Journal of Cosmology and
Astroparticle Physics

Exploring redshift-space distortions in large-scale structure

To cite this article: Zvonimir Vlah and Martin White JCAP03(2019)007

View the article online for updates and enhancements.

A%"s—\ '10P Astronomy ebooks

iopscience.org/books/aas

This content was downloaded from IP address 136.152.226.140 on 06/05/2019 at 20:12



ournal of Cosmology and Astroparticle Physics

An IOP and SISSA journal

Exploring redshift-space distortions in
large-scale structure

Zvonimir Vlah® and Martin White"*

®Theory Department, CERN,

1 Esplanade des Particules, CH-1211 Geneve 23, Switzerland
*Department of Physics, University of California,

Berkeley, CA 94720, U.S.A.

¢Department of Astronomy, University of California,
Berkeley, CA 94720, U.S.A.

E-mail: zvonimir.vlah@cern.ch, mwhite@berkeley.edu

Received December 10, 2018
Revised February 12, 2019
Accepted February 20, 2019
Published March 4, 2019

Abstract. We explore and compare different ways large-scale structure observables in
redshift-space and real space can be connected. These include direct computation in La-
grangian space, moment expansions and two formulations of the streaming model. We derive
for the first time a Fourier space version of the streaming model, which yields an algebraic
relation between the real- and redshift-space power spectra which can be compared to ear-
lier, phenomenological models. By considering the redshift-space 2-point function in both
configuration and Fourier space, we show how to generalize the Gaussian streaming model
to higher orders in a systematic and computationally tractable way. We present a closed-
form solution to the Zeldovich power spectrum in redshift space and use this as a framework
for exploring convergence properties of different expansion approaches. While we use the
Zeldovich approximation to illustrate these results, much of the formalism and many of the
relations we derive hold beyond perturbation theory, and could be used with ingredients
measured from N-body simulations or in other areas requiring decomposition of Cartesian
tensors times plane waves. We finish with a discussion of the redshift-space bispectrum, bias
and stochasticity and terms in Lagrangian perturbation theory up to 1-loop order.
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1 Introduction

The large-scale structure of the Universe contains valuable information about cosmology
and fundamental physics, and a number of ambitious observational campaigns to extract
this information are underway or in the planning stages [1, 2]. These new observations
will provide increasingly precise measurements of the clustering of astrophysical objects on
large scales, which are relatively simple to model and where predictions are under theoretical
control. Much as for anisotropies in the cosmic microwave background, it is hoped that the
combination of robust theoretical predictions and exquisitely sensitive observations will yield
strong constraints on cosmological models (e.g. ref. [3]).

In this paper we are interested in developing analytic models for the large scale clustering
of objects in redshift space [4], i.e. as measured in galaxy redshift surveys [2, 5-7], the Ly«
forest [8, 9] or line intensity mapping experiments [10]. In these situations the line-of-sight
peculiar motions of objects contribute to their observed redshift so that they are placed at
the incorrect (line-of-sight) distance [4, 11-13]. This velocity-induced mapping from real- to
redshift-space introduces an anisotropy in the clustering pattern, which can be used to test
the theory and probe the growth of large-scale structure [14, 15].

While many of our results will be valid in general, for explicit calculations and to better
bring out the physics implied by our formulae we will use Lagrangian perturbation theory
(see e.g. ref. [16], building upon the work of refs. [17-31]). Our focus will be on the study
the low-order statistics of redshift-space fields in both configuration and Fourier space.

The outline of the paper is as follows. In section 2 we review some background material
on our model and establish our notation. In section 3 we introduce the main results of this
paper, namely a comparison of different formalims for computing the redshift-space 2-point
functions. This section also includes the development of a new variant of the streaming
model, which has some advantages over previous treatments. We apply the general formal-
ism in section 4 and section 5, where we compare the different approaches for computing the
redshift-space power spectrum and correlation function (respectively) to the direct calcula-
tion, allowing a detailed study of the convergence properties of each method. While most of
the comparisons are done for the matter field within the Zeldovich approximation, our for-
malism is much more general and section 6 explicitly develops the bias and loop expansions.
We show that the moment expansion and Fourier-space version of the streaming model lead
to relatively simple expressions for the 3-point function in Fourier space (i.e. the bispectrum)
in section 7. We conclude in section 8. Some technical details are relegated to a series of
appendices.

Throughout the paper, we will use the index-summation convention where possible, the
subscript L will denote the linear (Eulerian) quantities, and we will be assuming the ACDM
cosmology with €, = 0.295, 0, = 0.047, ns = 0.968, og = 0.835 and h = 0.688.

2 Background

In this section we give a brief review of Lagrangian perturbation theory to fix our notation.
We refer the reader to the references below for the development of the theory. Lagrangian
perturbation theory and effective field theory, coupled with a flexbile bias model, offer a
systematic and accurate means of predicting the clustering of biased tracers in both config-
uration and Fourier space (e.g. ref. [16]).

The Lagrangian approach to cosmological structure formation was developed in [17-31]
and traces the trajectory of an individual fluid element through space and time. A fluid



element located at position q at some initial time ¢ty moves as x(q,t) = q + ¥(q,t) with
U+ H¥ = —Vd(q+ ¥) where an overdot represents a derivative with respect to conformal
time and H = aH is the conformal Hubble parameter. Every element of the fluid is uniquely
labeled by q and ¥(q,t) fully specifies the evolution. We shall solve for ¥ perturbatively.
The first order solution, linear in the density field, is the Zeldovich approximation [17], which
will play an important role in this paper. Given W, the real-space density field at any time
is simply

1+6(x) = / g op[x—a-¥(q)] = k) = / dPq e (eP@ 1), (2.1)

The density of biased tracers can be modeled, assuming Lagrangian bias, by multiplying the
§p in the above by a function, F[d1(q), V26.(q), - -], depending upon the linear theory den-
sity and its derivatives [16, 23, 25]. In the absence of explicit knowledge of F', the expectation
values of derivatives of F' take the place of unknown bias coefficients describing the tracer
under consideration. Evaluation of the power spectrum then involves the expectation value
of an exponential, which can be evaluated using the cumulant theorem — we refer the reader
to the above references for further details and explicit calculations.

In what follows we will pay particular attention to the 15* order solution to Lagrangian
dynamics, i.e. the Zeldovich approximation [17]. Since the displacement field is given in
terms of the linear overdensity as ¥(p) = (ip/p?) d.(p) (where p is the momentum variable
corresponding to the Lagrangian coordinate q), it follows that the Zeldovich matter power
spectrum is given by [21-23, 25, 32-35]

P(k) = / g ™9 exp {—;kiij,-j(q)] (2.2)

with Ay (q) = (ArAp), and A; = U;(q) — ¥;(0) (see section 3 and eq. (3.8), setting
Au = 0 and §, = &, = 0). The argument of the exponential can be expressed in terms of
integrals over the linear theory power spectrum. Writing A;j(q) = X (¢)d;; + Y (¢)G:i4; =
%55 (Jo(0) — To(q)) + 2 (4545 — 3) J2(q) we have
* dk , * dk .
Jo(q) = 5.3 Pr(k)jo(kg) and  Ja(q) = ~— Pr(k)ja(kq), (2.3)
0 ™ 0 2w

where j, are the spherical Bessel functions. We shall return to an evaluation of eq. (2.2) in
section 4.

3 Redshift space

The line-of-sight component of the peculiar motion of each object or fluid element affects
its measured redshift, and thus the radial distance at which it is inferred to lie using the
distance-redshift (Hubble) relation [4, 11-13]. Specifically, an object with peculiar velocity v
which truly lies at x will be assigned a “redshift-space position” s = x+n (v-n/H) if i is the
line of sight. In our Lagrangian formalism, the shift to redshift space is easily accomplished
by adding n <ﬁ . \I'> to W. We shall use the shorthand notation ¥, for 7 (ﬁ : \Il>

The Fourier-space density contrast in redshift space is thus
(27360 (k) + 0,(k) = / d3q Fexp [ik - {q + T (q) + \i:ﬁ(q)}} (3.1)

= /d31: [1+0(x)]exp[ik- {x+u(x)}], (3.2)



where we have introduced a dimensionless velocity, u. Note that this says the Fourier trans-
form of the shifted field differs from that of the unshifted field by a phase, explik - u], as
might have been expected. By writing this expression in Lagrangian coordinates we have
not needed to make the single-stream approximation, or that the mapping x — x + u(x)
is one-to-one. The 2-point function of the shifted fields can now be expressed in terms of a
‘moment’ generating function! (see e.g. ref. [36]%)

1+ M®(J,r) = ([1+ 0a(x1)] [1 + Gp(x2)] e Auar) | (3.3)

where Aug, = up(x2) — ug(x1) and r = x2 — x3, and a and b are the labels of different
tracers. Note that the translational invariance of the generating function, M, is explicit,
i.e. M depends only on r. This can be seen clearly by expanding the exponent and noticing
that after ensemble averaging each term in the sum depends only on r.
We can Fourier transform the generating function to obtain
N k3 ) .
b 3,. ik J-Aug

MP®(J, k) = 2.2 /d r et <(1 + 04(%)) (1 + dp(x) )™ 2 ”>, (3.4)
where the prefactor of k3/(272) is inserted to make M dimensionless and for later conve-
nience. Directly from egs. (3.2), (3.3), (3.4) we see that the generating function, M, has a
simple relation to the power spectrum,

k3 3

— k A
27233‘?(1{) = MPJ =k k) = 23 / d3r X T M (T =k, 1) (3.5)

and that this relation holds beyond perturbation theory. We note as well that the correlation
function can be obtained here by one more Fourier transform

ab _ d3k —z'k~rpab k 3.6
() = [ e TR, (3.6)
We point out that to obtain the correlation function we have to perform one additional
transform compared to the power spectrum regardless of whether we start from M or M.
The reason for this, of course, is that in obtaining the power spectrum J could be specified as
the last step, while for the correlation function the sum over the modes needs to be performed
after specifying J. This observation will lead to some interesting consequences below.

We now consider several general methods for computing the 2-point statistics of these
redshift-space fields, by manipulating eq. (3.3). There has been lots of theoretical activity
in the RSD literature over the past several decades, with different approaches leading to
seemingly very different models and different results. We will see that the differences in all
of these approaches are simply due to different levels of approximation and techniques used
to obtain the constituents. In fact, all of these approaches can be categorized based on the
manner in which they approach the generating function M:

'Expanding the exponential in powers of J, the n'" order moment is the coefficient of the J" term. This
can be trivially generalized for higher point functions, and we consider the bispectrum in section 7.

20ur definition differs slightly from the one introduced in e.g. ref. [36] in that we allow consideration of two
different tracers, as well as 3D free vector J. The latter allows one to consider, in principle, RSD effects beyond
the plane parallel approximation. There is also a difference in a density weighting factor (14-£) where in ref. [36]
the pairwise velocity generating function is defined as (14 £(r))M(A,r) = ([1+8(x1)][1 + 5(xz)]eMA“H ).
In that respect, our definition of the moment generating function is more in line with the Z(\,r) quantity
defined in eq. (15) of this reference. All the physical considerations will, of course, not depend on any of these
definition differences.



1. Direct Lagrangian approach: the moment generating function, M, is transformed into
Lagrangian coordinates and then contributions are estimated using the cumulant the-
orem. Examples include refs. [22-25, 30].

2. Moment expansion approach: the exponential in the generating function, M, is ex-
panded and the moments individually evaluated. Examples of this approach are the dis-
tribution function approach [38-45] as well as the direct SPT-loop expansion [22, 46-48].
Various Eulerian EFT based approaches also fit into this class (see e.g. refs. [49-53]).

3. Streaming model: the cumulant theorem is used in Eulerian space after transforming
the moment generating function M into the cumulant generating function Z (defined
below in eq. (3.14)). Examples include refs. [16, 54-61].

4. Fourth approach, widely developed in the literature, is the ‘smoothing kernel” approach.
Here the cumulant expansion is used on each of the 4 contributions that arise upon
expanding the product of (1 4 J) terms and the exponential in eq. (3.3), giving a re-
sult widened by a “smoothing kernel”. This approach was first presented in ref. [36]
and further developed in ref. [37], which further expands the exponential contributions
and approximates the smoothing kernel as a one parameter Fourier space Gaussian
or Lorentzian.

As mentioned above, the differentiation into four classes and the labels are primarily histor-
ical. It is important to stress that all these methods would be mathematically identical if
carried to the same order and with the same approximations. The differences are thus pri-
marily of convenience: some aspects of the problem are easier to handle in some approaches
than others. It is also the case that the ingredients to each method can be supplied by a
perturbative, analytic model or they could (in principle) be measured in simulations. We
now consider each method in turn.

3.1 Direct Lagrangian approach
Directly from the definition of u, and using the continuity equation, we can write
3

d ) . .
1+ M™(J,r) = / (2771))3 d3q em P r=a) <(1 + o (a1)) (1 + 5b(Q2))eZp'A(q)+ZJ’Au“”> , (3.7

and similarly

(271')3(5D(k) + Psab(k) = /d3q e’k <(1 + 5a(q2)) (1 + 5b(q1)) exp {ik A +ik- Auab]> ,

(3.8)
where A(q) = ¥(q2) — ¥(q1) and all quantities are functions of Lagrangian coordinates.
For the velocity in particular we have u(x) = ¥;(q) for properly normalized time units.
As before the redshift-space power spectrum, P (k), is simply the Fourier transform of
M®(J = k,r), but now expressed entirely in Lagrangian coordinates. We also note that
there is no difference between using M or M as the starting point for the derivation.

There has been significant attention paid to this Lagrangian framework in recent
years [16, 22-31], as it lends itself naturally to the implementation of redshift-space dis-
tortions. In addition it has been employed as the basis of an effective field theory expan-
sion [16, 26, 30] and to model higher order correlation functions [35]. We shall consider the
evaluation of this expression further later, and for now turn to the second expansion.



