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Abstract

Plant protein kinases form redundant signaling pathways to perceive microbial pathogens
and activate immunity. Bacterial pathogens repress cellularimmune responses by secreting
effectors, some of which bind and inhibit multiple host kinases. To understand how broadly
bacterial effectors may bind protein kinases and the function of these kinase interactors, we
first tested kinase—effector (K-E) interactions using the Pseudomonas syringae pv. tomato—
tomato pathosystem. We tested interactions between five individual effectors (HopAlI1,
AvrPto, HopA1, HopM1, and HopAF1) and 279 tomato kinases in tomato cells. Over half of
the tested kinases interacted with at least one effector, and 48% of these kinases interacted
with more than three effectors, suggesting a role in the defense. Next, we characterized the
role of select multi-effector—interacting kinases and revealed their roles in basal resistance,
effector-triggered immunity (ETI), or programmed cell death (PCD). The immune function of
several of these kinases was only detectable in the presence of effectors, suggesting that
these kinases are critical when particular cell functions are perturbed or that their role is
typically masked. To visualize the kinase networks underlying the cellular responses,

we derived signal-specific networks. A comparison of the networks revealed a limited
overlap between ETI and basal immunity networks. In addition, the basal immune network
complexity increased when exposed to some of the effectors. The networks were used to

PLOS Biology | https://doi.org/10.1371/journal.pbio.2005956 December 12,2018 1/24




@'PLOS ‘ BIOLOGY

Integrative approach to immune signaling in tomato

preparation of the manuscript. USDA-National
Institute of Food and Agriculture Hatch project
https://cris.nifa.usda.gov/ (grant number MIS-
145120). Received by SCP. The funder had no role
in study design, data collection and analysis,
decision to publish, or preparation of the
manuscript. Mississippi Agricultural & Forestry
Experiment Station http:/www.mafes.msstate.edu/
sri/ (grant number SRI 269110-011900-027000-
145120). Received by SCP. The funder had no role
in study design, data collection and analysis,
decision to publish, or preparation of the
manuscript. USDA Foreign Agricultural Service
project https://www.fas.usda.gov/programs/
borlaug-fellowship-program (grant number BF-CR-
16-030). Received by SCP. The funder had no role
in study design, data collection and analysis,
decision to publish, or preparation of the
manuscript. USDA-Agricultural Research Unit
through the Big Data: Biocomputing,
Bioinformatics, and Biological Discovery https:/
www.ars.usda.gov/research/project/?accnNo=
431533 (grant number 6066-21310-004-25-S).
Received by GVP. The funder had no role in study
design, data collection and analysis, decision to
publish, or preparation of the manuscript. LAPLAS
program at the National Institute for Laser, Plasma,
and Radiation Physics project http://www.inflpr.ro/
en/node/1200 (grant number 4N/9.03.2016).
Received by GVP. The funder had no role in study
design, data collection and analysis, decision to
publish, or preparation of the manuscript. National
Science Foundation https:/www.nsf.gov/
awardsearch/showAward?AWD_|ID=1714157
(grant number MCB-1714157). Received by GVP.
The funder had no role in study design, data
collection and analysis, decision to publish, or
preparation of the manuscript.

Competing interests: The authors have declared
that no competing interests exist.

Abbreviations: BAK1, BRI1-ASSOCIATED
RECEPTOR KINASET1; BC, betweenness centrality;
EFR, EF-TU RECEPTOR,; EIN3, ETHYLENE-
INSENSITIVES; ET, ethylene; ETI, effector-triggered
immunity; ETS, effector-triggered susceptibility;
FDR, false discovery rate; FLS2, FLAGELLIN-
SENSING?2; GSK3, glycogen synthase kinase3; K-E,
kinase—effector; KEI, Kinase Effector Interactor,
LRR, leucine-rich repeats; MAP, mitogen-activated
protein; MAPK, mitogen-activated protein kinase;
MAP2K, MAP kinase kinase; MAP3K, MAP kinase
kinase kinase; MCC, maximum clique size
algorithm; MIN7, HopM1 interactor 7; MTN1,
methylthioadenosine nucleosidase 1; MTN2,
methylthioadenosine nucleosidase 2; PAMP,
pathogen-associated molecular pattern; PCD,

successfully predict the role of a new set of kinases in basal immunity. Our work indicates
the complexity of the larger kinase-based defense network and demonstrates how viru-
lence- and avirulence-associated bacterial effectors alter sectors of the defense network.

Author summary

Some bacterial pathogens secrete virulence factors called effectors, which influence host
tissues during infection. The impact of such bacterial effectors on the transmission of
immune signals in plants remains poorly understood. In this study, we developed an inte-
grative network approach to discover interactions between bacterial effectors and a class
of host signal-mediating enzymes called protein kinases. We also characterized the func-
tions of the targets of these kinases in order to understand how bacterial effectors might
disrupt the flow of information in signaling pathways within plant cells. We show that
plants activate larger signaling networks when inoculated with pathogens that produce
effectors. We also find that plant signaling networks are specific to individual effectors
and that the networks include kinases with both positive and negative effects on plant
resistance to pathogens. We propose that the topology of immune signaling networks is
determined by the plant’s ability to activate compensatory pathways in response to the
effectors’ network-disruptive actions. Conversely, pathogens may increase their virulence
both by disrupting host signaling at the membrane-located end of the signaling network
and by recruiting cytosolic kinases. This work provides a framework for the study of
plant-pathogen communication and could be used to prioritize targets for improving
resistance in crops.

Introduction

Plant immunity is generated by the activation and coordination of several protein kinase-
based signal transduction pathways into cellular defense responses [1,2]. Kinases modify the
activity status of other proteins through specific biochemical modifications (substrate phos-
phorylation) or by recruiting proteins in signaling complexes. Signaling pathways transmit
pathogen signals from the cell periphery to intracellular compartments and trigger changes in
gene expression, hormone-based signaling, and defense compound production [3]. To survive
in plant tissues and ensure spread to other plants, pathogens must overcome plant defenses
and redirect their energetic and nutrient resources.

The constant tug-of-war between plants and pathogens has generated a complex immune
system in plants, and equally multifaceted assault and endurance mechanisms in pathogens.
Plant pathogens such as the gram-negative flagellated bacterium Pseudomonas syringae can
colonize a broad range of plants, an ability at least partly determined by an extensive and versa-
tile effector repertoire [4, 5]. P. syringae subverts the basal immunity in part by attacking com-
ponents of signaling pathways activated by pathogen-associated molecular patterns (PAMPs)
or secreted effectors. PAMP-triggered immunity (PTI) is induced by PAMP perception by pat-
tern recognition receptors (PRRs), some of which are receptor-like kinases (RLKs). Upon
PAMP recognition, PRRs activate membrane-associated receptor-like cytosolic kinases
(RLCKs), cytosolic mitogen-activated protein (MAP) kinase (MAPK) cascades, and other
cytosolic kinases, including Ca**-dependent kinases [6]. Effector-triggered immunity (ETT),
the second layer of immunity, is activated by direct or indirect recognition of effectors,
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followed by activation of signaling pathways and induction of defense responses and pro-
grammed cell death (PCD). However, most intracellular effectors are not recognized by the
plant and instead are thought to impair the plant’s ability to sustain an efficient immune
response, a condition described as effector-triggered susceptibility (ETS) [7].

