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bDepartment of Physics, University of California,
Berkeley, CA 94720, U.S.A.

cDepartment of Astronomy, University of California,
Berkeley, CA 94720, U.S.A.

E-mail: zvonimir.vlah@cern.ch, mwhite@berkeley.edu

Received December 10, 2018
Revised February 12, 2019
Accepted February 20, 2019
Published March 4, 2019

Abstract. We explore and compare different ways large-scale structure observables in
redshift-space and real space can be connected. These include direct computation in La-
grangian space, moment expansions and two formulations of the streaming model. We derive
for the first time a Fourier space version of the streaming model, which yields an algebraic
relation between the real- and redshift-space power spectra which can be compared to ear-
lier, phenomenological models. By considering the redshift-space 2-point function in both
configuration and Fourier space, we show how to generalize the Gaussian streaming model
to higher orders in a systematic and computationally tractable way. We present a closed-
form solution to the Zeldovich power spectrum in redshift space and use this as a framework
for exploring convergence properties of different expansion approaches. While we use the
Zeldovich approximation to illustrate these results, much of the formalism and many of the
relations we derive hold beyond perturbation theory, and could be used with ingredients
measured from N-body simulations or in other areas requiring decomposition of Cartesian
tensors times plane waves. We finish with a discussion of the redshift-space bispectrum, bias
and stochasticity and terms in Lagrangian perturbation theory up to 1-loop order.
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1 Introduction

The large-scale structure of the Universe contains valuable information about cosmology
and fundamental physics, and a number of ambitious observational campaigns to extract
this information are underway or in the planning stages [1, 2]. These new observations
will provide increasingly precise measurements of the clustering of astrophysical objects on
large scales, which are relatively simple to model and where predictions are under theoretical
control. Much as for anisotropies in the cosmic microwave background, it is hoped that the
combination of robust theoretical predictions and exquisitely sensitive observations will yield
strong constraints on cosmological models (e.g. ref. [3]).

In this paper we are interested in developing analytic models for the large scale clustering
of objects in redshift space [4], i.e. as measured in galaxy redshift surveys [2, 5–7], the Lyα
forest [8, 9] or line intensity mapping experiments [10]. In these situations the line-of-sight
peculiar motions of objects contribute to their observed redshift so that they are placed at
the incorrect (line-of-sight) distance [4, 11–13]. This velocity-induced mapping from real- to
redshift-space introduces an anisotropy in the clustering pattern, which can be used to test
the theory and probe the growth of large-scale structure [14, 15].

While many of our results will be valid in general, for explicit calculations and to better
bring out the physics implied by our formulae we will use Lagrangian perturbation theory
(see e.g. ref. [16], building upon the work of refs. [17–31]). Our focus will be on the study
the low-order statistics of redshift-space fields in both configuration and Fourier space.

The outline of the paper is as follows. In section 2 we review some background material
on our model and establish our notation. In section 3 we introduce the main results of this
paper, namely a comparison of different formalims for computing the redshift-space 2-point
functions. This section also includes the development of a new variant of the streaming
model, which has some advantages over previous treatments. We apply the general formal-
ism in section 4 and section 5, where we compare the different approaches for computing the
redshift-space power spectrum and correlation function (respectively) to the direct calcula-
tion, allowing a detailed study of the convergence properties of each method. While most of
the comparisons are done for the matter field within the Zeldovich approximation, our for-
malism is much more general and section 6 explicitly develops the bias and loop expansions.
We show that the moment expansion and Fourier-space version of the streaming model lead
to relatively simple expressions for the 3-point function in Fourier space (i.e. the bispectrum)
in section 7. We conclude in section 8. Some technical details are relegated to a series of
appendices.

Throughout the paper, we will use the index-summation convention where possible, the
subscript L will denote the linear (Eulerian) quantities, and we will be assuming the ΛCDM
cosmology with Ωm = 0.295, Ωb = 0.047, ns = 0.968, σ8 = 0.835 and h = 0.688.

2 Background

In this section we give a brief review of Lagrangian perturbation theory to fix our notation.
We refer the reader to the references below for the development of the theory. Lagrangian
perturbation theory and effective field theory, coupled with a flexbile bias model, offer a
systematic and accurate means of predicting the clustering of biased tracers in both config-
uration and Fourier space (e.g. ref. [16]).

The Lagrangian approach to cosmological structure formation was developed in [17–31]
and traces the trajectory of an individual fluid element through space and time. A fluid

– 1 –



J
C
A
P
0
3
(
2
0
1
9
)
0
0
7

element located at position q at some initial time t0 moves as x(q, t) = q + Ψ(q, t) with
Ψ̈+HΨ̇ = −∇Φ(q+Ψ) where an overdot represents a derivative with respect to conformal
time and H = aH is the conformal Hubble parameter. Every element of the fluid is uniquely
labeled by q and Ψ(q, t) fully specifies the evolution. We shall solve for Ψ perturbatively.
The first order solution, linear in the density field, is the Zeldovich approximation [17], which
will play an important role in this paper. Given Ψ, the real-space density field at any time
is simply

1 + δ(x) =

∫
d3q δD

[
x− q−Ψ(q)

]
⇒ δ(k) =

∫
d3q eik·q

(
eik·Ψ(q) − 1

)
. (2.1)

The density of biased tracers can be modeled, assuming Lagrangian bias, by multiplying the
δD in the above by a function, F [δL(q),∇2δL(q), · · · ], depending upon the linear theory den-
sity and its derivatives [16, 23, 25]. In the absence of explicit knowledge of F , the expectation
values of derivatives of F take the place of unknown bias coefficients describing the tracer
under consideration. Evaluation of the power spectrum then involves the expectation value
of an exponential, which can be evaluated using the cumulant theorem — we refer the reader
to the above references for further details and explicit calculations.

In what follows we will pay particular attention to the 1st order solution to Lagrangian
dynamics, i.e. the Zeldovich approximation [17]. Since the displacement field is given in
terms of the linear overdensity as Ψ(p) = (ip/p2) δL(p) (where p is the momentum variable
corresponding to the Lagrangian coordinate q), it follows that the Zeldovich matter power
spectrum is given by [21–23, 25, 32–35]

P (k) =

∫
d3q eik.q exp

[
−1

2
kikjAij(q)

]
(2.2)

with A`m(q) = 〈∆`∆m〉, and ∆i = Ψi(q) − Ψi(0) (see section 3 and eq. (3.8), setting
∆u = 0 and δa = δb = 0). The argument of the exponential can be expressed in terms of
integrals over the linear theory power spectrum. Writing Aij(q) = X(q)δij + Y (q)q̂iq̂j =
2
3δ

K
ij (J0(0)− J0(q)) + 2

(
q̂iq̂j − 1

3

)
J2(q) we have

J0(q) =

∫ ∞

0

dk

2π2
PL(k)j0(kq) and J2(q) =

∫ ∞

0

dk

2π2
PL(k)j2(kq), (2.3)

where j` are the spherical Bessel functions. We shall return to an evaluation of eq. (2.2) in
section 4.

3 Redshift space

The line-of-sight component of the peculiar motion of each object or fluid element affects
its measured redshift, and thus the radial distance at which it is inferred to lie using the
distance-redshift (Hubble) relation [4, 11–13]. Specifically, an object with peculiar velocity v

which truly lies at x will be assigned a “redshift-space position” s = x+ n̂ (v · n̂/H) if n̂ is the
line of sight. In our Lagrangian formalism, the shift to redshift space is easily accomplished

by adding n̂
(
n̂ · Ψ̇

)
to Ψ. We shall use the shorthand notation Ψ̇n̂ for n̂

(
n̂ · Ψ̇

)
.

The Fourier-space density contrast in redshift space is thus

(2π)3δD(k) + δs(k) =

∫
d3q F exp

[
ik ·

{
q+Ψ(q) + Ψ̇n̂(q)

}]
(3.1)

=

∫
d3x [1 + δ(x)] exp [ik · {x+ u(x)}] , (3.2)

– 2 –
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where we have introduced a dimensionless velocity, u. Note that this says the Fourier trans-
form of the shifted field differs from that of the unshifted field by a phase, exp[ik · u], as
might have been expected. By writing this expression in Lagrangian coordinates we have
not needed to make the single-stream approximation, or that the mapping x → x + u(x)
is one-to-one. The 2-point function of the shifted fields can now be expressed in terms of a
‘moment’ generating function1 (see e.g. ref. [36]2)

1 +Mab(J, r) =
〈[
1 + δa(x1)

][
1 + δb(x2)

]
eiJ·∆uab

〉
, (3.3)

where ∆uab = ub(x2) − ua(x1) and r = x2 − x1, and a and b are the labels of different
tracers. Note that the translational invariance of the generating function, M, is explicit,
i.e. M depends only on r. This can be seen clearly by expanding the exponent and noticing
that after ensemble averaging each term in the sum depends only on r.

We can Fourier transform the generating function to obtain

M̃ab(J,k) =
k3

2π2

∫
d3r eik·r

〈
(1 + δa(x))(1 + δb(x

′))eiJ·∆uab
〉
, (3.4)

where the prefactor of k3/(2π2) is inserted to make M̃ dimensionless and for later conve-
nience. Directly from eqs. (3.2), (3.3), (3.4) we see that the generating function, M, has a
simple relation to the power spectrum,

k3

2π2
P ab
s (k) = M̃ab(J = k,k) =

k3

2π2

∫
d3r eik·rMab(J = k, r) (3.5)

and that this relation holds beyond perturbation theory. We note as well that the correlation
function can be obtained here by one more Fourier transform

ξabs (r) =

∫
d3k

(2π)3
e−ik·rP ab

s (k). (3.6)

We point out that to obtain the correlation function we have to perform one additional
transform compared to the power spectrum regardless of whether we start from M or M̃.
The reason for this, of course, is that in obtaining the power spectrum J could be specified as
the last step, while for the correlation function the sum over the modes needs to be performed
after specifying J. This observation will lead to some interesting consequences below.

We now consider several general methods for computing the 2-point statistics of these
redshift-space fields, by manipulating eq. (3.3). There has been lots of theoretical activity
in the RSD literature over the past several decades, with different approaches leading to
seemingly very different models and different results. We will see that the differences in all
of these approaches are simply due to different levels of approximation and techniques used
to obtain the constituents. In fact, all of these approaches can be categorized based on the
manner in which they approach the generating function M:

1Expanding the exponential in powers of J, the nth order moment is the coefficient of the Jn term. This
can be trivially generalized for higher point functions, and we consider the bispectrum in section 7.

2Our definition differs slightly from the one introduced in e.g. ref. [36] in that we allow consideration of two
different tracers, as well as 3D free vector J. The latter allows one to consider, in principle, RSD effects beyond
the plane parallel approximation. There is also a difference in a density weighting factor (1+ξ) where in ref. [36]
the pairwise velocity generating function is defined as (1 + ξ(r))M(λ, r) ≡

〈[

1 + δ(x1)
][

1 + δ(x2)
]

eiλ∆u‖
〉

.
In that respect, our definition of the moment generating function is more in line with the Z(λ, r) quantity
defined in eq. (15) of this reference. All the physical considerations will, of course, not depend on any of these
definition differences.
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1. Direct Lagrangian approach: the moment generating function, M, is transformed into
Lagrangian coordinates and then contributions are estimated using the cumulant the-
orem. Examples include refs. [22–25, 30].

2. Moment expansion approach: the exponential in the generating function, M, is ex-
panded and the moments individually evaluated. Examples of this approach are the dis-
tribution function approach [38–45] as well as the direct SPT-loop expansion [22, 46–48].
Various Eulerian EFT based approaches also fit into this class (see e.g. refs. [49–53]).

3. Streaming model: the cumulant theorem is used in Eulerian space after transforming
the moment generating function M into the cumulant generating function Z (defined
below in eq. (3.14)). Examples include refs. [16, 54–61].

4. Fourth approach, widely developed in the literature, is the ‘smoothing kernel’ approach.
Here the cumulant expansion is used on each of the 4 contributions that arise upon
expanding the product of (1 + δ) terms and the exponential in eq. (3.3), giving a re-
sult widened by a “smoothing kernel”. This approach was first presented in ref. [36]
and further developed in ref. [37], which further expands the exponential contributions
and approximates the smoothing kernel as a one parameter Fourier space Gaussian
or Lorentzian.

As mentioned above, the differentiation into four classes and the labels are primarily histor-
ical. It is important to stress that all these methods would be mathematically identical if
carried to the same order and with the same approximations. The differences are thus pri-
marily of convenience: some aspects of the problem are easier to handle in some approaches
than others. It is also the case that the ingredients to each method can be supplied by a
perturbative, analytic model or they could (in principle) be measured in simulations. We
now consider each method in turn.

3.1 Direct Lagrangian approach

Directly from the definition of u, and using the continuity equation, we can write

1 +Mab
(
J, r
)
=

∫
d3p

(2π)3
d3q e−ip·(r−q)

〈(
1 + δa

(
q1))

(
1 + δb(q2)

)
eip·∆(q)+iJ·∆uab

〉
, (3.7)

and similarly

(2π)3δD(k) + P ab
s (k) =

∫
d3q eik·q

〈(
1 + δa(q2)

)(
1 + δb(q1)

)
exp

[
ik ·∆+ ik ·∆uab

]〉
,

(3.8)
where ∆(q) = Ψ(q2) − Ψ(q1) and all quantities are functions of Lagrangian coordinates.
For the velocity in particular we have u(x) = Ψ̇n̂(q) for properly normalized time units.
As before the redshift-space power spectrum, P ab

s (k), is simply the Fourier transform of
Mab(J = k, r), but now expressed entirely in Lagrangian coordinates. We also note that

there is no difference between using M or M̃ as the starting point for the derivation.
There has been significant attention paid to this Lagrangian framework in recent

years [16, 22–31], as it lends itself naturally to the implementation of redshift-space dis-
tortions. In addition it has been employed as the basis of an effective field theory expan-
sion [16, 26, 30] and to model higher order correlation functions [35]. We shall consider the
evaluation of this expression further later, and for now turn to the second expansion.
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3.2 Moment expansion approach

The moment expansion approach is equivalent to the distribution function approach [38, 42]
and proceeds by expanding the exponential term in M to obtain the (density weighted)
moments of the velocity field (for the explicit connection to the distribution function approach
we refer the reader to App A):

Ξi1,...,in(r) =
〈(
1 + δa(x)

)(
1 + δb(x

′)
)
∆uab,i1 . . .∆uab,in

〉
. (3.9)

We can write the power spectrum as the sum of the Fourier transforms of these moments, viz

(2π)3δD(k) + P ab
s (k) =

∞∑

n=0

in

n!
ki1 . . . kinΞ̃i1,...,in(k) (3.10)

=

∞∑

n=0

in

n!
ki1 . . . kin

∫
d3r Ξi1,...,in(r)e

ik·r, (3.11)

where Ξ̂
(n)
i1...in

(k) = (−i)n ∂M̃ab(J,k)/∂Ji1 . . . ∂Jin

∣∣∣
J=0

with Ξ̂ ≡ k3Ξ̃/(2π2). The moment

expansion approach is the most straightforward of the 3 methods, although some of the ef-
fects that can be captured nonlinearly in other approaches (e.g. finger-of-god terms in the
case of RSD) might be missed here if one truncates the expansion at low order. On the
other hand, such nonlinear terms should always be resummable afterwards to obtain results
equivalent to the other methods.3 This was the strategy adopted in the distribution function
approach [38, 42].

The leading order results are straightforwardly obtained within this approach. Since u
is a quantity of order δ, we can compute the low order contributions as

P ab
s (k) = Ξ̃0(k) + ikiΞ̃1,i(k)−

1

2
kikjΞ̃2,ij(k) + · · · (3.12)

=

∫
d3r eik·r

〈
δa(x)δb(x

′)
〉

+ iki

∫
d3r eik·r

( 〈
δa(x)ub,i(x

′)
〉
−
〈
δb(x

′)ua,i(x)
〉 )

+ kikj

∫
d3r eik·r

〈
ua,i(x)ub,j(x

′)
〉
+ · · · (3.13)

where we have dropped terms proportional to δD(k). This leads to the well known Kaiser
formula [11].

3.3 Streaming approach

The streaming approach is sometimes regarded as a phenomenological model, but in fact can
be derived as an expansion of M or M̃ using the cumulant theorem (see below). This can
be done in either configuration or Fourier space. The two forms are not equivalent, because
at any finite order the cumulant expansion and the Fourier transform do not commute. The
configuration space streaming model has been extensively explored in the literature [16, 54–
56, 58–60] and applied to data [57, 62–65]. The Fourier space expansion has not been explored
in the literature to date and is new to this paper. As we will see, it has some nice properties
compared to the more common, configuration-space approach, but also some subtleties.

