematical Sociology, 2011, 25:163–177; and Watts and Strogatz, “Collective Dynamics of ‘Small-World’ Networks”

(cit. n. 1).
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Figure 7. Co-citation network for the 2007 evolutionary medicine corpus. The size of the nodes and labels is scaled to the citation count in the 2007 evolutionary

medicine corpus. The network is selectively labeled to increase visibility. The thickness of the edges represents the number of times each pair was cited together.

The dense areas are examples of foundational knowledge areas within evolutionary medicine.
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nodes, the Forman-Ricci curvature not only identifies bridge edges but can also be used to
identify foundational knowledge communities.

CONCLUSION

Many data can be represented as networks. These structures can then be formally analyzed
to extract important qualitative features, like cohesion versus modularity, distribution of tri-
angles and other motives, symmetries, node duplications, and so on. It then remains to inter-
pret those features. One will typically find that networks from different domains can be readily
distinguished through particular formal properties, like the distribution of curvatures, degrees,
or eigenvalues.29

Our intention is to illustrate the diversity of insight and utility we can achieve when we ex-
amine a well-constructed corpus using a network-based approach. Using a carefully cleaned cor-
pus of publications in evolutionary medicine, we highlighted four distinct networks that unearth
a range of historical information. The overall coauthorship network (Figure 4) identifies key
individuals in evolutionary medicine from 2007, including the most prolific publishers and col-
laborators as well as some of the most-cited individuals. The section “Parsing Coauthor Relation-
ships Using Metadata” explains that by sorting the corpus through metadata, we are able to isolate
interdisciplinary ties that are of particular interest in bringing together the two halves of evo-
lutionary medicine. This focuses on individuals with an evolutionary biology background who
publish in medical journals, illuminating individuals whose research and publishing practices
closely align with those within evolutionary medicine.

Networks can also be used as a starting point for understanding textual content. Figure 5
tracks significant keywords from the publications mentioned in “Parsing Coauthor Relation-
ships Using Metadata,” providing a conceptual overview of how evolutionary biology was enter-
ing medicine in 2007. A keyword co-occurrence network connects these keywords on the basis
of shared publications and produces clusters of keywords around larger-scale ideas central to
the field. Keywords that bridge the larger clusters can be identified using betweenness centrality
and Ricci curvature.

Finally, bibliographic data can be used to identify specific content areas. A bibliographic
coupling network (Figure 6) illustrates the conceptual similarity between publications on the basis
of the number of citations their bibliographies share. This network representation groups and
sorts the publications by similarity without the time-intensive process of reading every publica-
tion. It also identifies more mainstream publications as those that share a larger number of cita-
tions within a tightly connected core group. A co-citation network (Figure 7) links publications
on the basis of their being cited together in the same publication. This groups foundational doc-
uments into the knowledge map that gave rise to the corpus.

These are by no means the only kinds of graphs available to historians and philosophers of
science. There are organizational networks that link individuals within institutions and social
networks that link conference attendees.30 It seems that such large-scale comparisons have not
yet been systematically analyzed from a formal perspective.

29 Anirban Banerjee and Jürgen Jost, “On the Spectrum of the Normalized Graph Laplacian,” Linear Algebra and Its Applica-

tions, 2008, 428(11–12):3015–3022; and Banerjee and Jost, “Graph Spectra as a Systematic Tool in Computational Biology,”

Discrete Applied Mathematics, 2009, 157:2425–2431.
30 Gautam Ahuja, Giuseppe Soda, and Akbar Zaheer, “The Genesis and Dynamics of Organizational Networks,” Organization

Science, 2012, 23:434–448; and Alvin Chin et al., “Using Proximity and Homophily to Connect Conference Attendees in a

Mobile Social Network,” in Proceedings of the 32nd International Conference on Distributed Computing Systems Workshops

(Macau, China: IEEE, 2012), pp. 79–87.
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And, of course, one also wishes to analyze how particular networks change over time. For
instance, with yearly resolved data, we could study how the two fields of evolutionary biology
and medicine come together by creating links in the various networks, check whether the two
communities then form their own intrinsic clusters at the expense of cross-community con-
nections, determine how new actors enter the field and how new topics emerge, and so on.
Such work can also benefit from tools from the theory of dynamical systems, as described in
Jürgen Jost’s Dynamical Systems.31

The purpose of this study is to provide examples of how a network approach to the history
of science can enrich our understanding. Computational history allows historians to add quan-
titative analysis to an already rich historical tradition. It is our sincerest hope that after read-
ing this essay, more historians will want to include network analysis in their research toolkit
as a primary or supplementary means of investigation.

31 Jürgen Jost, Dynamical Systems: Examples of Complex Behavior (Berlin: Springer, 2005).
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