Work with Arabidopsis, tomato (Solanum lycopersicum), and Nicotiana benthamiana has
identified specific P. syringae effectors that inactivate plant kinases [8, 9]. For example, the
AvrPto effector binds membrane-associated kinases, including the PRRs FALGELLIN-
SENSING?2 (FLS2), EF-TU RECEPTOR (EFR), and the BRI1-ASSOCIATED RECEPTOR
KINASEI (BAK1) co-receptor to disrupt PTT and promote bacterial virulence [10]. The
AvrPto effector also induces host resistance in some tomato genotypes by interacting with the
Pto kinase, which activates Pseudomonas resistance and fenthion sensitivity (Prf) resistance
protein, resulting in ETT [11]. Another effector called HopAIl represses PTI through its inter-
actions with the cytosolic MAPKs, MPK3 and MPK6 [12]. Recent work suggests that pathogen
effectors may interact with not only a few targets but with multiple host targets, indicating that
the breadth of effector—plant interactions are only beginning to be understood. Proteome-
scale interactomics [13, 14] revealed an impressive number of putative effector-interacting
proteins alongside fundamental properties of plant-pathogen interaction networks, such as
effector convergence on network hubs. Furthermore, using a different methodology (i.e.,
global transcriptional profiling of Arabidopsis defense-related mutants coupled with modeling)
[15] identified regulatory relationships between immune-related subnetworks and highly
interconnected network components. However, in these studies, the physical layout of the
underlying plant cellular networks targeted by pathogens remained out of the reach of the ana-
Iytic and experimental methodologies utilized.

To better understand how protein kinases contribute to basal immunity, we first sought
kinase targets that interact with multiple effectors, a characteristic of defense-associated host
proteins [13, 14]. Five P. syringae effectors (AvrPto, HopAl, HopAll, HopAF1, and HopM1)
were selected based on two main criteria: high prevalence among the P. syringae isolates [5]
and a known ability or potential to suppress defense responses [10, 16-19]. HopAl disrupts
the formation of a protein complex involved in activating basal immunity and ETI [20].
HopAF1 interacts with the methylthioadenosine nucleosidase proteins MTN1 and MTN2 to
disrupt ethylene (ET) production [18]. HopM1 binds HopM1 interactor 7 (MIN7), disrupting
vesicle trafficking and reducing callose deposition [19]. These five effectors suppress different
parts of the cellular immune response in plants, suggesting that they may interact with distinct
host proteins. Here, we identify targets of bacterial effectors in plant cells, perform an in-depth
functional analysis of a set of multi-effector-interacting kinases to superimpose effector-spe-
cific pathways over the plant—effector interaction space, and characterize the properties of the
plant defense network.

Results
An integrated approach to plant-pathogen molecular communication

We developed a multipronged approach consisting of identification of in vivo pairwise interac-
tions between 279 tomato kinases and five effectors from the model tomato pathogen, Pseudo-
monas syringae pv. tomato (Pst) (HopAl, HopAlIl, HopAF1, AvrPto, and HopM1). Next, we
characterized the role of 35 multi-effector-interacting kinases in PTI, ETS, ETI, and PCD. We
created new methodologies for data integration and generated signaling networks to facilitate
visualization of the protein kinase networks involved in defense (Fig 1). This network-centric
approach allowed us to compare signaling networks associated with different levels of plant
immunity and led to identification of novel defense-associated kinases. The approach and the
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Fig 1. The pipeline of the integrative approach to study plant immune system. Pairwise interactions between a library of 279
tomato kinases and five Pseudomonas syringae effectors were tested using a reporter-based luminescence assay in tomato protoplasts,
with readings at six time points. This data set was the basis of a quantitative K-E interaction network generated for 321 significant
interactions comprising 133 kinases (KEIs) and four of the tested effectors (1). Thirty-five multi-effector KEIs were selected for
further analyses in planta (2). The functions and quantitative contributions of the focus KEIs were tested in several plant phenotypes:
PTL ETS, ETI, and MAPK-mediated PCD (3). These data sets were combined in a KEI phenotype co-occurrence matrix that was
expanded into a composite immune/cell death, directed signaling network, in which modules and pathways were rank ordered, and
stimulus-specific networks were inferred (4). Highly ranked nodes were tested for involvement in immune responses and over 75%
of the highly ranked kinases were involved in immunity (5). ETI, effector-triggered immunity; ETS, effector-triggered susceptibility;
K-E, kinase-effector; KEI, Kinase Effector Interactor; MAPK, MAP kinase; PCD, programmed cell death; PTI, PAMP-triggered
immunity.

https://doi.org/10.1371/journal.pbio.2005956.9001

results obtained are described in the sections that follow and in the Supporting information
(S1 Materials and Methods).

An in vivo interaction screen of tomato kinases and P. syringae effectors
reveals known and novel putative interactions

To better understand how diverse effectors may be targeting plant protein kinases, we tested
interactions between 279 tomato kinases [21] and five effectors. A total of 1,170 pairwise
kinase—-effector (K-E) interactions were tested in tomato protoplasts using the split luciferase
complementation assay (SLCA), where luciferase activity indicates reconstitution of the N-ter-
minal and C-terminal domains of the enzyme fused to interacting bait or prey proteins. The
split luciferase complementation (SLC) data analysis is described in the Supporting informa-
tion (S1 Materials and Methods). Interactomics primary data are available at https://figshare.
com/s/35c4aab65174c67a496e); the MATLAB code for the SLC data analysis is provided in S3
Data. Several controls were included in each SLC experiment to ensure reproducibility of the
method across replicates, including a positive control (protoplasts with full-length luciferase),
a negative control (untransformed protoplasts), and a reference interaction set between the
AvrPto effector and the Pto kinase, which have been shown to interact in planta [22]. In addi-
tion, an AvrPto™®* (AvrPto with an Ile to Ala mutation) and Pto kinase pair were included as
a control for interaction strength because the I96A mutation inhibits effector function and
interaction with the Pto kinase [10]. The SLCA screen was reproducible with low variability of
luminescence signals across technical replicates (S1A Fig). High correlation was observed for
the signals for full-length luciferase and controls (reference set of positive and negative interac-
tions) among plates (S1B Fig); the K-E signals and the control sets did not show correlation,
indicating a lack of a measuring bias in the protocol (S1C Fig). The signals from the AvrPto-
Pto and AvrPto"**-Pto interactions were highly correlated with an average 3-fold reduction
in signal for the AvrPto'**~Pto interaction. A multiple regression model of Pto-AvrPto'***
versus Pto—AvrPto and Luciferase signals has R* = 0.887 (adjusted R* = 0.886) and regression
coefficients of 7.17 x 10> (Luciferase) and 3.06 x 10" (Pto-AvrPto) (S1D Fig). Moreover, the
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Fig 2. A plant-pathogen interaction screen identifies new candidate plant targets. A. An in vivo interaction network of tomato
kinases with Pseudomonas syringae effectors. We tested 210 Kinase-AvrPto pairs, 299 Kinase-HopA1, 305 Kinase-HopAI1, and 326
Kinase-HopAF1 using SLC in tomato cells. The node size represents degree (number of outgoing and incoming edges; larger
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(thicker = stronger interaction). Known K-E interactions tested in the SLCAs are represented separately in the inset network. The
inset network shows interactions of the tomato homologs of the known effector targets KEI327/SIMPKI and KEI384/AtMPK4, with
four effectors. Nodes in black represent the KEIs selected for functional characterization. The networks were visualized in Cytoscape
3.6.1. B. Venn diagram showing common and unique interacting kinases for HopA1l, HopAF1, HopAlIl, and AvrPto. C. Boxplots
showing the distribution of interaction strength represented as fold change versus controls, for the five individual effectors tested.

