>)

TOWARD SPACE- AND
ENERGY-EFFICIENT
COMPUTATIONS

Anne Condon, Unwversity of British Columbia
and Chris Thachuk, California Institute of Technology

~209~

Introduction
How might a simulation of computation that is both space
and energy efficient be possible? If a Turing machine, on a
problem instance of size n, requires t(n)time and s(n)space to
complete, then a simulation of the computation is (1) space
efficient if it requires at most poly(s(n))space, and (2) energy
efficient if it dissipates at most e£(n) energy over the course of
the computation, for sufficiently small € > 0. Lecerf (1963) and
Bennett (1973) made significant progress on this question by
introducing the notion of logically reversible computation—
previously thought to be a prerequisite for energy-efficient
computation'—and devising simulations of irreversible Turing
machine computations by logically reversible Turing machines
with a constant factor increase in time. Bennett (1989), Lange,
McKenzie, and Tapp (2000), and others subsequently made
progress on space-efficient simulations.

Recent work by Qian, Soloveichik, and Winfree (2011)
and others made further significant progress by bridging

'Logical reversibility is not a prerequisite for energy-efficient computation
(Sagawa 2014; Grochow and Wolpert 2018). For a more nuanced view
of this topic beyond logical reversibility, see the chapters by Grochow and
Wolpert and by Ouldridge et al. in this volume.

~ 210~

THE ENERGETICS OF COMPUTING INLIFE & MACHINES

the gap between logically reversible and physically realizable
computations using DNA strand displacement systems. Their
strand displacement simulations of Turing machines use
arbitrarily little energy per step while incurring a quadratic
slowdown in time. However, to complete, their simulations
may require exponentially more molecules (physical space) than
the space used by the Turing machine.

Building on these two earlier threads, we showed how
computations that are logically reversible, with balanced,
symmetric transitions, have energy—efﬁcient implementations
as DNA strand displacement systems and only require a
quadratic increase in the number of molecules over the
theoretical space required of the computation (Thachuk and
Condon 2012).

Here we review these three lines of work with the goals of
(1) elucidating the current state of knowledge on the theory of
space- and energy-efficient computations, and (2) pointing to

fruitful directions for future improvements.

Background

We start with a brief introduction to logical reversibility in
the context of time-bounded computation as well as early work
on space-bounded, logically reversible computations. We then
describe a progression of ideas on how the abstract concept
of logical reversibility might be implemented chemically, and
how the energy efficiency of chemical implementations can be

measured.

LOGICALREVERSIBILITYANDTIME-BOUNDED COM-
PUTATION

Landauer (1961) asked: can we build computing devices that

are energy efficient, that is, devices that dissipate arbitrar-

Chapter 9: Toward Space- and Energy-Efficient Computations

ily little energy per step? His work suggested that energy
must be dissipated when bits of information are irreversibly
erased. Thisled researchers to consider how logically reversible
computation—where information is never irreversibly erased
during the computation—may lead to energy-efficient compu-
tation. Note that to be reusable for another problem instance,
a logically reversible computer must be “reset,” a potentially
energy-consuming process thatincludes erasure of the previous
input and output.

Lecerf (1963) and Bennett (1973) formalized the notion of
logically reversible, deterministic Turing machines. Transition
functions of such machines not only have unique images that
guarantee determinism, but also unique preimages, thereby
ensuring that, when symbols on a tape are overwritten,
those symbols can be reconstructed simply by reversing the
transition. Thus any computation graph of such a machineisa
line from a valid input configuration to a final configuration
(i.e., no branching or merging). Turing machines that are
logically reversible can simulate arbitrary (irreversible) Turing
machine computations with a constant factor increase in the
time needed (Bennett 1973); that is, for inputs of length n,
if DTIME (t(n)) and ReversibleTIME (¢(n)) are the classes of
languages recognizable by deterministic and logically reversible
Turing machines in O(t(n)) time, respectively, then DTIME
(t(n)) = ReversibleTIME (¢(n)).

LOGICALLY REVERSIBLE SPACE-BOUNDED
COMPUTATION

Bennett also asked whether Turing machine computations can
be simulated in a logically reversibly manner that is efficient
with respect to the space of the machine being simulated.

Using a recursive simulation of deterministic space-bounded

~2I1

THE ENERGETICS OF COMPUTING INLIFE & MACHINES

Turing machines with recursion depth proportional to the
space used, he showed that DSPACE (s(n)) is contained in
ReversibleSPACE (s?(n)) (Bennett 1989).

