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This paper is a short review on the foundations and recent advances in the microscopic Fermi-
liquid (FL) theory. We demonstrate that this theory is built on five identities, which follow from
conservation of total charge (particle number), spin, and momentum in a translationally and SU(2)-
invariant FL. These identities allows one to express the effective mass and quasiparticle residue in
terms of an exact vertex function and also impose constraints on the “quasiparticle” and ”incoherent”
(or “low-energy” and “high-energy”) contributions to the observable quantities. Such constraints
forbid certain Pomeranchuk instabilities of a FL, e.g., towards phases with order parameters that
coincide with charge and spin currents. We provide diagrammatic derivations of these constraints
and of the general (Leggett) formula for the susceptibility in arbitrary angular momentum channel,
and illustrate the general relations through simple examples treated in the perturbation theory.

It is our great pleasure to write this article for the
special volume in celebration of the 85th birthday of Lev
Petrovich Pitaevskii, who, in our view, is one the greatest
physicist of his generation and the model of a scientist
and citizen. His seminal volumes on Statistical Physics
(with E. M. Lifshitz),! Physical Kinetics? (also with E.
M. Lifshitz), and Quantum Electrodynamics® (with V. B.
Berestetskii and E. M. Lifshitz), all parts of the Landau
and Lifshitz Course on Theoretical Physics, as well as
on Bose-Einstein condensation and superfluidity? (with
S. Stringari) are not only used by every contemporary
physicist but also, as we are positive, will serve the future
generations of scientists from around the world.

The paper we present for this volume is devoted to
the microscopic theory of a Fermi liquid, which was pio-
neered by Lev Petrovich in the early 1960s. The general
relations he obtained with Landau, which express the ef-
fective mass m*/m and the quasiparticle residue Z in
terms of the vertex function (the Pitaevskii-Landau rela-
tions), set the gold standard for many-body theory. We
hope that Lev Petrovich and other readers of this volume
will find our summary of recent developments in this field
interesting.

I. INTRODUCTION

Despite its apparent simplicity, the Fermi-liquid (FL)
theory is one of the most non-trivial theories of inter-
acting fermions. 171! In general terms, it states that a
system of interacting fermions in dimension D > 1 dis-
plays behavior which differs from that of free fermions
quantitatively rather than qualitatively. In particular,
the FL theory states that at temperatures much lower
than the Fermi energy FEp, the inverse lifetime of a
fermionic state near the Fermi surface (FS) is much
smaller than its energy, so that to first approximation
these states can be viewed as sharp energy levels with
energy €, = vp(p — pr), measured from Er. The only
two differences with free fermions are i) the velocity of

excitations vg is replaced by the effective Fermi velocity
v} (or, equivalently, the fermionic mass m = pp/vp is
replaced by the effective mass m* = pp/v}) and ii) the
wave function of a state near the FS in an interacting
system is renormalized by a factor of v/Z < 1, so that
the corresponding probability for the state to be occu-
pied is renormalized by Z. The factor Z is often called
quasiparticle residue. Its presence reflects the fact that
even infinitesimally close to the FS, the spectral function
of interacting fermions is not just a J-function, like for
free fermions, but also contains incoherent background,
which extends to energies both above and below Er. The
fact that the residue Z of the d—functional piece is less
than unity implies that interactions moves some spectral
weight into incoherent background.

It is customary to consider two groups of fermionic
states: near the FS and away from it. We will be re-
ferring to the first group as to “high-energy fermions”,
or simply as to “high energies”, and to the second one
as to “low-energy fermions”, or simply to “low energies”.
The conventional wisdom is that the fundamental proper-
ties of a FL, such as its thermodynamic characteristics at
low T, are completely determined by low-energy fermions
while high-energy fermions can be safely integrated out,
e.g., within the renormalization group formalism.'? On
a technical level, high-energy fermions are believed to
determine only the value of Z and the vertex function
I'“(pr,qr), which parametrizes the interaction between
low-energy fermions.

The potential instabilities of a FL. — superconductiv-
ity and a spontaneous deformation of the FS (a Pomer-
anchuk instability)'®- are also believed to be fully deter-
mined by the interaction between low-energy fermions.
In particular, the condition for a Pomeranchuk instabil-
ity to occur in the charge or spin channel with orbital
momentum [ is given by Flc(s) = —1, where Flc(s) are
the Landau parameters, which are partial components of
properly normalized T (pg, qr)

Such wisdom, however, is based on the phenomenolog-
ical formulation of the FL theory, originally developed by



Landau®®. In this formulation, one deals exclusively with
low-energy fermions. On the contrast, the microscopic
theory of a FL, developed later by Landau,” Pitaevskii'*
and others,»'? allows one to express the fundamental
properties of a FL, such as m*/m, Z, and charge and spin
susceptibilities, in terms of the exact vertices parameter-
izing the interactions between all states. Depending on
the particular realization of a FL, as well as on the prop-
erty considered, the result may or may not be expressed
solely via low-energy fermions. One example is the ef-
fective mass, which happens to be a low-energy property
only for a Galilean-invariant, or, more generally, Lorentz-
invariant FL,'%!5 but contains a high-energy contribu-
tion otherwise.

The interest to microscopic foundations of the FL the-
ory has intensified over the last few decades due to ubig-
uitous observations of non-FL behaviors in a wide va-
riety of solid-state systems, such as the cuprate and
Fe-based high-temperature superconductors, bad metals,
and other itinerant-electron systems driven to the vicin-
ity of a quantum phase transition. The hope is that if
we understand better the conditions for the FL theory
to work, we will gain a better insight into its failures in
these and other cases. Another stimulus for such interest
is that currently there are several real-life examples of
electronic nematic order, which sets in as a result of a
Pomeranchuk instability, e.g., quantum Hall systems,'®
Sr3Rup07,'% and Fe-based superconductors.” The the-
oretical literature is abundant with proposals for even
more esoteric nematic states, and it is important to un-
derstand which of them are feasible.

In this communication we review earlier and recent
work on the microscopic theory of a FL, with spe-
cial attention paid to the interplay between contribu-
tions from high- and low-energy fermions. Our cen-
tral message is that conservation laws set up delicate
balances between these contributions, with sometimes
surprising effects, and it is not always possible to re-
duce the high-energy contributions to mere renormal-
izations of the input parameters for the low-energy the-
ory. The most spectacular example of this are the sus-
ceptibilities of the charge-current and spin-current or-

N o
der parameters: p5(q) = Zp o 861‘; CL a/2,0Cpta/20 and
p3(a)

= D pap %ep L a/2.0%aBCprq/2,s-  Within the
random phase approximation (RPA), which includes only
the low-energy contributions, both susceptibilities be-
have as X, o (m*/m)/(1 + Ff®)) and diverge at
Fy () — 1, as is expected within the Pomeranchuk
scenario.'® However, when one includes both high- and
low-energy contributions and utilizes the continuity equa-
tion associated with conservation of total charge (particle
number) or total spin, one finds that the divergent piece
in X:}M cancels out, and Xf](s) remains finite at Ff(s) =—1.
As a consequence, a Pomeranchuk instability towards the
phase with an order parameter p5(q) or p%(q) cannot

was originally
This

. e(s)
occur. The absence of divergence of x;
demonstrated by Leggett back in 1965 (Ref. 17).

topic has re-surfaced recently in the context of the dis-
cussion about a p—wave Pomeranchuk instability in the
spin channel. 822

In the rest of the paper, we analyze the interplay be-
tween the effects from high- and low-energy fermions in
some detail. We consider a translationally and rotation-
ally invariant system of fermions with some dispersion
€p, which is not necessary parabolic (as it would be for a
Galilean-invariant system) but can be an arbitrary func-
tion of |k|. We first review the formulation of the mi-
croscopic theory of a FL in terms of the Ward identities
associated with conservation laws for total charge, spin,
and momentum. We show that these conservation laws
give rise to five relations. The first two are the origi-
nal Pitaevskii-Landau relations. They express 1/Z and
m*/m in terms of the vertex function I'Y(pp, q), in which
the first fermion is on the FS while the other is, in gen-
eral, away from it. The other three relations impose the
constraints on I'’(pg, q), one of which directly relates the
contributions from low-energy and high-energy fermions
to each other. We then show how these constrains pre-
vent a Fermi surface deformation with the structure of
spin current and charge current order order parameters.
Following that, we review a diagrammatic derivation of
the constraints, imposed by conservation laws, and a di-
agrammatic calculation of the charge and spin suscep-
tibilities with arbitrary form-factors. We argue that,
for Fermi-surface deformations with structures different
from those of charge or spin currents, renormalization by
high-energy fermions reduces the divergence of the cor-
responding susceptibility at the Pomeranchuk instability
but does not eliminate it completely, i.e., a Pomeranchuk
instability towards a phase with such order parameter is
not forbidden. Finally, we present the results of per-
turbative calculations to second order in a four-fermion
interaction and identify a particular relation involving
particle-hole and particle-particle polarization bubbles.
This relation allows one to re-express the contribution
from high-energy fermions as the contribution from the
FS, and vice versa.