*p <0.01 or **p < 0.05, t test. D. The distribution of KEIs across the five structural classes of plant kinases. The digits show the
percentage of KEIs found to interact with pathogen effectors within each kinase class. BAK1, BRI1-ASSOCIATED KINASEL; K-E,
kinase-effector; KEI, Kinase Effector Interactor; MAPK, MAP kinase; MAP2K, MAPK kinase kinase; PK, protein kinase; RLCK,
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complementation assay; SnRK, Snfl-related protein kinase; S6K, ribosomal protein S6 kinase; TOKN, Tomato Kinase cDNA library.

https://doi.org/10.1371/journal.pbio.2005956.9002

luminescence signal of the K-E pairs showed a wide dynamic range, indicating that there are
no physical limitations in measuring the luminescence produced in the SLCA (S1E Fig).

Out of the 279 kinases tested for interactions with AvrPto, HopAl, HopAlIl, or HopAFlI,
133 (48%) interacted with at least one effector and were named Kinase Effector Interactors
(KEIs). No significant interactions were identified for HopM1 out of the 30 tested kinases, sug-
gesting that this endomembrane-specific effector [19] may not associate with kinases. The K-E
interaction network contains 321 significant interactions of 133 kinases with four effectors and
includes previously confirmed K-E interactions (Fig 2A; S1 Table). Among the 133 kinases,
approximately 70% are multi-effector interactors, out of which 38 interact with all four effec-
tors and 24 are shared by HopAl, HopAll, and HopAF1 (Fig 2B). To estimate the relative

PLOS Biology | https://doi.org/10.1371/journal.pbio.2005956 December 12,2018

5/24




@'PLOS ‘ BIOLOGY

Integrative approach to immune signaling in tomato

affinity of K-E interactions, a metric called the “interaction strength coefficient” (normalized
signal fold change) was used to quantify the difference in reconstituted luciferase activity
between each tested pair and the reference interactions. On average, the interactions of KEIs
with HopA1 or HopAIl were twice as strong when compared with AvrPto, possibly due to the
better reconstitution of the luciferase, higher affinity, or low dissociation of K-E complexes
(Fig 2C). Notably, two known interaction pairs (HopAI1-MPK6 and HopAI1-MPK4) were
the strongest among all control interactions tested for these MAPKs (inset of Fig 2A). The dis-
tribution of the fold change interaction values off all K-E interactions tested is shown in S2A
Fig. An analysis of the candidate KEIs along the spectrum of kinase classes [23] revealed that
the effectors interacted mostly with leucine-rich repeats (LRR)-type RLKs and RLCKs from
Class 1 (42%), kinases from Class 2/Raf-like (59%), and Class 4/MAPKs and calcium-respon-
sive kinases (47%) (Fig 2D; S2B Fig).

RLKs and RLCKs promote basal immunity, while cytosolic kinases
promote ETS

A group of KEIs was selected for functional characterization based on their ability to putatively
interact with multiple effectors. The 35 focus KEIs (S2 Table) were silenced in N. benthamiana,
a relative to tomato and host for Pseudomonas syringae DC3000 strains lacking the HopQ1-1
avirulence gene, due to its amenability for transformation and high efficiency of gene silencing
[24, 25]. Virus-induced gene silencing (VIGS) constructs containing a fragment of an Escheri-
chia coli gene (EC1) served as a negative control. After confirmation that KEI expression was
silenced, the plants were inoculated with an effectorless Pst strain (D29E) [26] and four single-
effector strains expressing AvrPto, HopAl, HopAF1, or HopAIl in the D29E background (S3
Table; S3A Fig; S1 Data). In the ECI control, the presence of some effectors (AvrPto, HopAll,
or HopAF1I, but not HopAI) in D29E led to a moderate but significant increase in Pst growth
compared to D29E (Fig 3A), indicating that these effectors can contribute to Pst virulence in
isolation from the broader repertoire. Among the 35 KEIs, seven KEIs influenced D29E growth
compared with the ECI control, indicating a role in basal immunity (Fig 3B). The majority of
these KEIs—including RLKs (KEI188/LYK4, KEI72/SOBIR1, KEI156, and KEI161/RKL1),
RLCKs (KEI149/PTII1-like), and the Ca2+—regulated KEI255/CIPK25—promoted bacterial
growth when silenced, while silencing of one kinase (KEI339) inhibited D29E growth. In com-
parison, silencing of 17 KEIs caused a significant change in the growth of single-effector strains
compared with the EC1 control (Fig 3C-3F; S3B and S3C Fig). Silencing of SOBIRI, a key
component of PTT [27, 28], affected the growth of D29E and the HopA1- and AvrPto-carrying
strains. Moreover, silencing of KEI342/SIBAK1 (one of the tomato BAKI homologs that may
facilitate basal immunity [29]) or of KEI327/SIMPK1 (a kinase with high similarity to AtMPK6
and a possible role in PTT [30]) interfered with the growth of single-effector strains exclusively.
Interestingly, the majority of KEIs required for D29E response were RLKs. On the other
hand, cytosolic kinases were preponderant in plant response to D29E + HopAll, + HopAF1 or
+ AvrPto, showing a 4-, 2.8-, and 2.3-fold increase, respectively, relative to the RLKs (Fig 3G).
Among the KEIs with significant contributions to bacterial growth, 52% participated in plant
response to D29E + HopA1 and + HopAF1 and 36% to D29E + AvrPto and HopAlI1, while
only 12% were necessary for defense against D29E (S3D Fig). KEIs had significant positive or
negative effects on the growth of Pst strains, indicating that KEIs promote either immunity or
ETS, but not both (S3E Fig). Overall, when mapping the sign of variation (Fig 3H), most KEIs
classified as RLK/RLCKs promoted basal immunity, while KEIs promoting ETS mainly
included kinases from the other cytosolic and MAPK-like (60% and 30%, respectively).
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Fig 3. Plant kinases promote defense or susceptibility to Pseudomonas syringae. A. Quantification of P. syringae growth without
effectors (D29E) or with one effector (D29E + HopA1, D29E + HopAll, D29E + HopAF1, or D29E + AvrPto) in Nicotiana
benthamiana leaves transformed with the EC1 control plasmid. Statistically significant events (*) are considered at p < 0.01
compared with D29E. B-F. Quantification of the growth of P. syringae strains in N. benthamiana leaves silenced for individual
kinases (KEIs), where only KEIs with statistically significant (p < 0.05) phenotypes were plotted. The control values (CTRL.)
represent quantification of the P. syringae growth in plants silenced by the EC1 control. G. Histogram with the percentage and
structural class of KEIs identified as regulators of pathogen growth in plant tissues inoculated with the P. syringae strains D29E, D29E
+ HopA1l, D29E + HopAlIl, D29E + HopAF1, and D29E + AvrPto. H. Histogram with the number of KEIs shown to act as candidate
positive or negative regulators of immunity based on all infection assays. CFU, colony-forming unit; KEI, Kinase Effector Interactor;
MAPK, MAP kinase; N, number of independent replicates; RLCK, receptor-like cytosolic kinase; RLK, receptor-like kinase.

