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Abstract

Let £ > 3 be an integer, ¢ be a prime power, and F, denote the field of

q elements. Let f;,g9; € Fy[X], 3 < i < k, such that g;(—X) = — gi(X).
We define a graph S(k,q) = S(k,q; fs,93, -, fx,9x) as a graph with the
vertex set F’; and edges defined as follows: vertices a = (aj,ag,...,ax) and

b= (b1,ba,...,b) are adjacent if a; # b; and the following k — 2 relations on

their components hold:

bo —a2>

3<i<k.
b1—a1

bi — a; = gi(by — al)fi(

We show that graphs S(k,q) generalize several recently studied examples of

regular expanders and can provide many new such examples.

1 Introduction and Motivation

All graphs in this paper are simple, i.e., undirected, with no loops and no multiple

edges. See, e.g., Bollobas [4] for standard terminology. Let I' = (V, E) be a graph
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with vertex set V' and edge set E. For a subset of vertices A of V, 0A denotes
the set of edges of I" with one endpoint in A and the other endpoint in V' \ A.
The Cheeger constant h(I') (also known as edge-isoperimetric number or expansion
ratio) of I, is defined by h(I") := min{% tACV0< |4 < %|V|} The graph
I' is d-regular if each vertex is adjacent to exactly d others. An infinite family
of expanders is an infinite family of regular graphs whose Cheeger constants are
uniformly bounded away from 0. More precisely, for n > 1, let I';, = (V,,, E,,) be a
sequence of graphs such that each I', is d,,-regular and |V,,| — oo as n — co. We say
that the members of the sequence form a family of expanders if the corresponding
sequence (h(T',)) is bounded away from zero, i.e. there exists a real number ¢ > 0
such that A(I",) > ¢ for all n > 1. In general, one would like the valency sequence
(dy)n>1 to be growing slowly with n, and ideally, to be bounded above by a constant.
For examples of families of expanders, their theory and applications, see Davidoft,
Sarnak and Valette [8], Hoory, Linial and Wigderson [10], and Krebs and Shaheen

12].

The adjacency matrix A = A(T") of a graph I' = (V, E)) has its rows and columns
labeled by V' and A(z,y) equals the number of edges between = and y (i.e. 0 or
1). When T is simple, the matrix A is symmetric and therefore, its eigenvalues are
real numbers. For j between 1 and the order of I', let A\; = A\;(G) denote the j-th
eigenvalue of A. For an arbitrary graph T', it is hard to find or estimate A(I"), and
often it is done by using the second-largest eigenvalue \o(I") of the adjacency matrix
of I'. If T" is a connected d-regular graph, then %(d — )\2) < h(l) < \/m The
lower bound was proved by Dodziuk [9] and independently by Alon-Milman [1] and
by Alon [2]. In both [1] and [2], the upper bound on A(T), namely /2d(d — \s)
was provided. Mohar in [20] improved the upper bound to the one above. See
[5, 10, 12|, for terminology and results on spectral graph theory and connections
between eigenvalues and expansion properties of graphs. The difference d — A,
which is present is both sides of this inequality above, also known as the spectral gap
of I', provides an estimate on the expansion ratio of the graph. In particular, for an
infinite family of d-regular graphs I',,, the sequence (h(Fn)) is bounded away from

zero if and only if the sequence (d— A3(I',)) is bounded away from zero. A d-regular



connected graph I' is called Ramanujan if A\o(I') < 2v/d — 1. Alon and Boppana
[22] proved that this bound is asymptotically best possible for any infinite family
of d-regular graphs and their results imply that for any infinite family of d-regular
connected graphs ', Ao(T',) > 2¢/d — 1 — 0,(1). For functions f,g : N — R*, we
write f = 0,(g) if f(n)/g(n) — 0 as n — oo.