II. MICROSCOPIC THEORY OF A FERMI
LIQUID

A. Pitaevskii-Landau and Kondratenko relations

Consider a translationally-invariant system of fermions
with H = Hyi, + Hing, where

. _E +
Hyn = €pCp.aClp.a

pa

(2.1)

(with chemical potential included into ep) and

1nt - Z U

k,p,q,a,3

Ck+q/2a p a/2,8%+a/2.8%—q/2,a°

We also assume that rotational invariance is intact, i.e.,
that the dispersion e, depends on the magnitude of p



but not on its direction, and U(q) = U(|q|). How-
ever, we do not assume a specific form of e,. It can
be parabolic, as in *He and near the I-point of the Bril-
louin zone in cubic materials, or linear in |p|, as in Dirac
and Weyl materials,?® or else quadratic at the small-
est p and linear at larger p, as in bilayer graphene.?*
For all these cases, we assume that renormalization of
the fermionic properties by interaction comes predomi-
nantly from those momenta which are small enough for
the lattice effects to be irrelevant.?’ In all the cases,
ep ~ pr(|p| — pr)/m near the Fermi momentum, where
(2m)~" = (9ep/IP?) ||p|=pp-
The propagator of free fermions is

1

G —
P w—ep +idsgnep’

(2.2)
where p = (w,p). For interacting fermions the Landau
FL theory states that

z +
*/m) + idsgnep

G, = (2.3)

w— ep(m Gp,lnm
where G inc describes incoherent background. For w =~
ep(m/m*), Gpinc is vanishingly small compared to the
first term in (2.3).

The microscopic theory of a FL expresses the quasi-
particle residue Z and the effective mass m* in Eq.
(2.3) in terms of the bare mass m in (2.2) and a fully
renormalized and anti-symmetrized four-fermion vertex,
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F‘;ﬂﬁé(p, q), where «...d denote the spin projections.
This vertex describes the interaction between fermions
with incoming D + 1-momenta p = (w,p) and ¢ = (&', q)
and outgoing momenta p; = (w1, p1) and ¢ = (w],q1),
taken in the limit of strictly zero momentum transfer
and vanishingly small energy transfer, i.e., for |pi| = |p|,
lai] = |g|, w1 = w, and w] — w’. To first order in
U(@), T%55 = U(0)3ay055 — U(Ip — a)dasdsy- In gen-
eral, I'y 5 _5(p, ) contains contributions only from high-
energy fermions and can be computed by setting both
energy and momentum transfer to zero.

The relations between Z and m*/m and the vertex
I'¥ follow from the identities for the derivatives of the
fermionic Green’s functions. These identities are associ-
ated with conservation of total charge (or, equivalently,
total number of fermions), total spin, and total momen-
tum. The set is over-complete in the sense that the iden-
tities associated with charge conservation alone allow one
to express Z and m*/m via the vertex function. The re-
maining identities place constraints on the vertex func-
tion (see below).

The identities associated with charge conservation
were first derived by Pitaevskii and Landau, and it is
appropriate to call them Pitaevskii-Landau (PL) rela-
tions!:®14. (For the history of deriving the PL relations,
see Ref. 26.) Although these relations were derived orig-
inally for a quadratic dispersion, one can readily obtain
them in a form valid for arbitrary ep:

OG-t 1 dP+1g
5 7173 Z/ as.ap(Pr,0)(G5)” 2P (2.4a)
OG- 1 p2 2 pPr-q e dD+1q
PF - a; = *Z = m + Z/ af,af pF? ) m 8 pgr (GQ)k (27T)D+1 , (24b)

where ¢ = (w,q), pr = prp, P is a unit vector along p,
and €2 = q*/(2m) — Ep with the same m as in (2.2).

In Egs. (2.4a) and (2.4b) the object (Gi)w is the prod-
uct of two Green’s functions with the same momenta and
infinitesimally close frequencies, and Fa .ap 18 the vertex
in the limit of zero frequency transfer and vanishing mo-
mentum transfer. In similarity to I'“ and I'*, (Gg)uJ con-
tains only contributions from high-energy fermions and
can be replaced by just the square of the Green’s func-

tion, Gi, while (G(Q]) contains an additional contribution
from fermions at the FS. The vertices I'* and T'* are re-

(

lated to each other by an integral equation

Tr s 0s(0,0) =T%5 05(p.0)

kD 222
- Z/ af,an (p,q 776 gﬁ(q Q)dQ

(2.5)

where df)q is the infinitesimally small solid angle around
vector q, while (Gg)k is related to (Gg)w by

2miZ%m*

a2\ -
(G3) Py

(G =665 =~ 5(w)5(|a] — pr)-

(2.6)

Equations (2.4a) and (2.4b) are the most general re-
sults for Z and m*/m Each equation contains the inte-
grals over the intermediate states with momenta ¢ not
confined to the FS. Therefore, in general, renormaliza-



tions of both Z and m* /m come from high energies. Sub-
stituting Eqgs. (2.5) and (2.6) into Eq. (2.4b) we obtain,
after some manipulations,

m* Z2 (D 2)m PF - qF
= 1—-==£ dQ)
m Q 2(2 / af, aﬁ(pF7qF) q
(2.7)
where
% w w_dPt!
0= 1-3 Eaﬂ fraﬁ,aﬁ(pr Q)(Gﬁ) (Sﬂinfl

db+1

i w w Oeq_ '

1- 2 Zaﬁ .f F(xﬁ,aﬁ(pFa )(G2) p;%q DB (27T)D-gl
(2.8)
The integral in the round brackets in (2.7) goes only over

J

4

g, which implies that this contribution to m*/m comes
solely from fermions on the FS. On the other hand, the
factor of @) comes from high-energy fermions. Similarly
to @, renormalization of Z in (2.4a) also comes from high
energies.

' For an SU(2) -invariant FL, the vertex function can be
decoupled into the density (charge) and spin components
as

T4 15(0:q) = 000857 (D, @) + Oary - 085T°(p,q), (2.9)

where o is a vector of Pauli matrices. Because
Yap s ap(P @) = 2I°(p, q), relations (2.4a) and (2.4b)
contain only the charge components of I':

OG- 1 1 dD+1q
L= —=1-2 [T° 2w — 2.1
Ow 7 Z/ (pFa q)(Gq) (27T)D+1 ) ( Oa)
oG, I b pPr-q O¢ aP+lg
p __FfF _ _IF % re F q N 21
P, g = o, T2 / kpr, )= e (GY) m)DT (2.10b)

where I'{ is the charge component of Ik,

Due to rotational invariance, I'® and I'* can be ex-
panded in partial components with different angular mo-
menta

(2.11)

T (p,q) = Y T7(p, ) K,
l

where K; are the normalized angular momentum eigen-
functions, which depend on the angle 6 between p and
q. In 3D, K; = K;(0) = (21 + 1)P,(8), where P,(0) are
Legendre polynomials. In 2D, K;(0) = o coslf, where
ag = 1 and oy = 2. For the vertex function on the FS,

5)

the partial components Flc( are related to the Landau

parameters FZC(S)7 introduced in the phenomenological FL
theory, via

D—2
ZzpF m* FC(S).

c(s) _
= aD-1) 1

(2.12)

Substituting this relation into Eq. (2.7), we obtain

*

— (1+ F))Q. (2.13)

In the phenomenological FL theory, FY is considered as
an input, and Eq. (2.13) relates m*/m to this parame-
ter. In the microscopic FL theory, F{ is obtained from
the vertex function and by itself contains m* via (2.12).
Equation (2.13) then should be viewed as an equation for
m*/m, which one has to solve, if the goal is to express
m*/m in terms of T'“.

Pitaevskii and Landau derived also an additional rela-

(

tion associated with momentum conservation

o 2vw PF -4 dD+1
- 1—*/2%6%% )(GY) %W

_ : c 2ywPF -4 dD+1q
= 1—21/F (pr,q)(GY) A empbr

(2.14)

It is similar to Eq. (2.4a), but contains an extra
momentum-dependent piece in the r.h.s. Although (2.14)
was derived originally for a Galilean-invariant FL,'6.814
it holds for arbitrary e, (see below).