https://doi.org/10.1371/journal.pbio.2005956.9003

Diverse classes of KEIs facilitate ETI, ETS, and MAPK-mediated PCD

Some protein kinases have been shown mediate cellular response to multiple types of stresses
[31]. To determine if KEIs are similarly involved in multiple response pathways, we tested the
focus KEIs in ETI and MAPK-mediated PCD responses. The HopQI-1 effector is an avirulence
factor in N. benthamiana, in which it is recognized by an unknown R protein [32]. To test the
ETI in KEI-silenced plants, we quantified the size of the necrotic lesion [32] triggered by the
inoculation with a D29E + HopQI-1 strain as a proxy for quantification of PCD (S4A Fig; S1
Data). Eleven out of the 35 tomato KEIs tested were required for PCD, including RLKs (KEI37/
LYCI10, KEI161/RKLI, and AtFLS2), RLCKs (KEI7/PBLS8), MAPKK kinases MAP3Ks (KEI20/
SICTRI), SnRKs (KEI250/CIPK6), GSK3/Shaggy-like (KEI272/SK13), and KEI339 (Fig 4A;
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S4B Fig). Silencing of KEI72/SOBIR1, a known positive cell death modulator [33], KEI7/PBLS,
and KEI20/SICTR1 impaired PCD the most. KEI160/NtIRK, previously associated with antivi-
ral defense and regulation of the R-gene-mediated PCD in N. benthamiana [34], facilitated
PCD. The results indicate that many KEIs mediate ETI-associated PCD by exerting exclusively
positive regulatory roles.

To test the role of KEIs in the development of MAPK-dependent PCD, KEI-silenced plants
were infiltrated with constitutively active MKK7 or MKK9. Both MAPK kinases (MAP2Ks)
are known to participate in multiple immune-related processes [35, 36], and their prolonged
expression induces activation of MPK3 and MPK6 and PCD [1]. Lesion size was significantly
altered in 23 of the tested KEI-silenced lines following MAP2K expression. MKK7-triggered,
MKK9-triggered PCD was modified in several lines, seven of which were required for both
MKK7- and MKK9-mediated pathways (Fig 4B and 4C). The RLKs and RLCKs functioned as
both positive and negative PCD regulators, compared with other classes (Fig 4D). Notably,
silencing of the PCD negative regulator KEI342/BAK1 [37] inhibited both MKK7- and MKK9-
PCD.

To determine how these phenotypes may be related, we performed correlation analyses
between bacterial growth and lesion size measurements across the KEI lines (Fig 4E), as
described in S1 Materials and Methods. A significant correlation (R > 0.6) was observed across
bacterial growth assays, but no correlation was found between bacterial growth and PCD treat-
ments, suggesting these responses utilize distinct signaling pathways. To obtain a global view
of the link between the KEIs structural class and their contribution to immune phenotypes,
we plotted a phylogenetic tree and visualized significant contributions to immunity based on
our assays (Fig 4F and S2 Data). Interestingly, the phylogenetic tree highlighted the clear dif-
ference in structural class between the PTI- versus ETS-promoting kinases (RLKs/RLCKs ver-
sus MAPKs, CIPK/SnRKs, ribosomal protein S6 kinase (S6K), AGC kinases, and glycogen
synthase kinase3 [ GSK3]-like, respectively).

Effectors manipulate defense network topology, increasing complexity of
the network

The involvement of KEIs in multiple stress responses prompted the development of functional
signaling networks to understand how defense networks are modified during different
immune responses. To construct the networks, we calculated the co-occurrence frequency of
the focus KEIs in various functional assays to evaluate the degree of KEIs phenotype overlap,
indicative of functional association among KEIs. Using a set of logical rules and prior informa-
tion (Fig 5A), a KEI signaling network was generated with the nodes (KEIs) ordered hierar-
chically within the canonical structure of a signaling pathway: RLK — RLCK — RAFs/MAPKs
— cytosolic kinases (Materials and methods; S1 Materials and Methods). Indirect evidence
positioned RAFs upstream of MAPK cascades and at a similar hierarchical level with MAP2Ks
[2, 31, 38, 39]. Directed edges weighted by co-occurrence values link the nodes. To generate
the signaling network, KEIs with similar phenotypes were grouped in modules, in which the
position of nodes within the same hierarchical level or kinase structural class was based on
their regulatory strength rank and sign of regulation, while the redundant edges between suc-
cessive network levels were removed. Using these criteria, we collapsed the weighted compos-
ite graphs into a minimal network providing an overview of the KEI pathways critical to
immune-related plant phenotypes (Fig 5B).

Next, we generated networks representing the response of the minimal network under
our eight experimental conditions, called stimuli-specific networks (SSNs), to reveal how
the signaling network responded (Fig 5C). A comparison of the infection-response networks
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Fig 4. Kinases promote or inhibit cell death associated with the ETI or prolonged activation of MAPKs. A-C. Quantification of
the PCD intensity in Nicotiana benthamiana KEI-silenced or EC1 control plants (CTRL) infiltrated with the ETI-inducing strain
Pseudomonas syringae D29E + HopQ1-1 (A), or following overexpression of constitutively active MKK7 or MKK9 (B and C). Cell-
death intensity was measured as described in Materials and methods and presented on a scale from 0 to 4 artificial units (A.U.’s). D.
Histogram showing the percentages of KEIs with a positive, negative, or dual regulatory effect on cell death across kinase classes,
including RLKs, RLCKs, MAPKs, and other cytosolic kinases. The number of kinases in each regulatory category is shown in
parentheses. E. A heat map of the Pearson correlation coefficients (R) calculated for pairwise combinations of the eight orthogonal
assays testing the defense and cell death responses in silenced plants. The map reveals similarities in KEIs’importance for the plant
response to effectorless, single-effector P. syringae strains, and cell death treatments. F. Phylogram of tomato KEIs shown alongside a
phenotype heat map matrix of KEIs strength of regulation (—log;, of p-value) in bacterial inoculation assays (red: KEIs positive
regulators defense; blue: KEIs positive regulators of susceptibility) and cell death-inducing treatments (brown: KEIs promoting cell
death; green: KEIs inhibiting cell death). The sum column indicates the number of assays (minimum = 1 and maximum = 8) for
which KEIs exhibited statistically significant phenotypes. The kinase family information is shown on the right. A.U,, artificial unit;
BAK1, BRI1-ASSOCIATED KINASEL; ETI, effector-triggered immunity; ETS, effector-triggered susceptibility; KEI, Kinase Effector
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Interactor; MAPK, MAP kinase; MKK, MAP kinase kinase; PCD, programmed cell death; PTI, PAMP-triggered immunity; RLCK,
receptor-like cytosolic kinase; RLK, receptor-like kinase.