3It is challenging to robustly define an expansion parameter in many of these approaches. Field variance
σ8 could be considered as one potential candidate although many of the methods do not consistently resum
in this parameter.
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3.3.1 Configuration space

We can perform the cumulant expansion by taking the logarithm Zab(J, r)=ln
[
1+Mab

(
J, r
)]

and expanding in J:

Zab(J, r) =

∞∑

n=0

in

n!
Ji1 . . . JinC

(n)
i1...in

(r), (3.14)

where C(n)
i1...in

(r)=(−i)n∂Zab(J,r)/∂Ji1 . . . ∂Jin
∣∣
J=0

are the cumulants of the (density weighted)
velocities, ∆u. The first few cumulants are

C(0)(r) = ln
[
1 + ξab(r)

]
,

C(1)
i (r) = Ξi(r)/ (1 + ξab(r)) ,

C(2)
ij (r) = Ξij(r)/ (1 + ξab(r))− C(1)

i C(1)
j ,

C(3)
ijk(r) = Ξijk(r)/ (1 + ξab(r))− C(2)

{ijC
(1)
k} − C(1)

i C(1)
j C(1)

k , (3.15)

where Ξ’s are the shift field moments given by eq. (3.9) and the {· · · } indicates all the
nontrivial permutations of the indices. Note that physically the denominators in the above
are positive definite, however this is not guaranteed for all perturbation theory schemes and
scales. The first and second cumulants are the pairwise velocity, v12, and the dispersion, σ12.

If we introduce the kernel, Kab, defined as

lnKab(k, r) =

∞∑

n=1

in

n!
ki1 . . . kinC

(n)
i1...in

(r) (3.16)

we can write

(2π)3δD(k) + P ab
s (k) =

∫
d3r eik·r

[
1 + ξab(r)

]
Kab(k, r) (3.17)

and

1 + ξabs (s) =

∫
d3r

[
1 + ξab(r)

] ∫ d3k

(2π)3
e−ik·(s−r)Kab(k, r). (3.18)

The Gaussian streaming model follows immediately by truncating the cumulant expansion
in Kab at second order,

1 + ξabs (s) '
∫
d3r

[
1 + ξab(r)

] ∫ d3k

(2π)3
e−ikj(sj−rj−C

(1)
j )e−(1/2)kikjC

(2)
ij , (3.19)

and doing the Gaussian integral over d3k:

1+ξabs (s)=

∫
d3r√

(2π)3det[C(2)]

[
1+ξab(r)

]
exp

[
−1

2
(s−r−C(1))[C(2)]−1(s−r−C(1))

]
. (3.20)

This expression can be further simplified due to the simple matrix structure of C(2) (see later).

– 6 –
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3.3.2 Fourier space

We can also work in Fourier space and perform the cumulant expansion by writing
Z̃ab(J,k) = ln

[
1 + M̃ab(J,k)

]
and expanding in J as above. The first few cumulants are

C̃(0)(k) = ln
[
1 + ∆2

ab(k)
]
, (3.21)

C̃(1)
i (k) = Ξ̂i(k)/

[
1 + ∆2

ab

]
,

C̃(2)
ij (k) = Ξ̂ij(k)/

[
1 + ∆2

ab

]
− C̃

(1)
i C̃

(1)
j ,

C̃(3)
ijk(k) = Ξ̂ijk(k)/

[
1 + ∆2

ab

]
− C̃

(2)
{ij C̃

(1)
k} − C̃

(1)
i C̃

(1)
j C̃

(1)
k .

where we have used the common notation ∆2 = k3P (k)/(2π2) and defined Ξ̂ = k3Ξ̃/(2π2)
as before. Since the power spectrum is always a positive quantity, both the ratios and the
log in the first cumulant are well defined for all k and we shall assume that this property is
satisfied on the relevant scales by the perturbation theories of relevance here. In analogy to
what we had before, we can introduce the kernel

ln K̃ab(k) =

∞∑

n=1

in

n!
ki1 . . . kin C̃

(n)
i1...in

(k). (3.22)

We note that the translation kernel in this case depends on k only and not on r as was the
case above. This is significant since in order to compute the power spectrum no additional
Fourier transform is needed. It should be clear that the kernel K̃ab is not simply the Fourier
transform of Kab, and neither do Z̃ab and Zab form a Fourier transform pair.

The redshift-space power spectrum can now be written

k3

2π2
P ab
s (k) = exp

[
Z̃ab(k,k)

]
− 1

=
[
1 + ∆2

ab

]
K̃ab(k)− 1

=
[
1 + ∆2

ab

]
exp

[
∞∑

n=1

in

n!
ki1 . . . kin C̃

(n)
i1...in

(k)

]
− 1. (3.23)

We note again that if we had expanded the moment generating function, M, then the Fourier
and configuration space expressions would have been conjugate. However the non-linearity
inherent in the cumulant expansion (the fact that we are expanding the log of M and not M
itself) means that these two “streaming models” make different predictions for both ξ and P .

Interestingly, the configuration-space streaming model has a long history (dating back
to [54, 55]), but its Fourier counterpart does not seem to have been developed previously
even though it yields a much simpler power spectrum structure (eq. (3.23)).

3.4 Smoothing kernel approach

The final approach uses the cumulant expansion on each of the four terms after expanding
the (1 + δa)(1 + δb) piece of the generating function M in eq. (3.3). In the case of RSD this
approach was first proposed in ref. [36] and later further developed in ref. [37], who expanded
the exponential and approximated the smoothing kernel as a Gaussian.

We re-derive this approach here in a slightly different way than presented in ref. [36]. For
details of the standard derivation we refer the reader to the original reference. We can consider

– 7 –
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writing the generating function using an ‘inertia’ operator Ô = 1 − i (∂λa
+ ∂λb

) − ∂λa
∂λb

,
which gives

1 +Mab
(
J, r
)
= Ô

〈
eiλaδa(x1)+iλbδb(x2)+iJ·∆uab

〉 ∣∣∣
λa=λb=0

. (3.24)

Defining the auxiliary quantities

Aab(J,x1,x2) ≡ J ·∆uab,
Bab(J,x1,x2) ≡ Aab(J,x1,x2) + λaδa(x1) + λbδb(x2), (3.25)

we can use the cumulant theorem to compute

Ô
〈
eBab

〉 ∣∣∣∣
λa=λb=0

= Ô exp

[
∞∑

n=2

in

n!
〈Bn

ab〉c

]∣∣∣∣∣
λa=λb=0

(3.26)

= exp

[
∞∑

n=2

in

n!
〈An

ab〉c

](
1− i

∞∑

n=2

in

n!

(
〈∂aBn

ab〉c + 〈∂bBn
ab〉c

)

−
(

∞∑

n=2

in

n!
〈∂aBn

ab〉c

)(
∞∑

n=2

in

n!
〈∂bBn

ab〉c

)
−

∞∑

n=2

in

n!
〈∂a∂bBn

ab〉c

)∣∣∣∣∣
λa=λb=0

.

(3.27)

The generating function then becomes

1 +Mab
(
J, r
)
= exp

[
∞∑

n=2

in

n!
〈An

ab〉c

](
1 +

∞∑

n=1

in

n!

(
〈δaAn

ab〉c + 〈δbAn
ab〉c

)

+

(
∞∑

n=1

in

n!
〈δaAn

ab〉c

)(
∞∑

n=1

in

n!
〈δbAn

ab〉c

)
+

∞∑

n=0

in

n!
〈δaδbAn

ab〉c

)
. (3.28)

This can be simplified by defining a “smoothing” kernel

K (J, r) ≡ exp
[ 〈
eiJ·∆uab

〉
c
− 1
]

= exp

[
∞∑

n=2

in

n!
Ji1 . . . Jin 〈∆uab,i1 . . .∆uab,in〉c

]
. (3.29)

This “smoothing” kernel can be considered as a general and full form of what is typically
called the “finger of god” term in many RSD models. Historically this term was approximated
to be a scale independent contribution, originating from the zero-lag velocity dispersion [13,
37, 70–75]. In the literature, such terms were frequently re-summed, more often than not on
phenomenological grounds, yielding the family of so-called dispersion RSD models. A serious
drawback of such schemes in PT calculations was that at a certain order in PT they typically
broke the Galilean invariance of the theory (see also the related discussion in e.g. [36, 41]).
Note that this is explicitly not the case for the full smoothing kernel in eq. (3.29) where,
in addition to explicit Galilean invariance, the full scale dependence of the Eulerian velocity
field ∆u cumulants is included in the exponent.

Finally, collecting all above, we have for the generating function

1 +Mab
(
J, r
)
= K (J, r)

(
1 +

〈
(δa + δb) e

iJ·∆uab
〉
c

+
〈
δae

iJ·∆uab
〉
c

〈
δbe

iJ·∆uab
〉
c
+
〈
δaδbe

iJ·∆uab
〉
c

)
, (3.30)
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where the power spectrum can now be obtained via eq. (3.5). This result is equivalent to
eq. (31) in ref. [36].

Note that the last step, computing the power spectrum, involves computing one ad-
ditional Fourier transform. In this respect this method resembles the configuration space
streaming model. However, the kernel method does not allow for a Fourier counterpart,
such as in the streaming model case, and so the last integration step in eq. (3.5) is unavoid-
able. Further, the quantities which enter above are most naturally evaluated in the Eulerian
picture, given that the “smoothing” kernel K(J, r) depends on the Eulerian velocity field u.
Unlike in other approaches discussed earlier, u is now a volume-weighted quantity rather than
mass-weighted. For this reason, it is less straightforward to evaluate these correlators using
Lagrangian theory, and we shall not consider this approach further in the rest of the paper.
Nonetheless, it would be interesting to perform a detailed comparative study including this
approach, and we hope that this question will be addressed in the future.

4 Fourier space application and comparison of methods

We now compare the performance and convergence of the different approaches detailed in
the previous section, first in Fourier space (this section) and then in configuration space
(section 5). In order to bring out the essential points we shall adopt a simplified dynamical
model, since it serves to highlight some of the more interesting aspects of the problem.

Thus, while in reality the effects of translations and nonlinear dynamics are intertwined
and can give raise to effects of comparable importance on scales of interest, we shall assume
they can be separated. In order to focus attention on the effects of translations, below we
will restrict the dynamics to the linear displacements (i.e. the Zeldovich approximation [17]),
and neglect the higher order corrections. We will also neglect bias for now. Of course this
is purely for the purposes of presentation — each formalism can easily be applied to more
general dynamical models and biased tracers (see section 6).

Moving into redshift space amounts to replacing the displacement, Ψ, by

Ψ → Ψs = Ψ+
n̂ (Ψ̇ · n̂)

H = RΨ (4.1)

where Rij = δij + fn̂in̂j and n̂ is the line of sight. In the distant-observer limit4 the angular
dependence is normally expanded in a Legendre series:

P (k, ν) =

∞∑

`=0

P`(k)L`(ν) and ξ(s, µs) =

∞∑

`=0

ξ`(s)L`(µs) (4.2)

where L` is the Legendre polynomial of order `, ν = k̂ · n̂ and µs = ŝ · n̂. Note we have used
ν for what is commonly called µk to distinguish it from the other cosines which appear later.
The multipole moments of ξ and P are related through a Hankel transform,

ξ`(s) = i`
∫ ∞

0

k2 dk

2π2
P`(k)j`(ks) (4.3)

where j` is the spherical Bessel function of order `.

4Note that one can relax the distant observer approximation within the Zeldovich approximation [35, 66].
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The linear theory predictions are the same in each approach and amount to the well
known [11]

Ps(k, ν) =
(
1 + fν2

)2
PL(k) , (4.4)

where f is the growth rate f = d lnD/d ln a. In linear theory only P0, P2 and P4 are
non-zero and each is proportional to PL. Including the higher order terms in the Zeldovich
approximation we begin to see the differences in the approaches.

4.1 Direct Lagrangian approach

We consider two different methods to directly evaluate the Zeldovich power spectrum in
redshift space. We will label the methods MI and MII. Both methods rely on representing
the power spectrum in term of a series of spherical Bessel functions that can be truncated
and efficiently evaluated numerically. We will compare the two methods and their efficiency.

The redshift-space power spectrum is given by eq. (2.2) but with the transformation
Aij → As

ij = Ri`RjmA`m. Note that

kikjRi`RjmA`m = k2X
[
1 + 2fν2 + f2ν2

]
+ k2Y

[
µ2 + 2fµν(n̂ · q̂) + f2ν2(n̂ · q̂)2

]
(4.5)

= k2Xα0(ν) + k2Y
(
α1(ν) + α2(ν)γ(µ, ν) cosφ+ α3(ν)γ(µ, ν)

2(cosφ)2
)
µ2,

where µ = q̂ · k̂, X and Y are linear theory displacement contributions explicitly defined in
eq. (C.2) and (C.3), and we introduce angle factors γ(µ, ν) =

√
1− µ2

√
1− ν2/µν and

α0(ν) =
(
1+ f (2 + f) ν2

)
, α1(ν) =

(
1+ fν2

)2
, α2(ν) = 2fν2(1+ fν2), α3(ν) = f2ν4.

For method MI we first perform the integral over azimuthal angle φ, and thus we can write
the power spectrum in the form

(2π)3δD(k) + Ps(k, τ) =

∫
d3q eik·q exp

[
−1

2
kikjA

s
ij

]
(4.6)

=

∫
d3q eik·q e−

1
2
k2
(
α0(ν)Xlin(q)+α1(ν)µ2Y lin(q)

)
Iφ

(
µ, ν,−1

2
k2Y lin(q)

)
.

where in the second line we have introduced an azimuthal integral Iφ. We can expand Iφ in
powers of µ to get

Iφ (µ, ν, C) =

∫ 2π

0

dφ

2π
eCµ2

(
α2(ν)γ(µ,ν) cos(φ)+α3(ν)γ(µ,ν)2 cos(φ)2

)
=

∞∑

`=0

F`(ν, α1C)
(
µ2α1C

)`
,

where, using the confluent hypergeometric function of the first kind (Kummer’s) M(a, b, z),
we introduce a further function

F`(ν, x) =
∑̀

m=0

(−1)m4`−mΓ(m+ 1
2)

π1/2Γ(m+ 1)Γ(1 + 2m− `)Γ(2`− 2m+ 1)

(
α0

α1

)m

×M

(
`− 2m; `−m+

1

2
;x

)
M

(
m+

1

2
;m+ 1;

α0

α1
x

)
. (4.7)
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Next we do the integral over the angle µ. This can be done by using well-known formulae for
the integrals of powers of µ times a Gaussian in µ. Following ref. [29] and using the integral

1

2

∫ 1

−1
dµ µ2`eiµA+µ2B =

(−1)`eB

B`

∞∑

n=0

U(−`, n− `+ 1,−B)

(
−2B

A

)n

jn(A) , (4.8)

where U(a, b, z) is a confluent hypergeometric function of the second kind (Tricomi’s), we
can write the redshift-space, Zeldovich power spectrum as

Ps(k, ν) = 4π

∞∑

n=0

∫
q2 dq Ks

n

(
k, q, ν

)
e−

1
2
k2
(
X(q)+Y (q)

) (
k Y (q)

q

)n

jn(kq) . (4.9)

All of the RSD effects are contained in the kernel

Ks
n

(
k, q, ν

)
=
(
1 + fν2

)2n
e−(1/2)fν2k2

[
(2+f)X(q)+(2+fν2)Y (q)

]
Ks

n

(
ν,−1

2
a1k

2Y

)
(4.10)

with

Ks
n(ν, x) =

∞∑

`=0

(−1)`F`(ν, x)U(−`, n− `+ 1,−x). (4.11)

Again, above we use standard functions M(a, b, z) and U(a, b, z), which are confluent hyper-
geometric function of the first (Kummer’s) and second (Tricomi’s) kind respectively.

While this formula looks cumbersome, it lends itself to efficient numerical evaluation.
The functions jn, X and Y can be pre-computed on a regular log-spaced grid then Fourier
transforms can be employed to do the q-integral [67]. The sum over n can be truncated at
finite n, with more terms needed for higher k. We find sub-percent convergence with between
10-20 terms for all k where PT can be expected to hold (k < 1hMpc−1). The infinite sum
in the Ks

n(ν, x) can also be truncated. For the typical values of our arguments, `max = 10–15
is sufficient.

For our second method (MII) we change the coordinate frame for the integration. Rather
than using k̂ as our z-axis we instead introduce a new variable

Ki = kj
(
δKij + fn̂in̂j

)
, K2 = k2

[
1 + f (2 + f) ν2

]
, (4.12)

and set up the coordinate frame so that the z-axis is along K. This makes integration over
the azimuthal angle trivial. This coordinate frame was also suggested by ref. [21]. The
redshift-space, Zeldovich power spectrum is then given as

Ps(k) = 2π

∫
q2dq dµ eikqcµ−(1/2)K2(X+µ2Y )J0

(
kqs
√

1− µ2
)
, (4.13)

with

s = fν

√
1− ν2√

1 + f (2 + f) ν2
, c =

√
1− s2 (4.14)

so that (kqc)2 + (kqs)2 = (kq)2(c2 + s2) = (kq)2. We can use integral 6.677(6) from ref. [68]

∫ 1

−1
dµ eiµAJ0

(
C
√

1− µ2
)
= 2

sin
√
A2 + C2

√
A2 + C2

, (4.15)
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for simplifying eq. (4.13). Ref. [21] suggested (in their appendix) taking the derivatives with
respect to the variable A in order to obtain a series for handling the additional µ2 in the
exponent of eq. (4.13). We found this method converged very slowly so we take a different
path that allows us to obtain a closed-form representation of the µ integral. Using the
differential equation for the Bessel function

x2J ′′
0 (x) + xJ ′

0(x) + x2J0(x) = 0, (4.16)

we can write

(1− µ2)J0(C
√

1− µ2) = −
(
∂2C +

1

C
∂C

)
J0(C

√
1− µ2), (4.17)

and thus

∫ 1

−1
dµ eiµA+µ2BJ0

(
C
√

1− µ2
)
= eB

∞∑

n=0

(−B)n

n!