3.2 Moment expansion approach

The moment expansion approach is equivalent to the distribution function approach [38, 42]
and proceeds by expanding the exponential term in M to obtain the (density weighted)
moments of the velocity field (for the explicit connection to the distribution function approach
we refer the reader to App A):

Eil,...,in (I‘) = <(1 =+ (Sa(X)) (1 + 6b(X,))Auab,i1 - Auab7in> . (39)

We can write the power spectrum as the sum of the Fourier transforms of these moments, viz

XX .

a ? ~
(2am)%570) + P70 = ZO ki ki Zi i (K) (3.10)
& 3. = ik-r
= Zn;kl’l-“kin/d 7 Eiy,in ()€, (3.11)
n=0

where 2™ (k) = (—i)" OMP (I, k) /DT, ...D;,

i with £ = k3Z/(272). The moment
expansion approach is the most straightforward of the 3 methods, although some of the ef-
fects that can be captured nonlinearly in other approaches (e.g. finger-of-god terms in the
case of RSD) might be missed here if one truncates the expansion at low order. On the
other hand, such nonlinear terms should always be resummable afterwards to obtain results
equivalent to the other methods.? This was the strategy adopted in the distribution function
approach [38, 42].

The leading order results are straightforwardly obtained within this approach. Since u
is a quantity of order d, we can compute the low order contributions as

Pab(k) = Zo(k) + ikiSri(k) %kikﬁm(k) . (3.12)
= [ @ e ae0n )
1 ik / dr ™ ((Sa(x)uni (X)) = (B(x Yuai(x)) )
+ kiky / Br & (g (x)upg (x)) + - (3.13)

where we have dropped terms proportional to §” (k). This leads to the well known Kaiser
formula [11].

3.3 Streaming approach

The streaming approach is sometimes regarded as a phenomenological model, but in fact can
be derived as an expansion of M or M using the cumulant theorem (see below). This can
be done in either configuration or Fourier space. The two forms are not equivalent, because
at any finite order the cumulant expansion and the Fourier transform do not commute. The
configuration space streaming model has been extensively explored in the literature [16, 54—
56, 58-60] and applied to data [57, 62-65]. The Fourier space expansion has not been explored
in the literature to date and is new to this paper. As we will see, it has some nice properties
compared to the more common, configuration-space approach, but also some subtleties.

31t is challenging to robustly define an expansion parameter in many of these approaches. Field variance
og could be considered as one potential candidate although many of the methods do not consistently resum
in this parameter.



3.3.1 Configuration space
We can perform the cumulant expansion by taking the logarithm Z%(J,r)=1In [1 + M (J ) r)]
and expanding in J:

Z%(J ) = Z le. T e (p), (3.14)

nYit...0n

where C\"), (r)=(—i)"0Z(3,x) /0, ... 0T, |;_,

velocities, Au. The first few cumulants are

are the cumulants of the (density weighted)

cOr) (14 Eap(r)]

e (r) = Zi(r)/ (1 + £alr)),

C2(r) = Z(0)/ (1 + Eu(r)) — VeV,

Cp(x) = Eije(r)/ (14 €ap(x) - cgzjc,gj cMeMely, (3.15)

where E’s are the shift field moments given by eq. (3.9) and the {---} indicates all the
nontrivial permutations of the indices. Note that physically the denominators in the above
are positive definite, however this is not guaranteed for all perturbation theory schemes and
scales. The first and second cumulants are the pairwise velocity, vy, and the dispersion, oyo.

If we introduce the kernel, K%, defined as

In K% (k, 1) = %ku i, C L () (3.16)
n=1

we can write

(27)35° (k) + P™ (k) — / dr R [1 1 £ ()] K (I, x) (3.17)
and
Pk
ab — 3 ab —ik-(s—r) y~ab

1+ £2°(s) /d r[14¢%(r)] / @n)? © K®(k,r). (3.18)

The Gaussian streaming model follows immediately by truncating the cumulant expansion
in K% at second order,

3 . (1) (2)
14 £9(s) = /d3r [1+¢%(r)] / (ZW];;B ¢ ihs(si =i =C}) o= (/2 CF (3.19)

and doing the Gaussian integral over d>k:

1+§ab

1= | g e @l |-y eor-eOie) sor-c)] 20

This expression can be further simplified due to the simple matrix structure of C(?) (see later).



3.3.2 Fourier space

We can also work in Fourier space and perform the cumulant expansion by writing
Z%(J k) = In [1+ M®(J, k)] and expanding in J as above. The first few cumulants are

CO(k) =In[1+ A2, (k)], (321)
V() = Zili)/[1+ A2,

P (k) = 10/ [1 + AZ] — EVEY,

C k) = Zigpllo)/[1+ A2,] — GEIGH — EOEMED.

where we have used the common notation A2 = k3P(k)/(272) and defined E = k3Z/(2n2)
as before. Since the power spectrum is always a positive quantity, both the ratios and the
log in the first cumulant are well defined for all k and we shall assume that this property is
satisfied on the relevant scales by the perturbation theories of relevance here. In analogy to
what we had before, we can introduce the kernel

In K% (k 71{“ i, C (k). (3.22)

We note that the translation kernel in this case depends on k only and not on r as was the
case above. This is significant since in order to compute the power spectrum no additional
Fourier transform is needed. It should be clear that the kernel £ is not simply the Fourier
transform of %, and neither do Z% and Z% form a Fourier transform pair.

The redshift-space power spectrum can now be written

= [1+AZ)K% (k) - 1

— [1+ 42 explz ki i C (k)| -1 (3.23)

We note again that if we had expanded the moment generating function, M, then the Fourier

and configuration space expressions would have been conjugate. However the non-linearity

inherent in the cumulant expansion (the fact that we are expanding the log of M and not M

itself) means that these two “streaming models” make different predictions for both £ and P.

Interestingly, the configuration-space streaming model has a long history (dating back

o [54, 55]), but its Fourier counterpart does not seem to have been developed previously
even though it yields a much simpler power spectrum structure (eq. (3.23)).

3.4 Smoothing kernel approach

The final approach uses the cumulant expansion on each of the four terms after expanding
the (1 + d4)(1 + dp) piece of the generating function M in eq. (3.3). In the case of RSD this
approach was first proposed in ref. [36] and later further developed in ref. [37], who expanded
the exponential and approximated the smoothing kernel as a Gaussian.

We re-derive this approach here in a slightly different way than presented in ref. [36]. For
details of the standard derivation we refer the reader to the original reference. We can consider



writing the generating function using an ‘inertia’ operator @ = 1 — i (dy, + dy,) — O,y
which gives

L4 MP(3,x) = O <emaaa(xl>+ixb6b(xz)+iJ‘Auab> (3.24)

Xa=Ap=0
Defining the auxiliary quantities

Aawp(J,x1,%2) = J - Aug,
Bap(J,x1,%2) = Aap(J, X1, X2) + Aada(x1) + Aodp(X2), (3.25)

we can use the cumulant theorem to compute

O <eB”b> = Oexp Z Z—' <BZb>c] (3.26)
Aa=Xp=0 n=2 " Aa=Xp=0
= exp [Zn' < ab>c] <1 _ZZE(<aGBab>c+ <ab8ab>c)
n=2 n=2
- (Z 1 (0aB3l) ) (Zn! <ab6ab>c> >t 008, )
e n—2 = Aa=Ap=0
(3.27)

The generating function then becomes

1+ M®(J,r) = exp [Z - (1 + Z ( + (00Aup) )
n=2

+(§:;!<5Mﬁb>c> (i (0pAly) ) Z [ (BadpAfy) ) (3.28)

n=1 n=1

This can be simplified by defining a “smoothing” kernel

K (J,r) =exp |:<€iJ'Auab> — 1}
= exp [ J“ oo din (Augp iy - .Auab’in%] . (3.29)

This “smoothing” kernel can be considered as a general and full form of what is typically
called the “finger of god” term in many RSD models. Historically this term was approximated
to be a scale independent contribution, originating from the zero-lag velocity dispersion [13,
37, 70-75]. In the literature, such terms were frequently re-summed, more often than not on
phenomenological grounds, yielding the family of so-called dispersion RSD models. A serious
drawback of such schemes in PT calculations was that at a certain order in PT they typically
broke the Galilean invariance of the theory (see also the related discussion in e.g. [36, 41]).
Note that this is explicitly not the case for the full smoothing kernel in eq. (3.29) where,
in addition to explicit Galilean invariance, the full scale dependence of the Eulerian velocity
field Au cumulants is included in the exponent.
Finally, collecting all above, we have for the generating function

1 +M‘1b(J,I‘) = K(J’r) (1 + <(5a +6b) ez‘J.Auab>c

+ <6a€iJ-Auab>c <5beiJ-Auab>C 4 <5a5beiJ-Auab>c>7 (3.30)



where the power spectrum can now be obtained via eq. (3.5). This result is equivalent to
eq. (31) in ref. [36].

Note that the last step, computing the power spectrum, involves computing one ad-
ditional Fourier transform. In this respect this method resembles the configuration space
streaming model. However, the kernel method does not allow for a Fourier counterpart,
such as in the streaming model case, and so the last integration step in eq. (3.5) is unavoid-
able. Further, the quantities which enter above are most naturally evaluated in the Eulerian
picture, given that the “smoothing” kernel K (J,r) depends on the Eulerian velocity field w.
Unlike in other approaches discussed earlier, u is now a volume-weighted quantity rather than
mass-weighted. For this reason, it is less straightforward to evaluate these correlators using
Lagrangian theory, and we shall not consider this approach further in the rest of the paper.
Nonetheless, it would be interesting to perform a detailed comparative study including this
approach, and we hope that this question will be addressed in the future.

4 Fourier space application and comparison of methods

We now compare the performance and convergence of the different approaches detailed in
the previous section, first in Fourier space (this section) and then in configuration space
(section 5). In order to bring out the essential points we shall adopt a simplified dynamical
model, since it serves to highlight some of the more interesting aspects of the problem.

Thus, while in reality the effects of translations and nonlinear dynamics are intertwined
and can give raise to effects of comparable importance on scales of interest, we shall assume
they can be separated. In order to focus attention on the effects of translations, below we
will restrict the dynamics to the linear displacements (i.e. the Zeldovich approximation [17]),
and neglect the higher order corrections. We will also neglect bias for now. Of course this
is purely for the purposes of presentation — each formalism can easily be applied to more
general dynamical models and biased tracers (see section 6).

Moving into redshift space amounts to replacing the displacement, ¥, by

‘Il—>\IlS:‘I/+n(lg_[‘n)=R‘I/ (4.1)

where R;; = 0;; + ff;f; and 7 is the line of sight. In the distant-observer limit* the angular
dependence is normally expanded in a Legendre series:

P(k,v) = Pu(k)Lo(v) and (s, ps) = > &) Lolps) (4.2)
=0 £=0

where Ly is the Legendre polynomial of order ¢, v = k-f and s = §-n. Note we have used
v for what is commonly called p to distinguish it from the other cosines which appear later.
The multipole moments of £ and P are related through a Hankel transform,

0o 1,2
(s =i [ 5 Pulh)iu(ks) (4.3

where j; is the spherical Bessel function of order /.

4Note that one can relax the distant observer approximation within the Zeldovich approximation [35, 66].



The linear theory predictions are the same in each approach and amount to the well
known [11]

Pu(k,v) = (1+ f12)° Py(k), (4.4)
where f is the growth rate f = dlnD/dIna. In linear theory only Py, P» and P, are
non-zero and each is proportional to P;. Including the higher order terms in the Zeldovich
approximation we begin to see the differences in the approaches.

4.1 Direct Lagrangian approach

We consider two different methods to directly evaluate the Zeldovich power spectrum in
redshift space. We will label the methods MI and MII. Both methods rely on representing
the power spectrum in term of a series of spherical Bessel functions that can be truncated
and efficiently evaluated numerically. We will compare the two methods and their efficiency.
The redshift-space power spectrum is given by eq. (2.2) but with the transformation

Aijj — Afj = Ry RjmAp,. Note that
kikj RigRjm Ao = KX [1 427 + 27 + KY [1® +2fuv(n- Q) + f22(R-§)°]  (4.5)
= B Xao(v) + K (01(0) + 0a(v)1(1, ) cos 6+ a3 (1, 1)(c0s 6)2 )

where u = ¢ - l;:, X and Y are linear theory displacement contributions explicitly defined in
eq. (C.2) and (C.3), and we introduce angle factors vy(u,v) = /1 — p?v/1 — v2/pv and

o) = (14 7@+ HP). a) = (1452) ) = 2021+ 7). aslv) = o

For method MI we first perform the integral over azimuthal angle ¢, and thus we can write
the power spectrum in the form

- 1 s
(27’[‘)35D(k) + Ps(k7 7—) = /d3q e'qu exp |:—2]€2ij1]:| (46)

_ /dgq eik'q e—%kQ (ao(l/)Xlin(q)—‘,-al(V)MQYHD(Q)) I¢ <M7 v, —;kQYlin(q)) _

where in the second line we have introduced an azimuthal integral I,. We can expand I in
powers of 1 to get

2m >
Iy (v, C) = /0 % e (az(l/)v(u,u) cos(¢)+a3(u)7(u7u)2COS(¢)2) _ Z Fo(v,a10) (;ﬂalc)f :
/=0

where, using the confluent hypergeometric function of the first kind (Kummer’s) M (a,b, z),
we introduce a further function

e\, _m=0 720 (m + DT(1 + 2m — O)T(20 — 2m + 1) \ o
1 1
XM<€_2m;€_m+;"’C>M<m+;m+1;a°x>. (4.7)
2 2 o
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Next we do the integral over the angle u. This can be done by using well-known formulae for
the integrals of powers of p times a Gaussian in p. Following ref. [29] and using the integral

1 —1)leB & 2B\" .
2/ d,U, u?@ ’LMA+,U« B __ (‘B)Z Z U(—E,n — E + 1, —B) <—A> jn(A) s (48)
- n=0

where U(a,b, z) is a confluent hypergeometric function of the second kind (Tricomi’s), we
can write the redshift-space, Zeldovich power spectrum as

Pi(k,v) = 4772/q2 dq K5, (k,q,v) e_%kZ(X(qHY(q)) <W> Jn(kq) . (4.9)
q
n=0
All of the RSD effects are contained in the kernel
KfL(k7q, V) — (1 + fy2)2n67(1/2)f1/2k2 [(2+f)X(Q)+(2+fl/ )Y(Q)]K <V —%(11]{?2 > (410)

with
K} (v,z) Z DFy (v, 2)U(=ln—0+1,—x). (4.11)
£=0

Again, above we use standard functions M (a, b, z) and U(a, b, z), which are confluent hyper-
geometric function of the first (Kummer’s) and second (Tricomi’s) kind respectively.