Whether the quadratic increase in space was necessary re-
mained uncertain for another decade, when Lange, McKenzie,
and Tapp (2000) showed that, indeed, logically reversible space
equals deterministic space, thatis, DSPACE (s(n)) = ReversibleSPACE
(s(n)). Their construction performsan Eulerian tour of the con-

S figuration graph of a space-bounded computation.

CHEMICAL IMPLEMENTATIONS OF LOGICALLY
REVERSIBLE COMPUTATION

Bennett(1973)envisioned Brownian computers thatimplement
reversible computations chemically, thatare “capable of dissipat-
ing an arbitrarily small amount of energy per step if operated
sufficiently slowly.” A single copy of a major reactant, such as
aDNA molecule, encodes the current configuration. Reactions
in the forward direction involve the major reactant plus addi-
tional minorreactants, whichare presentat “definite concentra-
tions;” these reactions change the major reactant and generate
additional (waste) products. The forward direction of each re-
action corresponds to a computation step. We describe herein
the relationship between the energy dissipated by areaction and
the ratio of the concentrations of minor reactants to products.
Bennett (1981) considered the possibility that reactions
of a Brownian computer could arise purely as a result of
“random thermal jiggling of its information-bearing parts,”
with concentrations of minor reactants and products at
equilibrium. In this case, a logically reversible computation
can proceed in the forward and reverse directions at the same
rate while “high-potential-energy barriers” prevent the system

from deviating from the computation path. However, he

Chapter 9: Toward Space- and Energy-Efficient Computations

dismissed calling this possibility computation because, if “the
major reactant initially corresponds to the initial state of a v-
step computation, the system will begin a random walk through

the chain of reactions, and after about v?

steps will briefly
visit the final state. This does not deserve to be called a
computation” (Bennett 1973, 531).

Rather, toensure high probability of completing the compu-
tation within reasonable time while keeping energy dissipation
per step low, Bennett proposed that the concentrations of mi- T
norreactantsdriving the computation forward be maintained at
asmall percentage above their equilibrium concentrations. Re-
actions can still happen in both the forward and reverse direc-
tions in this scenario, but the forward bias that results from the
higher concentrations of forward-driving reactants, compared
with the reaction products, is sufficient to ensure that the final
state is reached in a number of steps proportional to the com-
putation length. The forward bias at the final step can be sig-
nificantly higher to ensure that, once the final configuration is
reached, the system will subsequently be in this configuration
with high (say, atleast 95 percent) probability.

Recently, researchers in the field of DNA computing
and molecular programming have developed and implemented
mechanisms for computing, with DNA strand displacement
systems (DSDs), that are similar in principle to Bennett’s
proposal involving major and minor reactants (Soloveichik,
Seelig, and Winfree 2010). We provide an example of DNA
strand displacement later (see fig. 92). Qian, Soloveichik,
and Winfree (2011) described how a logically reversible
Turing machine could in principle be physically realized with
DNA strand displacement operations, in a way that requires
arbitrarily little energy per computation step. The worst-case

upper bound on the time needed for this simulation is quadratic

~214~

THE ENERGETICS OF COMPUTING INLIFE & MACHINES

in the Turing machine time. An important assumption of this
result is that the simulation occurs as an “open” system, where
minor reactants are maintained at definite concentration by
an external and energy-efficient metabolism process. Under
this assumption, the physical space required to hold all major
reactants of the simulation (i.e., the required volume) is also
efficient with respect to Turing machine space. However, an
external metabolism to maintain minor reactants for DSDs
is as yet unknown. Operating this simulation in a “closed”
system, where all minor reactants required for the simulation to
complete are initially present in the same volume as the major
reactants, can require exponentially more physical space than
Turing machine space. The reasoning will be made clear in
subsequent sections where we focus exclusively on simulations
in closed systems to account fully for required (physical) space

usage.