∫ 1

−1
dµ eiµA(1− µ2)nJ0

(
C
√
1− µ2

)

= 2eB
∞∑

n=0

Bn

n!

(
∂2C +

1

C
∂C

)n sin
√
A2 + C2

√
A2 + C2

. (4.18)

Introducing the variable ρ =
√
A2 + C2, we can rewrite the integral in the form

∫ 1

−1
dµ eiµA+µ2BJ0

(
C
√

1− µ2
)
= 2 exp

{
B

ρ

[
(ρ2 −A2)

d

dρ

(
1

ρ

d

dρ

)
+ 2

d

dρ
+ ρ

]}
j0(ρ)

= 2eB
∞∑

`=0

G`(A,B, ρ)j`(ρ), (4.19)

where in the last line we have introduced a function

Gm(A,B, ρ) =

(
−2

ρ

)m ∞∑

n=m

(
BA2

ρ2

)n Γ
(
m+ n+ 1

2

)

Γ(m+ 1)Γ
(
n+ 1

2

)
Γ(1−m+ n)

× 2F1

(
1

2
− n,−n; 1

2
−m− n;

ρ2

A2

)
, (4.20)

where 2F1 is the ordinary (Gauss) hypergeometric function. Thus eq. (4.13) becomes

Ps(k) = 4π

∞∑

`=0

∫ ∞

0
q2dq e−(1/2)K2(X+Y )G`

(
ckq,−1

2
K2Y, kq

)
j`(kq). (4.21)

To our knowledge this is the first direct and complete redshift-space, Zeldovich power spec-
trum calculation presented in the literature, although ref. [21] outlined in their appendix a
direction very similar to MII presented above.

We evaluate the Zeldovich power spectrum and correlation function for the Λcdm cos-
mology using the parameters Ωm = 0.295, Ωb = 0.047, ns = 0.968, σ8 = 0.835 and h = 0.688.
Figure 1 shows the power spectrum results, and the good agreement between MI and MII. At
high k we see the familiar damping of power from the Zeldovich dynamics, with the damping
being larger along the line of sight than transverse to it. This damping corresponds to the fact
that small scale structure does not form properly in the Zeldovich approximation. This is not
of concern to us, since we are using the Zeldovich approximation for illustration. We are more
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We note that equivalently one could take the derivative relative to the logarithmic growth
rate f given that it always appears as fJn̂ in eq. (4.22) above. This guarantees that the
nth velocity moment is proportional to fn, so the moment expansion can alternatively be
considered as a Taylor expansion of the full RSD spectrum in powers of f [69].

To obtain an explicit form for the moments it is useful to split them into odd and even
groups. We write

Ξ̃
(2`)
n̂ (k,ν)= f2`

∑̀

m=0

Ξ̃(2`)
m (k) ν2m

= f2`
∑̀

n=0

(−1)n

2`+n

(2`)!

(`−n)!(2n)!

∫
d3q eik·q A2nB`−ne−

1
2
kikjAij ,

Ξ̃
(2`+1)
n̂ (k,ν)= if2`+1

∑̀

m=0

Ξ̃(2`+1)
m (k) ν2m+1

= if2`+1
∑̀

n=0

(−1)n

2`+n+1

(2`+1)!

(`−n)!(2n+1)!

∫
d3q eik·q A2n+1B`−ne−

1
2
kikjAij , (4.24)

where in the first lines we have separated the scale and angle dependence, implicitly defining

the reduced velocity moments Ξ̃
(`)
m (k) via the mth derivative of the moments themselves:

(1/m!)(∂ν)
mΞ̃

(2`)
n̂ (k)

∣∣
ν=0

. The reduced moments are thus a function only of the amplitude of
the wave vector, k. It is convenient to perform this separation since each moment contains
only a finite number of powers of ν, which can be seen explicitly in refs. [38, 41] or appendix A.

We delegate the explicit derivation of the reduced velocity moments, Ξ̃
(`)
m (k), to

appendix B, where it is shown that

Ξ̃(2`)
m (k) = 4π

∞∑

s=0

∫
q2dq e−

1
2
k2(X+Y )ξ(2`)m,s (k,X, Y )

(
kY

q

)s

js(qk),

Ξ̃(2`+1)
m (k) = 4π

∞∑

s=0

∫
q2dq e−

1
2
k2(X+Y )ξ(2`+1)

m,s (k,X, Y )

(
kY

q

)s

js(qk), (4.25)

with the integrand functions given by

ξ(2`)m,s (X,Y ) =

2∑̀

n=0

F
(2`)
m,n (k,X, Y )

(k2Y/2)n
U(−n, s− n+ 1, k2Y/2),

ξ(2`+1)
m,s (X,Y ) =

2`+1∑

n=0

F
(2`+1)
m,n (k,X, Y )

(k2Y/2)n
U(−n, s− n+ 1, k2Y/2), (4.26)

and the F
(`)
m,n given explicitly by eq. (B.8), with U(a, b, z) is Tricomi’s confluent hypergeo-

metric function as before.
Figure 3 shows the first few velocity moments for ΛCDM at z = 0. The red lines

for ` = 0, 1 and 2 show the linear theory predictions which are all proportional to PL as
plotted. We see that the Zeldovich solutions reduce to linear theory at low k as expected
(see below). Non-linear evolution changes the behavior at large k and generates higher `
moments, which are highly suppressed at low k in the way they are plotted here but become
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we have straightforwardly the velocity moments in terms of Legendre polynomials

Ξ̃
(2`)
n̂ (k, ν) = f2`

∑̀

i=0

(−1)i

(
∑̀

m=0

c
e,(m)
i Ξ̃(2`)

m (k)

)
P2i(ν),

Ξ̃
(2`+1)
n̂ (k, ν) = if2`+1

∑̀

i=0

(−1)i

(
∑̀

m=0

c
o,(m)
i Ξ̃(2`+1)

m (k)

)
P2i+1(ν). (4.29)

Finally we note that the moment expansion is particularly convenient for comparing
to Eulerian methods. In particular it is easy to obtain the Kaiser result as indicated in
eq. (3.13), so let us derive the leading RSD contributions in this framework. We have

Ps(k) = Ξ̃
(0)
n̂ (k) + iνkΞ̃

(1)
n̂ (k)− 1

2
ν2k2Ξ̃

(2)
n̂ (k) + . . . (4.30)

=

∫
d3r eik·r

〈(
1 + δ(x)

)(
1 + δ(x′)

)〉
+ iνk

∫
d3r eik·r

〈(
1 + δ(x)

)(
1 + δ(x′)

)
∆un̂

〉

− 1

2
ν2k2

∫
d3r eik·r

〈(
1 + δ(x)

)(
1 + δ(x′)

)
∆u2n̂

〉
+ . . .

=

∫
d3r eik·r

〈
δ(x)δ(x′)

〉
+ iνk

∫
d3r eik·r

( 〈
δ(x′)un̂(x)

〉
−
〈
δ(x)un̂(x

′)
〉 )

+ ν2k2
∫
d3r eik·r

〈
un̂(x)un̂(x

′)
〉
+ . . . ,

where we have dropped terms proportional to Dirac δ-functions. Assuming that the vector
components of velocity can be neglected and only the scalar part contributes, i.e. we can
write v(k) = (ik/k2)θ(k), and switching back to the peculiar velocity v = Hu we get

P s(k) = Pδδ(k) + iνkH−1
(
Pun̂δ(k)− Pδun̂

(k)
)
+ ν2k2H−2Pun̂un̂

(k)

= Pδδ(k)− 2ν2H−1Pδθ(k) + ν4H−2Pθθ(k) . (4.31)

In linear theory θ = −fHδ so we have

P s(k) =
(
1 + fν2

)2
PL(k), (4.32)

i.e. the well known Kaiser formula [11]. The same limit can of course also be obtained via the
direct Lagrangian approach, as argued in the earlier section, or from the streaming model by
expanding the exponential and keeping only the leading, linear terms.

4.3 Streaming models

The streaming models arise from the cumulant expansion of M or M̃. In either space it is
straightforward to show that Ps(k) depends only upon even powers of ν = k̂ · n̂, and that for
any power of ν only a finite number of cumulants contribute. We shall be interested in how
the expansion approaches the full Zeldovich result.

As mentioned above, there are two developments of the streaming model. One applies
the cumulant theorem to the generating function in configuration space and the other to the
generating function in Fourier space. Since the cumulants are constructed from the moments,
and the moments are Fourier transform pairs, they in principle contain the same information
if carried to infinite order. However, in practice, the non-local nature of the Fourier transform
and the need to truncate the expansion at finite order makes their behavior very different, as
we will show. First though we develop the streaming models more fully within the Zeldovich
approximation.
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4.3.1 Fourier space

The Gaussian streaming model in configuration space is well known (see earlier discussion
and references) and will be developed in section 4.3.2. The alternative formalism applies the
cumulant expansion in Fourier space and is new to this paper. The extension of both the
configuration-space and Fourier-space results beyond 2nd order is also new to this paper.

We can obtain cumulants from the Ξ̃
(m)
n̂ through eq. (3.21). A general form of this

transformation is given by

C̃(`)
n̂ (k, ν) =

∑̀

i=1

(−1)i−1(i− 1)!

[1 + ∆2(k)]i
B`,i

(
Ξ̂
(1)
n̂ (k, ν), . . . , Ξ̂

(`−i+1)
n̂ (k, ν)

)
, (4.33)

where B`,i (x1, . . . , x`−i+1) are partial Bell polynomials. The power spectrum is

k3

2π2
P s(k, ν) =

(
1 + ∆2

)
exp

[
i(νk)C̃(1)

n̂ (k, ν)− (νk)2

2
C̃(2)
n̂ (k, ν) + . . .

]
− 1. (4.34)

By analogy to the configuration space case, we can call the Gaussian streaming model (GSM)

the truncation at the second cumulant C̃(2)
n̂ and dropping the higher ones. As noted previously,

this form provides a huge simplifcation over the ‘usual’ streaming model result in that the
connection between real and redshift space is algebraic. The structure of the redshift space
terms is also particularly clear, and this form is reminiscent of the older ‘dispersion’ models
which multiplied the linear theory result by a phenomenological damping [13, 36, 37, 70–75].
We shall compare this expansion to the others in section 4.4.

To bring out the correspondance with the dispersion models more clearly and to high-
light the structure of the finger of god terms, let us consider C(2) which derives from Ξ̃(2). In
PT Ξ̃(2) contains a term going as PL

∫
PL, which is UV-sensitive. This gives a contribution to

C̃(2) that looks like a constant. Thus a piece of K is exp[−k2‖σ2] for some σ2. On small scales

∆2 � 1 and we have P s(k, ν) ≈ P (k) exp[−k2‖σ2], which is one of the common forms for the

old dispersion models [70, 71]. It is interesting to note that the dispersion model approxi-
mation may explicitly break translational invariance (depending upon how σ is computed)
though this is preserved in the full cumulant form.

4.3.2 Configuration space

In order to obtain the streaming model in configuration space given in section 3.3.1 we first

need to obtain the configuration space ingredients, i.e. cumulants C(`)
n̂ and moments Ξ

(`)
n̂

in configuration space. We start by Fourier transforming the moments, using the angular
dependence given in eq. (4.24). We can write

Ξ
(2`)
n̂ (r, n̂ · r̂) = f2`

∑̀

m=0

∫
d3k

(2π)3
Ξ̃(2`)
m (k)

(
k̂ · n̂

)2m
e−ik·r,

Ξ
(2`+1)
n̂ (r, n̂ · r̂) = if2`+1

∑̀

m=0

∫
d3k

(2π)3
Ξ̃(2`+1)
m (k)

(
k̂ · n̂

)2m+1
e−ik·r. (4.35)

Using Legendre tensors defined by

{r̂i1 . . . r̂iL}L` = (2`+ 1)

∫
dΩk

4π
k̂i1 . . . k̂iLP`

(
k̂ · r̂

)
, (4.36)

– 18 –



J
C
A
P
0
3
(
2
0
1
9
)
0
0
7

we have ∫
dΩk

4π
k̂i1 . . . k̂iLe

−ik·r =

∞∑

`=0

i`j`(kr) {r̂i1 . . . r̂iL}L` . (4.37)

This leads to the useful angular integrals
∫
dΩk

4π

(
k̂ · n̂

)2L
e−ik·r =

L∑

`=0

c
e,(L)
` P2`(νr)j2`(kr),

∫
dΩk

4π

(
k̂ · n̂

)2L+1
e−ik·r = −i

L∑

`=0

c
o,(L)
` P2`+1(νr)j2`+1(kr), (4.38)

where the coefficients c
e,(L)
` and c

o,(L)
` are given in eq. (4.28). Finally we have for the config-

uration space velocity moments

Ξ
(2`)
n̂ (r, νr) = f2`

∑̀

q=0

P2q(νr)

∫
k2dk

2π2

(
∑̀

m=0

ce,(m)
q Ξ̃(2`)

m (k)

)
j2q(kr),

Ξ
(2`+1)
n̂ (r, νr) = f2`+1

∑̀

q=0

P2q+1(νr)

∫
k2dk

2π2

(
∑̀

m=0

co,(m)
q Ξ̃(2`+1)

m (k)

)
j2q+1(kr). (4.39)

In analogy to what we show in figure 3, angle multipoles of these velocity moments, Ξ
(`)
q ,5

are shown in figure 4. Velocity moments, Ξ
(`)
n̂ , can of course be represented also in terms of

power series in configuration space angles νr = n̂ · r̂ by expanding the Legendre polynomials

P`. The configuration space cumulants, C(`)
n̂ , are then given in terms of the moments, Ξ

(2`)
n̂ ,

by expressions analogous to eq. (4.33).
The redshift space power spectrum in terms of the configuration space streaming model

is given by eq. (3.17). The redshift space distortion effects are contained in the kernel K, and
given that ξ(r) is isotropic the angular dependent kernel can be decomposed as

lnK(k, r) =

∞∑

`=1

i`

`!
(kν)`C(`)

n̂ (r, µ) =

∞∑

n=0

Xn
µn

n!
= X0 + ln

[
∞∑

n=0

Bn (X1, . . . , Xn)
µn

n!

]
(4.40)

where Bn(X1, . . . , Xn) is the complete, exponential Bell polynomial and we have introduced
angle series coefficients

X2m(k, r, ν) = (2m)!
∞∑

`=1

(−1)`

(2`)!
(νfk)2`C(2`)

m (r),

X2m+1(k, r, ν) = i(2m+ 1)!
∞∑

`=0

(−1)`

(2`+ 1)!
(νfk)2`+1C(2`+1)

m (r). (4.41)

In analogy to the velocity moment decomposition in eq. (4.24) we can decompose the
cumulants as

C(2`)
n̂ (r, µ) = f2`

∑̀

m=0

C(2`)
m (r)µ2m,

C(2`+1)
n̂ (r, µ) = f2`+1

∑̀

m=0

C(2`+1)
m (r)µ2m+1.

5Note that we have also added the zero-lag contributions to the real space multiple moments. In Fourier
space these are proportional to the zero k-mode.
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Finally for the configuration space streaming model power spectrum we have

(2π)3δK(k) + Ps(k) =

∫
d3r eik·r

[
1 + ξ(r)

]
K(k, r) (4.44)

= 4π
∞∑

`=0

P`(ν)

∫
r2dr

[
1 + ξ(r)

]
eX0

[
∞∑

L=`

c
(L)
`

L!
BL (X1, . . . , XL)

]
j`(kr).

An alternative strategy for obtaining the power spectrum, taking into account just the Gaus-
sian parts (i.e. truncation at the second cumulant), would be to directly transform the redshift
space correlation function. This approach has been discussed in context of the linear theory
results for density peaks in ref. [76]. Extending this approach beyond the second cumulant
depends on efficient evaluation of the streaming model correlation function, which we discuss
in section 5.4.