While this formula looks cumbersome, it lends itself to efficient numerical evaluation.
The functions j,, X and Y can be pre-computed on a regular log-spaced grid then Fourier
transforms can be employed to do the g-integral [67]. The sum over n can be truncated at
finite n, with more terms needed for higher k. We find sub-percent convergence with between
10-20 terms for all k where PT can be expected to hold (k < 12 Mpc™!). The infinite sum
in the K (v, z) can also be truncated. For the typical values of our arguments, {iax = 10-15
is sufficient.

For our second method (MII) we change the coordinate frame for the integration. Rather
than using k as our z-axis we instead introduce a new variable

Ki = ki (6f + faing),  K*=k[1+f(@2+f)v*], (4.12)

and set up the coordinate frame so that the z-axis is along K. This makes integration over
the azimuthal angle trivial. This coordinate frame was also suggested by ref. [21]. The
redshift-space, Zeldovich power spectrum is then given as

Py(k) = 27r/q2dq dp ekacn—(/R(X+2Y) 7o (kqs\/ 1-— ,u2> , (4.13)

with

e )
s = \/1+f I c=+v1-s2 (4.14)

so that (kqc)? + (kgs)? = (kq)?(c® + s%) = (kq)?. We can use integral 6.677(6) from ref. [68]

L in VAZF C?
dp e gy (C/1— p2) =222Vt 415
/_1 e o( u) eawes (4.15)
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for simplifying eq. (4.13). Ref. [21] suggested (in their appendix) taking the derivatives with
respect to the variable A in order to obtain a series for handling the additional x? in the
exponent of eq. (4.13). We found this method converged very slowly so we take a different
path that allows us to obtain a closed-form representation of the p integral. Using the
differential equation for the Bessel function

22T (z) + zJ)(x) + 22 J(z) = 0, (4.16)

we can write .
2)Jo(CV1 —p?) = — (b% + Cac> Jo(CV/1 = pi2), (4.17)

and thus
1 1
/ dp ei“AJr“QBJO (C\/ 1— /ﬂ) = eB du ei“A(l —uH" Ty (C’\/ 1— ,u2>
-1 —

i/ A2 2
—2632 (8C+ 80) sinvAT+ 07 (4.18)

JAEZTC?

Introducing the variable p = v/ A% + C2, we can rewrite the integral in the form

/_11 dp emATIEB g (Cﬂ) = 2exp{jj [(PZ - Ag)i <1 d) +2(z; +p} }jO(p)

dp \ pdp

= 2eBZGZ(AvBap)jE(p)7 (4'19)
=0

where in the last line we have introduced a function

- \N™ ./ BA2\" I‘(m—i—n—i—l)
m(4,B.p) =~ 2 ) Tm+ 1T (n L F(Zl—m+n)
Guia.0)=(-2) % (%) i)

n=m 5

1 1 2
X oF} (2 — M, g =My Z2> , (4.20)

where 9 F] is the ordinary (Gauss) hypergeometric function. Thus eq. (4.13) becomes
(0.0 00 1
Py(k) = 47r2/ ¢dg e*(l/Z)KQ(XJrY)Gg <ckq, —§K2Y, /fq) Je(kq). (4.21)
— Jo

To our knowledge this is the first direct and complete redshift-space, Zeldovich power spec-
trum calculation presented in the literature, although ref. [21] outlined in their appendix a
direction very similar to MII presented above.

We evaluate the Zeldovich power spectrum and correlation function for the Acdm cos-
mology using the parameters €2, = 0.295, 0, = 0.047, ng = 0.968, o3 = 0.835 and h = 0.688.
Figure 1 shows the power spectrum results, and the good agreement between MI and MII. At
high k& we see the familiar damping of power from the Zeldovich dynamics, with the damping
being larger along the line of sight than transverse to it. This damping corresponds to the fact
that small scale structure does not form properly in the Zeldovich approximation. This is not
of concern to us, since we are using the Zeldovich approximation for illustration. We are more
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Figure 1. The redshift-space, Zeldovich power spectrum as a function of k for select values of v for
ACDM at z = 0. We highlight the agreement between the two series expansions MI (eq. (4.9); red
solid lines) and MII (eq. (4.21); black dotted lines) described in the text. For comparison we show
the linear theory results, (1 + fv?)2Pr, as the black dashed line and the real-space, Zel’dovich power
spectrum multiplied by the linear RSD term (1 + fv?)? as the blue lines. The upper panel shows
the power spectrum, times k to reduce the dynamic range, while the lower panel shows the ratio to
(1 4+ fv?)Pzeq which highlights the change in the damping as a function of v.

interested in checking the self-consistency of the different approaches and the consistency of
methods MI and MII. The two methods give excellent agreement on the scales of interest
(k < 1hMpc™!), though on smaller scales differences begin to creep in that are due to our
truncations in the sums in egs. (4.9) and (4.21). These differences could be reduced further
by including more terms. For comparison we also show the deviations from linear theory,
(1+ fv?)2 Py, as well as a phenomenological ‘Kaiser-Zeldovich’ approximation: (1+ fv?)2Pze).
The latter highlights how the damping in the Zeldovich approximation depends upon angle
to the line of sight.

Since it will be useful later, we also reproduce the configuration-space 2-point function,
&(s,v), within the Zeldovich approximation. Figure 2 shows s? £(s,v) for several values of
v with the characteristic BAO peak clearly visible at s ~ 100 h~*Mpc. The BAO peak is
broadened from its linear theory value by non-linear structure formation and that broadening
is anisotropic. The angle-dependence of the Zeldovich correlation function is different from
that of linear theory even at relatively large scales, showing that the Kaiser limit is approached
very slowly in configuration space. We shall return to £(s, v) in section 5.
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Figure 2. The redshift-space, Zeldovich correlation function as a function of s for select values of v
for ACDM at z = 0.

4.2 Moment expansion approach

In order to explore the moment expansion approach we return to the generating function.
We are interested in ascertaining how well the moment expansion approach works compared
to the exact result of the previous section. In other words, how many terms do we need to
keep in the moment expansion in order to achieve good accuracy at the scales of interest?
Since we are using leading order Lagrangian dynamics (the Zeldovich approximation) we can
answer this question robustly as we can derive closed-form expressions for arbitrary velocity
moments. Even though the full dynamics is not properly captured, we believe the answers
will be relevant to the more general case as well.

We start from the expressions in section 3.1 (setting d,(q) = d5(q) = 0 since we are not
interested in the biased tracers at this point), and use the cumulant expansion theorem (for
Gaussian fields) to obtain

T ]{73 ; 1 ~ ~ 2 AN2 A A
M(J k) — —2/d3q ezk-q e—E(kikj—i-f(J-n)k{inj}—i-f (J-n) ninj)Aij
’ 2w
3
_ 2147_2 d3q ok e—%kiijije—%(fJﬁA-i-fQJ;f:B)7 (4.22)
™

where we introduced J; =J-n, A = k{iﬁj}Aij and B = n;n;A;;. Velocity moments in terms
of the derivatives in J; can now be obtained from the Taylor expansion

MIX) =D = () EP W), ie. EV (k) =(-i)
=0

ot~
l
5 JgM(J,k) L (4.23)
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We note that equivalently one could take the derivative relative to the logarithmic growth
rate f given that it always appears as fJ; in eq. (4.22) above. This guarantees that the
n*® velocity moment is proportional to f™, so the moment expansion can alternatively be
considered as a Taylor expansion of the full RSD spectrum in powers of f [69].

To obtain an explicit form for the moments it is useful to split them into odd and even
groups. We write

L
E(A%)( ) fQE Z 2@)(k) p2m
m=0
)" 20) i ki A
20 3 zk- 2npl—n _—=kik;iA;
_f22€+n€n()/d TATBT ez,
(264+1) (1. ;
=(20+1 2041 =(2 £+1 2m+1
=5y (k,v)=if Z_
m=0

2041 (=" (20+1)! /3 ika p2ntlgl-n,—LkikiAy (494
=if 7;)2””“(5—11)!(211—1—1)! g TS ATB e iR Y, (4.24)

where in the first lines we have separated the scale and angle dependence, implicitly defining

the reduced velocity moments Egﬁ)(k) via the m'" derivative of the moments themselves:

(1/ m!)(&,)mggz) (k) ‘V:O' The reduced moments are thus a function only of the amplitude of
the wave vector, k. It is convenient to perform this separation since each moment contains
only a finite number of powers of v, which can be seen explicitly in refs. [38, 41] or appendix A.

We delegate the explicit derivation of the reduced velocity moments, é%)(k), to
appendix B, where it is shown that

_47rZ/ 2dqe 2k X+Y)§( )(k;XY) (qu) Js(qk),

Eq(ff“)(k) =47TZ/q2dq e 3R (X+Y) (2e+1)(k X,Y) (qu> Js(gk), (4.25)

with the integrand functions given by

20 (20
20) N R XY) 2
Ead (X,Y) 2:; v Vs —n+ LY /2),
20+1 (20+1)
Fom (k. X,Y)
QXY e T —n,s —n+1,k*Y/2 4.2

and the F&)n given explicitly by eq. (B.8), with U(a,b, z) is Tricomi’s confluent hypergeo-
metric function as before.

Figure 3 shows the first few velocity moments for ACDM at z = 0. The red lines
for £ = 0, 1 and 2 show the linear theory predictions which are all proportional to P, as
plotted. We see that the Zeldovich solutions reduce to linear theory at low k as expected
(see below). Non-linear evolution changes the behavior at large k and generates higher ¢
moments, which are highly suppressed at low k in the way they are plotted here but become
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Figure 3. Velocity moments, k‘fiﬁﬁ), in Fourier space as a function of &k, for ACDM at z = 0. Moments
are computed in Zeldovich approximation and separated according to the angular dependence (as in
eq. (4.25)): m = 0 (long dashed lines), m = 1 (dash-dotted lines), m = 2 (dash-dot-dotted lines). The
black solid lines show the sum for v = 1, i.e. each m-mode weighted maximally. The linear theory
results are also shown for £ =0, 1 and 2 (red dotted lines) and are each proportional to Pr.

comparable to £ < 2 for k at or above the non-linear scale. By contrast the v dependence is
less straightforward. While m < ¢, the higher m modes for a given ¢ are not suppressed at
low k£ in the way the higher ¢ modes are. For example for £ = 2 and ¢ = 4 (two lower left
panels of figure 3) the m = 1 mode dominates over m = 0 and m = 2 at low k. We shall
compare this expansion to the others in section 4.4.

In eq. (4.24) we have expressed the velocity moments as an expansion in powers of v.
It will be useful later to rearrange these expressions to give the multipole expansion of the
moments. Using the relations

¢ ¢
v = Z(—l)ici’(@P%(y), and VA = Z(—l)ic?’(e)P%H(V): (4.27)
i=0 i=0
where
—1)" ! —1)" !
el _ ()"0 + 1)(20)! and o0 — _(FD"Un+3)(20+1)! (4.28)

n 20=n(¢ —n)(20 + 2n + 1) 2t — n)!(20 + 2n 4 3)!
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we have straightforwardly the velocity moments in terms of Legendre polynomials

/ l
=2k, v) = £ (-1) (Z cf‘m)é;%@(k)) Pai(v),
1=0 m=0

14 4
ng—i—l)(kjy) _ if2€+1 Z(_l)z (Z 6?7(m)§7(73€+1)(k)> P2z‘+1(7/)- (429)
1=0 m=0

Finally we note that the moment expansion is particularly convenient for comparing
to Eulerian methods. In particular it is easy to obtain the Kaiser result as indicated in
eq. (3.13), so let us derive the leading RSD contributions in this framework. We have

~ ~ 1 ~
Puk) = E9 k) + iwkEP (k) — ~22EP (k) + ... (4.30)

n n 9

P T (14 6(0)) (14 6(x))) + ivk / P T (14 6(x)) (14 6(x')) Aug)

Il
—

- ;ysz/dgr e*T((1+6(x)) (1 +6(x))Aui) +...

= /d3r elkr (6(x)6(x")) + il/k:/d3r eik'r(<5(xl)uﬁ(x)> - <5(x)uﬁ(x’)>)
+ v2k? / d3r ekT (up (x)up(x')) + ...,

where we have dropped terms proportional to Dirac d-functions. Assuming that the vector
components of velocity can be neglected and only the scalar part contributes, i.e. we can
write v(k) = (ik/k?)0(k), and switching back to the peculiar velocity v = Hu we get

P3(k) = Pys(k) + ivkH ! (ng(k) - P(;uﬁ(k)) + 22H 2P, . (K)
= Pss(k) — 20*H ' Psg(k) + v*H 2Py (k) . (4.31)
In linear theory 6 = — fHJ so we have
Po(k) = (1+ f12)*Pu(k), (4.32)

i.e. the well known Kaiser formula [11]. The same limit can of course also be obtained via the
direct Lagrangian approach, as argued in the earlier section, or from the streaming model by
expanding the exponential and keeping only the leading, linear terms.

4.3 Streaming models

The streaming models arise from the cumulant expansion of M or M. In either space it is
straightforward to show that Ps(k) depends only upon even powers of v = l%-ﬁ, and that for
any power of v only a finite number of cumulants contribute. We shall be interested in how
the expansion approaches the full Zeldovich result.

As mentioned above, there are two developments of the streaming model. One applies
the cumulant theorem to the generating function in configuration space and the other to the
generating function in Fourier space. Since the cumulants are constructed from the moments,
and the moments are Fourier transform pairs, they in principle contain the same information
if carried to infinite order. However, in practice, the non-local nature of the Fourier transform
and the need to truncate the expansion at finite order makes their behavior very different, as
we will show. First though we develop the streaming models more fully within the Zeldovich
approximation.
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4.3.1 Fourier space

The Gaussian streaming model in configuration space is well known (see earlier discussion
and references) and will be developed in section 4.3.2. The alternative formalism applies the
cumulant expansion in Fourier space and is new to this paper. The extension of both the
configuration-space and Fourier-space results beyond 2°d order is also new to this paper.

We can obtain cumulants from the E,EL ™) through eq. (3.21). A general form of this
transformation is given by

i )i — 1) DTG (2(1)(14: ) :(Z—i+1)(k ) (4.33)
i (25 (k,v), .. B ,1/), :

= [+ A%k

where By; (x1,...,%¢—;y1) are partial Bell polynomials. The power spectrum is

kiPs(k v) = (1+A%) exp [ (vk)C) (k, v) — (”;“)2@22)(&@ T

5 ~ 1. (4.34)

By analogy to the configuration space case, we can call the Gaussian streaming model (GSM)
the truncation at the second cumulant @}f) and dropping the higher ones. As noted previously,
this form provides a huge simplifcation over the ‘usual’ streaming model result in that the
connection between real and redshift space is algebraic. The structure of the redshift space
terms is also particularly clear, and this form is reminiscent of the older ‘dispersion’ models
which multiplied the linear theory result by a phenomenological damping [13, 36, 37, 70-75].
We shall compare this expansion to the others in section 4.4.