ACCOUNTING FOR ENERGY INACHEMICAL
COMPUTATION

We follow the accounting of Bennett (1981) and Qian, Solove-
ichik, and Winfree (2011) for logically reversible computations
where computation steps correspond to the forward direction of
chemical reactions. Weassume that the computation proceedsin
afixed volume thatis maintained at constant temperature. Sup-
pose that the concentrations of forward-driving reactantsare X
percent in excess of the equilibrium concentrations, relative to
the concentrations of the reaction products. Then the energy
dissipated (per step) is proportional to In((100 + X') /100) kT,
where kp is Boltzmann’s constant and 7' is temperature. The
smaller X is, the less energy is dissipated, the higher is the ratio
of reverse to forward reactions, and the smalleristhe net forward

biasof thereaction. Ifinitial concentrationsaresufficiently high

Chapter 9: Toward Space- and Energy-Efficient Computations

relative to the length of the computation, the change in con-
centrations of reactants and products is negligible throughout,
and so the reactions have approximately the same forward bias
throughout. If the energy dissipated per step is € for sufficiently
small € > 0, the forward/reverse ratio is €/ *8T) and the for-
ward reaction bias is roughly proportional to €.

In contrast, if the concentrations of reactants and products
are in equilibrium, the system is driven only by Brownian
motion, with forward and reverse reactions being equally likely.
The energy dissipated per step is o.

Although not discussed by Bennett (1981) or Qian,
Soloveichik, and Winfree (2011), there is also an energetic cost
to setting up the initial configuration of the computation—in
our systems, this is the same cost associated with “resetting” the
computation for anew inputinstance—and conducting a read-
outof the currentconfiguration atany given time. Forinstance,
logically reversible simulations in closed systems typically
rely on an initial out-of-equilibrium input state relaxing to
equilibrium as the computation proceeds. This “distance
from equilibrium” is characterized by the nonequilibrium
generalized free energy (Esposito and Van den Broeck 20115
Parrondo, Horowitz, and Sagawa 2015). The point is that
the system free energy increases over time until equilibrium
is reached. For a logically reversible computation over N
states, this difference in free energy is kg7 In(IV), which is the
configurational entropy cost of beginning in a particular state,

of N states that are equally likely at equilibrium.

Challenges with Space-Efficient Chemical
Implementations of Logically Reversible Computations
The simulation of Qian, Soloveichik, and Winfree (2011) in a

closed system requires space (or volume) proportional to the

~215~

THE ENERGETICS OF COMPUTING INLIFE & MACHINES

number of steps of the computation, leaving open the question
of how to do computations in both a space- and energy-
efficient manner. We next provide an example to illustrate
why a DSD-based chemical implementation of space-bounded,
logically reversible computations may incur an exponential

space blowup.

EXAMPLE: A BINARY COUNTER

~216~
For simplicity, we will use chemical reaction networks (CRNs)

rather than Turing machines as our programming model.
We choose CRNs because of the ease with which we can
describe our binary counter, as CRNs are powerful enough to
encompass general computation (Soloveichik et al. 2008) and
can easily be “compiled” into DSDs (Soloveichik, Seelig, and

Winfree 2010).

(1) 01 = 1
[] (2) 02+ 1y = 1o+0;
(3) 0O3+1a+1; = 1340240

{03,05,1;} {03,15,1;} {13,00,1;} {13,151}
1-for 2-for 1-for 3-for 1-for 2-for 1-for

1-rev 2-rev 1-rev 3-rev 1-rev 2-rev 1-rev

[]{03,0201} {03,1,0:} {13,00,0:} {13,15,01}

Figure 91. (a) Chemical reaction equations for a 3-bit standard binary
counter. (b) The configuration graph of the computation performed by the
3-bit standard binary counter forms a chain and is logically reversible.

A standard n-bit binary counter begins at count 00..0,
advances to 00..1, and so on, until reaching the count 11..1.
A CRN that implements this counter for n = 3 is in figure
91a (Condon et al. 2012). The reactions involve six molecular
species, with molecules 0; and 1; denoting that bit ¢ has value

0 and 1, respectively, for 1 < i < 3. We call 0; and 1; signal

Chapter 9: Toward Space- and Energy-Efficient Computations

molecules; these correspond to Bennett’s major reactants. The
forward direction of the three (reversible) chemical reactions
of figure 91a enable the counter to advance in the standard
sequenceif, initially, a single copy of molecules 03, 02,and 0y are
present. The reactions can be generalized to n bits in a natural
way, with reactions having up to n reactants and products.
Because high-orderreactionsareatypical in chemical systems, it
is worth noting that they can always be emulated by a sequence
of binary reactions (Condon et al. 2012).

Figure 91b depictsall possible configurations of the counter
as nodes, with edges between configurations that are reachable
within one reaction step. Because the configuration graph

forms a chain, it represents a logically reversible computation.