https://doi.org/10.1371/journal.phio.2005956.9004

demonstrated that most of the D29E network is maintained across single-effector networks,
with the exception of avirulence-inducing HopQ1-1. Addition of these single effectors affected
the network topology, such that a larger number of RLK and RLCKs played a role. The net-
works doubled in diameter (the average length of shortest paths between all pairs of nodes)
and had longer distance (shortest path index) between any two nodes, relative to the D29E net-
work, indicative of activation of a more diverse and complex defense network (Fig 6A, S5A
Fig). For example, KEI104-BSK7 promoted immunity against strains containing HopAl,
HopAF1, and AvrPto, but not the D29E strain. Interestingly, addition of virulence-promoting
effectors (HopAll, HopAF1, and AvrPto) activated ETS pathways, including cytosolic kinases
KEI339, KEI323/S6K2, and KEI318/SRK2C. In the PCD networks, (HopQ1-1, MKK7, and
MKKD9), the signaling pathways were markedly distinct. While the MKK7 network is primarily
comprised of KEIs that repress cell death, the MKK9 and HopQ1-1 networks were comprised
of KEIs that promote cell death, densely populated with several RLK modules feeding into
many cytosolic KEIs, and with most of the components functioning as negative regulators of
the PCD; few nodes were shared. In the MKK7 and MKK9 networks, the diameter and path
length indices were similar to HopQ1-1 (Fig 6A; S5A Fig). Signaling flow through SSNs con-
verged onto a set of KEIs associated with the global control of transcription and translation,
ion and nutrient homeostasis, and extracellular acidification. Examples include KEI250/CIPK6
[40-42], KEI33/CIPK11 [43], KEI255/CIPK25 [44], KEI323/S6K2 [45], and KEI311/KIN10
[46].

To measure relative importance of the nodes in the SSNs we used maximum clique size
algorithm (MCC) [47], which finds clusters of the largest size in a given network; sub-graphs
of essential nodes were derived based on their MCC rank for the PTI, ETS (Fig 6B) and ETI,
PCD (Fig 6C). Cytosolic kinases from the RLCK and MAPK-like families were preponderant
essential nodes in both MCC-ranked graphs. Another parameter measuring centrality in net-
works is the betweenness centrality (BC) index, also regarded as a measure of the control
potential of a node within a network [48]. Among all SSN, the average BC indices were higher
for MKKs and HopQ1-1 networks, indicating the importance of individual nodes on signaling
outcome (S5B Fig). In contrast, the signaling networks associated with PTI and ETS (D29E,
HopAl, HopAll, HopAFI, and AvrPto) were smaller and had fewer high-control nodes (low-
centrality nodes), implying decreased efficiency in signal transmission.

Network-based predictions reveal novel immunity-associated kinases

To determine if the SSN networks could be used to predict the performance of genes in the
defense response, we tested 18 KEIs for their role in basal immunity in N. benthamiana. In this
assay, immunity is first induced by inoculation with a non-pathogen (P. fluorescens), followed
by inoculation with the ETI-inducing P. syringae [49]. In the region where the inoculation
areas overlap, little visible cell death develops, likely because of induced defense responses, lim-
iting bacterial proliferation and secretion of the HopQ1-1 avirulence protein [50]. Most KEI-
silenced lines had significantly increased cell death in the area infiltrated with both strains,
indicating an impaired immune response as compared with the EC1 control and known
immunity-promoting kinases (BAK1I and FLS2) (Fig 6D; S1 Data). Six of the eight highly
MCC-ranked KEIs, including KEI149/PTI1-like, KEI104/BSK7, KEI86/PBL5, and KEI7/PBLS,
had statistically significant phenotypes; others, including KEI156, 151/BIR2, 160/IRK, 323/
S6K2, 304/LeMKK3, and the PTI-promoting 72/SOBIR]I, also exhibited significant differences
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Fig 5. Inference of stimulus-specific KEI genetic networks. A. Schematic diagram for deriving causal relationships in the KEI

genetic network. Associations between KEIs were calculated based on phenotyping assays using the typical hierarchical topology of a
signal transduction network (RLK — RLCK — MAPK/RAF — other kinases). The main criteria for assembling the genetic
pathways were (1) assembly of modules based on co-occurrence of the KEI within the same level or kinase structural class and (2)
linkage of KEIs between network levels, based on co-occurrence, while minimizing redundant edges. Two additional secondary
criteria were used: KEI p-values (see S3C and S4B Figs) determined position within the modules/pathways (where high-significance
KEIs are placed in hub positions as high-degree nodes), and the KEI’s sign of regulation (same-sign KEIs placed in same module/
pathway). B. Hierarchical weighted network representing the collapsed (minimal) network of KEIs with statistically significant

11/24

PLOS Biology | https://doi.org/10.1371/journal.pbio.2005956 December 12,2018




o ®
@ : PLOS ‘ BIOLOGY Integrative approach to immune signaling in tomato

phenotypes in immunity and ETI or PCD. Nodes represent KEIs and node size is proportional to the cumulative significance values
(see S3C and S4A Figs); higher diameter indicates a lower p-value. The four hierarchical levels of the network, including the KEIs
within each level, are shown. C. Visualization of stimulus-specific networks using the same structure as shown in (B). Individual
networks indicate responses to distinct Pseudomonas syringae strains and cell death-inducing treatments to enable comparison of
networks across stimuli. Node height is proportional to regulatory strength (p-value), and node color indicates significance of the
node in promoting immunity (red), promoting susceptibility (blue), and repressing cell death (green) or promoting cell death
(olive). Edges are nontargeted, representing interaction events (known or predicted), or targeted to show the signal flow within the
network. Edges with broken lines show an atypical directionality that bypasses one or several levels within the signaling network. The
position of several KEIs within the network could not be unambiguously determined (KEI143, KEI188, KEI255, and KEI279), and
their associations are shown with broken edges that skip over hierarchical network levels. ETI, effector-triggered immunity; KEI,
Kinase Effector Interactor; MAPK, MAP kinase; MKK, MAPK kinase; PCD, programmed cell death; RLCK, receptor-like cytosolic
kinase; RLK, receptor-like kinase.

https://doi.org/10.1371/journal.pbio.2005956.9005
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leaves silenced for individual kinases and challenged with the nonhost pathogen Pseudomonas fluorescens, followed by the avirulent
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CD, cell death; KEI, Kinase Effector Interactor; MCC, Maximal Clique Centrality; PPI, protein—protein interaction.

https://doi.org/10.1371/journal.pbio.2005956.9006
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in the cell death intensity compared with controls (Fig 6E). KEI91 LRR RLK, which had no sig-
nificant phenotypes in the ETS, ETI, or PCD phenotyping, showed control-level cell death.
The known and curated protein-protein interactions (PPIs) for the Arabidopsis homologs of
these KEIs were extracted from public databases and used to generate a network (Fig 6F), as
described in the Supporting information (S1 Materials and Methods—KEI signaling network
analysis). The network has a PPI enrichment p-value of 3.1 x 10~%, indicating that most of
these kinases are biologically connected among themselves. To further test our SSNs predic-
tions, we overlapped the information from our eight orthogonal phenotyping assays over the
PPI network. The nodes connected by 70% of the edges (17 out of 25) co-occurred in various
SSNs, indicating they may also be functional partners. Notably, 65% of edges connecting the
interacting and functionally related KEIs co-occurred in more than two SSNs. For example,
the interacting pairs KEI327/MPK6 and KEI323/S6K2 were part of the HopAl, HopAlIl, and
AvrPto SSNs. Overall, these results indicate the predictive potential of the SSNs for mapping
plant defense networks and their response to perturbations.