Equations (2.4a) and (2.14) show that 1/Z can be ex-
pressed via I" in two different ways. This obviously places
a constraint on the vertex function, namely, it must sat-
isfy

: pr-q\ d”Mg
re G2)¥ (11— =0. (2.15
e (1-P59) 5 —0 2as)
Equation (2.14) allows one to re-write ) in Eq. (2.8) in
a more transparent way, as
. w D1
L2 T (G RE
bR BT (2.16)

1=2i [Te(pr, q)(G)* Bird 5 oy

We immediately see that if the dispersion is parabolic

within the domain of integration over ¢, i.e., ¢, = €p™,

@ = 1. In this case, mass renormalization comes solely
from fermions at the FS168:

*

o1ty
m

(2.17)



This result was originally derived in the phenomenolog-
ical FL theory with the help of Galilean boost.%® Later
on, it was shown to be also valid for a Lorentz-invariant
relativistic FL.'5

A Green’s function at arbitrary w and p can expressed
via the self-energy as G~ (w, €p) = w — €p + TrL(w, €p).
Near the FS, the Green’s function must reduce to the first
term in Eq. (2.3). This implies that the self-energy must

are small. Combining Eqs. (2.4a), (2.7), and (2.14), one
can construct the self-energy to first order in w and ep.
After some manipulations, we obtain

YrL(w, Ep) =Q1(w— €p) + Q26p, (2.18)

where

scale linearly with w and €, when both these variables
J
1 - c 2\ W dD+1q
Q1= 7 1= *QZ/F (pr,q) (G}) (@m)D+

Z Q

Later on, Kondratenko?”:?® derived the relations be-
tween 1/Z, m*/m and I'* associated with conservation

-1
m 1 1 ZQp(D_Q)m* PF - qFr
1— ) — 1= (12 " e , s
( ( 2(2’/T)D / aﬁ,aﬁ(pF QF> p2 q

(2.19)

(

of total spin. The relations are the same as Eqgs. (2.4a)
and (2.4b) but contain extra Pauli matrices, which select
the spin components of I' and T'*

e AP+
P _ - _1_9; |7 2yw 7 4 2.2
% 7 Z/ (rr, 9)(GY) Gn) P+ (2.20a)
oG, 3 P} Pr-q Oc dPtlq
p - _ F _ _rF 2 Fs F q 2\ k ) 29
pr op m*Z m + Z/ iprsq) m ey (Go) (2m)b+1 (2.20b)

where T'§ is the spin component of I'*. Combining
Egs. (2.10a) and (2.20a), and Egs. (2.10b) and (2.20b),
we obtain two additional constraints on the vertex func-
tion, which relate the charge and spin components of I'“
and I'* to each other via?%:3°

o\ w dD+1q
/(F (pr,q) —T%(pr.q) (G7) @mDit =0,

-q Oe dPtlg
ke _ ks PF -qQ 0fq , ~2\k _

/ ( (pFa q) (pFa Q)) m aegar (Gq) (2’/T)D+1
=0
(2.21)

We emphasize that the integrals in (2.15) and (2.21) are
determined by high-energy fermions. These equations
set the conditions on the input parameters of the phe-
nomenological FL theory.

B. Pitaevskii-Landau and Kondratenko relations as
‘Ward identities

The PL relations, Egs. (2.10a), (2.10b), and (2.14),
and the Kondratenko relations, Eqgs. (2.20a) and (2.20b),
can be recast into a more compact form by adopting the

(

general formalism of Ward identities, in which conser-
vation laws are expressed as relations between certain
vertex functions and Green’s functions. To obtain these
relations, we introduce three momentum and frequency-
dependent operators, bilinear in fermions, which we as-
sociate with conserved ”charges”. In our case these con-
served charges are charge, spin, and momentum densities,
which are defined as

~C _ +

P (q) - Zcp—q/Q,acpJ,-q/Q,av (222&)
p,

A8 o .'. 2

P (q) - Z Cp—q/Q,aa-(Xﬁcp+q/27ﬁ7 (222b)
p,af

ACIEDY pc;q 2.0 a0 (2.22¢)

P,

Due to spin-rotational invariance, we can consider only
one component of the spin density, e.g., along the z-
axis. For each conserved quantity there exists a conti-
nuity equation of the form

0p°°(q) . ~c(s
ot = —1q- P.]( )(Q),

op™(a) _

S =Y @), (2.29)
k



where p; _are the operators of charge and spin currents,

AMmom

and p7:" (q) is the momentum current , i.e., the energy-
momentum tensor. Both relations in Eq. (2.23) are exact
for a quadratic dispersion, i.e., for a Galilean-invariant
system, and valid to lowest order in |q|/pF otherwise.
Using Heisenberg equations of motion for the opera-
tors of charge and spin densities, one can verify that the
corresponding currents are also bilinear in fermions:

N aép T
pi(a) = Z Op P-a/2.0pra/2.e0
p.a

~S 66p i
py(a) =) b aaTiiprany (229)

p,af

The situation with the the energy-momentum tensor
is more subtle. In the phenomenological FL theory,
this tensor has the usual hydrodynamic form p77" =
[ pi(Oep/Op;)npdPp/(2m)P, where ny, is the quasiparti-
cle occupation number.'® This might suggest that the
second-quantized form of the energy-momentum tensor
is also a bilinear, similar to those in Eq. (2.24), but with
Oep/0p replaced by p;(Jep/0pj). An explicit calcula-
tion indeed shows that the commutator [Hyin, p™" (q)]
does yield a bilinear part of the energy-momentum ten-
sor. However, at q # 0 there is also another, quartic in
fermions part which comes from [Hipng, 97" (q)] (Refs. 22
and 31).

Because of the latter part, the energy-momentum ten-
sor cannot be expressed via a purely bilinear combination
of fermions. In what follows, we will use the continuity
equation for the momentum density only at q = 0, when
the complications due to the quartic part of the energy-
momentum tensor do not arise.

Graphically, we can associate each conserved charge
J

k.n n o __ Awmn n
A (p)UﬁB—A (p)ffﬁﬁ— (2r)D

with n = (¢, s) and similarly for the vertices of corre-
sponding currents. Here, o¢ denotes the identity matrix
and ¢° = o*. Projecting p onto the FS, using (2.27) to
express A* in terms of A¥ and I'¥, and taking separately
the limits w = 0 and q = 0, we obtain the following four
identities

AZ=1 ANZ=1 (2.28a)
m* m*
AGZ =1+ FfF AN5Z =1+ F¢ 2.28b
o + Iy, o +F7, )
where we re-defined A" = A“"™ and A} = AY" for
brevity.

As we said, the energy-momentum tensor is not ex-

kE—27%m

and its corresponding current with fully renormalized
three-leg vertices A°(®)(p,q), A™o™, Ag(s)(p, q), and

AP, as shown in Fig. 1. We define Ai(s)(p, q) and
A™™ without overall form-factors of dep/0p and p, re-
spectively. With this definition, all vertices are equal to
unity for free fermions.

To derive the Ward identities connecting the three-leg
vertices for charges and currents, we follow Engelsberg
and Schrieffer®?33 and compute the time derivative of a
time-ordered combination

q

2,t2)ﬁn(q, t)>a (225)

(Tie(p + 5 t1)e! (p
where n = ¢(s). It is easy to see that the derivative 9/0;
yields a term proportional to 0p" /0, = —iq-p7} and addi-
tional terms proportional to 6(¢ —t1) and d(t —t2), which
originate from differentiating the time-ordering operator
T;. Using standard manipulations and Fourier transform-
ing in time, one finds3233

Oe _ _
wA"(p,q) —q- 37;1\?(17, 9) =Gl =Gl 0 (2:26)

where A} =p- A%} and ¢ = (w, q).

Similarly to I'“ and T* in Egs. (2.4a) and
(2.4b), it is convenient to define the ver-
tices A“(p) = limg,_0,|q/—0,/q/w—0A(P,q) and
Af(p) = limy 0 |q/50.w/lq0 Ap:q).  In analogy

with T* and I'“, renormalization of A¥ comes from
high-energy fermions while renormalization of A¥ comes
from both high- and low-energy fermions. The relation
between the vertices Aﬁ,.ln and A} ;- follows from Fig. 1,
and is similar to the one which relates I'* and I'¥ in
Egs. (2.5) and (2.6). For example, the charge and spin
vertices satisfy

3 / AR () T, o (P p) A, (2.27)
&n

(

pressed as a bilinear combination of fermions, hence it
cannot be expressed graphically as in Fig. 1. Neverthe-
less, we can still use Eq. (2.26) for p,,,, at @ =0, when
the momentum-energy tensor does not contribute. Tak-
ing this limit, we obtain the fifth identity

ATemZ =1, (2.29)
where A™°™ = p - A,

We now go back to the PL relations. We easily iden-
tify the first two PL relations (2.4a) and (2.4b), as Egs.
(2.28a) and (2.28b) for A, and AG. Indeed, the r.h.s.
of Egs. (2.4a) and (2.4b) are just the expressions for the
three-leg vertices A. and A%, as can be seen directly from



FIG. 1.  Graphical representation of the relation between
three-leg vertices A* and A%.