DSD IMPLEMENTATION OF A CRN REACTION

We do not know how to design a set of molecules that can
directly implement all reactions of an arbitrary CRN without
implementing additional (spurious) reactions. By “directly
implement,” we mean that thereisaone-to-one correspondence
between the designed molecular species and the species of the
CRN.

However, seminal work by Soloveichik, Seelig, and Winfree
(2010) demonstrated that an arbitrary CRN can be emulated
by a DSD system, in which certain DNA strands represent
the molecular species of the CRN (the major reactants) while
additional transformer molecules (the minor reactants and
products) also facilitate each reaction. A formal CRN reaction
is often emulated by a sequence of detailed DSD reactions. See
figure 92. Transformer molecules are often described as fuel
molecules, because their concentrations can be set so as to bias

a computation forward. Many DSD architectures now exist

~217~

~218~

THE ENERGETICS OF COMPUTING INLIFE & MACHINES

with this capability (cf. Cardelli 2013; Qian, Soloveichik, and
Winfree 2011), and all make use of transformers.
(formal) 0y = b

[] (detailed-1) 0147/ = L +1IT
(detailed-2) I +I7 = 1,+17

+01 . —11 -
% 40, -1 ,|1r_
o 0 5
_+ 1 ______ | +01
T e s > —
) | ~>
T s o
VL f [— S p—
- 01y L =
-1 | R
B — € - - mmmmmmmmmmm— - - \ '11
mmmmmmm oo _
1% |
¢ +01 A *11 Tlr
[] +01 —1T

Figure 92. A strand displacement implementation of the reaction 0; = 1,
as proposed by Qian, Soloveichik, and Winfree (2011). (a) The single formal
reaction is emulated as a sequence of two detailed reactions in the strand
displacement implementation. (b) From top to bottom, the reactant signal
strand 0; (shown in a shaded box on the left) and transformer molecule
(labeled Tlf, top middle) react, producing an unbound product transformer
(labeled I7, top right) and an intermediate complex (labeled I, middle).
The intermediate complex, together with a second transformer reactant
(labeled If, bottom left), reacts to produce the signal strand 1; (shaded
box on the bottom right) and a final product transformer (labeled T7,
middle bottom). The product transformers can be applied in the opposite
direction (from bottom to top) to consume signal 1; and produce signal 01
as well as the two original reactant transformers. Throughout, connected
line segments represent DNA strands, with one-sided arrows denoting the
5' end. Black line segments represent short “toehold” sequences that enable
strands to bind weakly to each other via Watson—Crick base pairing, thus
enabling the reaction. Gray line segments represent “long domain” sequences
that enable molecules to bind together more stably, while also displacing long
domains of other strands. Long domains are labeled, and the Watson—Crick
complement of a DNA sequence labeled x is labeled z*.

We illustrate how the first reaction of our 3-bit binary
counter CRN can be implemented using DNA strand displace-
ment(fig. 92). Fromtop tobottom, the 01 signal strand interacts

with a transformer first to become consumed—sequestered on a

Chapter 9: Toward Space- and Energy-Efficient Computations

double-stranded complex—and ultimately the 11 signal strand
is produced, released from a double-stranded complex. The
strands contained within a shaded box are the signal strands.
Two transformers (Tlf and I{) arereactants, and two transform-
ers (I and 77)are produced. The producttransformerscan per-
form reaction (1) in reverse (from bottom to top in figure 92).
The important point is that the reactant transformers are not
the same as the product transformers.

Note that this DSD scheme generally applies to any formal
reaction: a sequence of detailed reactions each consumes a
single reactant (of the formal reaction), and then a subsequent
sequence of detailed reactions each produces a single product
(of the formal reaction). The example in figure 92 has one
reactant and one product and thus requires a sequence of
two detailed reactions. Similarly, the reaction Oy + 1; =
1o + 01 requires a sequence of four detailed reactions (Qian,

Soloveichik, and Winfree 2011).

TAGGED CRNS

To capture this notion of transformer orientation at the level
of a CRN, we can tag each side of a formal reaction to
represent the set of transformers that is necessary to perform a
reaction in the respective direction; intermediate reactions and
intermediate species arising in a strand displacement emulation
can be safely ignored as implementation details. In the case of
reversible reactions, when considered as two separate reactions,
the forward tag of one constitutes the reverse tag of the
other. We call these tagged chemical reaction equations. This
simple concept of tags allows us to account for the number
of transformers and the minimum size of the reaction volume
required to complete a computation if it were to be physically

realized as a DSD system.