To bring out the correspondance with the dispersion models more clearly and to high-
light the structure of the finger of god terms, let us consider C(?) which derives from =@, In
PT =® contains a term going as Py, [ Pr,, which is UV-sensitive. This gives a contribution to
C® that looks like a constant. Thus a piece of K is exp[—k:ﬁaQ] for some o2. On small scales
A? > 1 and we have P*(k,v) ~ P(k) exp[—kﬁaQ]7 which is one of the common forms for the
old dispersion models [70, 71]. It is interesting to note that the dispersion model approxi-
mation may explicitly break translational invariance (depending upon how o is computed)
though this is preserved in the full cumulant form.

4.3.2 Configuration space

In order to obtain the streaming model in configuration space given in section 3.3.1 we first
need to obtain the configuration space ingredients, i.e. cumulants ngf) and moments Eg)
in configuration space. We start by Fourier transforming the moments, using the angular

dependence given in eq. (4.24). We can write

%25) (r,n-7) = f% Z / d’k i(ff)(k) <];, ) ﬁ) am emikr

[1]

[1]

d3k R o2m+1
;QE-H) (7,7 AP = Zf2€+1 Z / _g€+l)(k) (k . ﬁ) etk (435)
Using Legendre tensors defined by

. . S, ~ - s
{#sy - ia = (20 + 1)/477’“ ki, . ki, P (k’r) (4.36)
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we have
ko 7. A e tkr N L
/47r iy ... ke g iChe(kr) {Fay . i br (4.37)

This leads to the useful angular integrals

L
ko‘ 7 A 2L —ik-r ©, L y
/ . (k . n) e kT — Zcz ( )Pze(ur)ng(kr),

/=0
dQp /- . \2L+1 ik
/477 <kn> ZZCZ ngﬂ (vr)j2es1(kr), (4.38)

. L
where the coefficients c?’( ) and cg
uration space velocity moments

20 ‘ k2dk ¢ ~
=00 (o) = P Puten) [ G (Z CZWE%@(@) jaa k),
q=0

m=0

D) are given in eq. (4.28). Finally we have for the config-

0 4

_ k2dk ~ .

=0 (rvy) = 2N Py () / o2 (Eic;)’(m):ﬁs“”(k)) jagra(kr).  (4.39)
q=0

m=0

In analogy to what we show in figure 3, angle multipoles of these velocity moments, :(Z) 5

are shown in figure 4. Velocity moments, (Z) , can of course be represented also in terms of
power series in configuration space angles I/r = n -7 by expanding the Legendre polynomials
Py. The configuration space cumulants, Cg), are then given in terms of the moments, Eg@,
by expressions analogous to eq. (4.33).

The redshift space power spectrum in terms of the configuration space streaming model
is given by eq. (3.17). The redshift space distortion effects are contained in the kernel K, and

given that £(r) is isotropic the angular dependent kernel can be decomposed as

e Z e n
O 1
InK(k,r) = Z g'(ku ZX —Xo—Hn Z{)Bn (X1, Xn) | (4.40)
n—
where B, (X1,...,X,) is the complete, exponential Bell polynomial and we have introduced
angle series coeflicients
o
Xom(k,r,v) 'Z ka )220 (1),
=1
o (1)
Xom+1(k =i2m+ 1)) (k)R (1), 4.41
2’m+1( 7T7V) Z(m+ )Z(2£+ )(f) () ( )

In analogy to the velocity moment decomposition in eq. (4.24) we can decompose the
cumulants as

L
e (rom) = £ 7 CROr P
m=0

)4
C V() = 2N R (),

m=0

®Note that we have also added the zero-lag contributions to the real space multiple moments. In Fourier
space these are proportional to the zero k-mode.
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Figure 4. Velocity moments, _( ) in configuration space as a function of r, for ACDM at z = 0. Mo-
ments are computed in Zeldovich approximation and separated according to the angular dependence:
m = 0 (long dashed lines), m = 1 (dash-dotted lines), m = 2 (dash-dot-dotted lines). The linear
theory results are also shown for £ =0, 1 and 2 (red dotted lines) and are each proportional to Pr,.

For the angular integration in the power spectrum expression, eq. (3.17), we can now write

oo

k- 1 ik
/er e®TK(k, 1) :eXOZ L'B L (X1,. ..,XL)/dQT plekr
L=
o (L)
:4W6X°Z7)g Zz— (X1,..., X1) | je(kr) (4.42)

(L)

where the coefficient, ¢,”, is given by combining the odd and even coefficients given in
eq. (4.28). Explicitly we can write the values as

L) ‘(20 + 1)L 1, if L+ even
b 2@=02(L(L — )L+ ¢+ 1)1 |0, otherwise

(4.43)
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Finally for the configuration space streaming model power spectrum we have

(2m)305 (k) + Py(k) = /d3r e*T 1+ ¢(r)]K(k, 1) (4.44)

=4r 3 Po(v) [ r2dr [1+
S foet

An alternative strategy for obtaining the power spectrum, taking into account just the Gaus-
sian parts (i.e. truncation at the second cumulant), would be to directly transform the redshift
space correlation function. This approach has been discussed in context of the linear theory
results for density peaks in ref. [76]. Extending this approach beyond the second cumulant
depends on efficient evaluation of the streaming model correlation function, which we discuss
in section 5.4.

It is instructive to take the linear theory limit of the expression above. We start by
writing the linear theory, configuration space velocity moments given in eq. (4.39). Only first

=(2)

three velocity moments are non-vanishing. Moreover glven that Z;

S CY)
ZE— (X1,..., X1) | je(kr).
L=/

has no contribution in

linear theory and that _(O) Py, E(() )= 9p L)k, E Hl = —2P; /k?, it follows
— k2dk
=0 (r,v) = / Py (k)jo(kr), (4.45)
kdk
E (1) (r v)=—-2fv / (k)ji(kr),
H 2 22
: (’I" l/ = —f / PL j() /67“) / PL jQ k?“)

The configuration space velocity cumulants coincide with the moments in linear theory
(CTELO) = E%O), Cg) R~ Eg) and CTELQ) R~ Eg)) so using eq. (4.41) we have

Xo=—s0fPEP0),  Xi=wfEr) md Xo=—@HhEP0) . (440)

Collecting all this into eq. (4.44) and using the explicit forms By = 1, B1(X;) = X; and
Bs(X1, X3) = X? + Xo, the linear theory power spectrum is given by

PZ(:)‘ / r2dr [g<r>+xo+éxg] jo(kr)+iPy(v) / r2er1j1<kr>—§7>z<v> / rdrXaja(kr),

which upon using the integral representation of the Dirac delta function

/ r2dr o (K'r)jn(kr) = ﬁéK (K — k), (4.47)
immediately gives the Kaiser result, Py(k) = (1 + f1/2)2 Pr(k).

Finally, let us note that the computation procedure for the configuration space stream-
ing model described in this section is not the only possibility. One alternative is to use
methods already presented when computing the direct Lagrangian approach in section 4.1.
In particular the integrals given near eq. (4.8) can be applied to solve the angular integral in
eq. (4.42). We have tried this and checked that the obtained results are consistent. We find
that this leads to a somewhat more challenging numerical problem with slower convergence
and thus we did not pursue this method further.
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Figure 5. Comparison of different models in Fourier space, i.e. for the line-of-sight power spectrum.
The left panels show the ratio of each model to the ‘Kaiser-Zeldovich’” model, to reduce the dynamic
range for plotting purposes. The dashed black line indicates the full Zeldovich calculation, solid blue
the moment expansion, dashed orange the Fourier-space streaming model and dot-dashed red the
configuration-space streaming model. The right panels show the relative error, compared to the full
Zeldovich calculation. The rows show how the convergence is improved by including more terms in the
expansion, with the first row being the common ‘Gaussian’ approximation for the streaming models.
See text for further discussion.

4.4 Comparison of different Fourier space methods

The line-of-sight power spectra for the different methods introduced in the previous sections
are compared in figure 5. The left hand panels show the ratio of each expression to the ‘Kaiser-
Zeldovich’ model, P = (1+ fv?) Pz, to reduce the dynamic range for plotting purposes. The
right hand panels show the relative error in each expansion compared to the exact result (our
direct Zeldovich expansion, shown as the dashed black line in the left panels). The different
rows show how the convergence is improved by including more terms in the expansion with
the first row being the common ‘Gaussian’ approximation for the streaming models. With our
new formalism we are able to extend both the configuration-space and Fourier-space models
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Figure 6. As for figure 5, but for v = 0.5, i.e. a mode with k, = 0.5k. All of the models perform
considerably better as v is decreased, eventually approaching the exact result as v — 0. See text for
further discussion.

beyond the L., = 2/Gaussian approximation® to assess the convergence of the cumulant
expansion(s).

All models approach the correct answer, and linear theory, as & — 0. On ‘linear scales’,
k < 0.1 hMpc™!, the models all perform at the percent level. However they deviate rapidly
when moving to smaller scales. In general it appears the cumulant expansions out-perform
the moment expansions at higher k, but the absolute performance of all of the models is
relatively poor on these scales. All of the models show improvement when going beyond
Liax = 2. While at low k& the moment expansion does as well as the cumulant expansion,
the latter performs better at intermediate and high k£ and converges slightly more quickly
with increasing Lyax.

The line-of-sight power spectrum represents the worst-case scenario for the models,
which all reproduce the transverse power spectrum exactly by construction. Figure 6 is like

5In general, with Lumax we label the highest cumulant or moment that is included in the truncation in order
to study the performance of each expansion.
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Figure 7. The error in the redshift-space power spectrum on quasi-linear scales (left: k= 0.1 h Mpc?
and right: k = 0.2hMpc ') as a function of v = k,/k for our different models (solid: moments,
dashed: Fourier-space streaming and dot-dashed: configuration-space streaming). We see that the
performance of all of the models is a strong function of v. All models have zero error as v — 0 by
construction, and every model performs significantly worse for v =~ 1 than for intermediate values
of v. The configuration-space streaming model does well for small L, but the Fourier-space model
improves most rapidly with increasing L. See text for further discussion and implications.

figure 5, except for v = 0.5. Note the relative error is much smaller in this case for all of
the models. The moment expansion and the streaming models show sub-percent agreement
with the full Zeldovich calculation well into the non-linear regime. The convergence of the
expansions with increasing L.« is very rapid, with the streaming model showing fraction of
a percent performance for all plotted scales by Lyax = 5.

For all of the models we find that the errors are a strong function of v. Figure 7 shows
the same models as figures 5 and 6, but now at k = 0.1 and k = 0.2hMpc~! (both quasi-
linear scales at z = 0) as a function of v. The steep dependence of the error on v is not
too surprising, but could have consequences for comparison with observation. Observational
probes which are restricted to high v, such as 21 cm interferometry in the presence of a
foreground wedge [10], present a particular challenge for perturbation theory approaches.
Similarly, methods for dealing with observational systematics which require modeling of
high multipole moments (e.g. ref. [77]) place stringent demands upon the theory. Conversely
observational methods which downweight the line-of-sight modes (e.g. the £ of ref. [78]) could
reduce the systematic error in comparison with theory while only modestly increasing the
statistical error. An alternative, although similar, approach would be to include a ‘theoretical
error’ [79] which is a steep function of v when performing fits. We shall defer consideration
of these approaches to future work.

Finally, each of the models converges more quickly to the full result at high redshift
than at low redshift. The relevant expansion parameter in this case is fD rather than
simply D (the linear growth rate), and this actually peaks near z ~ 0.5 for currently favored
cosmological models. Figures 8 and 9 show the relative error for each of our models at v =1
and v = 0.5 for z = 1 and z = 3. Note by z = 3 the best models are performing much better
than a percent at v = 0.5 over the entire range of scales shown, with the configuration-space
streaming model achieving this even for Ly, = 2. Even at z = 3, however, the models have
super-percent errors for v = 1.
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Figure 9. Same as figure 8 for v = k,/k = 0.5. All of the models perform better for lower v at all
redshifts. See text for further discussion.

5 Redshift-space distortions in configuration space

In this section we will consider the performance of each of our models in configuration space,
i.e. for the redshift-space correlation function. We look at the convergence of the moment
expansion approach as well as the two streaming models, compared to the full Zeldovich
result. In particular we are able to go beyond leading terms in Fourier streaming model to
look at the convergence of the cumulant expansion. In the case of the configuration space
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streaming model we shall stick to the Gaussian case, commenting later on what methods are
required to efficiently move beyond this. As well as in the previous section, most of the tool
developed to compute the cumulant and moment expansion are independent of the Zeldovich
dynamics and are fully applicable in the full nonlinear case as well as in case of biased tracers
(see section 6).

5.1 Direct integration in configuration space

First we focus on obtaining directly the Zeldovich result for the RSD correlation function,
given that it will serve as our benchmark result that we contrast to the other expansions.
Obtaining the direct expression for Zeldovich RSD correlation function is relatively simple,
since the two dimensional integration can be easily performed numerically. Given that the
integral for P(k) is Gaussian we have

3 3
) = [ g e [ daek eI = [ D, ()
T T e s

where again Afj = RyRjmApy,. The integrand in this case is not oscillatory and can be
directly integrated in q variable, e.g. ref. [25]. It is interesting to compare the structure of
the integrand to its Fourier counterpart, kik;Ri¢RjmAem, given in eq. (4.5). First we note
that if k-7 — 0 one obtains the real space limit k;k; Ry Rjm Ao = k2 (X + uQY), also if
f — 0. This does not happen in configuration space and we do not obtain the real space
result for any value of 7-n. The limits 7- 7 — 0 and f — 0 are not the same. This is already
clear from the form of the integral measure, (detA®) = (14 f)2X?(X +Y), where no matter
the value of # - 7, the (1 + f)? factor is present. A similar thing happens for the term in
exponent, (q — r)[A*]7'(q — r). For this reason the error on the redshift-space correlation
function does not have to go to zero as v — 0.

Next we turn to looking at the performance of the three models; moment expansion,
Fourier and configuration space streaming models in configuration space, and study the
convergence focusing on Zeldovich dynamics as a guideline for more general cases.