Fig. 1. Explicitly,

dD+1

A =12 [ r. (6" i (2.30)

dD+1

c . WPF q Oeq
AJ =1- 22/Fc(pFa q)(Gz) pF aepar (27T)D+1
The factor of @ in Eq. (2.8), which incorporates high-
energy contributions to m*/m, is then equal to (A%Z)~!
Similar considerations apply to the Kondratenko rela-
tions in the spin channel, Egs. (2.20a) and (2.20b). In
this case, we have

dDJrlq

oL (2.31)

A%ﬂfm/wwnm@w

dD+1

Oeq
Ay =1-2 [T 2w PE 4
J Z/ (pF> )(G ) pF aepar (2’/T)D+1

The additional PL relation, Eq. (2.14), is identical to
Eq. (2.29), i.e., the r.h.s. of (2.14) is just the definition
of Amem;

D+1

mom : C w F ) d
AT = 1—2Z/F (pr,q)(G}) pp%q(%)iny
Note that Eq. (2.14) is valid both for Galilean- and non-
Galilean-invariant systems, as long as the total momen-
tum is a conserved.

We re-iterate that Eqs. (2.28a) and (2.29) express Z
in three different ways, and thus place constraints on
the vertex functions, Egs. (2.30) and (2.32). Equation

(2.28b) relates the product of AS(S), Z, and m*/m to

1+ F. For a non-Galilean-invariant system, all the
quantities on the lL.h.s. come, at least partially, from
high-energy fermions, while Fy () is proportional to the
I = 1 component of the interaction vertex between low-

energy fermions.

(2.32)

C. Implication of conservation laws for
Pomeranchuk instabilities in a Fermi liquid

A Pomeranchuk instability is a spontaneous develop-
ment of a long-range order in the spin or charge chan-
nel, which occurs when the fermion-fermion interaction
reaches a critical value. A distinctive feature of a Pomer-
anchuk instability is that it breaks either rotational sym-
metry of the FS or its topology leaving translational
symmetry intact. For example, a ferromagnetic (Stoner)

transition is a Pomeranchuk instability, while an antifer-
romagnetic transition is not.

The order parameters associated with Pomeranchuk
instabilities are bilinear in fermions. Examples of such
order parameters were already presented in Eqgs. (2.22a)
and (2.24). More general order parameters with angu-
lar momentum [ in the charge and spin channels can be

defined as
Z A (

-t

p,af

p a/2, an+q/2 a (233)

p q/2,« aBCerq/Z B- (2.34)

where )\IC(S)(p) is a form-factor, which transforms under
rotations according to its angular momentum channel
(ie.,as 1 for I =0,as p for l =1, etc.). In 2D

A (p) = cos(lgp) bl % £ (b)),

or equivalently with sin instead or cos. In (2.35), fi(|p])
can be any function.
A Pomeranchuk instability is usually expressed as a

(2.35)

condition on the Landau parameter Flc<5), defined in
Eq. (2.12). Pomeranchuk’s original argument!'® was that
the prefactor of the term in the ground state energy,
quadratic in the variation of the shape of a F'S with given
l,c(s), scales as 1 + FC(S) and vanishes when Flc(s) —
—1. The corresponding susceptibility Xf(s)

1/(1+ Flc(s)) and diverges at Flc(s) =—1.

The susceptibility ch(s) computed within the random

phase approximation (RPA) shows just this behavior,
ie.,

then scales as

o(s) 1
X = X1,0 ) (2.36)
I,RPA 14 Flc(s)

where x;,o is the susceptibility of free fermions, given by
2
X0 = = (5 er))

(& m c(s 2
X = o (e )

- (2.37)

The integral in the free particle-hole bubble is confined to
an infinitesimal region around the F'S (see the derivation
around Eq. (3.2) below). Since the interaction between

. . . (s)
fermions on the FS is parameterized Flc 7,

ance of the denominator 1+Flc(s) in (2.36) is the result of
summing up the geometric series of particle-hole bubbles.

Note that the free-fermion x; ¢ is finite in the static
limit = 0,q — 0 (which is the case in Eq. (2.37)), but
vanishes, for any [, in the opposite limit of q = 0, — 0,
given that the system is SU(2)-symmetric. This vanish-
ing is the consequence of the fact that for free fermions
any particle-hole order parameter, bilinear in fermions,

is a conserved quantity. At small but finite vpq/Q,

XzC(o)(q’Q) scales as (vpq/Q)2.

the appear-



The RPA expression, however, is not the full result for
ch(s). An exact formula for the static susceptibility was

obtained by Legget.'” It reads:

c(s c(s 2 m* c(s Ccl S
Xl( )= (Al( )Z) HXZ,(R%:’A + Xl,(in)c' (2-38)

Here A;(S) is the same three-leg vertex as before but now
for arbitrary order parameter with angular momentum .
The first term in (2.38) is often called the “quasiparticle
contribution” because it is finite in the static limit ) =
0,q — 0, but vanishes at q = 0,2 — 0 regardless of
wether the corresponding order parameter is conserved
or not

Still, we recall that Alc(s),Z and m*/m (for a non-
parabolic spectrum) in the first term are the three in-
put parameters which come, at least partially, from high-

energy fermions. The second term, X;(;ZC, is the contri-
bution only from high-energy fermions. Tna generic case,
this term is not described at all within the FL theory, and
its value does not depend on the order of limits 2 — 0
and |gq| — 0.

We will review a diagrammatic derivation of Eq. (2.38)
in the next Section. Here, we focus on the implications
of Eq. (2.38) for Pomeranchuk instabilities of a FL.

First, Eq. (2.38) shows that there is more than one
scenario for the divergence of the susceptibility in a given
channel. In addition to the Pomeranchuk scenario (the
vanishing of 1 + F;(S)), the susceptibility ch(s) can also
diverge if contributions from high-energy fermions give
rise to a divergence of ZAZC(S) or ch(]i)c Finally, m*/m
for a non-parabolic spectrum may also diverge due to
singular contributions from high-energy fermions. These

three scenarios are outside the FL theory.3*

Second, Eq. (2.38) shows that the divergence of ch,(l;)P A

may, in principle, be canceled by the vanishing of its pref-
actor, AlC(S)Z(m* /m). If this happens, the corresponding

susceptibility remains finite at F;(s) = —1. It will be
shown below that this is the case for order parameters
which coincide with the momentum density, and charge
and spin currents.?!?2

To see this, we now systematically analyze the implica-
tions of the conservation laws for the relation between the
two terms in (2.38). We first consider the susceptibilities
of three conserved order parameters - total charge (par-
ticle number), total spin, and total momentum. (Here
and thereafter, a susceptibility of any vector quantity
will be understood as a longitudinal part of the corre-
sponding tensor.) For the first two order parameters

I =0 and A"y (p) = 1, while for the third one [ = 1 and
)\;g(p) = p., where we choose the z-axis to be along q.

In all three cases, AZ =1 and xjnc = 0. Consequently,
the susceptibilities of the three conserved quantities coin-

cide with the RPA expressions, modulo a factor of m*/m

. m* 1 s m* 1
X = X X = =T
m 1+ Fj m 1+ Fj
m*k% 1
mom = 2.39
X o7 1+ F¢ (2:39)

(for definiteness, we use the explicit forms of x; ¢ in 2D).
The | = 0 instability in the charge channel corresponds to
phase separation, the one in the spin channel corresponds
to ferromagnetism, and the one at I = 1 signals the emer-
gence of a charge nematic order. In a Galilean-invariant
system, m*/m = 1+ Ff, and an | = 1 Pomeranchuk
instability in the charge channel does not occur.

Next, we consider the susceptibilities of charge and
spin currents, i.e., for order parameters with [ = 1 and
form factor /\;(:i(p) = O¢p/Opy. We label the corre-

sponding susceptibilities as x5 s, Using (2.28b), we can

re-express Eq. (2.38) for XLC,(S) as

o(s) _ MPH M
J 2r m*

c(s)
1+ Fy

)+ X (2.40)

We see that the quasiparticle part of the susceptibility
of either charge-current or spin-current order parameter
actually vanishes when the corresponding Landau param-
eter reaches —1, i.e., a Pomeranchuk instability does not
show up if one probes it by analyzing particular suscep-
tibilities as specified above.?!