~219~

~ 2207

THE ENERGETICS OF COMPUTING INLIFE & MACHINES

(1) T +0 = T +1
(2) T +02+1y = T +1y4+0
3) TE+03+1o4+1 = T,+13+ 0240

Figure 93. Tagged chemical reaction equations for a 3-bit standard binary
counter.

ACCOUNTING FOR SPACE IN ATAGGED
CRN COMPUTATION

In a closed DSD system that is simulating a tagged CRN, we
assume that the computation proceeds in a fixed volume that
is at least proportional to the maximum number of molecules
present at any step of the computation. Volume must be as
large as the physical space requirement (Cook et al. 2009), and
so when we account for space at the CRN level, we mustinclude
sufficient space to store not only the signal molecules but also
the transformers that facilitate the reactions. Because tags
denote sets of transformers, this accounting is straightforward.
A stricter accounting would reflect the number of bases of
molecules at the DSD level, but, for simplicity, we’ll ignore
this level of detail and simply count molecules at the tagged
CRN level of abstraction, with one tag molecule representing
a transformer set.

Returning to the tagged 3-bit standard counter CRN,
every configuration has exactly three signal molecules present,
denoting the current bit sequence. However, the space
requirement for tags is not nearly as succinct. Reaction
(1) is used in the forward direction four times during the
computation, corresponding to changes in the counter’s
lowest-order bit; reaction (2) is used twice; and reaction (3)
is used once. In total, seven tags are required to advance
through the eight states of the counter, and thus seven tags

must be presentin the initial configuration (and all subsequent

Chapter 9: Toward Space- and Energy-Efficient Computations

configurations). In general, and despite the fact that all
reactions are reversible, the progress of an n-bit counter relies
on a sequence of 2" — 1 forward reactions and, consequently,
2" — 1 tags. In summary, molecular simulations of tagged
CRNs in closed systems necessarily use space that grows at
least proportionally with time, provided they (1) do not have
an external “metabolism” to recycle minor reactants, and (2)

always use reactions in the forward direction.

Space- and Energy-Efficient Implementation of Logically
Reversible Systems

We continue with the example of a counter to illustrate
how to avoid the exponential space blowup of the previous
section. The idea is to use reactions in both the forward
and reverse directions to drive the computation forward, to
reuse transformer molecules. As we discuss later, our use of
reactions in both directions resembles symmetric models of
computation (Lewis and Papadimitriou 1982).

Reducing the space usage in this way relies on the
computation to be unbiased; that is, concentrations of
reactant and product transformers should be at equilibrium.
However, Bennett asserts that an unbiased, logically reversible
computation chain of this form, with output present only in
the final state, does not constitute computation. We agree only
in that the output of the computation must be observable with
high probability. To address this concern, we show how any
such chain implemented as a tagged CRN can be augmented
to ensure that the output can be read with high probability
without an asymptotic increase in time or space usage. We end
this section with a summary of known results for space- and

energy-eflicient CRNEs.

~2221 7

~a2u”

THE ENERGETICS OF COMPUTING INLIFE & MACHINES

A GRAY CODE COUNTER

We review our space-efficient tagged CRN counter (Condon
et al. 2012), which is based on the binary reflecting Gray code
sequence (Savage 1997). The sequence is a Gray code as each
successive value differs from the previous in exactly one bit
position. It is called a binary reflecting Gray code (BRGC)
because of its elegant recursive definition: the n-bit BRGC
sequence is formed by reflecting the (n — 1)-bit sequence across
a line, then prefixing values above the line with 0 and those
below the line with 1. A tagged CRN that implements a 3-bit
BRGC counter is given in figure 94a. The recursive nature of
the counter can be seen in the computation chain of figure 94b
(and is reminiscent of the simulation of Bennett (1981)). For
example, when the high-order bit is turned from a O to a 1 for
the first time (reaction 3 in the forward direction), the sequence
of reactions up until that configuration are next executed in
reverse as the computation progresses. As a result, each specific
reaction strictly alternates between its forward and reverse
directions as the computation proceeds forward. Only a single
transformer (the forward transformer) per reaction is initially
needed to complete the whole computation. While a tagged
CRN simulation of a standard n-bit counter requires ©(2")
transformer molecules, the BRGC variant requires only ©(n).

Note that both counters require only ©(n) molecule types.