5.2 Moment expansion in configuration space

In section 4.2 we explored the moment expansion in Fourier space. To obtain results for the
redshift-space correlation function corresponding to this expansion we can simply Fourier
transform it. Given that the redshift-space correlation function is a Fourier transform of the
redshift-space power spectrum, and the latter is given a sum of moments, the correlation
function will also be given as a sum of Fourier transforms of the individual terms. Starting
from eq. (3.11) we have

[1]

r) — S f ﬂ NEEO (e iker
) =2 1 [ oy (o B0 (52)

Using the expansion in the powers of v, given in eq. (4.24), we have

s 2 VY ¢ N
55(1‘) = ZPQTL(I/T) / k;:f [Z ((2;))' (fk‘)% Z <C%(€+m)E$r2L€)(k)
n=0 £=0 ’ m=0

JE e teme)=(2041) :
BETEE Em (k) | | don(kr).  (5.3)
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We shall consider the convergence of this expression below. Before that we consider the linear
(Kaiser) theory limit of this result. In linear theory only 2, Z() and =(® contribute and
we have

Z%n ” [ O [ SERED Wdan(hr) — £ [ Sk VR (W) k)
_ 1f2/dkk,4 (cf;(l):@)(k:) + e,(2 )552)(11{;)) an(kT)] (5.4)

Given the cf{g coefficients in eq. (4.28), and the fact that in linear theory E(()Q) =0, we have

for the correlation function multipoles

40+ 1
00 =3 [ put)
dk N OEIQ) (1) =) L2 (2),22(2) ;
k: c, By (k) — fe, KBy (k) — §f c, k277 (k) ) goe(kr). (5.5)
Using again the linear theory expressions u((] ) = = P, é(()l) = —2Pp/k and §§2) = —2Pp/k? it

directly follows

2
00 = (14274 1) [55 Puwitin)

60 =~ (3743 [ 5 Pultyin)

2
€)= = f / Ak b (k) ja k). (5.6)

These results are, of course, in agreement with the well-known result that the Fourier and
configuration space multipoles are simply linked by spherical Bessel transforms [12]

2
0w =it [ Powim,  row =27 [ w e, 60

5.3 Fourier streaming models in configuration space

Next we move to the new Fourier version of the streaming model (section 3.3.2). One of the
simplifying features of this representation is that it can be transformed directly into configu-
ration space (in contrast to the configuration-space streaming model where the translations
are more complex). We present these results in this subsection. By Fourier transforming
eq. (4.34) we have

3 .
&s(r) = / (gﬂlsi’)Ps(k’y)e_Zk'r

d3k T > 2'
:/(27r)3 e ka ([1+A2(k exp{z

(=1

k) (k, y)} - 1) . (5.8)
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In order to proceed we need to compute the angular integral and thus we first collect the v
dependence in the exponent

) i o 1\l
> e ) = 3w S S (€2 + 28 )

where we have defined angle power coefficients, Y, in analogy to eq. (4.41):

Y(k) = (1 + ( m7 Z

¢ 20 520
<~(n3/>2_ (k) + fkcfj/Q 1;(@) (5.10)
=1

This allows us to do the angular part of the k integral. Using eq. (4.38)

A%  _r = 70) 1 N £.L) ;
/471- e exp [Zﬂ (kv)"C.’ (k,v) Z IBL Yi,...,Yg )Z(—l) cy " Pe(vr)je(kr)

L=0 =0

9] 00 CEL)

=D (D Pelve) | Yy~ Br (i, Y1) | Gu(kr),
=0 L=0

(L)

where Bp, are again the Bell polynomials of order L. Note that the coefficients ¢, are
identically zero if ¢ > L, which limits the number of terms, i.e. the number of multipole
moments, in the first sum above. This is of direct practical use since the truncation of
the sum has to be enforced only in the L variable. For the numerical implementations we
consider below we find that truncation at L < 10 gives well converged results on scales above
~ 1 h~'Mpec.

The correlation function is thus given in terms of the Legendre polynomials that describe
the angular dependence and scale dependent terms that are obtained as spherical Bessel
transforms of the Fourier space quantities

() = [ % A2(Wnokr) (5.11)
oo dke 0o C(L)
+Z; Pg (vr //{: (1+A2(k)) [Lz:_l %BL (Y1,...,YL) | je(kr).

Given the multipoles defined by eq. (5.4), and that only even ¢ survive, we finally have

00 e(L)

ggze)(r):/d: (560&(1{) +(1+2%(k Z BZL 0,Y3,0,.. 7Y2L)>j2£(k7')a (5.12)

where again the coefficients CZ’(L) are given by eq. (4.28), By, are ordinary the Bell polynomials
and the scale dependent functions, Ys,, are given in eq. (5.10) above.

As earlier it is instructive to see how the linear theory result emerges from the solution
above. First we note that only two of the Y, terms survive, explicitly Ya(k) = —2f k‘g(()l)(k:) =
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4FA2 (k) and Yi(k) = —12(£k)2C\ (k) = 24f2A2 (k). Keeping only the linearised contribu-
tions in the Bell polynomials we immediately regain the linear theory formula in the form

dk

£20(r) = (o + 2y + 2y / - Alju(kr). (5.13)

Using the values for the cj’(L)
multipoles given in eq. (5.6).

coefficients, we promptly recover the linear configuration space

5.4 Streaming models in configuration space

As alast expansion of the RSD contributions in configuration space we consider the configura-
tion space streaming model introduced in section 3.3.1. This method is the most challenging
to evaluate beyond the second cumulant (Gaussian case), given that the methods needed
differ from ones we have been developing so far. Brute force expansion in beyond Gaussian
terms is of course possible but is labor intensive and does not guarantee fast convergence.
An alternative is to use the Edgeworth expansion (proposed in e.g. ref. [59] and studied in
ref. [80]) but we do not pursue this direction further here.
Fourier transforming the result from eq. (3.17) we obtain

3
1+ &(r) = / d*r' [1+&(r)] / (gﬂl)c?)e—ik-(r—r'm(k, r'), (5.14)

where the configuration streaming kernel is given by eq. (3.16). Using the notation -k = £
and 7-r = 7| and noting that the kernel, I, depends only on k| we can perform the integration
ink, = k—k‘”ﬁ to get

Ck _ear D dky ik, ar 5
(27r)3e Kk,r — Ar) = 6" (Ar,) o € I2TIC (K, v — Aryi), (5.15)

where the argument of the Dirac delta function is the perpendicular component r | = r—7|n.
The full correlation function can thus be written as

1+ gs(r) = /dAT’ [1 + f (|I‘ — AT”ﬁD ] /C;IjﬂeikAnIC(k”, r — AT||ﬁ), (5.16)

where we can use [r'| = [r — Aryn| = | /r? + Arﬁ —2rjAry and 2 -x' = A - (r — Arn) =

7| — Ar = rv, — Ary. Finally, the explicit result is given as

14 &s(r ) = / %e*”y [1 te (\/rQ Ty 2wx> } (5.17)

X exp [Z %g/cﬁf) (\/7“2 + 22 — 2uprT, TY) — a:) ] .
=1"

Unfortunately, due to the oscillatory nature of the integrand this expression is not particularly
useful in this form. We will not explore the general result further here, but will focus on the
simpler case when cumulant expansion is truncated at second cumulant. In the case of £ < 2
the integration in y can be performed analytically giving

dy —iy(z—c{)—1y2c? 1 2
[ e e B (< DVAC'< )| AT

2m 27C, )
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and thus the correlation function is given by the standard result

0o [1 +&(x, VT)] [x — CTELI) (z,r, 1/7«)] ’
1+ &(r ) = /OO dx exp — 2(37%2) P . (5.19)

\/QWCYELQ) (x,r,vp)

Given that we have derived the linear theory results in all the earlier cases it is natural
to comment how the same result follows here. To this end it is not very convenient to use
eq. (5.19) directly, but instead we start from eq. (5.14) and expand the exponential containing
the cumulants. Linearising the cumulants (as done in the prior subsection for the Fourier
streaming results) we get

11 &(r) = / Pk —itcx / B 14 ()] <1+ik”c§>(r’) - ;kﬁc,?)(r'))

(2n)?
d3k —ik.r - .= 1 ~
- / o (1 + 200 + ik £ (k) - Qkﬁ:ff)(k)) : (5.20)

This is the familiar, linearized, moment expansion result. By using the multipoles we obtain
the result in eq. (5.5).

5.5 Comparison of models in configuration space

Finally we compare the different expansions, above, to the full Zeldovich calculation.
Figure 10 compares the different models to the full Zeldovich calculation for the line-of-
sight correlation function, &s(r,v = 1). In figures 11 and 12 equivalent plots are shown for
the case &(r,v = 0.5) and &s(r,v = 0.0) respectively. The figures show the absolute and
relative convergence of the three approaches discussed in the earlier sections to the directly
computed Zeldovich correlation function.

As we found for the Fourier-space statistics, the models perform less well as v — 1, with
the error growing as a steep function of v. Unlike in the Fourier-space case we no longer expect
zero error as v — (. Mirroring the discussion in section 4.4 this could have implications for the
way in which models are compared to data or the kinds of applications for which perturbative
models are appropriate, but the details will differ from the Fourier-space case.

As mentioned earlier for the configuration space streaming model we performed only
the L = 2 Gaussian case calculation, and we find that already at L. = 2 it performs at the
level of ~ 1% precision on scales larger than 20 h~'Mpc, outperforming both the moment
expansion and the Fourier cumulant models (for L., = 2) for all angles. The moment
expansion performs very well, reaching subpercent accuracy for scales larger than 20 h~'Mpc
for Lmax < 3, and reaching sub-permille accuracy for Ly.x = 5. On these scales we see
that Fourier streaming model is performing as well as the moment expansion for all angles
and L.y values. The slight benefit of the Fourier streaming model can be noticed on scales
smaller than 20 h~'Mpc, where for Ly, > 3 it typically provides slightly better performance,
i.e. faster convergence to the full result.
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Figure 10. Comparison of the different models in configuration space, i.e. for the line-of-sight cor-
relation function. This is the configuration-space analog of figure 5. As in that figure, the left
panels show the ratio of each model to the ‘Kaiser-Zeldovich’ model (minus 1), to reduce the dynamic
range for plotting purposes. The dashed black line indicates the full Zeldovich calculation, solid blue
the moment expansion, dashed orange the Fourier-space streaming model and dot-dashed red the
configuration-space streaming model. The right panels show the relative error, compared to the full
Zeldovich calculation. The rows show how the convergence is improved by including more terms in the
expansion, with the first row being the common ‘Gaussian’ approximation for the streaming models.
Note that we have gone beyond the Gaussian streaming model in both Fourier and configuration space
except for the configuration-space streaming model. See text for further discussion.

6 Including bias expansion and non-linear dynamics

So far we have studied the effects of redshift-space mapping and explored the convergence
properties of three different approaches within the Zeldovich approximation. As has been
stressed before, our expansion and the mapping of cumulants and moments to the redshift-
space power spectra and correlation functions are valid also in the fully nonlinear and biased
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Figure 11. The same as figure 10 but for v = 0.5.

case. In this section we provide the description for the first three moments in the Lagrangian
Effective Field Theory (LEFT) context, taking into account biasing and nonlinear effects up
to 1-loop. We study the density two point function, pairwise velocity and velocity dispersion.
These quantities have been also studied in detail in the same framework in ref. [16],and we
repeat some of the derivations provided there but also provide the complete expression in
Fourier space (ref. [16] focused primarily on configuration space). The results presented here
can be readily used with the expansion presented in the earlier sections, either in the Fourier
or configuration space versions.

Since the Fourier space streaming model takes as ingredients velocity cumulants, it is
useful to note that contributions up to the second cumulant (velocity dispersion) are the
only non-vanishing contributions at one-loop PT. This also implies that working at the
same PT order, all contributions to higher velocity moments come from disconnected graphs
obtainable from these cumulants. This is, of course, related to the order counting in our
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Figure 12. The same as figure 10 but for v = 0.0.

PT prescription. Alternatively, one could organise the PT using as the leading order results
from section 4.1. There we show that linear displacements contribute to all of the velocity
cumulants. Nonetheless, we will not pursue this line of investigation here and will leave it

for future work.

We start the discussion by quickly reviewing the bias expansion, but for more detailed
discussion we refer readers to refs. [81-85]. Postulating that the number of biased objects is
preserved by nonlinear evolution we have a continuity equation

(1 + 5a(x7 T))dgx = (1 + 5a(qa 7'in))dzaq (6'1)

Let us consider the biasing map 04(q, 7in), which we assume is a continuous and smooth
function that can be expanded in powers of a characteristic (inverse distance) scale. In our
case the scale will be the Lagrangian radius of the biased object (e.g. a protohalo) with
associated wavenumber k. If we choose the initial time 7y, early enough, all the dark matter
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fields in the problem can be considered as linear. An extensive list of bias parameters in
Lagrangian space can be found in ref. [85]. The first few terms are

da(a@) =bs : 01 : ()
P82 (@) +ba s - (@)
g 60 @)+ g 1 0nc (@) 5 (@) b s (@)
2
+ baa(;k—g : 6 1 (q) + “stochastic” + ... (6.2)
L

where : O : represents the renormalised bias term (these will be defined explicitly further
below), and kz, is a characteristic physical scale related to Lagrangian halo radius. We have
also defined the shear operator

0;0; 1
5i5(q) = (;QJ - §(5~K and the corresponding Fourier operator is 8;;(p)

_ DPipj Lok
ij 2 3%

Note that, by construction, independent third order bias terms like the 1,” vanish in the
initial conditions if we restrict ourselves to linear initial dynamics. This means that terms of
this form, in this bias picture where biasing is set in the initial conditions, arise in Eulerian
space only due to nonlinear evolution, and thus should not be considered as free biasing
coefficients (this is analogous to the so-called ‘co-evolution picture’). We use the notation

svata) = Syainla) = (% - 3ol ) e (63

and also define renormalised operators, where the trivial zero-lag parts are subtracted from
the higher operators, so that:

:5L : :5L7
2
:s%::s%—<s%>28%—§0%7
10 1 =067 —3(07) 6r — (9}) = 6}, — 30141,
st =50 — <s‘z> = (6.4)

An alternative would be to use the biasing prescription given in e.g. ref. [23] (see also ref. [86]
for recent discussion), where the biases are defined in full resummed form, rather then per-
turbatively. In terms of generating functions we can rewrite the given density field

Ga(@) = Sa(A, 7 e H@ @t @]

At third order ref. [81] introduces an independent bias term ¢ that can explicitly be written as

B9 = 00x) — 66x) — 25°(x) + 578°(x),

where 0 is the velocity divergence defined as 6 = V - u. Note that all the fields above, including the shear
field, should be considered including the nonlinear corrections.
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where Sa()\,’y,n) is the biasing operator acting on the bias generating function exp[i\dy +
ivs2 + ins]. Explicitly we can write

1+ Sa()\,’}/,n) =1-—1 (b(s — 30’%&)53) 8)\ — b52 (8?\ + O'%) + ib53(9§
—1bg20y — bss20\0y — ibg3 0y
2
— ibge é@,\ + “stochastic” + .. .. (6.5)
The generating function for any cross-moments of pairwise velocity for two generic biased
tracers in terms of the displacement field then generalizes to

1+ Mg (J,r) —/ (;liljg d3q e~k (r=q) <[1+(5a(q)] [1+(5b(q)] exp [ik-A(q)+iJjA;(q)}>

. . A3k ) .
— [1+5a()‘1a71an1)] [1+5b()‘27’727772)] / 3d3q e—zk~(r—q) <er> )
(2) A=y=A=0
where
X = Mdr(ar) + Moz (az) + 7157 (q1) + 7257 (qa)
+mst(a) + st (q2) + k- Aq) + J/ A (q). (6.6)

This provides us with the means to compute the moments, and thus the cumulants, for biased
tracers up to the terms we used in the bias expansion.