For the rest of the paper, let ¢ = p°®, where p is a prime and e is a positive integer.
For a sequence of prime powers (¢, )m>1, we always assume that ¢, = p&r, where
Dm is a prime and e,, > 1. Let F, be the finite field of ¢ elements and F’; be the
cartesian product of k copies of IF;. Clearly, IF]; is a vector space of dimension k over
F,. For 2 <+¢ <k, let h; be an arbitrary polynomial in 27 — 2 indeterminants over
F,. We define the bipartite graph BI'y = BI'(q; ho, ..., hg), k > 2, as follows. The
vertex set of BI';, is the disjoint union of two copies of IF’;, one denoted by P and the
other by Ly. We define edges of BI'y by declaring vertices p = (p1,p2, ..., px) € P
and [ = (I1,ls,...,lx) € Lj to be adjacent if the following k& — 1 relations on their

coordinates hold:

Pi + lz = hi(pl,ll,pg,lg, P 7]91'—1712‘—1)7 7= 2, ey ]{Z (1)

The graphs BT’y were introduced by Lazebnik and Woldar [15], as generalizations
of graphs introduced by Lazebnik and Ustimenko in [14] and [16]. For surveys on
these graphs and their applications, see [15] and Lazebnik, Sun and Wang [13|. An
important basic property of graphs BI'; (see [15]) is that for every vertex v of Bl
and every a € [y, there exists a unique neighbor of v whose first coordinate is .

k+1

This implies that each BI'; is ¢-regular, has 2¢* vertices and ¢**! edges.

The spectral and combinatorial properties of three specializations of graphs BT’y has
received particular attention in recent years. Cioabd, Lazebnik and Li [7] determined
the complete spectrum of the Wenger graphs Wi(q) = BI'(q;hs, ..., hxy1) with
hi = pili™t, 2 < i < k+ 1. Cao, Lu, Wan, Wang and Wang [6] determined
the eigenvalues of the linearized Wenger graphs Li(q) = Bl'(q; ho, ..., hyy1) with
h; = pfiizll, 2 < i < k+1, and Yan and Liu [24] determined the multiplicities
of the eigenvalues the linearized Wenger graphs. Moorhouse, Sun and Williford

[21] studied the spectra of graphs D(4,q) = BI'(q; p1l1, p1ls, p2l1), and in particular,
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proved that the second largest eigenvalues of these graphs are bounded from above

by 2,/q (so D(4,q) is ‘close’ to being Ramanujan).

Let V7 and V5 denote the partite sets or color classes of the vertex set of a bipartite
graph I'. The distance-two graph of I' on V; is the graph having V] as its vertex set
with the adjacency defined as follows: two vertices x # y € Vi are adjacent if there
exists a vertex z € V5 adjacent to both z and to y in I (which is equivalent of saying
that x and y are at distance two in I'). If " is d-regular and contains no 4-cycles,
then I'® is a d(d — 1)-regular simple graph. There is simple connection between the
eigenvalues of I' and the eigenvalues of I'® (see, e.g., [7]): every eigenvalue A of I'?
with multiplicity m, corresponds to a pair of eigenvalues +v/A + d of I, each with

multiplicity m (or a single eigenvalue 0 of multiplicity 2m in case A = —d).

This relation between the spectra of g-regular bipartite graph I' and its ¢(¢ — 1)-
regular distance-two graph I'® has been utilized in each of the papers [7, 6, 21]
in order to find or to bound the second-largest eigenvalue of I', and then use this
information to claim the expansion property of I'. In each of these cases, I'® turned
out to be a Cayley graph of a group, that allowed to use representation theory to
compute its spectrum. In [7, 6] the group turned out be abelian, as in [21] it was

not for odd q.

The main motivation behind the construction below is to directly generalize the
defining systems of equations for W,gz)(q) and of L,(f)(q), thereby obtaining a family
of q(¢ — 1)-regular Cayley graphs of an abelian group. The adverb directly used
in the previous sentence was to stress that the graphs we build are not necessarily
distance-two graphs of g-regular bipartite graphs I'. Examples when they are not

will be discussed in Remark 1 of Section 7.

2 Main Results

In this section, we define the main object of this paper, the family of graphs S(k, q)
and we describe our main results. Let k& be an integer, k > 3. Let f;, g; € F,[X],



3 <i <k, be 2(k — 2) polynomials of degrees at most ¢ — 1 such that ¢;(—X) =
— gi(X) for each i. We define S(k,q) = S(k,q; f3,93, ", fx, gx) as the graph with
the vertex set IF]; and edges defined as follows: a = (ay,as,...,a;) is adjacent to
b= (by,by,...,b) if a3 # by and the following k& — 2 relations on their coordinates
hold:

by — as

bi_ai:gi(bl_al)fi( ) , 3<i <k (2)

by —ay
Clearly, the requirement g;(—X) = — ¢;(X) is used for the definition of the adjacency
in S(k, q) to be symmetric. One can easily see that S(k, q) is a Cayley graph with the
underlying group G being the additive group of the vector space F’; with generating

set
{(a,au, gs(a)fs(u), - gu(a) fr(w)) | a € Fi,u € F,}.