OBSERVING OUTPUT WITH HIGH PROBABILITY

In this running example of a counter, we define the output
of the computation to be the counter’s final value. As the
computation performs an unbiased random walk along the
symmetric and logically reversible computation configuration
space, the steady state probability of observing the output is

p = 27" foran n-bit counter. This probability can be increased

Chapter 9: Toward Space- and Energy-Efficient Computations

(1) T +0; = T +1,
1 (2) To+02+1; = T 4+1y+1;
(3) Tg+03+12+01 = T;+13+12+01

{03,00,1:} {03,1,,01} {13,151} {13.00,0:}

1-for 2-for 1-for 3-for 1-for 2-for 1-for
[]103.02,01} {03,15,1} {13,12,0:} {13,02, 1}

Figure 94. (a) Tagged chemical reaction equations for a 3-bit binary
reflecting Gray code (BRGC) counter. (b) BRGC configuration graph. To
reach the end configuration, the BRGC counter must perform a sequence
of reactions that individually alternate in the forward and reverse directions,
thus initially requiring only one transformer per reaction type.

in a number of ways. For instance, by adding one additional
reaction type that produces a new signal and requires the final
signal multiset of the original computation chain as catalysts,
we can double the length of the new chain. The strategy is
outlined in figure 95. In this case, the probability of observing
the output increases to p’ > 0.5, because the last state of
the first half of the chain and all states of the second half of
the chain contain the output. In this manner, for every new
reaction added to the CRN, the probability of not observing
an output signal is cut in half. Formally, the probability of
observing the outputbecomesp” > 1—27¢when ¢ > 0 number
of new reactions are added to extend the computation chain.
Choosing ¢ = 5 meets Bennett’s benchmark to observe the
output with at least 95 percent probability at steady state, all

while maintaining the same asymptotic time and space usage.

ENERGY-EFFICIENT SIMULATIONS OF
SPACE-BOUNDED COMPUTATION

Building on the principles of transformer reuse, we previously

proposed a tagged CRN—implementable as a DSD—to solve

~223~

~224~

THE ENERGETICS OF COMPUTING INLIFE & MACHINES

A S1 S, B. S+ {X} S, + {X}

So Su-1 Sp+ {X} Spo1+ X3

: n states ! : n states !
Sy + {X} S, + {3 S+ {1} So+ {Y}

QHQH...HQ O Q QHHQHQ

So+ {X} Sy + {7 S+ {Y} S+ A1}

: n states !

Figure 95. (a) A logically reversible computation chain of a tagged CRN
that has a single configuration containing the output (shown shaded). S;
denotes the multiset of signals present in the ¢th configuration along the
computation chain. (b) Adding a single copy of a new species, say, X, to
the input configuration Sp, where X is not a reactant in the CRN, does not
alter the progress of the computation. (c) The addition of a new reaction—
X+ 5, =Y +S,, where S,,, the multiset of signals present in the original
final configuration, catalyzes the new reaction—doubles the length of the
computation and has the side effect that the output is now present in more
than half of the configurations (shown shaded).

arbitrary instances of the PSPACE-complete quantified 3-
satisfiability problem (Thachuk and Condon 2012). For an
instance consisting of m clauses over n variables, the tagged
CRN requires O(m + n) space. With a polynomial increase
in size, the same tagged CRN can be modified to solve any
instance over n variables. In this way, our solution to simulating
space-bounded computation is not unlike that of a uniform
circuit family. Building on known computational complexity
results, we show that it is possible to simulate any space-
bounded computation with aspace-and energy-efficient tagged
CRN. While our computation is unbiased, and therefore
does not dissipate energy per reaction step, we rely on the
computation beginning out of equilibrium in the input state
and then relaxing to equilibrium as the computation proceeds.
Other simulations, such as those of Bennett (1973) and Qian,

Soloveichik, and Winfree (2011), share the assumption of

Chapter 9: Toward Space- and Energy-Efficient Computations

beginning in a particular input state. In our running example
of an n-bit counter that steps through 2" configurations,
beginning in a particular input state requires setting n bits of
information initially (i.e., fix all bits to the 0 value). In general,
the energy expenditure of our simulation can be bounded as

©(s(n)) foran s(n)-space-bounded tagged CRN computation.

Theorem 2 (Thachuk 2013). Anyproblem solvablein s(n) > n
space can be solved by a logically reversible tagged CRN using
O(s(n)?log s(n)) space and energy.