Let us focus for a moment on the stochastic term. In Lagrangian coordinates we are
trying to describe the overdensity of discrete objects in terms of continuous dark matter
fields. In order to be able to achieve that an auxilliary stochastic field, €, has to be added to
the set of our bias operators. Intuitively, if we are describing very sparse objects this field
has to play the role of noise. Thus we can write

da(q) = da(a) + €a(), (6.7)

where ,(q) is the average over the stochastic distribution, i.e. assuming we have a PDF,
Pal€], associated with the random variable € such that [[Delep,le] = 0, we have

ulq7) = / [DSa(a, palel(a, ). (6.8)

For 6, we can assume the usual bias expansion in terms of the operators in eq. (6.4). For the
field in the Eulerian coordinates we then have

(2m)36" (k) + q(k) = /d3q e® 9 [1 4 6,(q)] eV (@ (6.9)
= / d3q ™9 1+ 8,(q)] ™V @ + / d®q ™9 ¢, (q)e* (@,

Given that, by construction, the stochastic field does not correlate with the d,, this gives us
the auto power spectrum

(27m)36P (k) + Pu(k) = /d3q oika <[1 + 8a(an)] [1+ bala2)] eik~A(q,7)>

+/ d’q ™9 <€a(ql)6a(qz)6ik'A(q’T)> (6.10)
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Focusing on the last term, and assuming also that A and ¢, are uncorrelated to be consistent
with the definition of €,, we can introduce (e,(qi)eqs(q2)) = &, (q). Assuming Poisson
statistics for ¢, we have a constant Fourier space variance, i.e. &,(q) ~ 6”(q). Thus

/dSq eka ¢ (q,7) <eik'A(q’7)> ~ const, <eik'A(q’7)> ~ constg. (6.11)
q—0

It is interesting to note that the constant term, under the assumptions above, is not sensitive
to RSD and should have the same value for all angle bins (or equivalently, contribute only to
¢ =0). The noise should depend only on the tracer type (thus the a label on the constant). If
we allow a correlation with the stochastic contributions to the dynamical fields, A, it should
be clear from above that we will get additional scale dependence and that will, of course, also
affect redshift space. Moreover, similar analysis can be performed if we have scale-dependent
stochasticity & (q) ~ 8?/k26"(q). From there we can also conclude that such terms, even
though they carry new bias coeflicients, should not be affected by the redshift space mapping
(under the assumptions above). One caveat to this statement is the possibility of anisotropic
selection effects (e.g. ref. [87]), which would introduce additional line-of-sight-dependent bias
operators and stochastic components (e.g. ref. [53]). These terms arise from survey non-
idealities rather than dynamical processes and their impact would need to be addressed on
a case-by-case basis.

6.1 Two point function in real space

In this subsection we focuse on providing the theory for the two point halo correlation function
and power spectrum in real space. Formally this is the zeroth moment of the real space
generating function

gab = Eo(l‘) =1+ Mab(J = O,I‘). (612)

Using the Lagrangian framework we have set up and applying the cumulant expansion at
1-loop we see that we get contributions only from the first two cumulants

o0

log <eiX> = Z

n=2

M= =5 (X, = (X (6.13

Given that terms involving third order shear field s7 do not contribute at 1-loop and we have

1 1
—3 (X?), =— Ekik?inj =AM Aol — (A4 A2) ki U}

1
—my26n— (N +72)ki Vi — 5()\%+/\%)U§L
_: i K
6 2 2
(3 20 - 11 - 12
- 5(71 +2)kikj Ajj —i(i A1 +y2A2) ki Vi —i(v1 A2 +y2 ) ki V;

<X3>c:—%kikjleijk—i)\l)\zkiUiu— ()\1+)\2)k:ik:jA}]Q— (A +23) kiU

i

. i
—1(71/\1>\2+72/\1>\2)x”—5(71A§+72/\?)X12 5

(A +7223)05 2, (6.14)
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where we have introduced 052 3 = = (675 L> and we have [16]

Aij = (AiA),, €={0r1012),, U =(5LA),, CL={(s71572),, Vi'"={(s1 ).,
Wik = (AiAG A, UZ-11:<6L16L2A-> A-l(-]:<5LA-A-> , U20 <5LA >

A20 <SLA A > -11 = <S%15L1A > V12 <3L15L2A >
11

X <3L1(5L15L2> X <82L15%2>c. (6.15)

This produces a number of cross and auto correlators of the bias operators and displacement
field. The purely displacement terms, A;; and W;j;, are the same as in the unbiased case
(i.e. the dark matter case) and we refer the reader to ref. [30] for a detailed discussion of this
case. Terms represented by &7, (1, and x'? (x!! does not contribute) are pure bias correlation
terms, and describe the proto-field of a biased tracer. The rest of the terms are correlations
of bias terms and dynamical displacement terms.

Acting with the biasing operators on the cumulants and expanding all but linear dis-
placements up to 1-loop order we have

[T+ 0a(N,y1,m)] [1+ 0(A2, 72, m2)] (%) = e —gkik; AL, w{1 - fk: kj Al°°f’ - fk: kj leb‘)P
— b gy (ks ALY = 2005U7°) + baabsp (62 + iU — ks UL°UL)
b ik, U0 — kik: UNOU) 4+ bso ( bs i [ 2ik; UM bs2 b Lo
+ bs2 {a,p) (kiU — kik;U; U™ ) + bs2 (s py | 20k:U; 78 ) + bs2 obs2 b §5L

— b2 o) (kiijg;? - 2zkm1°) + bs gabs2) (2@/@1/;2) + b2 (b2 X2 + b2 ube 4 (i

1 2 . 8 ( ) 82 « /]
— 5040/{ + ibg25 fapy | 2Ki k—QU + bs,{abo25,p) <2k—2§L> + ... p + “stochastic”,
L

(6.16)

where we introduced the notation byq ) = %(ba + bp). For evaluation purposes we can use
kr, = 1hMpc ™! even though it should be noted that a better estimate could be obtained based
on the sizes and masses of halos. The 1-loop halo power spectrum can thus be expressed as

(2m)36P (k) + Py (k) = /d3q ek [1+ Sa] 1+ Sb] <eiX> + “stochastic”, (6.17)
which can be written as a sum of terms

1
Pab(k) = <1 - 2a0k2> PZel+

+ 05 {a,b} 5 + 05,005 Fss + bs2 a0y Ps2 + bs {abs2 p) Pss2 + bs2 obs2 p Ps2s2

+ b2 (a,p) Ps2 4 bs {abs2 by Pss2 + bs2 (abs2 ) Ps2s2 + bs2 b2 p Po2 g2

+ 0925 {a,by Po25 1 s {abo25.5) Ps025 + Peaey- (6.18)
Each of the terms above can be expressed as an integral over u and written as a sum of
spherical Bessel functions using eq. (4.8). The terms are given in appendix C. The counter

term, «p, is capturing the leading 1-loop UV dependence due to nonlinear dynamics. For
more in depth discussion on this dependence in Lagrangian dynamics and counterterms we
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refer a reader to ref. [30]. The two derivative terms, Py and Psges, differ from the k2 Py
term only up to resummed long displacements and can in principle be gathered into one term.
Expanding also those long displacements we can recover the Eulerian derivative terms [84, 85].
Very recently an analogous biasing model has been studied at the field level, where is showed
good performance [88].

Analogously we can write the expression for the halo correlation function

which is also given as a sum of individual contributions
Eab(r) = Eze1 + Eioop + 0 )
+ b5 {a,b)6 T 05,ab5€56 + b5z fap3€52 + b5 {abs2 51652 + b5z abs2 pEs252
+ bs2 (001852 + b5 {abs2 0} Ess2 T bs2 [abs2 p) 5252 + b2 obs2 p€s2s2
+ bo25 {a,py 6025 T+ b5 {ab025,165625 T Eeucrs (6.20)

where again the explicit form of the individual contributions is given in appendix C.

6.2 The mean pairwise velocity

Next in the moment hierarchy is the mean pairwise velocity term, i.e. the first velocity
moment. We are interested in obtaining the 1-loop contributions (see also ref. [58])

= d°k 3 —ik(r—q)/_; 9 X
Zi(r) = (1 + £(r))v1o.(r) = / Gt ()57 (&) ‘J:O (6.21)
" [ PR s eeq) v ar — i /o
_;n!/@ﬂ)?’d qge (Y Ai>cexp ;Z'<Y >c
If we look at the pairwise velocity correlator we have
(k) = / dPr ™ [1 4 £(r)] viga(r). (6.22)

The natural basis to project this vector field onto is the projection onto the k vector, thus
we have =Z;(k) = Ego)(k:)k:i, and similarly v1g;(r) = vi2(r)7;. It follows that

2 ~
1+ 60N o) = =i [ L5 Eria(hn),
=1(k) = 4771'/7“2(17“ [1+&(r)]viz(r) i (kr). (6.23)

Using the above relation we have for the pairwise velocity power spectrum, i.e. the Fourier
representation of the first velocity moment

B A . 0 . ' ) o0 ]
kEgO)(k) - [1 + 6a] [1 + (51,] Z % /d3q oikd i <YnA;;>ceXp [Z;' <Yl>
=1 ! . C

=2

. (6.24)

where we also added the biasing operators. If we consider the bias terms up to d; we have

iY = i\dr1 + iX20r2 + ik - A(q). (6.25)
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We have dropped all of the shear contributions in the higher velocity terms, the motivation
being the realisation that these contributions are rather small already in the pure density
statistics on the scales of interest [16] and they are even less relevant in the higher velocity
statistics. The higher-order biasing terms can of course be added in analogous ways to the
earlier section if desired. For a consistent treatment of these terms in configuration space we
refer the reader to ref. [16].

Given that we are concerned with the 1-loop calculation here, relevant contributions
that enter to the dynamics and bias generating function, exp [ > 5%, (i%)/(¢!) <Y£>C}, are
determined by two terms

ihi (YA, = if () + A)ki (Ul + BUIGP) +if (r)kiky (AR +245°7)
1
—5ki (Y2A]) = —f(1) (AT + A3) ksUP° — 2f(7) A doks U
3 2
— 5f(T) (A1 + A2) kik; AL — gf(T)lﬂ-k:jk:lvvijl. (6.26)

Where we had to explicitly split the linear and loop contributions of the Ujp; and A;; terms
given that the loop contributions enter with different prefactors than earlier. All of the terms
are the same as those in eq. (6.15) and explicit linear and 1-loop representations can be found
in appendix C.

We have for the power spectrum

k

[1]

| . 2
O (k) = f(r) / d3q e q e=3kikiAL <zk/~c1 (Ay; n QAEOP) — SkikikWi  (6:27)
o b gany (28 (U + BUIP ) + iBkik ALY — 2hikesh AU, )

+ bé,{abé,b} <2kleH + Zklk]AiljngL + 2’Lklijilortz {g})

+ b62,{ab} (Qk;l-UEO + 12k k; il(iz {1&]) + b(;z’{ab(;’b}QkiU%lfL + ... > .