This implies that S(k, q) is vertex transitive of degree q(q — 1).
Note that for f; = X' and g; = X, 3 < i < k+1, Sk+1,9) = W(q) is

the distance-two graph of the Wenger graphs Wj(q) on lines and for f; = X0
and g, = X, 3<i<k+1, Sk+1,q) = L,(f)(q) is the distance-two graph of the

linearized Wenger graphs Lg(q) on lines.

In order to present our results, we need a few more notation. For any o € F, let
Tr(a) = a+aP+---+a” ' be the trace of a over F,. It is known that Tr(a) € F,.
For any element 3 € IF,, let 5* denote the unique integer such that 0 < g* < p and
the residue class of 8* in F, is 3. For any complex number ¢, the expression ¢ will

mean . Let ¢, = exp(%ri) be a complex p-th root of unity. For every f € F,[X],

Tr T
wecaller = > (p (s) the exponential sum of f.
z€eF,

We are ready to state the main results of this paper.
The following theorem describes the spectrum of the graphs S(k, q).
Theorem 2.1. Let k > 3. Then the spectrum of S(k,q) is the multiset {\,, | w =

(wy,- -+, wg) € Fr}, where

Tr <aw1 +avwa+ Ek: gi(a) fx (u)wk>

)\w = Z CP =

a€lky uel,

(3)



For a fixed k > 3, the theorem below provides sufficient conditions for the graphs

S(k,q) to form a family of expanders.

Theorem 2.2. Let k > 3, (¢m)m>1 be an increasing sequence of prime powers, and

let
S(kv qm) = S(kv qm; f3,m7 93m," ", fk,mv gk,m)
(m) _ | (m) _ | (m) _
Set d;" = max deg(fim) and dy max deg(gim). Suppose 1 < dy 0m(qm),

d5™ = op(/@m), 1 < dY™ < pm, and for all m > 1, at least one of the following

two conditions is satisfied:

1. The polynomials 1, X, fsm, ..., fem are F,-linearly independent, and g; ,, has

linear term for all i, 3 <1 < k.

2. The polynomials fs.m,,..., fem are F,-linearly independent, and there exists
some 7, 2 < 5 < dém), such that each polynomial g;,, 3 < i < k, contains a
term CE?)X]' with ¢; ; # 0.

Then S(k, qm) is connected and X (S(k, qm)) = om(q2,)-

m

The following two theorems demonstrate that for some specializations of S(k, q), we

can obtain stronger upper bounds on their second largest eigenvalues.

Theorem 2.3. Let q be an odd prime power with ¢ =2 mod 3, and 4 <k < q+1.
Let g;(X) = X3 and f;(X) = X" for eachi, 3 <i < k. Then S(k,q) is connected,
and

Ao (S(k,q)) = max{q(k — 3), (¢ — 1) M, },

where M, = C{’rblgé Eazdtbz < 24/
For large k, specifically, when (¢ — 1)M, < q(k — 3),
Ao (S(k,q)) = a(k — 3) < q(k — 2) = \ (Wi, ().

Similarly to Theorem 2.3, when choosing f;(X) = X?"?, the same f functions as in

L,(f)(q), we obtain the following upper bounds for the second largest eigenvalue.
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Theorem 2.4. Let q be an odd prime power with ¢ =2 mod 3, and 3 < k < e+ 2.
Let gi(X) = X3 and f;(X) = X?"° for eachi, 3 < i < k. Then S(k,q) is connected,
and

A2 (S(k,q)) < max{q(p*~* 1), (¢ — 1)M,},

where M, = nl}ggc Eazd+br < 24/
a, 3

For large k, specifically, when (¢ — 1)M, < q(p*~% — 1),

Ao (S(k,q)) = q(0" 2 — 1) < q(* 2 — 1) = (L2, (a)).

The paper is organized as follows. In Section 3, we present necessary definitions and
results concerning finite fields used in the proofs. In Section 4, we prove Theorem 2.1.
In Section 5, we study some sufficient conditions on f; and g; for the graph S(k, q)
to be connected and have large eigenvalue gap, and prove Theorem 2.2. In Section
6, we prove Theorem 2.3 and Theorem 2.4. We conclude the paper with several

remarks in Section 7.