Discussion

As noted earlier, Bennett raised two objections to chemical im-
plementationsof computationsin which reactions(correspond-
ing to forward computation steps) are unbiased. First, they are
slow, because an unbiased random walk through v configura-

tionsrequires 02

steps, and second, the final configuration is vis-
ited rarely in such a walk. Here we have argued that, despite
the first objection, unbiased chemical simulations are valuable
to avoid blowup of space when simulating space-bounded com-
putations. A key difference between our chemical simulations
and those suggested by Bennett is that both the forward and re-
verse directions of reactions correspond to forward computation
steps. Wehavealsoshownhow thesecond objection canbe over-
come by ensuring that a constant fraction of configurations on
the computation path contains the desired output.

Our Gray code counter simulation (and our more general
simulations of space-bounded computations) are not only
logically reversible but also symmetric, in that reactions can
proceed in both the forward and reverse directions—in this
sense, “symmetric” implies mechanistically reversible. Assuch,
they are also related to symmetric models of computation,

introduced by Lewis and Papadimitriou (1982), where, for a

~225~

~226~

THE ENERGETICS OF COMPUTING INLIFE & MACHINES

given symmetric Turing machine, every transition rule ¢ in its
set of transition rules 7 implies that the inverse transition rule
t! € 7. Chemical implementations of computations in
which reactions are unbiased, while slow, seem to be essential
for simulation of symmetric computations.

Our preceding analyses focused on closed systems with
fixed volume. Might space-efficient DSD implementations of
the standard counter, and space-bounded computations more
generally, be possible if the reactant transformers flow into
the volume as needed to ensure an excess over the product
transformers, and waste, that is, product transformers, is
removed from the system? In such a scenario, although the
volume used by a computation could be linear in the space
of the computation being simulated, the number of reactant
(forward) transformers required overall and the amount of
waste (number of product, or reverse transformers) produced
are exponential in the space. For this reason, we argue that
suchasimulationstillrequires exponential space, unless a way is
found (i.e., an energy-efficient external metabolism) to convert
the waste back into forward transformers.

As the DSD systems we presented fall within the larger
field of DNA computing, it is interesting to contrast our
approach with the field’s seminal work by Adleman (1994) on
solving large combinatorial search problems using DNA, in
terms of space usage. Whereas his work required infeasible
counts of molecules to solve very large problem instances, our
space requirements are efficient. However, unlike Adleman’s
approach to DNA computing, our energy-efficient simulation
and that of Qian, Soloveichik, and Winfree (2011) have an
implicit “single-copy” assumption (Condon et al. 2012) where
it is expected that only a single molecule is initially present

for certain species types. These simulations fail to be logically

Chapter 9: Toward Space- and Energy-Efficient Computations

reversible when this assumption is violated (Thachuk 2013).

We conclude with two open questions.

BALANCE VERSUS SPACE EFFICIENCY?

We say that a logically reversible computation is k-balanced
if, for all transition types, within every computation prefix,
the number of times the transition is executed in the forward
direction differs from the number of times the transition is
executed in the reverse direction by at most k.

The logically reversible simulation of irreversible space-
bounded Turing machines of Lange, McKenzie, and Tapp
(2000) is not balanced: just like the standard binary counter
CRN, transitions are always executed in the forward direction,
because they simulatean Eulerian tour of a configuration graph.
Thus, if this simulation were implemented chemically using
DSDs, it would incur an exponential space blowup.

Incontrast, while Bennettdid notexplicitly design hisrecur-
sive simulation of irreversible space-bounded Turing machines
by logically reversible Turing machines to be balanced, it seems
possible toimplementitin abalanced way by exploiting the back-
tracking inherent to recursive procedures to follow transitions

in the reverse direction. Perhaps Bennett’s simulation can be

~227~

adapted to show that DSPACE (s(n))is contained in BalancedSPACE

(s*(n)), thereby improving Theorem 2 by a logarithmic factor.

Showing that there is a balanced simulation of irreversible
space-bounded Turing machines that avoids a quadratic
increase in space may be more challenging. That is, if
BalancedSPACE (s(n)) is the class of languages recognizable
by O(1)-balanced, logically reversible Turing machines, can we

show that DSPACE (s(n)) = BalancedSPACE (s(n))?

~228~

THE ENERGETICS OF COMPUTING INLIFE & MACHINES

DSDS WITH UNIVERSAL TRANSFORMERS?