Term by term this result can be separated into the scale dependent spectra and biasing terms
so that

oop

KEL (k) = 1(7) (Pdp + 01k Pret + bs gy A + bsabss Py (6.28)
—+ b62,{ab}P(?21 —+ bgy{ab(;z’b}P(%lz + ... ),

where the a; is again the leading counterterm coefficient. The continuity equation gives a
simple relation for the purely dynamical spectra, coming from A and W terms,

Poop(k) = Pgei (k) + 2Poop (k) (6.29)

loop

where for the first term we have PYY (k) = (1/2)(0/0D4)Pze (k). The explicit form of each
of the bias spectra can be found in appendix C. For the real-space pairwise velocity we
then obtain

Boi(r) = #E4(r) = f(7) (Eﬁ}op + B + bs (a0} 25 + bsabspZ55 (6.30)
+ 052 4ty Z8 + b abs2 py E0ke + - ),

where we can identify E?Olop (r) = :%14‘2517100;)- Again all the explicit formulae for individual

bias correlation functions can be found in appendix C.
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6.3 The pairwise velocity dispersion

The final thing in this section is the 1-loop velocity dispersion (i.e. the second velocity mo-
ment), for biased tracers. We use the same biasing assumptions as in eq. (6.25). First we
start taking the derivatives of the generating function

Bij(r) = (14 £(r)) [o12,65(r) + v12,i(r)vr2,(r)] = - 8Jfan [1 +M(3, 1‘)}

J=0

X .

d*k 3 —ik-(r—q) N v n

By i (Z (j;) (ymagy, (v,

n' m=1
+ <Y"A;A;>C) exp [Z — ym, (6.31)
n=2

As discussed in appendix A we can decompose the pairwise velocity dispersion in three
components

24(r) = ([1+8(0)][1 + 6(2")] i) Auy(2')) = 2 (4(0) + €4 (r) — €11()) . (632)

where first term is the zero-lag (point) contribution, second is the kinetic energy tensor term
(correlated with the density) and the last is the momentum field correlation

<[1 +0(x ] fﬁ)uy(x)> = ‘7025” )
< [1 +0(x ] (95 )uj(a:/)> ,
([140(x)]ui(z) [1+ 6(2")]uj(2)) . (6.33)

The Fourier-space representation of the velocity dispersion term is then

(2m)% 03,05 62 + Zi;(k) = / dr T Zy5(r), (6.34)

where if we use the Lagrangian multipole decomposition we can write élj(k) o -E( )(k‘) +
)-

3 (lzzzk },}dfj) 52)(k:), and similarly Z;;(r) = (55:§ )(r) -3 (ﬂ'f’j ééf;) ( Note that

=(m)

this decomposition is somewhat different than the one we used in section 4.2, where =,
were scale dependent spectra multiplying different powers of v. To avoid multiplying notation
we will keep the same labels here but keep this change in definition in mind. These scalar
components then transform as

E0 () = 30555 (k) = — (20,00 + dm / r2dr =0 (r)jo(kr),
=P (k) = <kk: 35K ) (k) = 4 / r2dr =5 (1) ja (kr). (6.35)

It is useful at this point to give the connecting relations to frequently used alternative de-
compositions (see e.g. ref. [58]):

Tla,nm = O Pntm + 07 (6p — Pufm) (6.36)
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so that aﬁ = J%anfnfm and 02 = ( 2 oK aﬁ) /2. Connecting this to the notation given

in eq. (6.35) and the discussion above we have

=)/ (1 +e0) =5 (208 +01), =0/ (e =3 (o), (637)

or inversely
A+em) ot =200 -0, a+erot =200+ =200, (639)

We consider the perturbative, 1-loop contributions to eq. (6.31). Considering the first
term (n = 0) we have:

<<A2A; in <A;A;>(1:100p> (1 — MAobr — (A1 + )k UL, ) (6.39)
— f2 (Ah“ +4 <Ajj 0P 4 A}] 11§°P> — MAEL A — (A + M)k UL Al )
For the second term (n = 1) the contributions up to 1-loop are:
(VAN = f2 <2i()\1 + )AL 4 ik <2Wiﬂ - Wjj,”)) ) (6.40)
For the third term (n = 2) the contribution up to 1-loop are:
5 (2002, (va) +(viaian )
=—f(r)? ((M ) 2UL UG + (A + A2 by (A?,?Uﬁ?] +AhnU}gg.) kg AR AL ) .
The Fourier space representation of the velocity dispersion is then
S, (k) = f2/d3q otk a g~ Shik; Avin i) <Ahn 4 <A11] doop | 31411] 11§0p> ik, (2mjl 3 W&n))
— Fonhn ABD AR by (ikl Ul Al £ 2410 4 ziknAi.i;U{gfj)
b gy (52T + 2008,) + 05 U, + . ). (6.41)

Individually, in terms of components, this gives

=(0 0 0 =(0 = =(0

=V (k) = 1 [uépr + o= C) o+ ba,{ab}Dg,g + by absp =y § + b52,{ab}:é,§2} ,

=(2 2 =(2 = =(2

:é )( ) f2 [~§,1)oop + Oég )_; C) .+ 55,{(11;}:;(2 + bgvabg b:g g(; + b62,{ab}:(27§21| , (6.42)
where ago) and af) are the leading counterterm coefficients. In configuration space we

analogously have

—(0 —(0 0)—(0 —(0 —(0 —(0

=V (r) = £ [Eéfoop +a28), +bs {ab}:§§ + bs.absbZy §a + bs2 {ab}:§,§2} ;

—(2 —(2 2 2 2

:g )(r) = f2 [:é,l)oop + Oég )ng) o T b5 {ab}uég + b5 abs bug g(; + bs2 {ab)= §§2:| (6.43)

For both Fourier and configuration space these individual terms are given explicitly in
appendix C.
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7 Application to the bispectrum

Our focus so far has been on 2-point statistics, which form a complete description of zero-mean
Gaussian fields. However there is great interest in non-Gaussian statistics, either primordial
or those which evolve due to non-linear structure formation. In this section we show how the
formalism developed above can be applied to higher-order functions.

Historically it has been hard to handle redshift-space distortions for higher order func-
tions, due to the plethora of vectors involved [46]. However, since the signal-to-noise ratio
and information in the 3D N-point functions is larger than in their projected counterparts,
but the 3D versions can only be measured in redshift space, there is ample motivation to
investigate this problem. The new Fourier cumulant expansion is particularly interesting in
this regard, as it provides a relatively straightforward way to implement the redshift-space
mapping and even a helpful bookkeeping device for organizing the terms.

The redshift-space mapping given in eq. (3.2) also allows us to directly predict the higher
N-point functions. For example, the 3-point function in Fourier space (the bispectrum) can
be derived from

Vi kK3 o
M(T), Tk ko) = T2 [ @By, ekimitikers

47
X (14 62(%)) (1 + 0p(x')) (1 + Je(x"))eiTr - Atactidz-Buse) = (7 1)
where d®ri9 = d3r1d®ry, and where the three-point moment generating function is
1 +Mabc(J1,J2;P1,r2) _ <(1 + (5a(X))(1 +5b(X/))(1 + 5C(X//))€i.]1-AuachiJz-Ach> . (72)

From the structure above it is relatively straightforward to see how to generalise it to the
higher N-point functions. This could be of interest if one would like to investigate the non-
Gaussian part of the redshift-space power spectrum covariance matrix.

7.1 Moment expansion

We expand the exponential term in M in order to obtain the three point (density weighted)
moments of the velocity field:

By einjrogm (T1,T2) = <(1 + 5a(X)) (1 + 5b(X/))(1 + 0c(x"))
X Auac,il . Auac,in Aubc,jl e Auban> . (73)

We can write the bispectrum as the sum of the Fourier transforms of these moments,

b ©  yntm -
aoc _ =. . . .
B&*(ky,ka) = ) ki Rk gy K B i (K1, o) (7.4)
nm=0
o0 in—‘,—m 3 K Lik
= iy Py - KL k2 ---kz,jm/d 712 Eiy i gt g (T1, T2) € TITHRT2,
nm=0

This is analogous to our moment expansion for the power spectrum given in eq. (3.11).
This approach would be equivalent to any version of direct Eulerian perturbation theory
approaches to bispectrum in redshift space, as is also the case for the power spectrum.
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7.2 Fourier space cumulant expansion

In Fourier space we can perform a similar cumulant expansion as was done for the power
spectrum, i.e. we have Z%¢(Jy, Jo; k1, ko) = In [1 + M®(Jy, Ios ky, kg)] and expanding in J;
and Jo we get the three point cumulants. First few of them are

CO(ky, ko) =1In [14+A2, (ki ko), (7.5)
@gl)(kl,kﬁ =Ei(ki, ka)/[1+42,], (?;1)(1{1,1{2) =Zj(k1,ko)/[1+A%,],

C) (k1 ko) = Eiyi () [14AZ] ~CLVCY, CF) (ki ko) = Ejyj () [14A2] ~CIP LD
C) (k1 ko) =By, (1) [14+42,] - C P LY,

where we use the notation A? = k3k3 B(ky, ks)/(47%) and == k3k3E(k1, ko) /(47%) in anal-
ogy to the power spectrum case. In analogy to what we had before, we can introduce the
three point kernel

o 2 ntm
MKk, ko) = Y mkl,il...klﬂ-nkm...kzjmé}ljm)jl._.jn(k). (7.6)
n+m=1

We note that the translation kernel in this case depends on k only and not on r as was the
case above. This is significant since in order to compute the power spectrum no additional
Fourier transform is needed. It should be clear that the kernel %€ is not simply the Fourier
transform of £%¢, and neither do Zabe and Z9%¢ form a Fourier transform pair.

The redshift-space bispectrum can thus be written

1+ A2 (K1, ka) = exp {gabc(klak%kl,kﬁ} (7.7)
= [1+A2, ] K% (ky, ko)
= et Aln+m
= [1+Ac2lbc} exXp [ Z mkl’il e kl,inkQ,j1 e k2:jmci(1..—i._in,)jl...jn (kl,kg) .
n+m=1

The structure of this expression is again similar to the power spectrum case (see eq. (4.34)).
We see that in this Fourier space representation all the RSD effects are contained in a kernel,
K, that has a simple form as a sum of cumulants. Given this structure it might be appealing
to study the properties of this expansion in the form of the observables, where we take a log

of the ratio of bispectra, i.e. log ([1 + A? ]/[1 + A2 ])

s,abc abc

8 Conclusions

We have investigated the use of several expansions of the real-to-redshift-space mapping, with
a focus on the power spectrum and correlation function. We reviewed the velocity moment
expansion approach and the configuration space cumulant expansion. We also presented a
novel, Fourier-based streaming model, characterized by a simple, algebraic, form and rapid
convergence. We showed how to systematically extend the evaluation of all of these ap-
proaches in both Fourier and configuration space, in a manner that is independent of the
way the respective ingredients are computed. This gives an efficient algorithm for computing
the redshift-space correlation function and power spectrum, which can be made arbitrarily
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accurate for a given dynamics. The ingredients can be supplied either by perturbation theory
(taking care of the consistent expansion in a given parameter) or from some other means,
e.g. fits to N-body simulations or emulators. Some of the relations we derived give support
to earlier, phenomenological models for redshift-space power spectra while showing how to
extend the approximations in a controlled manner. In the follow-up work we intend to per-
form the comparative study of this framework using the N-body simulations and PT results
presented in section 6

Apart from this, we presented the first, complete computation of the redshift-space
power spectrum within the Zeldovich approximation, that we then used as a toy model with
which to test the convergence properties of moment expansion and the two streaming models.
As part of this calculation we also evaluated the arbitrary-order velocity moments (and subse-
quently cumulants) within the Zeldovich approximation. This allowed us to perform detailed
convergence and performance studies of these models at various redshifts and configurations.

All of the expansion schemes work well at large scales and agree to high precision.
Depending on the order of truncation of the expansion, agreement gradually deteriorates as
we go to smaller scales. We found that in the power spectrum, the Fourier based streaming
model performed best when L.« = 4 or 5, and for lower L.« the performance was similar
to other models. For the correlation function, and at low order (Lyax = 2), the configuration-
space streaming model performed best over all scales, while for higher orders (Lyax > 2) the
Fourier streaming model and moment expansion improved quickly and became comparable.
The agreement between all of the schemes and the full expression was, as expected, worst
for the modes along the line of sight and best for the modes transverse to the line of sight.
The size of the error scaled as a relatively high power of the (cosine of the) angle to the line
of sight, v. This suggests that comparisons between data and an expansion truncated at
any finite order could be enhanced by the use of statistics which downweight the line-of-sight
modes compared to traditional multipole expansions. Alternatively, it suggests that lower
order perturbative models are not applicable to certain situations where high accuracy for
v = 1 is required.

While the formalism is much more general, our numerical comparisons employed an
approximate dynamics (the Zeldovich approximation) and are considering only unbiased
tracers. The reader should exercise caution in assessing the absolute numerical convergence
of any of these schemes in more realistic scenarios involving full nonlinear, tracer dynamics.
However, we expect the trends and relative behaviors to be quite robust.

Being perturbative, all of the expansions perform better at high redshift where the
expansion parameters are small. In this regard, it is worth noting that the relevant expansion
parameter for redshift-space effects is fD, with f the growth rate and D the linear growth
factor. In currently favored cosmologies this actually peaks near z ~ 0.5, and falls more slowly
than D to earlier times. The relative improvement of perturbative schemes with redshift are
thus expected to be worse for redshift-space statistics than real-space statistics.

One of the interesting features of our newly developed Fourier-space streaming model
is that the relation between the redshift-space and real-space power spectra is analytic (in a
manner reminiscent of phenomenological dispersion models). In fact directly from eq. (4.34)
we see
1+ A2(k,v)

1+ A2%(k)

(”’“)25£2>(k, V)4 (8.1)

= i(vk)CV (k,v) — 5 Ch

In

where we note again that v is the usual cosine of the angle to the line of sight and co
are velocity two-point cumulants given in eq. (3.21). In principle, the left-hand side can be
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measured from data, and the velocity cumulants (including the finger-of-god terms) can be
inferred from the angle and scale dependence of the result. This newly developed Fourier-
space streaming model also provides a simple framework for applying RSD effects to higher
N-point functions. In eq. (7.7) we give a simple cumulant expansion for the redshift-space
bispectrum that follows the same structure as the power spectrum expression above.

While our numerical comparisons focus on matter statistics, we review the more realistic
scenario of biased tracers and nonlinear dynamics (up to 1-loop in Lagrangian perturbation
theory). We give the explicit expressions for the configuration and Fourier space two point
functions, as well as pairwise velocity and velocity dispersion. These ingredients are equiv-
alent to ones presented in ref. [16] in configuration space for studying the redshift space
correlation function. Together with our new Fourier version of the streaming model these
ingredients give an elegant and practical description of the redshift space power spectrum.

Finally we note that redshift-space distortions form just one example of a “shifted”
field, in which the object is displaced from its true position. Other examples of shifted fields
arise in the context of initial condition reconstruction or density field reconstruction [89] for
baryon acoustic oscillations [14, 15] and CMB lensing [90, 91]. During reconstruction objects
are deliberately displaced during the data analysis in order to reduce the impact of non-linear
evolution on the measurement of the distance scale. In CMB lensing the photon’s angular
positions are remapped by gravitational deflections along their path to the observer. However
there are many aspects of these examples which are similar, and a unified treatment is both
possible and desirable. We intend to return to this in a future publication.
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A Angle decomposition of velocity moments

Following the angular decomposition procedure pioneered in [38, 42] in this appendix we
decompose the pairwise velocity moments showing the angular structure only based on the
rotation symmetries and independently of the perturbative arguments. Pairwise velocity
moments are Eulerian quantities that are defined as

Ziryin (0) = (1 +6(x)) (1 +6(X)) Awi, ... Augy ), (A.1)

where Au; = wu;(x’) — u;(x). Given that we are interested in projections along the line of
sight n we have

where

TV (x) = (1+6(x))uk (x). (A.3)
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Fourier transform of these moments can be decomposed as

l
TV = > D TR (A4)

I=L,L—2,... m=—I
Two point correlation function is than

min(Z,l")

(TPOm0w) = 3 3 (GBI W)) YinBYion(®),

I=L,L—2,... m=—min(l,l")

V=L I'-2
(A.5)
and the power spectrum is then given as
min(l,l)
L, -
Pry(kp) = )] Y. BT RP (P (), (A.6)
=L,L—2,... m=—min(l,l")
=L/l -2

N\ 7
where, omitting the Dirac delta functions, we used straightforward definitions <T£ALL) \T%L )> =

/ ’
P and < Lm|T > = PlLl’,L ™ We can note that Py = P, so, without loss of

generality, we can assume L < L' and get

Prp(kp)= Y Z PLE ™Ry P () Py ™ () (A7)
I=L,L—2,... m=—1
V=L/.L'~2.