It is instructive to take the linear theory limit of the expression above. We start by
writing the linear theory, configuration space velocity moments given in eq. (4.39). Only first

three velocity moments are non-vanishing. Moreover, given that Ξ̃
(2)
0 has no contribution in

linear theory and that Ξ
(0)
0 = PL, Ξ

(1)
0 = −2PL/k, Ξ

(2)
1 = −2PL/k

2, it follows

Ξ
(0)
n̂ (r, ν) =

∫
k2dk

2π2
PL(k)j0(kr), (4.45)

Ξ
(1)
n̂ (r, ν) = −2fν

∫
kdk

2π2
PL(k)j1(kr),

Ξ
(2)
n̂ (r, ν) = −f2 2

3

∫
dk

2π2
PL(k)j0(kr)− f2

2

3

(
1− 3ν2

) ∫ dk

2π2
PL(k)j2(kr).

The configuration space velocity cumulants coincide with the moments in linear theory

(C(0)
n̂ = Ξ

(0)
n̂ , C(1)

n̂ ≈ Ξ
(1)
n̂ and C(2)

n̂ ≈ Ξ
(2)
n̂ ) so using eq. (4.41) we have

X0 = −1

2
(νfk)2Ξ

(2)
0 (r) , X1 = iνfkΞ

(1)
0 (r) and X2 = −(νfk)2Ξ

(2)
1 (r) . (4.46)

Collecting all this into eq. (4.44) and using the explicit forms B0 = 1, B1(X1) = X1 and
B2(X1, X2) = X2

1 +X2, the linear theory power spectrum is given by

Ps(k)

4π
=

∫
r2dr

[
ξ(r)+X0+

1

6
X2

]
j0(kr)+iP1(ν)

∫
r2drX1j1(kr)−

1

3
P2(ν)

∫
r2drX2j2(kr),

which upon using the integral representation of the Dirac delta function
∫
r2dr jn(k

′r)jn(kr) =
π

2k2
δK
(
k′ − k

)
, (4.47)

immediately gives the Kaiser result, Ps(k) =
(
1 + fν2

)2
PL(k).

Finally, let us note that the computation procedure for the configuration space stream-
ing model described in this section is not the only possibility. One alternative is to use
methods already presented when computing the direct Lagrangian approach in section 4.1.
In particular the integrals given near eq. (4.8) can be applied to solve the angular integral in
eq. (4.42). We have tried this and checked that the obtained results are consistent. We find
that this leads to a somewhat more challenging numerical problem with slower convergence
and thus we did not pursue this method further.
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streaming model we shall stick to the Gaussian case, commenting later on what methods are
required to efficiently move beyond this. As well as in the previous section, most of the tool
developed to compute the cumulant and moment expansion are independent of the Zeldovich
dynamics and are fully applicable in the full nonlinear case as well as in case of biased tracers
(see section 6).

5.1 Direct integration in configuration space

First we focus on obtaining directly the Zeldovich result for the RSD correlation function,
given that it will serve as our benchmark result that we contrast to the other expansions.
Obtaining the direct expression for Zeldovich RSD correlation function is relatively simple,
since the two dimensional integration can be easily performed numerically. Given that the
integral for P (k) is Gaussian we have

ξs(r) =

∫
d3k

(2π)3
e−ik·r

∫
d3q eik·qe−

1
2
kikjA

s
ij =

∫
d3q

(2π)3/2
√
detAs

e
1
2
(q−r)i(q−r)j [A

s]−1
ij , (5.1)

where again As
ij = Ri`RjmA`m. The integrand in this case is not oscillatory and can be

directly integrated in q variable, e.g. ref. [25]. It is interesting to compare the structure of
the integrand to its Fourier counterpart, kikjRi`RjmA`m, given in eq. (4.5). First we note

that if k̂ · n̂ → 0 one obtains the real space limit kikjRi`RjmA`m = k2
(
X + µ2Y

)
, also if

f → 0. This does not happen in configuration space and we do not obtain the real space
result for any value of r̂ · n̂. The limits r̂ · n̂→ 0 and f → 0 are not the same. This is already
clear from the form of the integral measure, (detAs) = (1+ f)2X2(X + Y ), where no matter
the value of r̂ · n̂, the (1 + f)2 factor is present. A similar thing happens for the term in
exponent, (q − r)[As]−1(q − r). For this reason the error on the redshift-space correlation
function does not have to go to zero as ν → 0.

Next we turn to looking at the performance of the three models; moment expansion,
Fourier and configuration space streaming models in configuration space, and study the
convergence focusing on Zeldovich dynamics as a guideline for more general cases.

5.2 Moment expansion in configuration space

In section 4.2 we explored the moment expansion in Fourier space. To obtain results for the
redshift-space correlation function corresponding to this expansion we can simply Fourier
transform it. Given that the redshift-space correlation function is a Fourier transform of the
redshift-space power spectrum, and the latter is given a sum of moments, the correlation
function will also be given as a sum of Fourier transforms of the individual terms. Starting
from eq. (3.11) we have

ξs(r) =

∞∑

`=0

i`

`!

∫
d3k

(2π)3
(kν)` Ξ̃

(`)
n̂ (k)e−ik.r . (5.2)

Using the expansion in the powers of ν, given in eq. (4.24), we have

ξs(r) =

∞∑

n=0

P2n(νr)

∫
k2dk

2π2

[
∞∑

`=0

(−1)`

(2`)!
(fk)2`

∑̀

m=0

(
ce,(`+m)
n Ξ̃(2`)

m (k)

− fk

2`+ 1
ce,(`+m+1)
n Ξ̃(2`+1)

m (k)

)]
j2n(kr). (5.3)
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We shall consider the convergence of this expression below. Before that we consider the linear
(Kaiser) theory limit of this result. In linear theory only Ξ̃(0), Ξ̃(1) and Ξ̃(2) contribute and
we have

ξs(r) =
∞∑

n=0

P2n(νr)

[
ce,(0)n

∫
dk

2π2
k2Ξ̃

(0)
0 (k)j2n(kr)− f

∫
dk

2π2
k3ce,(1)n Ξ̃

(1)
0 (k)j2n(kr)

− 1

2
f2
∫

dk

2π2
k4
(
ce,(1)n Ξ̃

(2)
0 (k) + ce,(2)n Ξ̃

(2)
1 (k)

)
j2n(kr)

]
(5.4)

Given the ce,`n coefficients in eq. (4.28), and the fact that in linear theory Ξ
(2)
0 = 0, we have

for the correlation function multipoles

ξ(2`)s (r) =
4`+ 1

2

∫ 1

−1
dνr ξs(r)P2`(νr)

=

∫
dk

2π2
k2
(
c
(0)
` Ξ̃

(0)
0 (k)− fc

(1)
` kΞ̃

(1)
0 (k)− 1

2
f2c

(2)
` k2Ξ̃

(2)
1 (k)

)
j2`(kr). (5.5)

Using again the linear theory expressions Ξ̃
(0)
0 = PL, Ξ̃

(1)
0 = −2PL/k and Ξ̃

(2)
1 = −2PL/k

2 it
directly follows

ξ(0)s (r) =

(
1 +

2

3
f +

1

5
f2
)∫

k2dk

2π2
PL(k)j0(kr),

ξ(2)s (r) = −
(
4

3
f +

4

7
f2
)∫

k2dk

2π2
PL(k)j2(kr),

ξ(4)s (r) =
8

35
f2
∫
k2dk

2π2
PL(k)j4(kr). (5.6)

These results are, of course, in agreement with the well-known result that the Fourier and
configuration space multipoles are simply linked by spherical Bessel transforms [12]

ξ(`)s (r) = i`
∫
k2dk

2π2
P (`)
s (k)j`(kr) , P (`)

s (k) =
2`+ 1

2

∫ 1

−1
dν Ps(k)P`(ν). (5.7)

5.3 Fourier streaming models in configuration space

Next we move to the new Fourier version of the streaming model (section 3.3.2). One of the
simplifying features of this representation is that it can be transformed directly into configu-
ration space (in contrast to the configuration-space streaming model where the translations
are more complex). We present these results in this subsection. By Fourier transforming
eq. (4.34) we have

ξs(r) =

∫
d3k

(2π)3
P s(k, ν)e−ik.r

=

∫
d3k

(2π)3
e−ik.r 2π

2

k3

(
[
1 + ∆2(k)

]
exp

{
∞∑

`=1

i`

`!
(νk)`C̃(`)

n̂ (k, ν)

}
− 1

)
. (5.8)
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In order to proceed we need to compute the angular integral and thus we first collect the ν
dependence in the exponent

∞∑

`=1

i`

`!
(kν)`C(`)

n̂ (k, ν) =

∞∑

n=1

ν2n
∞∑

`=1

(−1)`

(2`)!
(fk)2`

(
C̃(2`)
n−`(k) +

2`

fk
C̃(2`−1)
n−` (k)

)

=

∞∑

m=1

Ym(k)
νm

m!
, (5.9)

where we have defined angle power coefficients, Ym, in analogy to eq. (4.41):

Ym(k) = (1 + (−1)m)
m!

2

∞∑

`=1

(−1)`

(2`)!
(fk)2`

(
C̃(2`)
m/2−`(k) +

2`

fk
C̃(2`−1)
m/2−`(k)

)
. (5.10)

This allows us to do the angular part of the k integral. Using eq. (4.38)

∫
dΩk

4π
e−ik·r exp

[
∞∑

`=1

i`

`!
(kν)`C̃(`)

n̂ (k,ν)

]
=

∞∑

L=0

1

L!
BL (Y1, . . . ,YL)

∞∑

`=0

(−1)`c
(L)
` P`(νr)j`(kr)

=

∞∑

`=0

(−1)`P`(νr)

[
∞∑

L=0

c
(L)
`

L!
BL (Y1, . . . ,YL)

]
j`(kr),

where BL are again the Bell polynomials of order L. Note that the coefficients c
(L)
` are

identically zero if ` > L, which limits the number of terms, i.e. the number of multipole
moments, in the first sum above. This is of direct practical use since the truncation of
the sum has to be enforced only in the L variable. For the numerical implementations we
consider below we find that truncation at L ≤ 10 gives well converged results on scales above
∼ 1h−1Mpc.

The correlation function is thus given in terms of the Legendre polynomials that describe
the angular dependence and scale dependent terms that are obtained as spherical Bessel
transforms of the Fourier space quantities

ξs(r) =

∫
dk

k
∆2(k)j0(kr) (5.11)

+

∞∑

`=1

(−1)`P`(νr)

∫
dk

k

(
1 + ∆2(k)

)
[

∞∑

L=1

c
(L)
`

L!
BL (Y1, . . . , YL)

]
j`(kr).

Given the multipoles defined by eq. (5.4), and that only even ` survive, we finally have

ξ(2`)s (r)=

∫
dk

k

(
δK`,0∆

2(k)+
(
1+∆2(k)

) ∞∑

L=1

c
e,(L)
`

(2L)!
B2L (0,Y2,0, . . . ,Y2L)

)
j2`(kr), (5.12)

where again the coefficients c
e,(L)
` are given by eq. (4.28), BL are ordinary the Bell polynomials

and the scale dependent functions, Y2n, are given in eq. (5.10) above.

As earlier it is instructive to see how the linear theory result emerges from the solution

above. First we note that only two of the Y2n terms survive, explicitly Y2(k) = −2fkC̃(1)
0 (k) =
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4f∆2
L(k) and Y4(k) = −12(fk)2C̃(2)

1 (k) = 24f2∆2
L(k). Keeping only the linearised contribu-

tions in the Bell polynomials we immediately regain the linear theory formula in the form

ξ(2`)s (r) =
(
δK`,0 + 2fc

e,(1)
` + f2c

e,(2)
`

)∫ dk

k
∆2

Lj2`(kr). (5.13)

Using the values for the c
e,(L)
` coefficients, we promptly recover the linear configuration space

multipoles given in eq. (5.6).

5.4 Streaming models in configuration space

As a last expansion of the RSD contributions in configuration space we consider the configura-
tion space streaming model introduced in section 3.3.1. This method is the most challenging
to evaluate beyond the second cumulant (Gaussian case), given that the methods needed
differ from ones we have been developing so far. Brute force expansion in beyond Gaussian
terms is of course possible but is labor intensive and does not guarantee fast convergence.
An alternative is to use the Edgeworth expansion (proposed in e.g. ref. [59] and studied in
ref. [80]) but we do not pursue this direction further here.

Fourier transforming the result from eq. (3.17) we obtain

1 + ξs(r) =

∫
d3r′

[
1 + ξ(r′)

] ∫ d3k

(2π)3
e−ik.(r−r′)K(k, r′), (5.14)

where the configuration streaming kernel is given by eq. (3.16). Using the notation n̂ ·k = k‖
and n̂·r = r‖ and noting that the kernel, K, depends only on k‖ we can perform the integration
in k⊥ = k− k‖n̂ to get

∫
d3k

(2π)3
e−ik.∆rK(k, r−∆r) = δD (∆r⊥)

∫
dk‖

2π
e−ik‖∆r‖K(k‖, r−∆r‖n̂), (5.15)

where the argument of the Dirac delta function is the perpendicular component r⊥ = r−r‖n̂.
The full correlation function can thus be written as

1 + ξs(r) =

∫
d∆r‖

[
1 + ξ

(
|r−∆r‖n̂|

) ] ∫ dk‖

2π
e−ik‖∆r‖K(k‖, r−∆r‖n̂), (5.16)

where we can use |r′| = |r − ∆r‖n̂| =
√
r2 +∆r2‖ − 2r‖∆r‖ and n̂ · r′ = n̂ · (r − ∆r‖n̂) =

r‖ −∆r‖ = rνr −∆r‖. Finally, the explicit result is given as

1 + ξs(r, νr) =

∫
dx dy

2π
e−ixy

[
1 + ξ

(√
r2 + x2 − 2νrrx

) ]
(5.17)

× exp

[
∞∑

`=1

i`

`!
y`C(`)

n̂

(√
r2 + x2 − 2νrrx, rνr − x

)]
.

Unfortunately, due to the oscillatory nature of the integrand this expression is not particularly
useful in this form. We will not explore the general result further here, but will focus on the
simpler case when cumulant expansion is truncated at second cumulant. In the case of ` ≤ 2
the integration in y can be performed analytically giving

∫
dy

2π
e
−iy

(

x−C
(1)
n̂

)

− 1
2
y2C

(2)
n̂ =

1√
2πC(2)

n̂

exp

{
−
(
x− C(1)

n̂

)2
/
(
2C(2)

n̂

)}
, (5.18)
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and thus the correlation function is given by the standard result

1 + ξs(r, νr) =

∫ ∞

−∞
dx

[
1 + ξ (x, r, νr)

]

√
2πC(2)

n̂ (x, r, νr)

exp




−

[
x− C(1)

n̂ (x, r, νr)
]2

2C(2)
n̂ (x, r, νr)




. (5.19)

Given that we have derived the linear theory results in all the earlier cases it is natural
to comment how the same result follows here. To this end it is not very convenient to use
eq. (5.19) directly, but instead we start from eq. (5.14) and expand the exponential containing
the cumulants. Linearising the cumulants (as done in the prior subsection for the Fourier
streaming results) we get

1 + ξs(r) =

∫
d3k

(2π)3
e−ik.r

∫
d3r′ eik·r

′[
1 + ξ(r′)

](
1 + ik‖C(1)

n̂ (r′)− 1

2
k2‖C

(2)
n̂ (r′)

)

=

∫
d3k

(2π)3
e−ik.r

(
1 + Ξ̃

(0)
n̂ (k) + ik‖Ξ̃

(1)
n̂ (k)− 1

2
k2‖Ξ̃

(2)
n̂ (k)

)
. (5.20)

This is the familiar, linearized, moment expansion result. By using the multipoles we obtain
the result in eq. (5.5).

5.5 Comparison of models in configuration space

Finally we compare the different expansions, above, to the full Zeldovich calculation.
Figure 10 compares the different models to the full Zeldovich calculation for the line-of-
sight correlation function, ξs(r, ν = 1). In figures 11 and 12 equivalent plots are shown for
the case ξs(r, ν = 0.5) and ξs(r, ν = 0.0) respectively. The figures show the absolute and
relative convergence of the three approaches discussed in the earlier sections to the directly
computed Zeldovich correlation function.

As we found for the Fourier-space statistics, the models perform less well as ν → 1, with
the error growing as a steep function of ν. Unlike in the Fourier-space case we no longer expect
zero error as ν → 0. Mirroring the discussion in section 4.4 this could have implications for the
way in which models are compared to data or the kinds of applications for which perturbative
models are appropriate, but the details will differ from the Fourier-space case.