Discussion

Plant immunity is generated as a result of numerous coordinated cellular processes. The study
of inducible plant immunity requires approaches that reveal the organization and dynamics of
the overall system and generate predictions on how molecular-level interventions can modify
plant phenotypes. Building and characterizing biological networks, as a system-level approach
to study plants, is starting to prove its effectiveness in predicting the function of cellular com-
ponents and identifying biochemical and functional relationships among them [15, 51-54].
Here, we describe a network-driven integrative analysis of the plant immune system, which
includes in vivo plant-pathogen interactomics and a comprehensive study of kinase targets
and identification of signal-specific networks. Some of the findings revealed by our approach
included (1) that some effectors may bind several tomato kinases and that a proportion of
kinases can interact with multiple effectors, (2) defense-associated kinase networks contain
both shared and specific nodes involved in basal immunity, ETS, ETI, and PCD, (3) effector-
triggered kinase networks are larger and more complex compared with a basal-defense net-
work; however, they have fewer nodes with high centrality than unperturbed networks, and
(4) previously uncharacterized kinases are essential for promoting bacterial resistance in N.
benthamiana. A comprehensive characterization of the kinases identified in this study can pro-
vide insights into the underlying molecular mechanisms of defense and on the sensitivity and
response to perturbations of plant defense networks, and will help identify targets for genome
editing in crops.

Our K-E screen predicts that interactions between plant proteins and pathogen effectors
occur with a relatively low specificity when compared, for example, with receptor-ligand inter-
actions. These observations confirm previous assumptions regarding effector promiscuity in
target selection [13, 55, 56] and are supported by work demonstrating the functional inter-
changeability of P. syringae effectors [4]. By associating with multiple elements of a pathway,
an effector may increase its chances to interfere successfully with the plant immune response.
Furthermore, it may be evolutionarily beneficial for effectors to maintain the ability to interact
with diverse partners to ensure functionality in new plant hosts with divergent immune signal-
ing pathways [57-61]. On the other hand, HopM1 did not interact with any of the tested
tomato kinases, suggesting a degree of target selectivity for some effectors. Indeed, target selec-
tivity is further indicated by the fact that not all members of a kinase family interacted with the
same effector. While this may be due to our experimental system, because effectors are rarely
present individually and high expression of both kinase and effectors likely increased the
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chances for false positives, the effectors interacted with a mostly shared set of defense-associ-
ated kinases, suggesting the functional relevance of these interactions. Thus, while these
interactions will have to be confirmed by additional methods, our findings indicate the effec-
tiveness of using effector interactions as a starting point for genetic characterization.

Interestingly, several effectors interacted with both positive and negative modulators of
immunity, demonstrating that interaction alone is not sufficient to predict the role of a host
target in defense (HopAl and PK3 or BAK1). During pathogenesis, effectors have additive or
synergistic effects on promoting virulence in plants, and the impact of individual effectors on
immunity is typically minor or nonsignificant [62]. The overall contribution of individual
effectors is likely dependent on both the relative importance of individual host targets within
the defense network and on the status of the network itself, as different sectors are inactivated
by other effectors. In addition, essential kinases such as BAK1 often play dual roles, depending
on the status of other regulatory kinases in the cell. For example, AtBAK1 is essential for activa-
tion of PTI, but overaccumulation of AtBAK1 or loss of its negative regulator AtBIR1 can also
activate immunity [63]. In biological networks, elimination of highly connected nodes (hubs)
increases the diameter of the network [64] and has a deleterious effect on the characteristic
path length and network integrity [65] compared with the removal of low-connectivity nodes.
In this study, effectors appeared to neutralize hubs and nodes with high control potential in
the network, thus having a detrimental effect on the structural integrity of the plant immune
network. In addition, networks expanded in the presence of effectors, which may indicate
plant deployment of new signaling sectors during purturbation.

Interestingly, several susceptibility-linked KEIs were identified across defense networks.
These KEIs may act as negative immune regulators or could be recruited to subvert plant path-
ways for the benefit of the pathogen [66, 67]. Our results postulate that the composition and
topology of plant signaling networks are determined by the plant’s ability to identify damage
from effectors and activate compensatory pathways. Conversely, effector strategies to increase
pathogen virulence consist in blocking/inactivating the sensor layers (RLK/RLCK modules)
and recruiting kinases in the lower layers of the network for increasing pathogen fitness.

Comparison of the MKK7 and MKK9 networks suggests an antagonistic relationship
between the pathways activated by these MAP2Ks, whereby activation of one may cause inhibi-
tion of the other. MKK?7 is a positive regulatory component of the immune response and sys-
temic acquired resistance, operating via salicylic acid (SA) synthesis [68], while MKK9 positively
regulates ET signaling through increasing ETHYLENE-INSENSITIVE3 (EIN3) receptor stabil-
ity [69]. The complex functional relationship between SA and ET, comprising both synergistic
[70, 71] and antagonistic [72] interactions, provides additional strength to this model.

Together, our network-centered approach has revealed the effect of individual effectors on
signaling network topology and has facilitated the identification of novel immune kinases.
However, several questions remain, including how effectors work together to modify the host
immune network and if this information can be used to accurately predict the outcome of
plant-pathogen interactions. A combination of systems biology approaches and genome edit-
ing has the potential to help address these questions and further the development of resistant
plants for agricultural production.

Materials and methods
Bacterial strains

The coding region of the effector genes without the stop codon was cloned into the pENTR/
SD/D-TOPO. The sequence for HopAlIl was amplified from P. syringae pv. tomato T1 using
primers 5'-caccatgctcagtttaaagctgaacacccag and 5'-gcgagtccagggeggtggcatcag. All other
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effectors were obtained from P. syringae pv. tomato DC3000. Hrp promoter-driven effectors
fused at the C terminus with the HA tag were generated in the destination vector pCPP5372
[73] using Gateway cloning. pCPP5372 carrying different effectors was mobilized into
DC3000D29E, a derivative of DC3000D28E lacking HopAD1, by triparental mating using the
helper plasmid pRK2013; Trans-conjugants were selected on KB medium with appropriate
antibiotics. DC3000D28E::ShcM HopM1 has been described previously [74]. Bacteria were
maintained on King’s B medium at 37 °C.