3 Background on finite fields

For definitions and theory of finite fields, see Lidl and Niederreiter [18].

Lemma 3.1 ([18], Ch.5). If f(X) = bX + ¢ € F,[X] is a polynomial of degree one

or less, then
{ 0, ifb#£0,
Ef =

g™ otherwise.

For a general f € F,[X], no explicit expression for the exponential sum e, exists.

The following theorem provides a good upper bound for the exponential sum €.

Theorem 3.2 (Hasse-Davenport-Weil Bound, [18], Ch.5). Let f € F,[X] be a poly-
nomial of degree n > 1. If ged(n,q) = 1, then

lef| < (n—1)g"%.



Lemma 3.3. Suppose that g € F,[X]| and g(—X) = —g(X). Then ¢, is a real

number.

Proof. We have that

1
£ = D0 G = 1 3T < 1 () et

aclky ackFy ackFy
1 T a ri—gla 1 r a —1r a
= 1 30 (G 4 IO = 1 ST o ¢ Ta)).
acky acFy
Since Cg + CP_B € R for any 3 € F, it follows that ¢, € R. O

4 Spectra of the graphs S(k, q)

The proof we present here is based on the same idea as the one in [7]. Namely,
computing eigenvalues of Cayley graphs by using the method suggested in Babai [3].
The original completely different (and much longer) proof of Theorem 2.1 that used

circulants appears in Sun [23].

Theorem 4.1 ([3]). Let G be a finite group and S C G such that 1 ¢ S and
S=t = S. Let {m,...,m} be a representative set of irreducible C-representations
of G. Suppose that the multiset A\; = {Xi1, Ni2, ..., Nin,} is the spectrum of the

complex n; xn; matriz m;(S) = >_ m(s). Then the spectrum of the Cayley graph X =
s€S
Cay(G, S) is the multiset formed as the union of n; copies of A; fori € {1,2,... k}.

Proof of Theorem 2.1. As we mentioned in Section 2, S(k, q) is a Cayley graph
with the underlying group G being the additive group of the vector space IF’; , and

connection set

{(a,au, gs(a) f3(uw), -, gr(a)fr(u)) | a € Fi,u € Fy}.

Since G is an abelian group, it follows that the irreducible C-representations of G

are linear (see [11], Ch. 2). They are given by

T ('U) _ [CpTT’(wlvl—i----—i-wkvk)]

Y

8



where w = (wy,- -+ ,wi) € FF and v = (vy,--- ,v;) € Fh.

Using Theorem 4.1, we conclude that the spectrum of S(k,q) is a multiset formed

by all Ay, w = (wy, -+ ,wg) € F’;, of the form:

P Z CpTr(wls1+"'+wksk)

ses

r| awi+auvwa+ zk: gi(a) fi (u)wl)

= Z CPT( =

a€Fy uely

5 Connectivity and expansion of the graphs S(k,q)

It is hard to get a closed form of A\, in (3) for arbitrary f; and g;. But if the degrees
of the polynomials f; and g; satisfy some conditions, we are able to show that the
components of the graphs S(k,q) have large eigenvalue gap. For these f; and g;,
we find sufficient conditions such that the graphs S(k, ¢q) are connected, and hence

form a family of expanders.

From now on, for any graph S(k,q; f3, 93, , fx, g), we let d, = max deg(g;) and
dy = ?}rr<1au<>§C deg(fi). We also assume that dy > 1 and d, > 1. For ea&fi, 3 <1<k,

let ¢; ; be the coefficient of X7 in the polynomial g;, for any j, 1 < j <d,, i.e.

gz(X) = Ci,lX + Ci72X2 + ...+ CLngdg.

For any w = (wy,--- ,wy) in FF, let N, be the number of w’s in F, satisfying the

following system

k
wy + uwy + Y i fiww; =0,
=3
k
Sefilww =0,  2<j<d, (4)
=3



and let S, be the set of all u’s in F, such that the following inequality holds for
some j, 2 < j < d,,

k
> e filww; # 0. (5)
i=3
If d, = 1, then system (4) contains only the first equation, and S,, = 0.