As mentioned earlier for the configuration space streaming model we performed only
the L = 2 Gaussian case calculation, and we find that already at Lmax = 2 it performs at the
level of ∼ 1% precision on scales larger than 20h−1Mpc, outperforming both the moment
expansion and the Fourier cumulant models (for Lmax = 2) for all angles. The moment
expansion performs very well, reaching subpercent accuracy for scales larger than 20h−1Mpc
for Lmax ≤ 3, and reaching sub-permille accuracy for Lmax = 5. On these scales we see
that Fourier streaming model is performing as well as the moment expansion for all angles
and Lmax values. The slight benefit of the Fourier streaming model can be noticed on scales
smaller than 20h−1Mpc, where for Lmax ≥ 3 it typically provides slightly better performance,
i.e. faster convergence to the full result.
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fields in the problem can be considered as linear. An extensive list of bias parameters in
Lagrangian space can be found in ref. [85]. The first few terms are

δa(q) = bδ : δL : (q)

+ bδ2 : δ2L : (q) + bs2 : s2L : (q)

+ bδ3 : δ3L : (q) + bδs2 : δL : (q) : s2L : (q) + bs3 : s3L : (q)

+ b∂2δ

∂2q
k2L

: δL : (q) + “stochastic′′ + . . . (6.2)

where : O : represents the renormalised bias term (these will be defined explicitly further
below), and kL is a characteristic physical scale related to Lagrangian halo radius. We have
also defined the shear operator

ŝij(q) =
∂i∂j
∂2

− 1

3
δKij , and the corresponding Fourier operator is ŝij(p) =

pipj
p2

− 1

3
δKij .

Note that, by construction, independent third order bias terms like the ψ,7 vanish in the
initial conditions if we restrict ourselves to linear initial dynamics. This means that terms of
this form, in this bias picture where biasing is set in the initial conditions, arise in Eulerian
space only due to nonlinear evolution, and thus should not be considered as free biasing
coefficients (this is analogous to the so-called ‘co-evolution picture’). We use the notation

sL,ij(q) = ŝij(q)δL(q) =

(
∂i∂j
∂2

− 1

3
δKij

)
δL(q) (6.3)

and also define renormalised operators, where the trivial zero-lag parts are subtracted from
the higher operators, so that:

: δL : = δL,

: δ2L : = δ2L −
〈
δ2L
〉
= δ2L − σ2L,

: s2L : = s2L −
〈
s2L
〉
= s2L − 2

3
σ2L,

: δ3L : = δ3L − 3
〈
δ2L
〉
δL −

〈
δ3L
〉
= δ3L − 3σ2LδL,

: s3L : = s3L −
〈
s3L
〉
= s3L. (6.4)

An alternative would be to use the biasing prescription given in e.g. ref. [23] (see also ref. [86]
for recent discussion), where the biases are defined in full resummed form, rather then per-
turbatively. In terms of generating functions we can rewrite the given density field

δa(q) = δ̂a(λ, γ, η)e
iλδL(q)+iγs2

L
(q)+iηs3

L
(q)
∣∣∣
λ=γ=η=0

,

7At third order ref. [81] introduces an independent bias term ψ that can explicitly be written as

ψ(x) = θ(x)− δ(x)−
2

7
s
2(x) +

4

21
δ
2(x),

where θ is the velocity divergence defined as θ = ∇ · u. Note that all the fields above, including the shear
field, should be considered including the nonlinear corrections.
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where δ̂a(λ, γ, η) is the biasing operator acting on the bias generating function exp[iλδL +
iγs2L + iηs3L]. Explicitly we can write

1 + δ̂a(λ, γ, η) = 1− i
(
bδ − 3σ2Lbδ3

)
∂λ − bδ2

(
∂2λ + σ2L

)
+ ibδ3∂

3
λ

− ibs2∂γ − bδs2∂λ∂γ − ibs3∂η

− ib∂2δ

∂2q
k2L
∂λ + “stochastic′′ + . . . . (6.5)

The generating function for any cross-moments of pairwise velocity for two generic biased
tracers in terms of the displacement field then generalizes to

1+Mab

(
J,r
)
=

∫
d3k

(2π)3
d3q e−ik·(r−q)

〈[
1+δa(q)

][
1+δb(q)

]
exp

[
ik·∆(q)+iJ j∆′

j(q)
]〉

=
[
1+δ̂a(λ1,γ1,η1)

][
1+δ̂b(λ2,γ2,η2)

]∫ d3k

(2π)3
d3q e−ik·(r−q)

〈
eiX
〉∣∣∣∣

λ=γ=λ=0

,

where

X = λ1δL(q1) + λ2δL(q2) + γ1s
2
L(q1) + γ2s

2
L(q2)

+ η1s
3
L(q1) + η2s

3
L(q2) + k ·∆(q) + J j∆′

j(q). (6.6)

This provides us with the means to compute the moments, and thus the cumulants, for biased
tracers up to the terms we used in the bias expansion.

Let us focus for a moment on the stochastic term. In Lagrangian coordinates we are
trying to describe the overdensity of discrete objects in terms of continuous dark matter
fields. In order to be able to achieve that an auxilliary stochastic field, ε, has to be added to
the set of our bias operators. Intuitively, if we are describing very sparse objects this field
has to play the role of noise. Thus we can write

δa(q) = δ̄a(q) + εa(q), (6.7)

where δ̄a(q) is the average over the stochastic distribution, i.e. assuming we have a PDF,
pa[ε], associated with the random variable ε such that

∫
[Dε]εpa[ε] = 0, we have

δ̄a(q, τ) =

∫
[Dε]δa(q, τ)pa[ε](q, τ). (6.8)

For δ̄a we can assume the usual bias expansion in terms of the operators in eq. (6.4). For the
field in the Eulerian coordinates we then have

(2π)3δD(k) + δa(k) =

∫
d3q eik·q [1 + δa(q)] e

ik·Ψ(q) (6.9)

=

∫
d3q eik·q

[
1 + δ̄a(q)

]
eik·Ψ(q) +

∫
d3q eik·q εa(q)e

ik·Ψ(q).

Given that, by construction, the stochastic field does not correlate with the δ̄a, this gives us
the auto power spectrum

(2π)3δD(k) + Pa(k) =

∫
d3q eik·q

〈[
1 + δ̄a(q1)

] [
1 + δ̄a(q2)

]
eik·∆(q,τ)

〉

+

∫
d3q eik·q

〈
εa(q1)εa(q2)e

ik·∆(q,τ)
〉

(6.10)
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Focusing on the last term, and assuming also that ∆ and εa are uncorrelated to be consistent
with the definition of εa, we can introduce 〈εa(q1)εa(q2)〉′ = ξεa(q). Assuming Poisson
statistics for εa we have a constant Fourier space variance, i.e. ξεa(q) ∼ δD(q). Thus

∫
d3q eik·q ξεa(q, τ)

〈
eik·∆(q,τ)

〉
∼ consta

〈
eik·∆(q,τ)

〉
q→0

∼ consta. (6.11)

It is interesting to note that the constant term, under the assumptions above, is not sensitive
to RSD and should have the same value for all angle bins (or equivalently, contribute only to
` = 0). The noise should depend only on the tracer type (thus the a label on the constant). If
we allow a correlation with the stochastic contributions to the dynamical fields, ∆, it should
be clear from above that we will get additional scale dependence and that will, of course, also
affect redshift space. Moreover, similar analysis can be performed if we have scale-dependent
stochasticity ξ′εa(q) ∼ ∂2/k2ε δ

D(q). From there we can also conclude that such terms, even
though they carry new bias coefficients, should not be affected by the redshift space mapping
(under the assumptions above). One caveat to this statement is the possibility of anisotropic
selection effects (e.g. ref. [87]), which would introduce additional line-of-sight-dependent bias
operators and stochastic components (e.g. ref. [53]). These terms arise from survey non-
idealities rather than dynamical processes and their impact would need to be addressed on
a case-by-case basis.

6.1 Two point function in real space

In this subsection we focuse on providing the theory for the two point halo correlation function
and power spectrum in real space. Formally this is the zeroth moment of the real space
generating function

ξab = Ξ0(r) = 1 +Mab

(
J = 0, r

)
. (6.12)

Using the Lagrangian framework we have set up and applying the cumulant expansion at
1-loop we see that we get contributions only from the first two cumulants

log
〈
eiX
〉
=

∞∑

n=2

in

n!
〈Xn〉c = −1

2

〈
X2
〉
c
− i

6

〈
X3
〉
c
+ . . . . (6.13)

Given that terms involving third order shear field s3L do not contribute at 1-loop and we have

−1

2

〈
X2
〉
c
=− 1

2
kikjAij−λ1λ2ξL−(λ1+λ2)kiU

10
i

−γ1γ2ζL−(γ1+γ2)kiV
10
i − 1

2
(λ21+λ

2
2)σ

2
δL

− i

6

〈
X3
〉
c
=− i

6
kikjklWijk−iλ1λ2kiU11

i − i

2
(λ1+λ2)kikjA

10
ij −

i

2

(
λ21+λ

2
2

)
kiU

20
i

− i

2
(γ1+γ2)kikjA

20
ij −i(γ1λ1+γ2λ2)kiV 11

i −i(γ1λ2+γ2λ1)kiV 12
i

−i(γ1λ1λ2+γ2λ1λ2)χ11− i

2
(γ1λ

2
2+γ2λ

2
1)χ

12− i

2
(γ1λ

2
1+γ2λ

2
2)σ

4
δ2
L
s2
L
, (6.14)
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where we have introduced σ4
δ2
L
s2
L

=
〈
δ2Ls

2
L

〉
c
, and we have [16]

Aij = 〈∆i∆j〉c , ξL= 〈δL1δL2〉c , U10
i = 〈δL∆i〉c , ζL=

〈
s2L1s

2
L2

〉
c
, V 10

i =
〈
s2L∆i

〉
c
,

Wijk = 〈∆i∆j∆l〉c , U11
i = 〈δL1δL2∆i〉c , A10

ij = 〈δL∆i∆j〉c , U
20
i =

〈
δ2L∆i

〉
c
,

A20
ij =

〈
s2L∆i∆j

〉
c
, V 11

i =
〈
s2L1δL1∆i

〉
c
, V 12

i =
〈
s2L1δL2∆i

〉
c
,

χ11=
〈
s2L1δL1δL2

〉
c
, χ12=

〈
s2L1δ

2
L2

〉
c
. (6.15)

This produces a number of cross and auto correlators of the bias operators and displacement
field. The purely displacement terms, Aij and Wijk, are the same as in the unbiased case
(i.e. the dark matter case) and we refer the reader to ref. [30] for a detailed discussion of this
case. Terms represented by ξL, ζL and χ12 (χ11 does not contribute) are pure bias correlation
terms, and describe the proto-field of a biased tracer. The rest of the terms are correlations
of bias terms and dynamical displacement terms.

Acting with the biasing operators on the cumulants and expanding all but linear dis-
placements up to 1-loop order we have

[
1 + δ̂a(λ1, γ1, η1)

][
1 + δ̂b(λ2, γ2, η2)

] 〈
eiX
〉
= e−

1
2
kikjAL,ij

{
1− 1

2
kikjA

loop
ij − i

6
kikjklW

loop
ijk

− bδ,{a,b}

(
kikjA

10
ij − 2ikiU

10
i

)
+ bδ,abδ,b

(
ξL + ikiU

11
i − kikjU

10
i U10

j

)

+ bδ2,{a,b}

(
ikiU

20
i − kikjU

10
i U10

j

)
+ bδ2,{abδ,b}

(
2ikiU

10
i ξL

)
+ bδ2,abδ2,b

(
1

2
ξ2L

)

− bs2,{a,b}

(
kikjA

20
ij − 2ikiV

10
i

)
+ bδ,{abs2,b}

(
2ikiV

12
i

)
+ bs2,{abδ2,b}χ

12 + bs2,abs2,bζL

− 1

2
α0k

2 + ib∂2δ,{a,b}

(
2ki

∂2

k2L
U

(1)
i

)
+ bδ,{ab∂2δ,b}

(
2
∂2

k2L
ξL

)
+ . . .

}
+ “stochastic′′,

(6.16)

where we introduced the notation b{a,b} = 1
2(ba + bb). For evaluation purposes we can use

kL = 1hMpc−1 even though it should be noted that a better estimate could be obtained based
on the sizes and masses of halos. The 1-loop halo power spectrum can thus be expressed as

(2π)3δD(k) + Pab(k) =

∫
d3q eik·q

[
1 + δ̂a

][
1 + δ̂b

] 〈
eiX
〉
+ “stochastic′′, (6.17)

which can be written as a sum of terms

Pab(k) =

(
1− 1

2
α0k

2

)
PZel+

+ bδ,{a,b}Pδ + bδ,abδ,bPδδ + bδ2,{a,b}Pδ2 + bδ,{abδ2,b}Pδδ2 + bδ2,abδ2,bPδ2δ2

+ bs2,{a,b}Ps2 + bδ,{abs2,b}Pδs2 + bδ2,{abs2,b}Pδ2s2 + bs2,abs2,bPs2s2

+ b∂2δ,{a,b}P∂2δ + bδ,{ab∂2δ,b}Pδ∂2δ + Pεaεb . (6.18)

Each of the terms above can be expressed as an integral over µ and written as a sum of
spherical Bessel functions using eq. (4.8). The terms are given in appendix C. The counter
term, α0, is capturing the leading 1-loop UV dependence due to nonlinear dynamics. For
more in depth discussion on this dependence in Lagrangian dynamics and counterterms we
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refer a reader to ref. [30]. The two derivative terms, P∂2δ and Pδ∂2δ, differ from the k2PZel

term only up to resummed long displacements and can in principle be gathered into one term.
Expanding also those long displacements we can recover the Eulerian derivative terms [84, 85].
Very recently an analogous biasing model has been studied at the field level, where is showed
good performance [88].

Analogously we can write the expression for the halo correlation function

1 + ξh(r) =

∫
d3kd3q

(2π)3
e−ik·(r−q)

〈
eiX
〉
, (6.19)

which is also given as a sum of individual contributions

ξab(r) = ξZel + ξloop + α0 ξ
(α)
c.t.

+ bδ,{a,b}ξδ + bδ,abδ,bξδδ + bδ2,{a,b}ξδ2 + bδ,{abδ2,b}ξδδ2 + bδ2,abδ2,bξδ2δ2

+ bs2,{a,b}ξs2 + bδ,{abs2,b}ξδs2 + bδ2,{abs2,b}ξδ2s2 + bs2,abs2,bξs2s2

+ b∂2δ,{a,b}ξ∂2δ + bδ,{ab∂2δ,b}ξδ∂2δ + ξεaεb , (6.20)

where again the explicit form of the individual contributions is given in appendix C.

6.2 The mean pairwise velocity

Next in the moment hierarchy is the mean pairwise velocity term, i.e. the first velocity
moment. We are interested in obtaining the 1-loop contributions (see also ref. [58])

Ξi(r) = (1 + ξ(r))v12,i(r) =

∫
d3k

(2π)3
d3q e−ik·(r−q)(−i) ∂

∂Ji

〈
eiX
〉 ∣∣∣

J=0
(6.21)

=
∞∑

n=1

in

n!

∫
d3k

(2π)3
d3q e−ik·(r−q)

〈
Y n∆′

i

〉
c
exp

[
∞∑

l=2

il

l!

〈
Y l
〉
c

]
.

If we look at the pairwise velocity correlator we have

Ξ̃i(k) =

∫
d3r eik·r [1 + ξ(r)] v12,i(r). (6.22)

The natural basis to project this vector field onto is the projection onto the k̂ vector, thus

we have Ξ̃i(k) = Ξ̃
(0)
1 (k)k̂i, and similarly v12,i(r) = v12(r)r̂i. It follows that

[1 + ξ(r)] v12(r) = −i
∫
k2dk

2π2
Ξ̃1(k)j1(kr),

Ξ̃1(k) = 4πi

∫
r2dr

[
1 + ξ(r)

]
v12(r)j1(kr). (6.23)

Using the above relation we have for the pairwise velocity power spectrum, i.e. the Fourier
representation of the first velocity moment

kΞ̃
(0)
1 (k) =

[
1 + δ̂a

][
1 + δ̂b

] ∞∑

n=1

in

n!

∫
d3q eik·q ki

〈
Y n∆′

i

〉
c
exp

[
∞∑

l=2

il

l!

〈
Y l
〉
c

]
, (6.24)

where we also added the biasing operators. If we consider the bias terms up to δL we have

iY = iλ1δL1 + iλ2δL2 + ik ·∆(q). (6.25)
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We have dropped all of the shear contributions in the higher velocity terms, the motivation
being the realisation that these contributions are rather small already in the pure density
statistics on the scales of interest [16] and they are even less relevant in the higher velocity
statistics. The higher-order biasing terms can of course be added in analogous ways to the
earlier section if desired. For a consistent treatment of these terms in configuration space we
refer the reader to ref. [16].

Given that we are concerned with the 1-loop calculation here, relevant contributions
that enter to the dynamics and bias generating function, exp

[∑∞
`=2(i

`)/(`!)
〈
Y `
〉
c

]
, are

determined by two terms

iki
〈
Y∆′

i

〉
c
= if(τ)(λ1 + λ2)ki

(
U lin
10,i + 3U loop

10,i

)
+ if(τ)kikj

(
Alin

ij + 2Aloop
ij

)
,

−1

2
ki
〈
Y 2∆′

i

〉
c
= −f(τ)

(
λ21 + λ22

)
kiU

20
i − 2f(τ)λ1λ2kiU

11
i

− 3

2
f(τ) (λ1 + λ2) kikjA

10
ij − 2

3
f(τ)kikjklWijl. (6.26)

Where we had to explicitly split the linear and loop contributions of the U10,i and Aij terms
given that the loop contributions enter with different prefactors than earlier. All of the terms
are the same as those in eq. (6.15) and explicit linear and 1-loop representations can be found
in appendix C.