Cloning and SLC

Cloning of the tomato KEIs and the SLC method were described previously [21]. To create
clones for VIGS of orthologous kinases in N. benthamiana, tomato gene sequences were ana-
lyzed using bioinformatics tools available at solgenomics.net; the VIGS tool and the optimal
gene fragment with the fewest off-targets were used to design primers. Gene fragments were
amplified from N. benthamiana cDNA, cloned into the TOPO pER8 Donor vector using the
manufacturer’s protocol, subcloned into the TRV2 expression vector, and transformed into
Agrobacterium GV2260 for expression in planta [75]. Each interaction was tested in 4 to 16
independent assays, and the reconstituted luminescence was recorded at six time points. The
decision to test over the minimum of four times was taken for the pairs showing significant
levels of interaction when compared with the reference sets, while up to 16 assays (four biolog-
ical replicates) were used for K-E pairs showing variability or low interaction levels. The inter-
actions were corrected for multiple testing with a false discovery rate (FDR) of of 0.05. The
analysis of SLCAs is described in S1 Materials and Methods.

Viral-induced gene silencing, testing, and maintenance of KEI-silenced
lines

The KEI-silenced lines were produced by syringe-infiltrating leaves of 2-week-old N.
benthamiana plants with the TRV2-KEI Agrobacterium clones along with TRV1-containing
Agrobacterium at a 1:1 ratio as described [75]. The EC1 and FLS2 constructs [49] served as
controls and were included in each round of KEI line testing. KEI lines were grown (16 light,
>50% humidity) in 6-inch-diameter pots for 3 weeks before testing. All functional assays were
done using the third and fourth fully expanded leaves.

Bacterial growth assays

Bacterial growth was tested in infiltrated leaves at 6 dpi. Each plant was tested once with

each strain, and three plants were tested per round of KEI-silenced line production. Each
KEI-silenced line was tested over a minimum of 3 and maximum of 18 trials alongside the
controls ECI- and FLS2-silenced lines, resulting in between 9 and 56 biological replicates

per KEI-P. syringae strain combination. The analysis of bacterial growth assays is described in
S1 Materials and Methods.

PCD induction

Two to three leaves of KEI-silenced lines were syringe infiltrated with Agrobacterium
carrying the MKK7°P or MKK9"" as described previously [1]. The D29E + HopQ1-1 strain
was applied by syringe inoculation at a level of 3 x 10* CFU/mL. For both MAP2Ks and
HopQ1-1 induction of PCD, the area of infiltration was marked, and the intensity of PCD
was quantified over the 3 days after infiltration (dpi), as in [1]. The PCD was scored as

1 =0%-25%, 2 = 26%-50%, 3 = 51%-75%, and 4 = 76%-100% of the infiltration area
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demonstrating necrosis. The data presented are using values at 1 dpi for HopQ1-1 and 2 dpi
for MAP2K treatments. All three treatments were applied to the same leaf, and three plants
were infiltrated per each round of VIGS. A minimum of three biological replicates were per-
formed; 9 to 34 plants were tested per treatment. The analysis of PCD assays is described in
S1 Materials and Methods.

Phylogenetic and phenotypic analysis of KEIs

We used Clustal Omega tool [76] to align the sequences and iTOL [77] to build the phyloge-
netic tree of the 35 analyzed KEIs (Fig 4F and S2 Data). A sharable link is provided at https://
itol.embl.de/tree/13018201144195851480695765#. We constructed a table of KEIs’ role in
immune response using as rows the KEIs (clustered along the gene family structure using phy-
logenetic analysis) and as columns the classes of immune responses: PTI, ETS, ETI, MKK7ox,
and MKK9ox. Each kinase was represented by an importance score, defined as the cumulative

phenotype strength in each analyzed process:

IS(Ki, P) = Zsep — log,, (pVal(Ki,s)); P, immune reponse class; s, stress; Ki, kinase.

The heat map displays the importance scores of kinases versus immune processes (red: pos-
itive effect on immune response; blue: negative effect on immune response). The map shows a
pattern of distinct RLKs having positive effect in PTI, ETS, and ETI (presumably by triggering
immune responses), while cytosolic kinases have a negative effect on all immune response pro-
cesses (possibly by contributing to pathogen growth and spread).

Co-occurrence pattern analysis for signaling pathway inference

The network inference model uses the following matrices: (1) networks effect matrix: a matrix
containing the decisions of phenotype testing on stress assays for each KEI; (2) phenotype
effect matrix: a matrix containing the phenotype effect (positive or negative) of the stress assays
for each KEI; and (3) co-occurrence matrix: a matrix containing the number of co-occurrences
of pairs of kinases in treatments. In addition, it contains a set of structural constraints and
rules for network structure inference.

The objective of our pathway inference method is to minimize the maximum co-occur-
rence pattern divergence for nodes included in the same pathway. We use a co-occurrence pat-

tern similarity measure defined as S(A, B) = (‘AQB ‘) x("mB ‘) and pattern overlap measure

P
0,(4,B) = (143).

We developed a method to infer the signaling graph (the corresponding adjacency matrix)

from the network effect matrix, co-occurrence matrix, and phenotype effect matrix subject to
the structural constraints rules. The method consists of the following steps:

1. Classify KEIs according to localization and functional category in a hierarchy of four clas-
ses: {1. RLK, 2. RLCK, 3. MAPK, 4. OCK}. Structure the node hierarchy according to KEIs’
canonical signaling pathways architecture (RLK — RLCK — MAP3Ks — MKKs — MAPK
— OCK). Add known edges and other structural constraints (i.e., nodes that do not inter-
act) to the network.

2. Compute network effect matrix, phenotype effect matrix, and co-occurrence matrices.

3. Construct the network using a method consisting of two stages:
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a. Network grow: Add edges to signaling network using co-occurrence information. Only
interlayer edges are added; KEIs are in adjacent layers and co-occur in at least T’ assays,
and the similarity of phenotype patterns is greater than T,.

b. Network trim: Analyze network motifs to trim the structure of the network. Rearrange
the motif of connected intra-layer nodes (module) so as to push network nodes with the
largest co-occurrence score toward the center (MAPK cascade layer) and to push nodes
with smallest co-occurrence score toward the in and out of the network.

¢. Add intra-layer edges: KEIs are from the same layer, and the similarity of co-occurrence
pattern is at least T.

d. Remove edge: After motif rearrangement, remove inter-layer edges between nodes that
are not adjacent. Remove the intra-layer edges between nodes at the same level in the
module.

4. Network complete: Add edges across layers—skip edges (weak edges, dotted) to account for
missing pathways and components if (1) KEIs cannot be connected with interlayer or intra-
layer edges due to low co-occurrence or (2) KEIs have a very high similarity of co-occur-
rence patterns with a node from a skip layer.

T}, T, and T; are control parameters with geometric rate convergence to equilibrium values.