Lemma 5.1. Let k > 3. If 1 < d, < p, then for any w = (wy,--- ,wg) in Iﬁ'f;, the
eigenvalue A, of S(k,q) in (3) is at most

Nw(q_1)+|sw|[(dg_1)\/a+l]' (6)

Moreover, A\, = q(q — 1) if and only if N, = q.
Proof. Let w = (wy,...,wg) € F’;. Using Theorem 2.1, we have

Tr (a (w1 4uwa)+ Z gi(a)f z(u)wi)

i—3

=22 G

u€lFq a€lF}

w1+uw2+z (&3 lfz(u)wz} —‘r[l ZC’L ZfZ(U)wz+ +adg ZC’L dgfz( ) ’L)
=3

Ly ngﬂ(a[ o

u€lFq a€lF}

where

k k
a W1+UW2+Z ¢ 1f1(u)w1} +a? 3 ¢ o fi(wwi+-+ad9 3 Ci,dgfi(u)wi)
i=3 =3

= Z C:DTT< =

acky

If u satisfies (4), then z, = ¢ — 1. If u € S, then z, is an exponential sum of a
polynomial of degree at least 2 and at most d,. By the assumption of the theorem
that d, < p and Weil’s bound in Theorem 3.2, it follows that

2l < (dy — 1)y + 1.

Finally, for the remaining ¢ — N,, — |Sy| elements u € F,, we have

k

wy + uwsg + Z Ci71fi(u)wi 7é 0

=3
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k
ZC@jf*U)U%’ = 0, 2 S ] S dg. (7)
1=3

If d, = 1, then system (7) contains only the first inequality. In both cases, we have

2z, = —1. Therefore, we have

Ao = Nu(g=1)+ Y 2w+ (g = N — [Su])(—1)

UESw

< (N — 1)g + |Sul[(dg — 1)v/q + 2]

< Nul(g — 1) 4 |Sul[(dg — 1)v/q + 1].
Let us now prove the second statement of the lemma. It is clear that if N, = g,
then |S,| = 0 and A\, = ¢(¢—1). For the rest of this proof, we assume that N, < g,
and show that A\, < g(¢ —1).
If e > 1, then (d, — 1)\/g+1 < q—1as d; < p. Therefore, A, < q(q—1).
For e = 1, we consider the following two cases: ¢ =p=2and ¢ =p > 3.
If ¢ =p=2, then d, =1 as d, < p, and hence |S,| = 0. Therefore, A\, < q(q — 1).
If g =p > 3, then, as A\, is a real number and |z,| < p — 1, we have

Aw < |Au| = | Z zu| < Z lzu| < p(p—1),

u€lfy u€lfy

and A\, = p(p — 1) if and only if 2, = p — 1 for all u € F,. The latter condition is

equivalent to

k k k
Tr <a [wy +uws + Z ¢ fi(w)w;] +a? Z Ciafi(w)w;+ -+ a% Z Ci,dg f,-(u)w,-) =0
i=3 i=3 =3

for all w € F,. For x € F,,, Tr(x) = 0 if and only if x = 0. This implies that

k

k k
a[wl + wwy + Z ci,lf,-(u)w,-} +a? Z Giafilw)w; +-- -+ als Z Cidy fi(w)w; =
=3 =3

=3
for any a € ;. Therefore, the polynomial

k

k
X[w1+uw2+2021f, X22022fz w; '+ngzci,dgfi(u)wi>
=3

=3

11



which is over F,, has p distinct roots in I, and is of degree at most d,, d, < p.

Hence, it must be zero polynomial, and so N, = p, a contradiction. Hence, A, <
p(p—1). O

Let (¢m)m>1 be an increasing sequence of prime powers. For a fixed k, & > 3,
we consider an infinite family of graphs S(k, gm; f3.m, 93.ms -+ frm, 9e.m). Hence,

_ (m) _ | (m) _
V(S(k,qn))| = ¢, = oo when m — oo. Let d;” = grgl%)ideg(fzvm) and dg

Iax deg(gim), for each m. In what follows we present conditions on dgcm) and dgm)

which imply that the components of these graphs have large eigenvalue gaps.

Theorem 5.2. Let (¢n)m>1 be an increasing sequence of prime powers. Suppose
that d;m) >1land1 < dgm) < pm for all m. Let A\ be the largest eigenvalue of
S(k, qm) which is not ¢ (qm — 1) for any m. Then

A — max (O(d;m)qm), O(dl™ 3/2>)_

g dm
Proof. For any w € F’;m, the eigenvalue A, of S(k,q,) is at most

Noy(@n = 1) + |Sul [(d™ = 1)/ + 1],
by Lemma 5.1.