Equation (2.40) can be also derived explicitly, by
expressing the susceptibilities x°(*) via DM the time-
ordered correlators of p at times ¢ and ', differentiating
over t and t', and using the continuity equation, (2.23).
This yields'72!

c(s)

w/lal)*x @ (a,w) = x5 (2.41)

(a,w) — X7 (q,0).

Now we take the limit w > v}q, keeping both w and q
infinitesimally small. The incoherent parts of Xf,(s) (q,w)
and xg(s) (q,0) cancel each other, while the quasiparticle
part of XCJ(S)(q, w) vanishes. As a consequence, the r.h.s.
of (2.41) reduces to

*,.2
o(s) mvg e(s)y2 1L
—x7 (q,0) = — (ZA57) - (2.42)
J It ( J 1 +Ff(8)

The Lh.s. of (2.41) tends to a constant at w > vhg
because x°*)(q,w) = %*XCR(;L(q,w) scales as (|q|/w)?
and cancels out the factor (w/|q|)?. The expression for
XCR(;)A (q,w) in this limit, obtained by Leggett in Ref. 35,
reads

i =2 (29 (2 (14 ),

(2.43)



Hence, at w > viq,

@/l =~ () () (105,

(2.44)
Substituting this into (2.41) we reproduce Eq. (2.28b):

ZA) = (mﬁ) (1+7"7).

Substituting this further into (2.38) we reproduce (2.40).
Note that Eq. (2.45) can be re-written as

(2.45)

AG 14 FY
Ay 1+ FP

(2.46)

We see that the vanishing of 1 +Ff(s) is always associated

with the vanishing of the corresponding ACJ(S), excluding
an unlikely case when 1+ FY and 1+ F} vanish simulta-
neously.

Leggett showed!” that there exists another, even
stronger constraint on the susceptibilities of charge and
spin currents. Namely, the longitudinal sum rule implies
that x5 and x¥ are not renormalized by the interaction,
ie.,

2
mpe

o (2.47)

X7 =XJ=

The longitudinal sum rule is analogous to the longitu-

dinal f-sum rule for the imaginary part of the inverse

dielectric function®® and is the consequence of the gauge-
invariance of the electromagnetic field.3”

Constraint (2.47) relates X inc int (2.40) to the Landau

parameter F{*):

2
c(s mp m c(s
XJ(,ilzc = 27rF (1 I (1+F1( ))) :

(2.48)
This is yet another condition on the contribution coming
from high-energy fermions.

In a Galilean-invariant FL, m*/m = 1 4+ Ff, and Egs.
(2.40) - (2.47) reduce to

ZAS = 1,

1+ F¥
ZAS = 1 s _
J 1+F1C7 XJ,lnc

X?],inc =0 (249)
mpy Ff — F}
2r 14+ Ff

(2.50)

The fact that XCJ(S) is constrained by Egs. (2.40) and
(2.47) does not imply that a Pomeranchuk transition in
the [ = 1 channel can never occur. Indeed, these con-
straints do not preclude the system from developing an
instability towards a phase described by an order param-
eter with a form-factor, which has the same symmetry
as the charge- or spin-current order parameter but de-
pends differently on |p|. In Eq. (2.35) we defined an infi-
nite family of order parameters with a given angular mo-
mentum [, specified by an overall scalar function f(|p|).

The current susceptibilities correspond to the choice (see
(2.24))

1 ey

e(s)
(Ip) = — 5 par-
m Jep™

i (2.51)

For order parameters with f;—; different from the equa-
tion above, there are no general reasons to expect Alc(:iZ
to be proportional to 1 + Flc ) , hence a Pomeranchuk
instability is expected to occur at Ff(s) = —1 (Ref. 22).

Interestingly enough, we can interpret this instability
in two different ways, depending on how we write the

susceptibility ch(zsl) . If we use the original Eq. (2.38)

2k c(s)y2
e(s) _ TPF M p (M) c(s)
Xi=1 o m 1 +Flc(s) + Xi=1,inc’

(2.52)

(2.53)

we would conclude that the instability is determined by
the condition on the interaction between fermions on the

FS: F; = 1. However, re-writing ch(:sl) as
2 c(s)\2
c(s) _ mpy (Al: ) c(s)
Xi=1 = o7 Z ALC](i) +Xl=1,inc (254)

(2.55)

we would conclude that the Pomeranchuk instability is

driven by the vanishing of ACJ(S)7 which is determined by
high-energy fermions. This dual interpretation is yet an-
other consequence of the fact that conservation of charge
and spin imposes the relations between the properties of
low- and high-energy fermions.

III. DIAGRAMMATIC DERIVATION OF
LEGGETT’S RESULT FOR THE STATIC
SUSCEPTIBILITY

In this section we review a diagrammatic derivation of
Eq. (2.38), closely following the presentation in Ref. 22.

The purpose of this derivation is to show that Alc(s> and

ch_(;ic arise from high-energy contributions. For definite-
ness, we consider the 2D case. To simplify notations,
here and in the next section we suppress the superscript
w in (Gﬁ)w, i.e., replace (Gi)w just by GZ.

Let’s start with the free-fermion susceptibility for an
order parameter with form-factor )\lc(5>, as in Eq. (2.35).
The diagrammatic representation of the free-fermion sus-
ceptibility XlC,(;) (¢) is a bubble composed of two fermionic

)

propagators (Fig. 2) with form-factors )\IC(S at the ver-

tices:

c(s . dgp c(s 2
i@ =2 [ 5 (@) Gy Gy 1)

Here, Gj stands for a free-fermion Green’s function,
given by Eq. (2.2), and the factor of 2 comes from spin




FIG. 2. The free fermion susceptibility

summation. The frequency integral in (3.1) is non-zero
only if €54 q/2 and €,_q/2 have opposite signs which, for
|a| < pr, implies that the integral over |p| comes from
a narrow region near the FS. At T' = 0, we have

c(s) m c(s 2
Xio (4) =—— (plFfl( )(pF))
dop 9 vr|q| cos ¢p
P l . (3.2
X/ 2 (coslp) w — vp|q| cos Pp + 0sgnw (3:2)

In the static limit we reproduce Eq. (2.37).

The 1/(1 + Flc(s)) dependence of ch(s) can be repro-
duced diagrammatically within RPA. Because the mo-
mentum/frequency integration within each bubble is con-
fined to the FS, the dimensionless interaction between

the bubbles is exactly Flc(s). Re-summing the geometric
series, we reproduce Eq. (2.36).
To obtain an exact expression, we need to go beyond

RPA. To this end, we note that a diagram for ch(s) at
any loop order can be represented by a series of “ladder
segments” separated by interactions. By “ladder seg-
ment” we mean the product G 4/2Gp,—q/2 With vanish-
ingly small but still finite q. Each ladder segment con-
tains integration over both high- and low-energy states.
We define a high-energy contribution as the one where
the |ep| is larger than vr|q|, such that the the poles of
Gptq2 and Gp,_g /o are located on the same side of the
real frequency axis. This contribution can be evaluated
right at ¢ = 0. A low-energy contribution is the one
where |ep| is smaller than vr|q|, and the poles of G,14/2

and G,_q/2 are on different sides of the real frequency
c(s)

axis. To obtain x;""’, we re-arrange the perturbation se-
ries by assembling contributions from diagrams with a
given number M of low-energy contributions from lad-
der segments, and then sum up contributions from the
sub-sets with different M = 0,1, 2, etc (see Refs. 38-40).
This procedure is demonstrated graphically in Fig. 3.
We start with the M = 0 sector. The correspond-
ing contributions to the susceptibility contain products
of G3. Taken alone, each such term would vanish on in-
tegration over frequency. The total M = 0 contribution
then vanishes to first order in U(q) because the static in-
teraction does not affect the frequency integration. How-
ever, at second and higher orders in U(q), the interac-
tion gets screened by particle-hole bubbles and becomes a
dynamical one. An example of the second-order suscep-

10

tibility diagram with screened interaction inserted into
the bubble is shown in Fig. 4. This screened dynami-
cal interaction contains a Landau damping term, which
is non-analytic in both half-planes of complex frequency.
As aresult, the product of GZQ, and the dressed interaction
at order U? and higher has both the double pole and a
branch cut. A pole can be avoided by closing the integra-
tion contour in the appropriate frequency half-plane, but
the branch cut is unavoidable, and its presence renders
the frequency integral finite. Since one does not have to
make sure that the poles of the Green’s functions are in
the opposite half-planes, relevant p are not confined to
the F'S, and both w and e, are generally of order Er (or
bandwidth). Fermions at such high energies are strongly
damped, i.e., they are incoherent quasiparticles. By this

reason, the M = 0 contribution to ch(s) is labeled as an

incoherent one, ch,(jg/j):o = ch(li)c

Next, we next move to the M = 1 sector. Here we se-
lect a subset of diagrams with just one low-energy contri-
bution from some ladder segment. The sum of such dia-
grams can be graphically represented by the skeleton dia~
gram in Fig. 3, labeled M = 1. The ladder segment gives