We have for the power spectrum

kΞ̃
(0)
1 (k) = f(τ)

∫
d3q eik·q e−

1
2
kikjAL,ij

(
ikikj

(
Alin

ij + 2Aloop
ij

)
− 2

3
kikjklWijl (6.27)

+ bδ,{ab}

(
2ki

(
U lin
10,i + 3U loop

10,i

)
+ i3kikjA

10
ij − 2kikjklA

lin
ij U

lin
10,l

)

+ bδ,{abδ,b}

(
2kiU

11
i + ikikjA

lin
ij ξL + 2ikikjU

lin
10,iU

lin
10,j

)

+ bδ2,{ab}

(
2kiU

20
i + i2kikjU

lin
10,iU

lin
10,j

)
+ bδ2,{abδ,b}2kiU

lin
10 ξL + . . .

)
.

Term by term this result can be separated into the scale dependent spectra and biasing terms
so that

kΞ̃
(0)
1 (k) = f(τ)

(
P 01
loop + α1k

2PZel + bδ,{a,b}P
01
δ + bδ,abδ,bP

01
δδ (6.28)

+ bδ2,{ab}P
01
δ2 + bδ,{abδ2,b}P

01
δδ2 + . . .

)
,

where the α1 is again the leading counterterm coefficient. The continuity equation gives a
simple relation for the purely dynamical spectra, coming from A and W terms,

P 01
loop(k) = P 01

Zel(k) + 2Ploop(k), (6.29)

where for the first term we have P 01
Zel(k) = (1/2)(∂/∂D+)PZel(k). The explicit form of each

of the bias spectra can be found in appendix C. For the real-space pairwise velocity we
then obtain

Ξ01(r) = r̂iΞi(r) = f(τ)
(
Ξ01
loop + α1Ξ

01
c.t. + bδ,{ab}Ξ

01
δ + bδ,abδ,bΞ

01
δδ (6.30)

+ bδ2,{ab}Ξ
01
δ2 + bδ,{abδ2,b}Ξ

01
δδ2 + . . .

)
,

where we can identify Ξ01
loop(r) = Ξ01

Zel+2Ξ1−loop. Again all the explicit formulae for individual
bias correlation functions can be found in appendix C.
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6.3 The pairwise velocity dispersion

The final thing in this section is the 1-loop velocity dispersion (i.e. the second velocity mo-
ment), for biased tracers. We use the same biasing assumptions as in eq. (6.25). First we
start taking the derivatives of the generating function

Ξij(r) = (1 + ξ(r))
[
σ12,ij(r) + v12,i(r)v12,j(r)

]
= − ∂

∂Ji∂Jj

[
1 +M

(
J, r
)]

J=0

=

∫
d3k

(2π)3
d3q e−ik·(r−q)

〈
∆′

i∆
′
j

〉
c
exp

[
∞∑

n=2

in

n!
〈Y n〉c

]

+
∞∑

n=1

in

n!

∫
d3k

(2π)3
d3q e−ik·(r−q)

(
n∑

m=1

(
n

m

)〈
Y m∆′

i

〉
c

〈
Y n−m∆′

j

〉
c

+
〈
Y n∆′

i∆
′
j

〉
c

)
exp

[
∞∑

n=2

in

n!
〈Y n〉c

]
. (6.31)

As discussed in appendix A we can decompose the pairwise velocity dispersion in three
components

Ξij(r) =
〈[
1 + δ(x)

][
1 + δ(x′)

]
∆ui(x)∆uj(x

′)
〉
= 2

(
ξij02(0) + ξij02(r)− ξij11(r)

)
, (6.32)

where first term is the zero-lag (point) contribution, second is the kinetic energy tensor term
(correlated with the density) and the last is the momentum field correlation

ξij02(0) =
〈[
1 + δ(x)

]
ui(x)uj(x)

〉
= σ202δ

K
ij ,

ξij02(r) =
〈
δ(x)

[
1 + δ(x′)

]
ui(x

′)uj(x
′)
〉
,

ξij11(r) =
〈[
1 + δ(x)

]
ui(x)

[
1 + δ(x′)

]
uj(x

′)
〉
. (6.33)

The Fourier-space representation of the velocity dispersion term is then

(2π)3σ202δ
K
ij δ

D
k + Ξ̃ij(k) =

∫
d3r eik·r Ξij(r), (6.34)

where if we use the Lagrangian multipole decomposition we can write Ξ̃ij(k) = δKij Ξ̃
(0)
2 (k) +

3
2

(
k̂ik̂j − 1

3δ
K
ij

)
Ξ̃
(2)
2 (k), and similarly Ξij(r) = δKij Ξ

(0)
2 (r)− 3

2

(
r̂ir̂j − 1

3δ
K
ij

)
Ξ
(2)
2 (r). Note that

this decomposition is somewhat different than the one we used in section 4.2, where Ξ
(m)
2

were scale dependent spectra multiplying different powers of ν. To avoid multiplying notation
we will keep the same labels here but keep this change in definition in mind. These scalar
components then transform as

Ξ̃
(0)
2 (k) =

1

3
δKij Ξ̃ij(k) = −(2π)3σ202δ

D
k + 4π

∫
r2dr Ξ

(0)
2 (r)j0(kr),

Ξ̃
(2)
2 (k) =

(
k̂ik̂j −

1

3
δKij

)
Ξ̃ij(k) = 4π

∫
r2dr Ξ

(2)
2 (r)j2(kr). (6.35)

It is useful at this point to give the connecting relations to frequently used alternative de-
compositions (see e.g. ref. [58]):

σ212,nm = σ2‖ r̂nr̂m + σ2⊥
(
δKnm − r̂nr̂m

)
, (6.36)
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so that σ2‖ = σ212,nmr̂nr̂m and σ2⊥ =
(
σ2nmδ

K
nm − σ2‖

)
/2. Connecting this to the notation given

in eq. (6.35) and the discussion above we have

Ξ
(0)
2 (r)/ (1 + ξ(r)) =

1

3

(
2σ2⊥ + σ2‖

)
, Ξ

(2)
2 (r)/ (1 + ξ(r)) =

2

3

(
σ2⊥ − σ2‖

)
, (6.37)

or inversely

(1 + ξ(r))σ2‖ = Ξ
(0)
2 (r)− Ξ

(2)
2 (r), (1 + ξ(r))σ2⊥ = Ξ

(0)
2 (r) +

1

2
Ξ
(2)
2 (r). (6.38)

We consider the perturbative, 1-loop contributions to eq. (6.31). Considering the first
term (n = 0) we have:

(〈
∆′

i∆
′
j

〉lin
c

+
〈
∆′

i∆
′
j

〉1−loop

c

)(
1− λ1λ2ξL − (λ1 + λ2)klU

lin
10,l . . .

)
(6.39)

= f2
(
Alin

ij + 4

(
A1−loop

ij,22 +
3

4
A1−loop

ij,13

)
− λ1λ2ξLA

lin
ij − (λ1 + λ2)klU

lin
10,lA

lin
ij . . .

)

For the second term (n = 1) the contributions up to 1-loop are:

i
〈
Y∆′

i∆
′
j

〉
c
= f2

(
2i(λ1 + λ2)A

10
ij + ikl

(
2Wijl −W

(112)
ijl

))
. (6.40)

For the third term (n = 2) the contribution up to 1-loop are:

− 1

2

(
2
〈
Y∆′

i

〉
c

〈
Y∆′

j

〉
c
+
〈
Y 2∆′

i∆
′
j

〉
c

)

=−f(τ)2
(
(λ1+λ2)

2U lin
10,iU

lin
10,j+(λ1+λ2)kn

(
Alin

inU
lin
10,j+A

lin
jnU

lin
10,i

)
+knkmA

lin
inA

lin
jm+. . .

)
.

The Fourier space representation of the velocity dispersion is then

Ξ̃ij(k) = f2
∫
d3q eik·qe−

1
2
kikjAlin,ij

(
Alin

ij + 4

(
A1−loop

ij,22 +
3

4
A1−loop

ij,13

)
+ ikl

(
2Wijl −W

(112)
ijl

)

− knkmA
lin
inA

lin
jm + bδ,{ab}

(
iklU

lin
10,lA

lin
ij + 2A10

ij + 2iknA
lin
inU

lin
10,j

)

+ bδ,{ab}

(
ξLA

lin
ij + 2U lin

10,iU
lin
10,j

)
+ bδ2,{ab}U

lin
10,iU

lin
10,j + . . .

)
. (6.41)

Individually, in terms of components, this gives

Ξ̃
(0)
2 (k) = f2

[
Ξ̃
(0)
2,loop + α

(0)
2 Ξ̃

(0)
2,c.t. + bδ,{ab}Ξ̃

(0)
2,δ + bδ,abδ,bΞ̃

(0)
2,δδ + bδ2,{ab}Ξ̃

(0)
2,δ2

]
,

Ξ̃
(2)
2 (k) = f2

[
Ξ̃
(2)
2,loop + α

(2)
2 Ξ̃

(2)
2,c.t. + bδ,{ab}Ξ̃

(2)
2,δ + bδ,abδ,bΞ̃

(2)
2,δδ + bδ2,{ab}Ξ̃

(2)
2,δ2

]
, (6.42)

where α
(0)
2 and α

(2)
2 are the leading counterterm coefficients. In configuration space we

analogously have

Ξ
(0)
2 (r) = f2

[
Ξ
(0)
2,loop + α

(0)
2 Ξ

(0)
2,c.t. + bδ,{ab}Ξ

(0)
2,δ + bδ,abδ,bΞ

(0)
2,δδ + bδ2,{ab}Ξ

(0)
2,δ2

]
,

Ξ
(2)
2 (r) = f2

[
Ξ
(2)
2,loop + α

(2)
2 Ξ

(2)
2,c.t. + bδ,{ab}Ξ

(2)
2,δ + bδ,abδ,bΞ

(2)
2,δδ + bδ2,{ab}Ξ

(2)
2,δ2

]
. (6.43)

For both Fourier and configuration space these individual terms are given explicitly in
appendix C.
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7 Application to the bispectrum

Our focus so far has been on 2-point statistics, which form a complete description of zero-mean
Gaussian fields. However there is great interest in non-Gaussian statistics, either primordial
or those which evolve due to non-linear structure formation. In this section we show how the
formalism developed above can be applied to higher-order functions.

Historically it has been hard to handle redshift-space distortions for higher order func-
tions, due to the plethora of vectors involved [46]. However, since the signal-to-noise ratio
and information in the 3D N-point functions is larger than in their projected counterparts,
but the 3D versions can only be measured in redshift space, there is ample motivation to
investigate this problem. The new Fourier cumulant expansion is particularly interesting in
this regard, as it provides a relatively straightforward way to implement the redshift-space
mapping and even a helpful bookkeeping device for organizing the terms.

The redshift-space mapping given in eq. (3.2) also allows us to directly predict the higher
N-point functions. For example, the 3-point function in Fourier space (the bispectrum) can
be derived from

M̃abc(J1,J2;k1,k2) =
k31k

3
2

4π4

∫
d3r12 e

ik1·r1+ik2·r2

×
〈
(1 + δa(x))(1 + δb(x

′))(1 + δc(x
′′))eiJ1·∆uac+iJ2·∆ubc

〉
, (7.1)

where d3r12 = d3r1d
3r2, and where the three-point moment generating function is

1 +Mabc(J1,J2; r1, r2) =
〈
(1 + δa(x))(1 + δb(x

′))(1 + δc(x
′′))eiJ1·∆uac+iJ2·∆ubc

〉
. (7.2)

From the structure above it is relatively straightforward to see how to generalise it to the
higher N-point functions. This could be of interest if one would like to investigate the non-
Gaussian part of the redshift-space power spectrum covariance matrix.

7.1 Moment expansion

We expand the exponential term in M in order to obtain the three point (density weighted)
moments of the velocity field:

Ξi1...in,j1...jm(r1, r2) =
〈(
1 + δa(x)

)(
1 + δb(x

′)
)
(1 + δc(x

′′))

× ∆uac,i1 . . .∆uac,in∆ubc,j1 . . .∆ubc,jn〉 . (7.3)

We can write the bispectrum as the sum of the Fourier transforms of these moments,

Babc
s (k1,k2) =

∞∑

n,m=0

in+m

n!m!
k1,i1 . . . k1,ink2,j1 . . . k2,jmΞ̃i1...in,j1...jm(k1,k2) (7.4)

=
∞∑

n,m=0

in+m

n!m!
k1,i1 . . . k1,ink2,j1 . . . k2,jm

∫
d3r12 Ξi1...in,j1...jm(r1, r2)e

ik1·r1+ik2·r2 .

This is analogous to our moment expansion for the power spectrum given in eq. (3.11).
This approach would be equivalent to any version of direct Eulerian perturbation theory
approaches to bispectrum in redshift space, as is also the case for the power spectrum.
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7.2 Fourier space cumulant expansion

In Fourier space we can perform a similar cumulant expansion as was done for the power
spectrum, i.e. we have Z̃abc(J1,J2;k1,k2) = ln

[
1+M̃ab(J1,J2;k1,k2)

]
and expanding in J1

and J2 we get the three point cumulants. First few of them are

C̃(0)(k1,k2)= ln
[
1+∆2

abc(k1,k2)
]
, (7.5)

C̃(1)
i (k1,k2)= Ξ̂i(k1,k2)/

[
1+∆2

abc

]
, C̃(1)

j (k1,k2)= Ξ̂j(k1,k2)/
[
1+∆2

abc

]
,

C̃(2)
i1i2

(k1,k2)= Ξ̂i1i2(k)/
[
1+∆2

ab

]
−C̃(1)

i1
C̃

(1)
i2
, C̃(2)

j1j2
(k1,k2)= Ξ̂j1j2(k)/

[
1+∆2

ab

]
−C̃(1)

j1
C̃

(1)
j2
,

C̃(2)
i1j1

(k1,k2)= Ξ̂i1j1(k)/
[
1+∆2

ab

]
−C̃(1)

i1
C̃

(1)
j1
,

where we use the notation ∆2 = k31k
3
2B(k1,k2)/(4π

4) and Ξ̂ = k31k
3
2Ξ̃(k1,k2)/(4π

4) in anal-
ogy to the power spectrum case. In analogy to what we had before, we can introduce the
three point kernel

ln K̃abc(k1,k2) =

∞∑

n+m=1

in+m

n!m!
k1,i1 . . . k1,ink2,j1 . . . k2,jm C̃

(n+m)
i1...in,j1...jn

(k). (7.6)

We note that the translation kernel in this case depends on k only and not on r as was the
case above. This is significant since in order to compute the power spectrum no additional
Fourier transform is needed. It should be clear that the kernel K̃abc is not simply the Fourier
transform of Kabc, and neither do Z̃abc and Zabc form a Fourier transform pair.

The redshift-space bispectrum can thus be written

1+∆2
s,abc(k1,k2)= exp

[
Z̃abc(k1,k2;k1,k2)

]
(7.7)

=
[
1+∆2

abc

]
K̃abc(k1,k2)

=
[
1+∆2

abc

]
exp

[
∞∑

n+m=1

in+m

n!m!
k1,i1 . . .k1,ink2,j1 . . .k2,jm C̃

(n+m)
i1...in,j1...jn

(k1,k2)

]
.

The structure of this expression is again similar to the power spectrum case (see eq. (4.34)).
We see that in this Fourier space representation all the RSD effects are contained in a kernel,
K̃, that has a simple form as a sum of cumulants. Given this structure it might be appealing
to study the properties of this expansion in the form of the observables, where we take a log

of the ratio of bispectra, i.e. log
([

1 + ∆2
s,abc

]
/
[
1 + ∆2

abc

])
.

8 Conclusions

We have investigated the use of several expansions of the real-to-redshift-space mapping, with
a focus on the power spectrum and correlation function. We reviewed the velocity moment
expansion approach and the configuration space cumulant expansion. We also presented a
novel, Fourier-based streaming model, characterized by a simple, algebraic, form and rapid
convergence. We showed how to systematically extend the evaluation of all of these ap-
proaches in both Fourier and configuration space, in a manner that is independent of the
way the respective ingredients are computed. This gives an efficient algorithm for computing
the redshift-space correlation function and power spectrum, which can be made arbitrarily
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accurate for a given dynamics. The ingredients can be supplied either by perturbation theory
(taking care of the consistent expansion in a given parameter) or from some other means,
e.g. fits to N-body simulations or emulators. Some of the relations we derived give support
to earlier, phenomenological models for redshift-space power spectra while showing how to
extend the approximations in a controlled manner. In the follow-up work we intend to per-
form the comparative study of this framework using the N-body simulations and PT results
presented in section 6

Apart from this, we presented the first, complete computation of the redshift-space
power spectrum within the Zeldovich approximation, that we then used as a toy model with
which to test the convergence properties of moment expansion and the two streaming models.
As part of this calculation we also evaluated the arbitrary-order velocity moments (and subse-
quently cumulants) within the Zeldovich approximation. This allowed us to perform detailed
convergence and performance studies of these models at various redshifts and configurations.