Of course, balanced simulations may not be necessary to
avoid space blowups in chemical implementations of logically
reversible computations. Is there a DSD system (or other
molecular system) in which transformers are universal and thus
identical in the forward and reverse directions of a reaction?
Such a system could simulate computations in which all
reactions occur in the forward direction, such as the standard

binary counter, without incurring a signiﬁcant space increase.

Acknowledgments
We thank Erik Winfree, David Soloveichik, Tom Ouldridge,
and David Sivak for helpful discussions and the anonymous

reviewers for their feedback. &

REFERENCES

Adleman, L. M. 1994. “Molecular Computation of Solutions to Combinatorial
Problems.” Science 266 (5187): 1021-1024.

Bennett, C. H. 1973. “Logical Reversibility of Computation.” IBM Journal of
Research and Development 17 (6): 525-532.

. 1981. “The Thermodynamics of Computation—A Review.” International
Journal of Theoretical Physics 21 (12): 905-940.

.1989. “Time/Space Trade-offs for Reversible Computation.” SIAM Journal
on Computing 18 (4): 766-776.

Cardelli, L. 2013. “Two-Domain DNA Strand Displacement.” Mathematical
Structures in Computer Science 23 (2): 247-271.

Condon, A., A.]. Hu, J. Mariuch, and C. Thachuk. 2012. “Less Haste, Less Waste:
On Recycling and Its Limits in Strand Displacement Systems.” Journal of the
Royal Society: Interface Focus 2 (4): 512-521.

Chapter 9: Toward Space- and Energy-Efficient Computations

Cook, M., D. Soloveichik, E. Winfree, and J. Bruck. 2009. “Programmability of
Chemical Reaction Networks.” In Algorithmic Bioprocesses, 543-584. New
York: Springer.

Esposito, Massimiliano, and Christian Van den Broeck. 2011. “Second Law and
Landauer Principle Far from Equilibrium.” Europhysics Letters 95 (4): 40004.

Grochow, J. A., and D. H. Wolpert. 2018. “Beyond Number of Bit Erasures: New
Complexity Questions Raised by Recently Discovered Thermodynamic Costs
of Computation.” SIGACT News 49, no. 2 (June): 33-56.

Landauer, R. 1961. “Irreversibility and Heat Generation in the Computing Process.”
IBM Journal of Research and Development S (3): 183-191.

Lange, K. J., P. McKenzie, and A. Tapp. 2000. “Reversible Space Equals Deterministic
Space.” Journal of Computer Systems Science 60 (2): 354-367.

Lecerf, Y. 1963. “Logique Mathématique: Machines de Turing réversibles.” Comptes
rendus des séances de l'académie des sciences 257:2597-2600.

Lewis, H. R., and C. H. Papadimitriou. 1982. “Symmetric Space-Bounded Compu-
tation.” Theoretical Computer Science XX:161-187.

Parrondo, J. M. R., J. M. Horowitz, and T. Sagawa. 2015. “Thermodynamics of
Information.” Nature Physics 11 (2): 131-XXX.

Qian, L., D. Soloveichik, and E. Winfree. 2011. “Efficient Turing-Universal Compu-
tation with DNA Polymers [extended abstract].” In Proceedings of the 16th An-
nual Conference on DNA Computing, 123-140. Berlin, Heidelberg: Springer-
Verlag.

Sagawa, T. 2014. “Thermodynamic and Logical Reversibilities Revisited.” Journal of
Statistical Mechanics: Theory and Experiment 2014 (3): P03025.

Savage, C. 1997. “A Survey of Combinatorial Gray Codes.” SIAM Review 39 (4):
605-629.

Soloveichik, D., M. Cook, E. Winfree, and J. Bruck. 2008. “Computation with Finite
Stochastic Chemical Reaction Networks.” Natural Computing 7 (4): 615—
633.

Soloveichik, D., G. Seelig, and E. Winfree. 2010. “DNA as a Universal Substrate
for Chemical Kinetics.” Proceedings of the National Academy of Sciences of the
United States of America 107 (12): 5393-5398.

Thachuk, C. 2013. “Space and Energy Efficient Molecular Programming and
Space Efficient Text Indexing Methods for Sequence Alignment.” PhD diss.,
University of British Columbia.

~229~

THE ENERGETICS OF COMPUTING INLIFE & MACHINES

Thachuk, C., and A. Condon. 2012. “Space and Energy Efficient Computation
with DNA Strand Displacement Systems.” Lecture Notes in Computer Science
7433:135-149.

~230~