2
Jos @p ()\lc(s) (p)) Gptq/2Gp—q/2 at w =0 and [q| — 0,
where fFS denotes an integral taken close to the FS. Each
of the Green’s function in this integral can be replaced by
its quasiparticle form, given by the first term in Eq. (2.3),
and the integral gives the static free-fermion susceptibil-
ity in Eq. (2.37) multiplied by a factor of Z2m*/m. The
side vertex, A;(s), is the sum of high-energy contributions
from all other cross-sections either to the right or to the
left of the one in which we select the low-energy piece.
[We remind that Alc(s) is defined without the form-factor

)\f(s)(pp), which was already incorporated into x;,0(q).]
In all these other cross-sections we can set ¢ = 0, i.e.,
replace Gp,qq/2Gp—_q/2 bY Gg. These contributions would
vanish for a static interaction, but again become non-
zero once we include dynamical screening at order U?
and higher. Similarly to the M = 0 sector, the difference
Alc(s) — 1 is determined by fermions with energies of or-
der Ep (or bandwidth). Overall, the contribution to the
static susceptibility from the M = 1 sector is

Ccl s c(Ss Qm* cls
Xl,(Jw):l = (ZAI( )) ZX (0)-

)

(3.3)

The sectors with M =2, M = 3... are the subsets of
diagrams with two, three ... low-energy parts from ladder
segments. The contribution from the M = 2 sector is
represented by the skeleton diagram in Fig. 3 labeled
M = 2. A new element, compared to the M = 1 is
sector, is a fully dressed vertex I'“ between fermions on
the FS. One can easily verify that this vertex appears
with a prefactor of Z2(m*/m), i.e., an extra factor in
the M = 2 sector compared to M = 1 is the product
of x;,0 and the corresponding component of the Landau
function, as defined by Eq. (2.12). Using (3.3), we then
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Q _|_ ...... @-@ ...... _I_ ...... e Tw A _I_

..... Alc(s) FW FOU Alc(s) e —I— e o o

M =3

FIG. 3. The ladder series of diagrams for the static susceptibility ch(s). The exact y; is represented as a series of M =0, 1,2, ...
bubbles comprised of Green’s functions with poles in the opposite half-planes of complex frequency, whose contributions are
computed close to the FS. Gray shading denotes contributions from high energy fermions, for which the poles in the Green’s
functions are in the same half-planes of complex frequency. These include the M = 0 bubble (on the far left), as well as the

. (s)
vertices AlC ? and T'¥.

FIG. 4. Example of a higher-order contribution to ch(s). At
this order, the static interaction acquires dynamics due to
screening by particle-hole pairs. The diagram contributes to
the M = 0 sector if both Green’s functions adjacent to one
of the external vertices are evaluated away from the FS; to
the M = 1 sector, if one of them is evaluated on the FS and
another one away from it; and to the M = 2 sector, if both
are evaluated on the FS.

obtain

2 *
ch,(J\S/I):l + ch,(sj):z = (ZA?(S)) %ch,(oS) (1 - FZC(S)>

(3.4)
(the minus sign in the second term becomes evident if one
compares the number of the fermionic loops in the M =
1 and M = 2 sectors). A simple bookkeeping analysis
shows that the contributions from sectors with larger M
form a geometric series, which is re-summed into 1/(1 +

Flc(s)). Collecting all contributions, we obtain Eq. (2.38).
The diagrammatic approach can be extended to the

case when both external momentum q and frequency w
are finite (but still much smaller than pr and Ep, re-

spectively), while the ratio

g2 (3.5)

vplal’

is arbitrary (here, v = pp/m* = vp(m/m*)). Because
q and w are small, we may still split momentum and
frequency integrals of Gj_,/2Gpriq/2 into the low- and
high-energy contributions. At the same time, the vertices
Alc(s) and I' can be still taken at @ = 0 and w = 0 because
they are not sensitive to the order in which these two
limits are taken. The decomposition of the perturbation
series into the M = 0,1, 2,... sectors, depicted in Fig. 3,
remains unchanged. However, the RPA susceptibility in
Eq. (2.38) now has a nontrivial dependence on 5 and

2
Xl( )(Q) = (ZAz( )) Xl,(R%DA(B) + Xl,(in)c' (3.6)

The computation of X;,(;{)PA(ﬂ) is more technically in-

volved than that of static X;(I;)P A (0) because different an-
gular momentum channels no longer decouple.

Consider first the limit w < vp|q|. For even [, the
quasiparticle contribution from M = 1 sector is

c(s m* c(s .
Xl,(JV[):l,RPA(q) ~ EXZ,(O) (1+iup), (3.7)

where oy = 1ifl =0and oy = 2ifl = 2n, n > 0. For odd
I, the expansion starts with 82 —this means that Landau
damping is suppressed in odd momentum channels.*! For
M > 1, the contribution proportional to 5 can come from
any of the M cross-sections, yielding a combinatorial fac-



tor of M. Summing up the series one finds 22

e(s) o(s) M* 1 .oqf
= _ +1 s
Xi, rpa () Xio "y <1+Flc(s) (1+Flc(s))2>
(3.8)
where | = 2n is an even number. For [ = 0, the equation
above reproduces the known result for the quasi-static

J

ch(éo) rpa(d) = **ﬁ

Xl( 1)(CI) 4

c(s 1 o(s 1 ols .
X1(>1)( ):—§ﬁ2 (s) — (1+2<F()+Fl())>7

where ch((f) is the free-fermion static susceptibility in the

corresponding channel.

For generic 3, the form of ch(s) (¢) is rather involved
for all [, including I = 0. We illustrate the behavior
of ch(s)(q) for the simplest case of the charge and spin
susceptibilities (I = 0 and fo(|p|) = 1). Analyzing the
series of bubbles, we find

(s) LN ()
Xi=o,rpa(9) = T 14 FC(S) @ (3.10)
where x(q) is given by
X)) =Ko—2 Y F9K,K,S", (3.11)
n,m>0
/—Cos o vi|g| cos
— vh|q| cos B + ido
3
o g VP
(3.12)
and 57" is a solution of the linear system
S D Quan FEE S = 0nm (3.13)

mq>0

in which Qnm = Kptm + Kp—sm. In the static limit
Ky =1 and K,~¢9 = 0. Then ¥(¢) = 1, and Eq. (3.10)
reduces to Eq. (2.39) for the static susceptibility. As an
additional simplification, we consider the case when all
Landau parameters with [ > 2 can be neglected compared
to FOC(S) and Ff(s). In that case, the infinite set of linear
equations in (3.13) is reduced to a 2 x 2 system. After

some further analysis, we obtain?2:42
2F () K2
* KO - (s)
c(s) m 1+F7 7 (Ko+K2)

( _
Xi= =0,RPA (q) QFS(S)Flc(s)Klg

14+F ) (Ko+K>)
(3.14)

T4 FY K, -

2. c(s)
lOO
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9,10

limit of the charge and spin susceptibilities, obtained

by solving the kinetic equation for a FL.

In the opposite limit of 8 > 1, only the M = 0,1,2
elements of the bubble series need to be included, be-
cause higher order terms are small in 1/8. Some further
analysis then yields'"22

m = (1+7Y),

BBQXf(Sfom <1+3F “ 4 FC(S))

3

(

We stress that the analysis above concerns only the quasi-
particle (RPA) contribution, ch)(;gp - The incoherent part

of XlC(S) does not depend on 3, as long as |q| < pr and
w <K Ep.

IV. PERTURBATION THEORY

In this section, we use the perturbation theory to verify
the results derived from the conservation laws in the pre-
vious sections. Specifically, we compute I'*; Z, m*/m,
and A s, (s) to second order in the interaction U(q). The
purpose of this calculation is to demonstrate how the
interplay between the contributions from high and low
energies works both for m* /m and A,

In the earlier days of the FL theory, perturbative cal-
culations were used as a check of general FL relations*?.
However, several subtle issues, e.g., whether in a di-
rect perturbative calculation mass renormalization comes
solely from low energies even in the Galilean-invariant
case, as in Eq. (2.17), were not verified till fairly recently.