All of the expansion schemes work well at large scales and agree to high precision.
Depending on the order of truncation of the expansion, agreement gradually deteriorates as
we go to smaller scales. We found that in the power spectrum, the Fourier based streaming
model performed best when Lmax = 4 or 5, and for lower Lmax the performance was similar
to other models. For the correlation function, and at low order (Lmax = 2), the configuration-
space streaming model performed best over all scales, while for higher orders (Lmax > 2) the
Fourier streaming model and moment expansion improved quickly and became comparable.
The agreement between all of the schemes and the full expression was, as expected, worst
for the modes along the line of sight and best for the modes transverse to the line of sight.
The size of the error scaled as a relatively high power of the (cosine of the) angle to the line
of sight, ν. This suggests that comparisons between data and an expansion truncated at
any finite order could be enhanced by the use of statistics which downweight the line-of-sight
modes compared to traditional multipole expansions. Alternatively, it suggests that lower
order perturbative models are not applicable to certain situations where high accuracy for
ν ≈ 1 is required.

While the formalism is much more general, our numerical comparisons employed an
approximate dynamics (the Zeldovich approximation) and are considering only unbiased
tracers. The reader should exercise caution in assessing the absolute numerical convergence
of any of these schemes in more realistic scenarios involving full nonlinear, tracer dynamics.
However, we expect the trends and relative behaviors to be quite robust.

Being perturbative, all of the expansions perform better at high redshift where the
expansion parameters are small. In this regard, it is worth noting that the relevant expansion
parameter for redshift-space effects is fD, with f the growth rate and D the linear growth
factor. In currently favored cosmologies this actually peaks near z ' 0.5, and falls more slowly
than D to earlier times. The relative improvement of perturbative schemes with redshift are
thus expected to be worse for redshift-space statistics than real-space statistics.

One of the interesting features of our newly developed Fourier-space streaming model
is that the relation between the redshift-space and real-space power spectra is analytic (in a
manner reminiscent of phenomenological dispersion models). In fact directly from eq. (4.34)
we see

ln
1 + ∆2

s(k, ν)

1 + ∆2(k)
= i(νk)C̃

(1)
n̂ (k, ν)− (νk)2

2
C̃

(2)
n̂ (k, ν) + · · · , (8.1)

where we note again that ν is the usual cosine of the angle to the line of sight and C̃(`)

are velocity two-point cumulants given in eq. (3.21). In principle, the left-hand side can be
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measured from data, and the velocity cumulants (including the finger-of-god terms) can be
inferred from the angle and scale dependence of the result. This newly developed Fourier-
space streaming model also provides a simple framework for applying RSD effects to higher
N-point functions. In eq. (7.7) we give a simple cumulant expansion for the redshift-space
bispectrum that follows the same structure as the power spectrum expression above.

While our numerical comparisons focus on matter statistics, we review the more realistic
scenario of biased tracers and nonlinear dynamics (up to 1-loop in Lagrangian perturbation
theory). We give the explicit expressions for the configuration and Fourier space two point
functions, as well as pairwise velocity and velocity dispersion. These ingredients are equiv-
alent to ones presented in ref. [16] in configuration space for studying the redshift space
correlation function. Together with our new Fourier version of the streaming model these
ingredients give an elegant and practical description of the redshift space power spectrum.

Finally we note that redshift-space distortions form just one example of a “shifted”
field, in which the object is displaced from its true position. Other examples of shifted fields
arise in the context of initial condition reconstruction or density field reconstruction [89] for
baryon acoustic oscillations [14, 15] and CMB lensing [90, 91]. During reconstruction objects
are deliberately displaced during the data analysis in order to reduce the impact of non-linear
evolution on the measurement of the distance scale. In CMB lensing the photon’s angular
positions are remapped by gravitational deflections along their path to the observer. However
there are many aspects of these examples which are similar, and a unified treatment is both
possible and desirable. We intend to return to this in a future publication.
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A Angle decomposition of velocity moments

Following the angular decomposition procedure pioneered in [38, 42] in this appendix we
decompose the pairwise velocity moments showing the angular structure only based on the
rotation symmetries and independently of the perturbative arguments. Pairwise velocity
moments are Eulerian quantities that are defined as

Ξi1,...,iN (r) =
〈(
1 + δ(x)

)(
1 + δ(x′)

)
∆ui1 . . .∆uiN

〉
, (A.1)

where ∆ui = ui(x
′) − ui(x). Given that we are interested in projections along the line of

sight n̂ we have

Ξ
(N)
n̂ (r) =

〈(
1 + δ(x)

)(
1 + δ(x′)

)
∆uNn̂

〉

=
N∑

n=0

(−1)n
(
N

n

)〈
T

(N−n)
n̂ (x′)T

(n)
n̂ (x)

〉
, (A.2)

where

T
(L)
n̂ (x) =

(
1 + δ(x)

)
uLn̂(x). (A.3)
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Fourier transform of these moments can be decomposed as

T
(L)
n̂ (k) =

∑

l=L,L−2,...

l∑

m=−l

TL,m
l (k)Ylm(k̂). (A.4)

Two point correlation function is than

〈
T

(L)
n̂ (k)|T(L′)

n̂ (k′)
〉
=

∑

l=L,L−2,...
l′=L′,L′−2,...

min(l,l′)∑

m=−min(l,l′)

〈
TL,m
l (k)|TL′,−m

l′ (k′)
〉
Ylm(k̂)Yl′−m(k̂′),

(A.5)
and the power spectrum is then given as

PLL′(k, µ) =
∑

l=L,L−2,...
l′=L′,L′−2,...

min(l,l′)∑

m=−min(l,l′)

PL,L′,m
l,l′ (k)Pm

l (µ)P−m
l′ (µ), (A.6)

where, omitting the Dirac delta functions, we used straightforward definitions
〈
T

(L)
n̂ |T(L′)

n̂

〉′
=

PLL′ and
〈
TL,m
l |TL′,−m

l′

〉′
= PL,L′,m

l,l′ . We can note that PLL′ = P ∗
L′L, so, without loss of

generality, we can assume L ≤ L′ and get

PLL′(k, µ) =
∑

l=L,L−2,...
l′=L′,L′−2,...

l∑

m=−l

PL,L′,m
l,l′ (k)Pm

l (µ)P−m
l′ (µ). (A.7)

Here we can use the standard relation for the Wigner rotation matrices

D(j1)
m1m′

1
(R)D(j2)

m2m′
2
(R) =

∑

j,m,m′

〈j1j2;m1m2|j1j2; jm〉
〈
j1j2;m

′
1m

′
2|j1j2; jm′

〉
D(j)

mm′(R), (A.8)

when we set m′
1 = 0 and m′

2 = 0 and using D(j)
m0 = Y m∗

l we have

Pm
l (µ)P−m

l′ (µ) =

√
(l +m)!(l′ −m)!

(l −m)!(l′ +m)!

∑

`

〈
ll′;m−m|ll′; `0

〉 〈
ll′; 00|ll′; `0

〉
P`(µ). (A.9)

Collecting this gives the velocity moment spectra in therm of a sum of just one Legendre
polynomial

PLL′(k, µ) =
∑

l=L,L−2,...
l′=L′,L′−2,...

l+l′∑

`=|l−l′|

〈
ll′; 00|ll′; `0

〉
CL,L′,`
l,l′ (k)P`(µ), (A.10)

where the scale dependent part is re-expressed as a sum of PL,L′,m
l,l′ spectra as

CL,L′,`
l,l′ (k) =

l∑

m=−l

〈
ll′;m−m|ll′; `0

〉
√

(l +m)!(l′ −m)!

(l −m)!(l′ +m)!
PL,L′,m
l,l′ (k). (A.11)
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Finally for the N -th pairwise velocity moment we then have

Ξ
(N)
n̂ (k) =

N∑

n=0

(−1)n
(
N

n

)
Pn,N−n(k, µ)

= (−1)N/2δKN/2,bN/2c

(
N

N/2

)
PN/2,N/2(k, µ)

+
∑

n<N/2

(−1)n
(
N

n

)(
Pn,N−n(k, µ) + (−1)NP ∗

n,N−n(k, µ)
)
. (A.12)

These can be separated in the odd and even moments to make the angular dependence more
explicit. We have for each contribution

Ξ
(2N)
n̂ (k) = (−1)N

(
2N

N

)
PN,N (k, µ) + 2

∑

n<N

(−1)n
(
2N

n

)
Re
[
Pn,2N−n(k, µ)

]

=
N∑

n=0

P2n(k)P2n(µ),

Ξ
(2N+1)
n̂ (k) = 2i

∑

n≤N

(−1)n
(
2N + 1

n

)
Im
[
Pn,2N−n+1(k, µ)

]

=

N∑

n=0

P2n+1(k)P2n+1(µ). (A.13)

Thus we see that N -th moment has contributions of only either odd or even Legendre poly-
nomials, up to the N -th order. Thus in the N -th moment all odd or even powers of angle
µ appear up to the µN . It is thus interesting to note that even though we used the, linear
approximation for displacement, this Zeldovich approximation, still generated the full RSD
angle complexity as we see in section 4.2. This is, of course, not so in the direct Eularian PT
approaches that, at face value, do not exhibit any resumation of the IR modes [30, 92] (for
Eulerian based resumation of IR modes e.g. see ref. [93] and in redshift space ref. [52]).

First few examples of these pairwise moments given in terms of the simple velocity
moments as given in [38, 42]

Ξ
(1)
n̂ (k) = P01(k, µ)− P ∗

01(k, µ)

= 2iIm[P01(k, µ)],

Ξ
(2)
n̂ (k) = P02(k, µ)− 2P11(k, µ) + P ∗

02(k, µ)

= 2Re[P02(k, µ)− P11(k, µ)],

Ξ
(3)
n̂ (k) = P03(k, µ)− 3P12(k, µ) + 3P ∗

12(k, µ)− P ∗
03(k, µ)

= 2iIm[P03(k, µ)− 3P12(k, µ)],

Ξ
(4)
n̂ (k) = P04(k, µ)− 4P13(k, µ) + 6P22(k, µ)− 4P ∗

13(k, µ) + P ∗
04(k, µ)

= 2Re[P04(k, µ)− 4P13(k, µ) + 3P22(k, µ)]. (A.14)

This provides the direct link from these moment based approaches to the various streaming
approaches (e.g [16, 56–58]).
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B Derivation of general velocity moments in Zeldovich approximation

In the section 4.2 we have derived the velocity moments in the Zeldovich approximation. We
have shown that these are given in therms of reduced velocity moments that are implicitly
defined by expression (4.24). In this section we derive the explicit expressions for these
reduced velocity moments. They can be defined via the RSD angle ν derivatives of the
velocity moments

Ξ̃(2`)
m (k)=

1

m!

(
d

dν2

)m
[
∑̀

n=0

(−1)n

2`+n

(2`)!

(`−n)!(2n)!

∫
d3q eik·q A2nB`−ne−

1
2
kikjAij

]

ν=0

=

2∑̀

n=0

∫
d3q eik·q F (2`)

m,n (X,Y )µ2ne−
1
2
kikjAij ,

Ξ̃(2`+1)
m (k)=

1

m!

(
d

dν2

)m 1

ν

[
∑̀

n=0

(−1)n

2`+n+1

(2`+1)!

(`−n)!(2n+1)!

∫
d3q eik·qA2n+1B`−ne−

1
2
kikjAij

]

ν=0

=
2`+1∑

n=0

∫
d3q eik·q F (2`+1)

m,n (X,Y )µ2ne−
1
2
kikjAij , (B.1)

where further angular dependence in µ2 angles is stripped from the integrands and the re-

maining kernels F
(2`)
m,n are given by

F (2`)
m,n (X,Y )=

1

n!m!

(
d

dµ2

)n( d

dν2

)m
[
∑̀

i=0

(−1)i

2`+i

(2`)!

(`−i)!(2i)!

∫
dφ

2π
A2iB`−i

]

ν=µ=0

F (2`+1)
m,n (X,Y )=

1

n!m!

(
d

dµ2

)n( d

dν2

)m 1

ν

[
∑̀

i=0

(−1)i

2`+i+1

(2`+1)!

(`−i)!(2i+1)!

∫
dφ

2π
A2i+1B`−i

]

ν=µ=0

(B.2)

Using the integral given by eq. (4.8) we can integrate over µ so we get the equations (4.25)
for the reduced velocity moments

Ξ̃(2`)
m (k) = 4π

∞∑

s=0

∫
q2dq e−

1
2
k2(X+Y )ξ(2`)m,s (k,X, Y )

(
kY

q

)s

js(qk),

Ξ̃(2`+1)
m (k) = 4π

∞∑

s=0

∫
q2dq e−

1
2
k2(X+Y )ξ(2`+1)

m,s (k,X, Y )

(
kY

q

)s

js(qk), (B.3)

with integrands ξ`m,s defined as in eq. (4.26).

The goal is do derive explicit form for the F
(`)
m,n kernels. The strategy is to consider the

integral in eq. (B.2) and rearrange them in therms of powers of µ and ν. This will allow
us to take easily the derivative in angles. But first we will remind ourselves what the is
the notation; we use A = k{in̂j}Aij = 2νkX + 2µγkY and B = n̂in̂jAij = X + γ2Y and
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γ = n̂.q̂ = µν + η cosφ and η =
√
1− µ2

√
1− ν2. We have

∫
dφ

2π
A2nB`−n = (2k)2n

2∑̀

k=0

1G
`,n
k (µ, ν)(µν)k 2F1

(
1− k

2
,−k

2
, 1,

η2

µ2ν2

)

= (2k)2n
2l∑

q=0

l∑

p=0

1C
`,n
2p,2qν

2pµ2q,

∫
dφ

2π
A2n+1B`−n = (2k)2n+1

2`+1∑

k=0

2G
`,n
k (µ, ν)(µν)k 2F1

(
1− k

2
,−k

2
, 1,

η2

µ2ν2

)

= (2k)2n+1
2l+1∑

q=0

l∑

p=0

2C
`,n
2p,2qν

2pµ2q (B.4)

where 2F1 is the ordinary hypergeometric function and functions 1G
`,n and 2G

`,n are given
by sums

1G
`,n
k (µ, ν) =

k/2∑

m=0

(
2n

k − 2m

)(
`− n

m

)
X`+n−(k−m)Y k−mν2(n+m)−kµk−2m,

2G
`,n
k (µ, ν) =

k/2∑

m=0

(
2n+ 1

k − 2m

)(
`− n

m

)
X`+n−(k−m)+1Y k−mν2(n+m)−kµk−2m.

The goal is to extract the coefficients 1C
`,n and 2C

`,n from the formulae above. To do this
we need to first represent the hypergeometric function 2F1 as a series

(νµ)k2F1

(
(1− k)/2,−k/2, 1, (η/µν)2

)
=

∞∑

i=0
j=0

(−1)i+jckijν
k−2iµk−2j , (B.5)

where the coefficient is given by

ckij =
k∑

n=0

4−n

(
2n

n

)(
k

2n

)(
n

i

)(
n

j

)
=

3F2(1, (1− k)/2,−k/2; 1− i, 1− j; 1)

Γ(1− i)Γ(1 + i)Γ(1− j)Γ(1 + j)
. (B.6)

Collecting this information we get for the 1C
`,n and 2C

`,n coefficients

1C
`,n
p,q =

l∑

r=0
s=0

(−1)r+sX l+n−q−sY q+s

(
l − n

p+ r − n

)(
2n

n− p+ q − r + s

)
cp+q+r+s−n
r,s ,

2C
`,n
p,q =

l∑

r=0
s=0

(−1)r+sX l+n−q−s+1Y q+s

(
l − n

p+ r − n

)(
2n+ 1

n− p+ q − r + s

)
cp+q+r+s−n
r,s . (B.7)

Finally the kernels that we wanted to derive have a form

F (2`)
p,q (k,X, Y ) =

∑̀

n=0

(−1)n

2`−n

(2`)!

(`− n)!(2n)!
k2n1C

`,n
p,q (X,Y )

F (2`+1)
p,q (k,X, Y ) =

∑̀

n=0

(−1)n

2`−n

(2`+ 1)!

(`− n)!(2n+ 1)!
k2n+1

2C
`,n
p,q (X,Y ). (B.8)
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Note that all the sums above are finite, unlike in the previous cases when the full RSD power
spectra was computed in section 4.1.