It is clear that for any w € F';m, system (4) has either N,, = ¢,, solutions or at most
dgcm) solutions with respect to u. If N, = gy, then Ay, = ¢n(gm — 1) by Lemma 5.1.
If Ny < Gm, then N, < dgcm). Therefore, we have

Ao < AV (G — 1) + Gul(d = 1)\/Gm + 1]

< df" g + g3 = max (O(d]" gm), O(dg?)).

As an immediate corollary from Theorem 5.2, we have the following theorem.

Theorem 5.3. Let (¢m)m>1 be an increasing sequence of prime powers. Suppose
that 1 < d\"™ = 0, (), dy” = 0 (\/Gm) and 1 < d™ < py, for all m. Let X be
the largest eigenvalue of S(k, qm) which is not ¢ (qm — 1) for any m. Then

12



Our next theorem provides a sufficient condition for the graph S(k,q) to be con-

nected.

Theorem 5.4. For k> 3, let S(k,q) = S(k,q; f3,93, -, fes 9x) and 1 < d, < p. If

at least one of the following two conditions is satisfied, then S(k,q) is connected.

1. The polynomials 1, X, fs, ..., fi are F,-linearly independent, and g; contains a

linear term for each i, 3 <1 < k.

2. The polynomials fs, ..., fi are F -linearly independent, and there exists some
J, 2 <j <d,, such that each polynomial g;, 3 <1 <k, contains a term ¢; ; X’
with Cij §£ 0.

Proof. First, notice that the number of components of S(k, q) is equal to the mul-
tiplicity of the eigenvalue ¢(¢ — 1). By Lemma 5.1, this multiplicity is equal to
}{w € F'q“ ' Ny, = q}} As the equality N, = ¢ is equivalent to the statement that
system (4) (with respect to u) has ¢ solutions, the set {w € F; : N, = ¢} is a

subspace of IF’;.

Let v = (1707 70)7 Vg = (X707 70)7 and vy = (Ci,lfiv"' 7Ci,dgfi)7 3 <1 <
k. Let rank(vy,ve,vs- -+ ,v;) denote the dimension of the subspace generated by

{v1,v9,v3 -+ ,vx}. Then, we have,

‘{'UJ € IF]; . Nw = q}‘ — qk—rank(v1,1)27v3...7vk)‘

It is clear that if one of the two conditions in the statement of the theorem is satisfied,

then vy, vg,v3, -+ - , vy are [Fy-linearly independent, and hence
rank(vy, vg, v, -+, V) = k.
Therefore, the graph S(k, q) is connected. O

We are ready to prove Theorem 2.2.

Proof of Theorem 2.2. Theorem 2.2 is an immediate corollary of Theorem 5.3

and Theorem 5.4. O
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We conclude this section with an example of families of expanders. Their expansion

properties follow from Theorem 2.2.

Example 5.5. Fix k > 3. Choose (b,,),>1 and (¢,),>1 to be two increasing sequences

of positive real numbers such that b, = o(n), and ¢, = o(y/n).
Let (gm)m>1 be an increasing sequence of prime powers such that b, > k.

Let fsm,-.., fum be such that 1, X, fs ., ..., fum are F -linearly independent and
1< dgfm) < b,. Let g3.m,- .., grm be such that g; ,,(—X) = —g; m(X) for each i, the
coefficient of X in g;,, is non-zero and 1 < dém) < min(pm, ¢, ). Then the graphs

S(k,qm) = S(kyGm; f3m, 93.ms -+ s fems Gem), m > 1, form a family of expanders.

6 Spectra of the graphs S(k,q) for g;(X) = X3

In this section, we provide some specializations of the graphs S(k, q) for g;(X) = X3,
3 <1 <k, and bound or compute their eigenvalues. Our goal is to prove Theorems
2.3 and 2.4.

Lemma 6.1. Let g be an odd prime power with ¢ =2 mod 3 and k > 3. Suppose
that g;(X) = X? for any i, 3 < i < k. For any w € F%, let T,, be the number of
u € F, such that f3(u)ws + --- + fe(u)wy = 0. Then A, is either ¢(T,, — 1) or at

most (¢ — T,y)M,, where M, = 31}215% Eazdtbr < 2/q.

Proof. By (3), we have the following,

Tr (a(w1+uw2)+a3 Zk: fi(u)wi)

)\w = Z Cp = )

acky uel,

for any w = (wq,--- ,wy). Let F(X) = f5(X)ws + -+ - + fo(X)wy.