Here we can use the standard relation for the Wigner rotation matrices

DI (RDY(R) = N (jrjosmamsljija; jm) (jrjo: mimb|jrja; jm') DY) L (R), (A.8)

mimy Moy,
j7m7ml

when we set m} = 0 and m/, = 0 and using D,(n% = Y™ we have

PPy ™ (1) = \/8 i Z;:g: - Z;: N (s m — mlll'; 00) (17 00[10'; €0) Py(p).  (A.9)
4

Collecting this gives the velocity moment spectra in therm of a sum of just one Legendre

polynomial
I+
Pk, p) = Z ST (000 00) CFF (kyPa(pa), (A.10)
I=L,L— 2 - =[l-V]

U'=L"L'—

. L,L
where the scale dependent part is re-expressed as a sum of P, ™ spectra as

l

' (I +m)! m)! m
CHF ey = > (sm —m|ils eo>\/ ) l,+m;,PszL (k). (A.11)

m=—I
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Finally for the N-th pairwise velocity moment we then have

N
=V k) =S (-1) (JD Py N-n(k, 1)
n=0
= (—1)N/2(5]I\§/27LN/2J (N]\/ZQ) PN/Q,N/2(k7 1)
s (—1)”(]Z ) (Pavnles 1) + (=N By (s 1)) (A12)
n<N/2

These can be separated in the odd and even moments to make the angular dependence more
explicit. We have for each contribution

=00 = (17 (% )PMN(k,u) 2 3 (1 (3 ) Re[ v nl)

n
n<N
— Z P2n 73271

—_ 2N +1
:(2N+1 =N Z < >Im [Pn,2N—n+1(ka ;L):|
n<N
N
= Pany1(k)Panya (). (A.13)

Thus we see that N-th moment has contributions of only either odd or even Legendre poly-
nomials, up to the N-th order. Thus in the N-th moment all odd or even powers of angle
p appear up to the pV. It is thus interesting to note that even though we used the, linear
approximation for displacement, this Zeldovich approximation, still generated the full RSD
angle complexity as we see in section 4.2. This is, of course, not so in the direct Eularian PT
approaches that, at face value, do not exhibit any resumation of the IR modes [30, 92] (for
Eulerian based resumation of IR modes e.g. see ref. [93] and in redshift space ref. [52]).

First few examples of these pairwise moments given in terms of the simple velocity
moments as given in [38, 42]

EW(K) = Poy(k, ) — Py (k, )
= 2Z'IH1[P01(]€, /J)],

Eg) (k) = POQ(]{;, ,U) - 2P11(ka :u) + PJQ(]{;7 :UJ)
= QRG[PQQ(I{Z, ,U) - Pll(k, M)],

7(53)(1{) = Po3(k, ) — 3P12(k, ) + 3Py (k, ) — Pos(k, i)
= QiIm[Pog(k, u) — 3P12(/€, ,u)],

=W (k) = Poa(k, ) — 4Pis(k, 1) + 6 Pag(k, i) — 4P} (k, 1) + Py (k, 1)
= QRG[P(M(]{Z, ,u) — 4P13(]{7, ,u) + 3P22(k, M)] (A.14)

This provides the direct link from these moment based approaches to the various streaming
approaches (e.g [16, 56-58]).
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B Derivation of general velocity moments in Zeldovich approximation

In the section 4.2 we have derived the velocity moments in the Zeldovich approximation. We
have shown that these are given in therms of reduced velocity moments that are implicitly
defined by expression (4.24). In this section we derive the explicit expressions for these
reduced velocity moments. They can be defined via the RSD angle v derivatives of the
velocity moments

m 4
~ 1 d (-1)” (26) / ik- n — Lk kAL
—(20) _ E 3 cikd 2n pl—n_—skik; Aij
= (k) m! (du2> LO 2641 (f—n)!(2n)! @q ATE e

20
— Z/d3q eik~q F,(,?Q (X’Y)MZne—%k‘iijij’

=~ 1 d\"1
=m=(ae)

2041
— Z/d3q cka F(2€+1)(X Y),U, e 2kk AU (Bl)

v=0

l

(=" (204+1)! / 3 ikeq A2n+1pl—n —Lkiki Ass
225+n+1(£ n)!(2n+1)! @qem AT e e

v=0

where further angular dependence in p? angles is stripped from the integrands and the re-
20)

maining kernels ESW are given by

14

1 d m 1) %) do
(20) - 24 pl—i
Fnn(XY) = n!m! <d,u Cll/2 por 25“ 0—1) z)!/ 2B

v=p=0

L
1 (d\" ™y )i (%+n d¢
(2¢+1) __ - [ “ “ - 2i+1 pp0—i
Enn (X Y) nlm! <du) <dy2> v Z €+’+1 i)!(20+1)! / AT

1=

Using the integral given by eq. (4.8) we can integrate over p so we get the equations (4.25)
for the reduced velocity moments

[1]2

o Y S
gz)(k) — 47T2/q2dq e—%k2(X+Y)§T(32(k7X’ Y) (lfq) js(qk),
s=0

~ o v\*
20 =4y [ g e BNk, X, Y) (kq ) jilak).  (B3)
s=0

with integrands ffms defined as in eq. (4.26).

The goal is do derive explicit form for the F,gf,)n kernels. The strategy is to consider the
integral in eq. (B.2) and rearrange them in therms of powers of p and v. This will allow
us to take easily the derivative in angles. But first we will remind ourselves what the is
the notation; we use A = kyiijyAij = 2vkX + 2pykY and B = finjA;; = X + y2Y and
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v ="n.g=pr+mncos¢ and n = /1 — u2v/1 — v2. We have

2/
d) 2nppl—n __ 2n Ln k 1k _E LQ
/ A"B (21{3) kZOle (uvy)(lu’y) QFI 9 2717

(2K 2”221%: 247 P

q=0 p=0
2041

Ao ont1 a— J2ntd 1—-k k n?
/ 2 A B Z G /*’LV) 2471 2 P 27 y ,LL2V2

2l+1 l

2k TN 0y v (B.4)

q=0 p=0

where o F) is the ordinary hypergeometric function and functions {G*" and oG*™ are given
by sums

k/2

n 2n t—n n—(k—m -m, 2(n+m)— —2m
=5 () (et ey
m=0
k/2
n 2n+1 t—n n—(k—m -m, 2(n+m)— —2m
m=0

The goal is to extract the coefficients 104" and 5C%" from the formulae above. To do this
we need to first represent the hypergeometric function o F; as a series

(Vu)kéFl ((1 - k)/27 _k/27 17 (77/“7/)2) - Z(_l)i—i_jcgjcjyk_%/‘k_%: (B5)
1=0
7=0

where the coefficient is given by

24 ( ) (k; ) (n) <n> 3Py (1,(1—k)/2,—k/2;1 —i,1 - j;1) (B.6)
2n i) TA-dr@+ar1 —HT1+75) '
Collecting this information we get for the ;C“™ and 2C*" coefficients

l
l—n 2n
Cf,n _ 1 T+5Xl+nqusyq+s pHq+r+s— n
1 »,q Z( ) p+7’—n n—p+q—7‘+3 CTS

r=0
s=0
l
,Obn — Z(_l)r+le+n—q—s+1yq+s t=n 2n+1 cbtatrts—n — (B.7)
b,q e p+r—mn n—p+q—r—+s Crs
s=0

Finally the kernels that we wanted to derive have a form

14

(26) _ (-p*  (2H! o ~bn
F20(k, X,Y) nz:; i (e_n)!(%)!k 1O (X,Y)

L

(2041) _ (-p* (241 2m+1_ vl
F2)(k, XY nzo T T 20 Y. (B.8)
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Note that all the sums above are finite, unlike in the previous cases when the full RSD power
spectra was computed in section 4.1.

C Velocity moments up to L = 2 for biased tracers

In this appendix section we give the supplementary formulas for the section 6. All the bias
and nonlinear dynamics terms that appear in the integrands of that sections are listed below.
We first start with the non-linear term of the displacement field. The cumulant components
can be decomposed as follows [24, 29]:

2. _ 1\ o
Aij(q) = 301 (Z20(0) — Eo(q)) + 2 (Qiq]' — 351']‘) Za(q),

Wije(q) = %Cj{i(sjf}El + g (5Gi45Ge — 4gi0je1) B3, (C.1)
where we have
dk 10
s |FO(8) + g @1l + 51 ()| ko
210 =20 = [ 45 (—fk) Qu(k) — 3Qa(k) + 2R (k) — 6Ra(4)] 1 (ko)
22(0) = S0 + 2570 = [ 1 [0 + @) + LR alha)

E3(q) = Z5P(q) = /dk <_73l<:> [Q1(k) +2Q2(k) + 2R (k) + 4R (k)] js(kq).  (C.2)

272

In the rest of the section we also use the notation:

(2Z1(q) — 3=3(q)), T(q) = 3 Z3(q)- (C.3)

Let us now give the explicit expression for the terms in the eq. (6.15). We can split the term
relative to the total spin they can carry. First we can consider the zero spin term:

§r(q) = (0r1012), / Pr(p)jo(pa),
2
ol = (asta). = [ 5 Quatorioton) - (3) (o1,
"(q) = (s11611012), =0,

2
@) = (h10%). = [ 5F Qurwinloa) — 303 (C4)

X
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Spin one terms are also given by the single scalar oriented in a given direction ¢

. . ) kdk _
U = G;U° = G; (0,0, = i (11b2,1),, = —/ 52 (PL(k) + Rm(@)h(@%
R R kdk
(]11 = qZ'UiH =dq; <5L1(5L2A / R52A jl(kq),
R . kdk
U = U = (0EA), =~ [ 5 Qualiii(ka)

{

V=GV = (580, = - [ 555 Qualtin (ko)
{
(

kdk )
(shibiat), == [ 555 Qusalk)ir(ka). (©5)

Spin two terms can be split into two components, as A;; = (515 X + ¢;q;Y . For these compo-
nents we than have

1 . k2dk 1 1 ,
X1 = 2(05 = 4idy) OLAA;), :/ 53 g ltio(k) + 545 (K)jo(ka) + 3 LAD (1) ja(kq)
K2dk 1 1/ RN
=[50 SR+ 5 (W) + QW) solka)
1 .
+ 5 (R () + @ (1)) (ko).
3(.. 1 k?dk 3
yio=2 <Qin - 355> (L), = = [ S SAT (R)ja(ka)
K2dk 3 ,
- [ 55 5 (R w + QR ) datho)
k2dk 1

x = LK g0 (3a4,) = / AR (kjo(ka) + 5 A (k) ja(ka),

2
— [ 5 58 Whin(ka) + @5 (0(ko)

or2 3

272 3
Y20 — % <qiqj - éa{j ) (sT0:A;), = — / iff %Aéﬁ)(k)jz(kq)
-/ K3 02 (i), (C.6)
and we can add also the derivative terms
2;& le 2d2p Pr(p)d*jo(pq) = —/?2 @ *PL(p)jo(pa),
i; 10 _ f@ RAE Py ()9 (k) = kl ;’ﬁ P*PL(p)ji(pa). (C.7)

Note that seemingly divergent properties of the derivative terms above can be regularised by
keeping only the leading k% contributions, and truncating the small scales below 1/kr. All
the integrals above are given as spherical Bessel transforms of the integrands and thus can be
easily evaluated using the FFTLog algorithm [67]. For all the functions @, and R, that come
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as the integrants in the expressions above, we refer the readier to the refs. [22-24]. These
are as well expressible as the The 1D integrals are Hankel transforms as shown in appendix
of ref. [94].

C.1 Halo power spectrum & correlation function

Final expressions, up to 1-loop, for the power spectrum and correlation function are given in
section 6.1. Below we give explicit expressions for the individual contributions to eq. (6.18),
for the power spectrum, and eq. (6.20) for the correlation function. For additional biasing
terms we have terms of the form

1 ) >N (n YL\ .
P, =4r / ¢*dq e %’f2<XL+YL><f£“><k,q>yo<qk>+2fé (k. q) (qL) ;n<qk>>, (C.8)
n=1

(n)

where ; ’ integrands are:
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The 1D integrals are Hankel transforms which can be done efficiently using FFTs [67] as was
shown in [29].

Similar to the power spectrum it is useful to also give the explicit expression for the
1-loop halo correlation function we have

14+ E&up(r) = /d3q Mo n(q,r). (C.9)

Using the abbreviation for the purely Gaussian part

1 —Le—)TAT (r—
Q=) = Goaget (C.10)
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we can write for individual contributions to eq. (6.20)

£.(r) = / ¢ Qr — ) Fs(q),

where integrands F, can be tabulated as:
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C.2 Pairwise velocity power spectrum and correlation function

In similar way as that was used for the power spectrum, pairwise velocity power spectrum
can be evaluated by performing the 1D Hankel transforms. In analogy to the eq. (C.8) we

can write
| > kYL \"
= _1p2 . L .
K (k) = 4ﬂ/q2dq e~ 2F (X1 t¥L) (9&0)(16,(1)10(6116) +Y gl (k,q) (q) Jn(qk‘)>,
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(C.11)
where gg(cn) integrands can be tabulated as
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Similarly the configuration space result is given as
20 () = (14 €)= [ & Qlr - @)Gala) (C12)

where we can again tabulated the configuration space integrands G, as
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What is omitted from these tables are the shear bias terms s2, as well as, all the deriva-

tive terms that appeared in the density to point statistics in the previous section. For full
expressions in configuration space including these terms we refer the reader to [16].

C.3 Pairwise dispersion power spectrum and correlation function

Finally we give the similar expressions, as for power spectrum and pairwise velocity, for pair-
wise dispersion power spectrum and correlation function. As discussed in the subsection 6.3

we can split the dispersion power spectrum into two components Eéo) and Egz)‘ Each of these
can again be evaluated as the 1D Hankel transform

20 (k) =4 / Pdg e B XL) (h< ) (k. q)jolgk) +§jh<”> >(’“qYL> jn<qk>>, (C.13)
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Where X Y®) and V@ and T® terms are defined by
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Similarly the configuration space result is given as
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where we can again tabulated the configuration space integrands H, as
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