C Velocity moments up to L = 2 for biased tracers

In this appendix section we give the supplementary formulas for the section 6. All the bias
and nonlinear dynamics terms that appear in the integrands of that sections are listed below.
We first start with the non-linear term of the displacement field. The cumulant components
can be decomposed as follows [24, 29]:

Aij(q) =
2

3
δij (Ξ0(0)− Ξ0(q)) + 2

(
q̂iq̂j −

1

3
δij

)
Ξ2(q),

Wij`(q) =
2

5
q̂{iδj`}Ξ1 +

3

5

(
5q̂iq̂j q̂` − q̂{iδj`}

)
Ξ3, (C.1)

where we have

Ξ0(q) = Ξlin
0 (q) + Ξloop

0 (q) =

∫
dk

2π2

[
P0(k) +

9

98
Q1(k) +

10

21
R1(k)

]
j0(kq)

Ξ1(q) = Ξloop
1 (q) =

∫
dk

2π2

(
− 3

7k

)
[Q1(k)− 3Q2(k) + 2R1(k)− 6R2(k)] j1(kq)

Ξ2(q) = Ξlin
2 (q) + Ξloop

2 (q) =

∫
dk

2π2

[
P0(k) +

9

98
Q1(k) +

10

21
R1(k)

]
j2(kq)

Ξ3(q) = Ξloop
3 (q) =

∫
dk

2π2

(
− 3

7k

)
[Q1(k) + 2Q2(k) + 2R1(k) + 4R2(k)] j3(kq). (C.2)

In the rest of the section we also use the notation:

X(q) =
2

3
(Ξ0(0)− Ξ0(q)− Ξ2(q)) , Y (q) = 2 Ξ2(q),

V (q) =
1

5
(2Ξ1(q)− 3Ξ3(q)) , T (q) = 3 Ξ3(q). (C.3)

Let us now give the explicit expression for the terms in the eq. (6.15). We can split the term
relative to the total spin they can carry. First we can consider the zero spin term:

ξL(q) = 〈δL1δL2〉c =
∫
p2dp

2π2
PL(p)j0(pq),

ζL(q) =
〈
s2L1s

2
L2

〉
c
=

∫
p2dp

2π2
Qs2s2(p)j0(pq)−

(
2

3

)2

[σ2L]
2,

χ11(q) =
〈
s2L1δL1δL2

〉
c
= 0,

χ12(q) =
〈
s2L1δ

2
L2

〉
c
=

∫
p2dp

2π2
Qs2δ2(p)j0(pq)−

2

3
[σ2L]

2. (C.4)
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Spin one terms are also given by the single scalar oriented in a given direction q̂

U10 = q̂iU
10
i = q̂i 〈δL∆i〉c = q̂i 〈δ1ψ2,i〉c = −

∫
kdk

2π2

(
PL(k) +Rδ∆(k)

)
j1(kq),

U11 = q̂iU
11
i = q̂i 〈δL1δL2∆i〉c = −

∫
kdk

2π2
Rδ2∆(k)j1(kq),

U20 = q̂iU
20
i = q̂i

〈
δ2L∆i

〉
c
= −

∫
kdk

2π2
Qδ2∆(k)j1(kq),

V 10 = q̂iV
10
i = q̂i

〈
s2L∆i

〉
c
= −

∫
kdk

2π2
Qs2∆(k)j1(kq),

V 11 = q̂iV
11
i = q̂i

〈
s2L1δL1∆i

〉
c
= 0,

V 12 = q̂iV
12
i = q̂i

〈
s2L1δL2∆i

〉
c
= −

∫
kdk

2π2
Qs2δ∆(k)j1(kq). (C.5)

Spin two terms can be split into two components, as Aij = δKijX + q̂iq̂jY . For these compo-
nents we than have

X10 =
1

2
(δKij − q̂iq̂j) 〈δL∆i∆j〉c =

∫
k2dk

2π2
1

3
R

(0)
10,0(k) +

1

3
A

(0)
10 (k)j0(kq) +

1

2
A

(2)
10 (k)j2(kq)

=

∫
k2dk

2π2
1

3
R

(0)
10,0(k) +

1

3

(
R

(0)
10 (k) +Q

(0)
10 (k)

)
j0(kq)

+
1

2

(
R

(2)
10 (k) +Q

(2)
10 (k)

)
j2(kq),

Y 10 =
3

2

(
q̂iq̂j −

1

3
δKij

)
〈δL∆i∆j〉c = −

∫
k2dk

2π2
3

2
A

(2)
10 (k)j2(kq)

= −
∫
k2dk

2π2
3

2

(
R

(2)
10 (k) +Q

(2)
10 (k)

)
j2(kq),

X20 =
1

2
(δKij − q̂iq̂j)

〈
s2L∆i∆j

〉
c
=

∫
k2dk

2π2
1

3
A

(0)
20 (k)j0(kq) +

1

2
A

(2)
20 (k)j2(kq),

=

∫
k2dk

2π2
1

3
Q

(0)
20 (k)j0(kq) +

1

2
Q

(2)
20 (k)j2(kq),

Y 20 =
3

2

(
q̂iq̂j −

1

3
δKij

)〈
s2L∆i∆j

〉
c
= −

∫
k2dk

2π2
3

2
A

(2)
20 (k)j2(kq)

= −
∫
k2dk

2π2
3

2
Q

(2)
20 (k)j2(kq), (C.6)

and we can add also the derivative terms

∂2

k2L
ξL =

1

k2L

∫
p2dp

2π2
PL(p)∂

2j0(pq) = − 1

k2L

∫
p2dp

2π2
p2PL(p)j0(pq),

∂2

k2L
U10
L = − 1

k2L

∫
kdk

2π2
PL(k)∂

2j1(kq) =
1

k2L

∫
pdp

2π2
p2PL(p)j1(pq). (C.7)

Note that seemingly divergent properties of the derivative terms above can be regularised by
keeping only the leading k2L contributions, and truncating the small scales below 1/kL. All
the integrals above are given as spherical Bessel transforms of the integrands and thus can be
easily evaluated using the FFTLog algorithm [67]. For all the functions Qx and Rx that come
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as the integrants in the expressions above, we refer the readier to the refs. [22–24]. These
are as well expressible as the The 1D integrals are Hankel transforms as shown in appendix
of ref. [94].

C.1 Halo power spectrum & correlation function

Final expressions, up to 1-loop, for the power spectrum and correlation function are given in
section 6.1. Below we give explicit expressions for the individual contributions to eq. (6.18),
for the power spectrum, and eq. (6.20) for the correlation function. For additional biasing
terms we have terms of the form

Px = 4π

∫
q2dq e−

1
2
k2(XL+YL)

(
f (0)x (k, q)j0(qk) +

∞∑

n=1

f (n)x (k, q)

(
kYL
q

)n

jn(qk)

)
, (C.8)

where
(n)
x integrands are:

Px f
(0)
x f

(n)
x

zel, 1, 1,

loop, −1
2k

2
(
X loop + Y loop

)
, − 1

2k
2
(
X loop + Y loop − q

V loop+ 1
3
T loop

Y lin

)
+ nY loop

Y lin − (n−1)qT loop

3(Y lin)2
,

δ, −k2
(
X10 + Y 10

)
, −k2

(
X10 + Y 10

)
+ 2

(
nY 10 − qU10

)
/YL,

δδ, ξL − k2(U10)2, ξL − k2(U10)2 +
(
2n(U10)2 − qU11

)
/YL,

δ2, −k2(U10)2, −k2(U10)2 +
(
2n(U10)2 − qU20

)
/YL,

δδ2, 0, −2qU10ξL/YL,

δ2δ2, 1
2ξ

2
L,

1
2ξ

2
L,

s2, −k2
(
X20 + Y 20

)
, −k2

(
X20 + Y 20

)
+ 2

(
nY 20 − qV 10

)
/YL,

δs2, 0, −2qV 12/YL,

δ2s2, χ12, χ12,

s2s2, ζL, ζL,

∂2δ, 0, −2q∂2U10/(Λ2
LYL),

δ∂2δ, 2∂2ξL/Λ
2
L, 2∂2ξL/Λ

2
L,

The 1D integrals are Hankel transforms which can be done efficiently using FFTs [67] as was
shown in [29].

Similar to the power spectrum it is useful to also give the explicit expression for the
1-loop halo correlation function we have

1 + ξab(r) =

∫
d3q M0,h(q, r). (C.9)

Using the abbreviation for the purely Gaussian part

Q(r− q) =
1

(2π)3/2|Alin|1/2
e−

1
2
(r−q)TA

−1
lin(r−q), (C.10)
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we can write for individual contributions to eq. (6.20)

ξx(r) =

∫
d3q Q(r− q)Fx(q),

where integrands Fx can be tabulated as:

Ξx Fx Ξx Fx

zel, 1, δ2δ2, 1
2ξ

2
L,

loop, −1
2GijA

loop
ij + 1

6ΓijkW
lpt

ijk , s2, −2giV
10
i −GijA

20
ij ,

c.t., −1
2Tr[Gij ], δs2, −2giV

12
i ,

δ, −2giU
10
i −GijA

10
ij , δ2s2, χ12,

δδ, ξL − giU
11
i −GijU

10
i U10

j , s2s2, ζL,

δ2, −giU20
i −GijU

10
i U10

j , ∂2δ, −2gi∂
2U10

i /k2L,

δδ2, −2giU
10
i ξL, 2δ∂2δ, 2∂2ξL/Λ

2
L,

C.2 Pairwise velocity power spectrum and correlation function

In similar way as that was used for the power spectrum, pairwise velocity power spectrum
can be evaluated by performing the 1D Hankel transforms. In analogy to the eq. (C.8) we
can write

kΞ̃01
x (k) = 4π

∫
q2dq e−

1
2
k2(XL+YL)

(
g(0)x (k, q)j0(qk) +

∞∑

n=1

g(n)x (k, q)

(
kYL
q

)n

jn(qk)

)
,

(C.11)

where g
(n)
x integrands can be tabulated as

Ξ̃01
x g

(0)
x g

(n)
x

zel, −k2(X lin + Y lin), k2(X lin + Y lin)− 2n,

loop, −2k2
(
X loop + Y loop

)
, −2k2

(
X loop + Y loop − q

V loop+ 1
3
T loop

Y lin

)

+4
(
nY loop

Ylin
− (n−1)qT loop

3(Y lin)2

)
,

δ, −3k2(X10 + Y 10), −2q

(

U lin
10 +3U loop

10

)

Ylin
− 3k2(X10 + Y 10)

+2
qU lin

10
Ylin

k2(X lin + Y lin) + 2
3nY 10−2(n−1)qU lin

10
Ylin

,

δδ, −k2(X lin + Y lin)ξL −k2(X lin + Y lin)ξL − 2qU
11

Ylin
+ 2nξL

−2k2
[
U lin
10

]2
, −2k2

[
U lin
10

]2 (
1− 2n

k2Ylin

)
,

δ2, −2k2
[
U lin
10

]2
, −2qU20/Ylin − 2k2

[
U lin
10

]2 (
1− 2n

k2Ylin

)
,

δδ2, 0, −2
qU lin

10 ξL
Ylin

.
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Similarly the configuration space result is given as

Ξ01
x (r) = (1 + ξ(r))v12,x(r) =

∫
d3q Q(r− q)Gx(q), (C.12)

where we can again tabulated the configuration space integrands Gx as

Ξ01
x Gx

zel, −r̂igjAlin
ij ,

loop, −2r̂igjA
loop
ij + 2

3 r̂iGjlWijl,

δ, 2r̂i

(
U lin
10,i + 3U loop

10,i

)
− 3r̂igjA

10
ij − 2r̂iGjlA

lin
ij U

lin
10,l,

δδ, 2r̂iU
11
i − r̂igjA

lin
ij ξL − 2r̂igjU

lin
10,iU

lin
10,j ,

δ2, 2r̂iU
20
i − 2r̂igjU

lin
10,iU

lin
10,j ,

δδ2, 2r̂iU
lin
10,iξL.

What is omitted from these tables are the shear bias terms s2, as well as, all the deriva-
tive terms that appeared in the density to point statistics in the previous section. For full
expressions in configuration space including these terms we refer the reader to [16].

C.3 Pairwise dispersion power spectrum and correlation function

Finally we give the similar expressions, as for power spectrum and pairwise velocity, for pair-
wise dispersion power spectrum and correlation function. As discussed in the subsection 6.3

we can split the dispersion power spectrum into two components Ξ̃
(0)
2 and Ξ̃

(2)
2 . Each of these

can again be evaluated as the 1D Hankel transform

Ξ̃
(`)
2,x(k)= 4π

∫
q2dq e−

1
2
k2(XL+YL)

(
h
(0)
`,x(k,q)j0(qk)+

∞∑

n=1

h
(n)
`,x (k,q)

(
kYL
q

)n

jn(qk)

)
, (C.13)

where h
(n)
0,x integrands can be tabulated as

Ξ̃
(0)
2x h

(0)
0,x h

(n)
0,x

zel, X lin + 1
3Y

lin, X lin + 1
3Y

lin + 2
3n
(
2X lin + Y lin

)
,

loop, 4
(

X(2) + 1
3
Y (2)

)

− 1
3
k2

(

Xlin + Y lin
)2

, 4
(

X(2) + 1
3
Y (2)

)

− 1
3
k2

(

Xlin + Y lin
)2

−q
(
5
3V

(2) + 1
3T

(2)
)
/Ylin,

δ, 4
(
X10 + 1

3Y
10
)
, 4

(
X10 + 1

3Y
10
)
− 2 qU10

Ylin

(
5
3Xlin + Ylin

)

δδ, ξL(X
lin + 1

3Y
lin) + 2

3

(
U lin
10

)2
ξL(X

lin + 1
3Y

lin) + 2
3

(
U lin
10

)2

δ2, 2
3

[
U lin
10

]2
, 2

3

[
U lin
10

]2
,

δδ2, 0, −2
qU lin

10 ξL
Ylin

.
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Where X(2), Y (2) and V (2) and T (2) terms are defined by

A
(2)
ij = A1−loop

ij,22 +
3

4
A1−loop

ij,13 =

(
X22 +

3

4
X13

)
δKij +

(
Y22 +

3

4
Y13

)
q̂iq̂j ,

W
(2)
ijl = 2Wijl −W

(112)
ijl = (2V − V (112))q̂{iδ

K
jk} + (2T − T (112))q̂iq̂j q̂l. (C.14)

Similar table holds for the h
(n)
2,x

Ξ̃
(0)
2x h

(0)
0,x h

(n)
0,x

zel, 2
3Y

lin, 2
3Y

lin − 2n(2n−1)
k2

+ 1
3n
(
8X lin + 10Y lin

)
,

loop, 8
3
Y (2) − 2

3
k2

(

Xlin + Y lin
)2

, 8Y (2)
(

1
3
− n

k2Y lin

)

− 2
3
k2

(

Xlin + Y lin
)2

− q(4V (2)+2T (2))
3Ylin

+ 2(n−1)
k2Y 2 (qT ),

δ, 8
3Y

10, 8
3Y

10 − 4 qU10

Ylin

(
2
3Xlin + Ylin

)
+ 43(n−1)qU10−2nY 10

k2Ylin

δδ, 2
3

[
ξLY

lin + 2
(
U lin
10

)2 ]
2
[
ξLY

lin + 2
(
U lin
10

)2 ] (1
3 − n

k2Ylin

)

δ2, 4
3

[
U lin
10

]2
, 4

[
U lin
10

]2 (1
3 − n

k2Ylin

)
.

Similarly the configuration space result is given as

Ξ
(`)
2,x(r) = (1 + ξ(r))v12,x(r) =

∫
d3q Q(r− q)H

(`)
2,x(q), (C.15)

where we can again tabulated the configuration space integrands Hx as

Ξ
(`)
2,x H

(0)
2,x H

(2)
2,x

zel, 1
3δ

K
ijA

lin
ij , −

(
r̂ir̂j− 1

3δ
K
ij

)
Alin

ij ,

loop, 1
3
δKij

[

4
(

A1−loop
ij,22 + 3

4
A1−loop

ij,13

)

−
(

r̂ir̂j−
1
3
δKij

)

[

4
(

A1−loop
ij,22 + 3

4
A1−loop

ij,13

)

,

−gl

(

2Wijl−W
(112)
ijl

)

−GnmAlin
inAlin

jm

]

, −gl

(

2Wijl−W
(112)
ijl

)

−GnmAlin
inAlin

jm

]

,

δ, 1
3
δKij

[

−2glU
lin
10,lA

lin
ij +4A10

ij −4gnAlin
inU lin

10,j

]

, −
(

r̂ir̂j−
1
3
δKij

)

[

−2glU
lin
10,lA

lin
ij +4A10

ij −4gnAlin
inU lin

10,j

]

,

δδ, 1
3δ

K
ij

[
ξLA

lin
ij +2U lin

10,iU
lin
10,j

]
, −

(
r̂ir̂j− 1

3δ
K
ij

)[
ξLA

lin
ij +2U lin

10,iU
lin
10,j

]
,

δ2, 1
3δ

K
ij

[
2U lin

10,iU
lin
10,j

]
, −

(
r̂ir̂j− 1

3δ
K
ij

)[
2U lin

10,iU
lin
10,j

]
.
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