Case 1: For w of the form (0,0, ws, - -- ,wy), we have:

A, = Z ZCpTr(af’F(u)) n Z ZCpTr(a3F(u))

u€lFq a€ckF} u€lFq a€kF}

F(u)=0 F(u)#0

14



q—l ot Z Z Tr 3F(u

u€lFq a€lF}
F(u)#0

Since ¢ = 2 mod 3, it follows that ged(q — 1,3) = 1, and a ~ a® defines a

Tr(a3F(u
bijection of F,. Therefore the above term ) ¢, ( ( )) equals —1. Hence,
a€lFy

Ao = (= 1Ty — (¢ —Ty) = q(Ty = 1).

Case 2: For those w of the form (wl, 0,ws, -+ ,wy) with wy # 0, we have,
Tr aw1+a F(u Tr aw1+a F(u
e X 36 Y Yo )
u€lFq a€lF} u€Fy acF}
F(u)=0 F(u)#0
= _T + Z Ewia+F(u)ad — 1)
uel,
F(w)#£0
=—q+ Z Ewia+F(u)ad
u€l,
F(u)#0
< —q+ Z M, (by Lemma 3.3, €y,a+ F(u)e3 is real)
u€lF,
F(u)#0

< —q+(¢—Tw)M, < (¢—Tw)M,

q-

Case 3: For those w of the form w = (wy, we, w3, - -+, wy) with wy # 0, we have

Ay = Z Z CpTr(awl-i-auwz) + Z Z CpTr(awl—i-auwg) (8)

u€ly  ackFy u€lfy  ackFy
F(u)=0 F(u)=0
w1 +uwe=0 w1 +uw2#0
Tr (a(w1 +uw2)+a3F(u))
DD - 9)
u€ly acky
F(u)#0

If F(—w;/we) = 0, then the number of v € F, such that F(u) = 0 and

wy + uwy = 0 is 1, and hence,

)\w = (q - 1) T _1 Z Z ngr a(wi+uws)+ad F(u ))

u€lFq a€lF}
F(u)#0
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=q—Tw+ Z g(wl—i-uwg Ja+F(u)ad — 1)
u€lFy

F(u)#0
w1 +uw2#£0

= E € (w1 +uws)a+F(u)ad
u€l,
F(u)2£0
w1 Fuw27#0

< (q - Tw)MQ'

Now assume that F'(—w;/ws) # 0. Then, wy +uwq # 0 if F'(u) = 0. Then the
first double sum in (8) has no terms, the second double sum in (8) is equal to

Tw(—1), and splitting the double sum in (9) into two double sums, we obtain:

A= T+ Z Z c Tr (a(w1+uw2)+a3F(u)> N Z Z ¢ Tr(a(w1+uw2)+a3F(u))

u€lfq  a€lFj u€lfq  a€F?
F(u)#0 F(u)#0
w1 +uwe2=0 wl—i—uwg;éO
Tr 3F Tr aw1+uw2 +a3F(u)
=-T,+ Z Cp + Z Z Cp )
acFy u€lfq  a€lF}
F(u)#0
w1 +uwe7£0
=-T,—1+ Z 8(u}l-i-uwz Ja+F(u)a® — 1)
u€ly
F(u)#0
w1 +uwe#£0
=—q+ Z € (w1 +uwsa)a+F(u)a3
u€lFy
F(u)#0
w1 +uwa#0

<—q+(¢—Tw— 1)Mq <(g-— Tw)MQ'

As ¢ = 2 mod 3, we have gcd(3,¢q) = 1. By Theorem 3.2, M, < 2,/g, and the

lemma is proven. O

Now we prove Theorem 2.3, where f;(X) = X! for any 3 < i < k. In this case,

we are able to determine their second largest eigenvalues.

Proof of Theorem 2.3. Since 3 < k < q-+1, it follows that X2, X3, ... X* ! are
[F-linearly independent, and hence S(k,q) is connected by Theorem 5.4. For any

16



w = (wr,- -, wg) € FF let F(X) = X2w3+ X3w,+- -+ X"y, = X2 (w3 + Xwy+
<o+ + X*3,), which implies that T, (defined in the statement of Lemma 6.1) is
either g or between 1 and k — 2. By Lemma 6.1, we have that if A, is not ¢(7,, — 1),
then it is at most (¢ — 1,,) M, < (¢ — 1)M,. Therefore, we obtain:

X2 (S(k,q)) < max{q(k —3), (¢ — 1)M,}.