Supporting information

S1 Fig. Processing and visualization of protein interaction data from the high-throughput
SLCAs. A. The luminescence signals of technical replicates located in the same 96-well plate
show low variability. Measurements of correlation coefficients on data sets from biological
replicates (T to T,) show high repeatability: T;-T, (r = 0.98), T5-T,4 (r = 0.962), T;-T,
(r=0.962), and T,-T; (r = 0.979). Only T;-T, and T5-T, are shown in the scatterplots. B.
Scatterplots of normalized signals of controls from the SLCAs. Shown are scatterplots of Lucif-
erase versus Pto- AvrPto, Luciferase versus Pto- AvrPto"**, and Luciferase versus Background
normalized signals. Correlation coefficients: corr = 0.44 (Luciferase versus Pto—AvrPto),

964) and corr = —0.053 (Luciferase versus Back-

corr = 0.55 (Luciferase versus Pto—AvrPto
ground). C. Scatterplot of K-E probes versus controls (normalized signals). There is no corre-
lation between K-E probe signals and the positive or negative control, indicating the lack of

a measuring bias in our protocol (note: control signals are common for each 96-well plate
tested, with 20 K-E probes per plate). D. Multiple regression of Pto-AvrPto'**
AvrPto and Luciferase signals has R* = 0.887, adjusted R> = 0.886, and regression coefficients
7.17 x 1072 (Luciferase) and 3.06 x 107! (Pto-AvrPto). E. The distribution of normalized sig-
nals for controls and K-E probes. corr, correlation; K-E, kinase—effector; SLCA, split-luciferse
complementation assay.

(TIF)

versus Pto—

S2 Fig. Characteristics of pairwise K-E interactions measured in the SLCAs. A. A scatter
chart showing the distribution of values for the interaction strength (fold change versus con-
trol) for all K-E interactions tested. B. The distribution of KEIs across protein kinase families.
Percentages represent the number of kinases interacting with effectors from each group. K-E,
kinase-effector; SLCA, split luciferase complementation assay.

(TIF)

§3 Fig. Characterization of KEIs’ roles in plant innate immunity. A. Measurement
of transcript accumulation following viral-induced gene silencing of KEI homologs in
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Nicotiana benthamiana by quantitative RT-PCR, in control (ECI)-silenced plants

(black columns), and KEI-silenced plants (white columns). Asterisks denote significance
(p < 0.01). B. Bacterial growth assays in control (ECI) or KEI-silenced N. benthamiana
leaves. After silencing, plants were challenged with five Pseudomonas syringae mutant
strains: D29E, D29E + HopA1l (A1), D29E + HopAlI1 (AIl), D29E + HopAF1 (AF1), and
D29E + AvrPto (AvrPto). Bacterial growth was measured as described in Materials and
methods, and values were plotted as CFU per area of sampled tissue. C. The p-value of

all KEIs tested as described in (B). The x-axis crosses the y-axis at p = 0.01. The KEIs are
grouped according to their structural homology. D. Pie chart showing percentages of KEIs
out of the total tested with statistically significant phenotypes in bacterial growth assays for
each P. syringae strain tested in (B). CFU, colony forming unit; KEI, Kinase Effector Interac-
tor; RT-PCR, quantitative real-time PCR.

(TIF)

$4 Fig. Characterization of KEIs roles in PCD. A. Histogram showing the intensity of cell
death measured in control (ECI) or KEI-silenced Nicotiana benthamiana leaves following
challenge with a bacterial strain triggering effector-induced immunity, Pseudomonas syringae
D29E +HopQ1-1, or after overexpression of the MAP2Ks, MKK7 or MKK9. Cell death inten-
sity was assessed using the scoring scale shown in the inset and as described in materials and
methods. B. Histogram showing the regulatory strength (log;, of p-value) of all KEIs tested for
cell death-associated phenotypes (inoculation with D29E +HopQ1-1, and overexpression of
MKK?7 or MKKO9). The X-axis crosses the Y-axis at p-value = 0.01, and the position of the 0.01
and 0.05 p-values are indicated with red lines. The KEIs are grouped according to their struc-
tural homology in this particular order from left to right: RLKs/RLCKs, MAPKs, and Other
kinases. KEI, Kinase Effector Interactor; MAPK, MAP kinase; PCD, programmed cell death;
RLCK, receptor-like cytosolic kinase; RLK, receptor-like kinase.

(TIF)

S5 Fig. Topological parameters of signal-specific networks. A. Topological and statistical
parameters of the signal-specific networks shown in Fig 5C. B. Visualization of average BC of
the signal-specific networks shown in Fig 5C. All parameters were calculated using the Net-
workAnalyzer in Cytoscape v. 3.6.1. BC, betweenness centrality.

(TIF)

S1 Data. Primary data for all phenotypic assays performed in this study: Bacterial growth
assay, ETI and MKK overexpression cell death measurements, and PTI cell death suppres-
sion assays. ETI, effector-triggered immunity; MKK, MAP kinase kinase; PTI, PAMP-trig-
gered immunity.

(XLSX)

$2 Data. Phylogeny analysis data.
(TXT)

S3 Data. MATLAB code for SLC data analysis. SLC, split-luciferase complementation.
(PDF)

$4 Data. Alignment and tree files for the phylogenetic tree in Fig 4F.
(RAR)

S1 Table. A list of KEIs and interacting effector(s). The list was used to generate the K-E
network from Fig 2A. K-E, kinase-effector; KEI, Kinase Effector Interactor.
(DOCX)
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S2 Table. A list of the focus KEIs including the number, https://solgenomics.net/ ID, the top
BLAST hit in the Arabidopsis genome, known symbol, kinase structural class in PlantsP data-
base (https://www.hsls.pitt.edu/obrc/index.php?page=URL1100616073), and their bacterial
effector interactors. BLAST, Basic Local Alignment Search Tool; KEI, Kinase Effector Interactor.
(DOCX)

S3 Table. VIGS amplicons used in this study. The table lists the gene lab ID, the sequences of
the PCR oligonucleotides used for amplification, the expected size of the PCR amplicon, the
gene ID in tomato and Nicotiana benthamiana, the number of targeted genes, and the length
of overlap between the target and PCR amplicon. The last two columns list potential off-target
genes as well as the maximum length of the off-target regions. The PCR oligonucleotides were
tested using the SGN VIGS tool at http://solgenomics.net/tools/vigs. SGN, SolGenomics Net-
work; VIGS, virus-induced gene silencing.

(DOCX)

$4 Table. The table used to generate Fig 2C.
(XLSX)

S5 Table. The table used to generate Fig 2D and S2B Fig.
(XLSX)

S6 Table. The table used to generate Fig 4E.
(XLSX)

S7 Table. The table used to generate Fig 6F.
(XLSX)

S8 Table. The table used to generate S1 Fig.
(XLSX)

S9 Table. The table used to generate S2A Fig.
(XLSX)

$10 Table. The table used to generate S3B Fig.
(XLSX)

S11 Table. The table used to generate S3C Fig.
(XLSX)

$12 Table. The table used to generate S4A Fig.
(XLSX)

$13 Table. The table used to generate S4B Fig.
(XLSX)

$14 Table. The table used to generate S5B Fig.
(XLSX)

S15 Table. The table used to generate Fig 6A.
(XLSX)

S16 Table. The table used to generate Fig 6D.
(XLSX)

S$17 Table. The table used to generate Fig 6E.
(XLSX)
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S1 Materials and Methods. The supplemental methods file contains details on (1) SLCA
data analysis, (2) statistical testing of bacterial growth and PCD assays for VIGS-silenced
KEIs, (3) correlation of immune responses for KEIs with significant stress phenotype, (4)
co-occurrence pattern analysis for immune pathways inference, and (5) KEI signaling net-
work analysis. KEI, Kinase Effector Interactor; PCD, programmed cell death; SLCA, split
luciferase complementation assay; VIGS, virus-induced gene silencing.

(DOCX)
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