A. The vertex function I'

Diagrams for I'Y to second order in U(|k|) are pre-
sented in Fig. 5. The most frequently studied case is of
the Hubbard (contact) interaction: U(]k|) = const = U.
In this case we have
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Lap~6(PF,q) = 0ar0ps |:U+iU2/(Gle—pF+l + GiGyipr—1) (%)DH} — 0508y |:U+iU2/Gle+pF—l(27T_)[H_1

Here G stands for a free-fermion Green’s function,
Eq. (2.2), and pp stands for a D 4+ l-momentum with
zero frequency and the spatial part equal in magnitude
to the Fermi momentum and directed along p. The first
term in Eq. (4.1) is the renormalized interaction with
zero momentum transfer, the second term is obtained
by antisymmetrization. We see that the first (“direct”)
term contains contributions from both the particle-hole
and particle-particle channels, while the second (“ex
change”) term contains only a contribution from the
particle-particle channel. Using the relation

1
0as0py = 5 (Sardps + Tay - 35) (4.2)

we re-write Eq. (4.1) as the sum of the density (charge)
and spin parts:

F:ﬁy,yg(pp, q) = 6ar0psT¢ + Oy - 55 (4.3)

J

4D+ dP+1]
(4.1)
(
with
) I ' 1 dD+1l
Ire= 5 + ZUQ/ (GlepFH + Gle+pFl> (27‘1’)7D‘H7
. ZU2 dD"rll
$=—-—=—— —/GleerF 175 ND+1 27) DL (4.4)

Substituting Zaﬁ I'¢ 5 05(PFsq) = 41°(pF, q) into the FL
form of the self-energy, Eq. (2.18), we obtain to order U?

YrL(w, 6p) = (w— €p) U? / (2Glepr+l + GG yipp—1) ngql

pPr-q Oe
+ €p |:U2 / (2G1Gy—prti + GiGytpp—1) <1 -— aeggr) ngql

- U2/(2Glepr+l + GiGyipr—1) p; q5G§dql} ;
F

where we labeled dy; = dP+'qdP+1/(27)2P+1). The
O(U) term in I'* gives only a constant term in the self-
energy (a shift of the chemical potential), which is omit-
ted in the equation above.

B. Direct perturbative calculation of the
self-energy

We now compare Eq. (4.5) with the self-energy ob-
tained in the diagrammatic perturbation theory. As we
just said, the term of order U does not depend on w and
€p and is therefore irrelevant for our purposes. We focus
on the U? terms. The second-order self-energy diagrams
are shown in panels b, ¢, and d of Fig. 6. Only diagrams ¢
and d give rise to w- and ep-dependent terms in the self-
energy, the diagram b just adds another constant term
to the chemical potential. Relabeling the fermionic mo-
menta for U = const, it is easy to see that diagram d is
equal to —1/2 of diagram ¢, so we only need to consider
diagram c¢. This diagram contains three Green’s func-
tions, two of which share a common internal momentum.

pr

(4.5)

(

Labeling the momenta as shown in this diagram and in-
tegrating over the internal D+1-momentum [, we express
Ypert Via a particle-hole bubble.

Subtracting from e (w, €p) its value at w, e, = 0, we
find

Ypert (W, €p)—2(0,0) = _UZ/Gle—;DF-H (Graye — Gi) dp,

(4.6)
(e (35

parameterizes the (small) external D + 1-momentum.

The same self-energy can also be computed in a dif-
ferent way, by combing internal fermions into a particle-
hole bubble. Re-labeling the momenta in the diagram c
as shown in panel e of Fig. 6, we obtain

where

(4.7)

Spert (w, €p)—3(0,0) = —U? / CiGrippt (Groe — Gu) dur.
(4.8)
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FIG. 5. First and second order diagrams for the Fermi-liquid
vertex I'a5 ,5(p, q). The initial four-momenta p and ¢ are as-
sociated with spin projections a and 3, respectively. The final
four-momenta p and q are associated with spin projections v
and §, respectively. Reproduced from Ref. 44.

We denote the self-energy obtained in this way as ipert
just to distinguish it from the self-energy X pert(w, €p) in
the particle-hole form.

Since the two expressions for the self-energy must be
equal, the Green’s functions must satisfy the following
identity

/Gle—pF-H (Grte — Gi) d

= / GiGrspr—1 (Gree — Gi) di. (4.9)

Indeed, this identity can be proven explicitly by relabel-
ing the fermionic momenta.** To first order in e, the dif-
ference G4 — Gy, in the first line of (4.9) can be replaced
by Gx—Gj_+0(€?). To order ¢, therefore, identity (4.9)
can be written as

/(Gsz—pFH + GiGripr—1) (Gi—e — G) dig = 0.

(4.10)
Multiplying Eq. (4.10) by 2U? and adding the result to
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a) b)
c) d) e)
(J\;\/\/L 29
1+k
— 7
p p—l—k
FIG. 6. First- and second-order diagrams for the fermionic

self-energy Yipert(w, €p). For a momentum-independent inter-
action U(|q|) = U, only second-order diagrams renormalize
the mass and Z. For a momentum-dependent interaction,
mass renormalization starts already at the first order, while
renormalization of Z still starts at the second order. Diagram
e is the same as ¢, except for internal fermions are combined
into a particle-particle rather than particle-hole pair. Repro-
duced from Ref. 44.

Ypert(w, €p) in Eq. (4.8), we obtain

Epert (W7 6p) - Zpelrt (07 O)

=U? / (2G1Gr—pp+1 + GiGyipp-1) (Gi—c — Gk) dg1-

(4.11)

To first order in ¢, the difference Gy4 — Gy, can be rep-
resented as

ka Je 2
k
+eppi25Gi.
PE

(4.12)

The first (second) term in the equation above is a
high (low)-energy contribution. Substituting (4.12) into
(4.11) and comparing the result with (4.5), we see that
ipert (w, €p) becomes equivalent to Xpr,. This means that
the expressions for m*/m and Z, obtained from the self-
energy to order U?, are exactly the same as in the FL
theory. Using the same trick, one can also show that

Ypert (W, €p) and Ypy, are identical.



D+1l

. d
Lap~6(PF, ) = 0ar0ps [U(O) + Z/ WUQUPF 1) (GiGg—pr+1 + GiGgipp—1)

D+ll

xP«m—pp>—g/é%DHKﬂxm—pFn—ﬂxm—pFﬂme—u»@GHqm

Mass renormalization now occurs already at the first or-
der in U(|q|). To this order, perturbative and FL self-
energies just coincide. Renormalization of Z still comes

J

/%wmmer@GmWH+G£ﬁw4ﬂaw—cw.

The rest of the calculations proceeds in the same way as
for the case of constant U.

D. Where does mass renormalization come from in
the perturbation theory?

The issue we consider in this section is the separation of
the perturbative self-energy into the low- and high-energy

J

/ At (GiGppst + CiGspp—1) G2 = 0,

k
/dkl (Gle—pF+l+Gsz+pF—l)Gip;2 =
F

Equation (4.14a) shows that a certain integral over high-
energy states vanishes, while Eq. (4.14b) shows that an-
other integral over high-energy states can be expressed
as an integral over the FS. (We remind that 6G% is a
projector on the FS; see (2.6).)

Using (4.14b) and adding identity (4.10) to either
Ypert (W, €p) OF Ypere(w, €p), we can redistribute the
weights of low- and high-energy contributions in the fi-
nal result. This implies that the same result for mass
renormalization, computed either from X e (w,e€p) or

Y pert (W, €p), does not have to come from the same states.

This observation is most relevant to a Galilean-
invariant FL, where the phenomenological FL theory

k
—/dkl (GiGr—pr+1 +Gsz+pF—l)5Gip;2
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C. Momentum-dependent interaction

The results for the self-energy can be readily extended
to the case of a momentum-dependent interaction. The
vertex function to order U? is

— 050y

(

from second-order diagrams. To second order in U, per-
turbative self-energy becomes equivalent to 3 py, with the
help of an analog to (4.10):

(4.13)

(

contributions. We note in this regard that (4.10) estab-
lishes a relation between these two contributions. Indeed,
extracting the linear-in-w and e, terms from (4.10) and
using (4.12), we find that Eq. (4.10) is equivalent to two
equations

(4.14a)

(4.14D)
F

(

shows that mass renormalization comes solely from low-
energy fermions. We argue that this is not the case if we
extract m*/m from either X et (w, €p) O Xpert (W, €p)-

Below we present the results of the calculations sepa-
rately for D =3 and D = 2.

1. 38D Galilean-invariant FL

In 3D, explicit expressions for I'® and I'* for fermions
on the FS; i.e, for |p| = |q| = pr, and to second order in

—U(lpr —1NDU(1 = a)G1Ggypr1]



U read®*
e U mU?pp cos 6 1+sin6/2
r (9)_5—’_ 472 2sin6/2 Ogl—sin9/2)
s U mU%r sinf/2 1+sin6/2
PO =-5 -0 (1_ 2 1 _simez)
(4.15)

where 6 is the angle between pr and qr and dots stand
for the angle-independent U? terms.