Moreover, if & > 4, then the above inequality becomes equality. Indeed, for any
w € IF’; of the form w = (0,ws,0,wy4,0,---,0), where wq,wy # 0, the following
holds:

3,3
)\w — § CpTr(auwg—l—a udwy)

a€F} uclq

— Z Z CpTr(w2x+w4x3)

z€Fq a€Fy,uelq
au=x

r(wax UJSC3
= 3 g

z€lF,

= (q - 1)5w2x+w4x3-

This implies that
max 0){>\w} = (¢ — 1)M,.

w:(07w2707w4707“' ’
w2, wa7#0

Therefore, we have \o(S(k, q)) = max{q(k —3),(¢ — 1)M,}. As ¢ =2 (mod 3), by
Theorem 3.2, M, < 2,/3. O

k—2

Proof of Theorem 2.4. Since 3 < k < e + 2, it follows that X? ---  X?" ~ are
[F-linearly independent, and hence S(k,q) is connected by Theorem 5.4. For any
w = (wy,---,w) € FF let F(X) = XPws 4 --- + X7 Cwp = (XP)ws + - +
(XP)Y* Pwy, = Yws 4 - - -+ Y7 "y, where Y = X?. Since a — a? defines a bijection
on I, it implies that T}, (defined here as the number of roots of F/(X) in F,), is either

q or at most p*~3. The statement of the theorem then follows from Lemma 6.1. [
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7 Concluding remarks

In this section, we make some remarks on several specializations of S(k, ¢) considered

in Section 6.

Remark 1. As we mentioned in Section 1, for every g-regular bipartite graph I,
every eigenvalue of I'® should be at least —q. For graphs S(3,¢; 22, 2°) for prime
q between 5 and 19, and for graphs S(4, ¢; 2%, 23, 23, 23) for prime ¢ between 5 and
13, our computations show that their smallest eigenvalues are strictly less than —q.
This implies that these graphs are not distance two graphs of any g-regular bipartite

graphs.

Remark 2. In Section 6, we discussed the graphs S(k,q) with ¢;(X) = X3. Now
assume that n > 1, and ¢;(X) = X**! for all 4, 3 < i < k. For these graphs,

Lemma 6.1 can be generalized as follows:

Let g be an odd prime power with ¢ Z 1 mod (2n + 1) and (2n 4+ 1,q) = 1. For
any w € F¥, let N, be the number of u € F, such that ws f3(u) 4 - - - + wy fr(u) = 0.
Then A\, is either (N, — 1) or at most 2n(q — Ny)\/q.

In the case when 3 < k < ¢+1, f;(X) = X tand ¢;(X) = X* " foralli,3 <i <k,

the conclusion of Theorem 2.3 can be stated in a slightly weaker form:

Ao (S(k, q)) < max{g(k —3),2n(q¢ — 1)/g}.
Actually, for fixed g, if k is sufficiently large, s (S(k:, q)) =q(k—3) forall n > 1.

Remark 3. The quantity M, = nga};c Eazdipe 1N Theorem 2.3 and Theorem 2.4 is
a,be ;

at most 2,/q by Weil’s bound. From the computational results, M, > 2,/q — 2 for
q < 1331. Interestingly, when ¢ = 53 or 5°, the Weil’s bound is tight.

Remark 4. Let & > 3 be an integer and let f;,g; € F,[X], 3 < i < k+ 1, be
2k — 2 polynomials of degree at most ¢ — 1 such that g;(—X) = —g;(X) for each i,
3<i<k+1. IS(k+1,q9) =SEk+1,¢f393- [t G frr1, grr1) and S(k, q) =
S(k,q; f3,93, - fx, gr), then it is not hard to show that S(k + 1,¢) is a g-cover of
S(k,q) (see, e.g., [10, Section 6]). This implies that the spectrum of S(k+1,q) is a
submultiset the spectrum of S(k, ¢) and, in particular, Ao(S(k+1,q)) > A2(S(k, q)).

18



Interestingly, in the case when f;(X) = X'™! and ¢;(X) = X3 for each i > 3, we

-1
actually have equality in the inequality above for (g, k) whenever k < q—Mq + 2
q

(immediate from Theorem 2.3).

8
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