Substituting ' from Eq. (4.1) into Egs. (2.4a) and
(2.13), and evaluating the integrals, we obtain*34°

g (2 (rma -y (MUPE : (4.16)
m o 15) 472 :
and
mUpp 2
Z181n2< = ) . (4.17)

We now turn to the perturbative self-energy in the
particle-hole representation, Xpert(w,€p). Using (4.12)
we split Xpert (w, €p) into two parts as

Ypert(w, €p) — 2(0,0) = %1 (w, €p) + 632 (w, €p), (4.18)

where

551 (w, €p) = UQ/Gle_pF+le (w — p;’ k) dur,
' (4.19a)
09 (w, €ep) = —U26p/p;72.k5Gin,pF+lGldlk.
' (4.19b)

The first (second) term in (4.18) is a high (low)-energy
contribution. The low-energy contribution cannot be ob-
tained by expanding e in €p before doing the inte-
grals.

Evaluating the integrals in Egs. (4.19a) and (4.19b),
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we find
mUpp ?
0%1(w,ep) =81In2 ( 12 ) (w—ep)  (4.20a)
4 mUpr \?
+§€p (41112—1) ( 47(_2 ) s

0 (w, ep) = —gep (2ln2-1) <m4UpF

) ’ (4.20b)

T2

Adding up the two parts, we obtain

mUpp ?
Epert(wvep) —%(0,0) = ( A2 )

(4.21)

X [81112 (w—ep)+ %(710g27 1)64 .

Using Eq. (2.18), we find that the perturbative self-
energy indeed gives the same results for m*/m and Z,
as in the FL theory, Eqs. (4.17) and (4.16). We note,
however, that mass renormalization is determined by
the prefactor of the total ep term, and, according to
Egs. (4.20a) and (4.20b), this prefactor comes from both
high and low energies. Only the sum of the two contri-
butions recovers the FL formula for m*/m. On the other
hand, renormalization of Z comes only from §Xq, i.e.,
only from high energies.

2. 2D Galilean-invariant FL

Two-dimensional analogs of Eqs. (4.15) are?6

. U mU?
re= 5+ o (2 +1logcosh/2) + ...
s U mU>
¥ = 3~ o logcos/2 + ... (4.22)

Evaluating m*/m and Z with the help of Egs. (2.4a)
and (2.13), we obtain*®

m* 1 /mU\?
=14 . 4.23
m * 2 ( 2m ) (4.23)
For fermionic Z, numerical integration yields**
2
mU
Z~1-C| — 4.24
(52) - (4.21)

where C' = 0.6931....
equal to In 2.

We now turn to perturbative self-energy. We again
split Xpere into the high- and low-energy contributions,
0%1(w, €p) and 65 (w, €p), as in Eq. (4.18). The particle-
hole bubble for 2D fermions can be obtained analytically
for any w and |k|:

To high numerical accuracy, C' is
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V2%

th(w,k) = 7%

where @ = 2wm/p% and k = |k|/2pp. To calculate 5%,
one needs to know the entire bubble, while §X5 is deter-
mined by the static bubble II;n(0, [k|). Performing the
angular integral in 6% analytically and remaining inte-
grals numerically, and all integrals in d35 analytically,
we obtain

- (mU\?> € mU\
521(&), Ep) :O <27(> ((JJ — Ep) + ?p (%>(4263)
0Xs(w, €p) =0, (4.26D)

with €' = 0.6931... To high numerical accuracy, C=cC.
The vanishing of X5 = 0 in 2D is due to the fact that
it is expressed via a static particle-hole bubble:

epU?  [7PF
gt [ ki e = 0K

1—|k[*/2p%,
1 - (1k|/2pF)”

Because I, (w = 0, |k|) is independent of |k| for k| <
2pp, the integral over |k| vanishes.

Casting the result into the form of Eq. (2.19), we again
reproduce the FL results for m*/m and Z, Eqgs. (4.23)
and (4.24). However, we see that now m*/m comes solely
from the high-energy part of the self-energy.

If we compute the perturbative self-energy by combin-
ing two internal fermions into a particle-particle bubble
(Xpert(w, €p) in our notations), and again split it into
high-energy and low-energy contributions, §%1(w,ep)
and 6§~]2(<u7 €p), we obtain??

- _(mU\? mU\ >
621(&}, 6p): C (271_) (W — €p) + €p (2,]_(_) s

(4.28a)

0 (w, €p) =

(4.27)

~ ep (MU 2
0% (w, €p)= 5 ( o ) , (4.28b)
where, as before, C 0.6931.... Comparing with
Eq. (4.23), we see that now the low-energy contribution
to mass renormalization in the particle-particle case is
finite but opposite in sign that to mass renormalization
in the FL theory. The correct sign is reproduced once we
add the low- and high-energy contributions.

2U2/dkl (G1Gr—pp+1 + GiGripp—1) G}

- ~ ~ ~ 2 -
\/k2—k4—@2+\/(k2—k4—w2) 4G

pr -k
%

, (4.25)

E. Direct perturbation theory for static
susceptibility

We now show that the same subtle interplay be-
tween the low- and high contributions also occurs for

the charge/spin spin susceptibility in the channel with

angular momentum /[, ch(s).

Rather than going through an exhaustive analysis, we
consider a single illustrative example, namely the [ = 1
spin channel in a Galilean-invariant system. Our goal is
to reproduce the relation A%Z(m*/m) = 1+ F}. Explic-
itly, we have

1
Z=1-2i / d.T°(pp, P) (p;?’ P)e2  (4.29a)
F
AS=1-2 / 4% (pr, p)G2 (pFQ’ P) (420p)
F

The vertex functions I'* and I'® to order U? i are given
by (4.4). Combining the contributions from Z and T'¢(*)
we obtain, to order U?,

ASZ —1= —2U2/dkl (Gle—pF-‘rl + Gka+pF—l)

(PF - P) o
-G
P "

(4.30)

As written, the integral on the r.h.s. of Eq. (4.30) is
not confined to the F'S. However, it can be converted into
a F'S contribution using identity (4.14b), which expresses
the r.h.s. of (4.30) via the integral over §G3. We then
obtain

X
ASZ —1 =202 / it (G1Gh—pps1 + GiGpp 1) 6G2.PE

(4.31) !

Finally, we use Eq. (4.4) and re-write the r.h.s. of (4.31)
as

o

do

o (F*(6) = F*(0)) cos b = F} — Ff.

(4.32)



Substituting this into (4.31), we obtain ZA% = (1+ Ff —
F¢), which, to order U2, is equivalent to ZA% = (1 +
F?)/(1+ Ff), as in Eq. (2.50).

We emphasize that only the product A5Z can be ex-
pressed via an integral over the F'S. Taken separately, A%
and Z are determined by integrals which are not confined
to the FS.

V. CONCLUSIONS

In conclusion, we reviewed certain aspects of the mi-
croscopic FL theory. We argued that this theory is
based on five Ward identities, which follow from con-
servation laws. The first two identities (the Pitaevskii-
Landau relations!*) follow from U(1) symmetry and
reflect charge conservation. The next two (the Kon-
dratenko relations?”-2%) follow from SU(2) symmetry and
reflect spin conservation. The last, fifth relation, fol-
lows from translational symmetry and reflects momen-
tum conservation. This last identity was derived origi-
nally for a Galilean-invariant system,! but is generalized
here for any translationally invariant system and thus can
be attributed to momentum conservation. These identi-
ties express quasiparticle Z and the effective mass m*
in terms of the vertex function. In addition, they im-
pose certain constraints on the interplay between low-
and high-energy contributions to observable quantities.
These constraints imply that extra care is needed in inte-
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grating out contributions from high-energy fermions. For
example, the low- and high-energy contributions to the
susceptibilities of charge and spin currents cancel each
other, so that Pomeranchuk instabilities towards phases
with spontaneously generated charge and spin currents
are impossible.!”?! Even more so, the corresponding sus-
ceptibilities are not renormalized at all by the interac-
tion.!” On the other hand, an instability towards a phase
with the order parameter, which has either the same sym-
metry as the charge or spin current but a different form-
factor, or a different symmetry, is not forbidden by con-
servation laws.??

We also demonstrated how the constrains imposed by
conservation laws can be derived diagrammatically, and
along the same lines, provided a diagrammatic derivation
of the Leggett formula'” for the charge and spin suscep-
tibility in a channel with arbitrary angular momentum.
Finally, we illustrated the interplay between the low- and
high-energy contributions by calculating the FL inter-
action vertex, effective mass, quasiparticle residue, and
susceptibility to second-order in interaction.
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