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Abstract

Let k ≥ 3 be an integer, q be a prime power, and Fq denote the field of

q elements. Let fi, gi ∈ Fq[X], 3 ≤ i ≤ k, such that gi(−X) = − gi(X).

We define a graph S(k, q) = S(k, q; f3, g3, · · · , fk, gk) as a graph with the

vertex set Fk
q and edges defined as follows: vertices a = (a1, a2, . . . , ak) and

b = (b1, b2, . . . , bk) are adjacent if a1 6= b1 and the following k− 2 relations on

their components hold:

bi − ai = gi(b1 − a1)fi

(b2 − a2

b1 − a1

)

, 3 ≤ i ≤ k.

We show that graphs S(k, q) generalize several recently studied examples of

regular expanders and can provide many new such examples.

1 Introduction and Motivation

All graphs in this paper are simple, i.e., undirected, with no loops and no multiple

edges. See, e.g., Bollobás [4] for standard terminology. Let Γ = (V,E) be a graph
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with vertex set V and edge set E. For a subset of vertices A of V , ∂A denotes

the set of edges of Γ with one endpoint in A and the other endpoint in V \ A.

The Cheeger constant h(Γ) (also known as edge-isoperimetric number or expansion

ratio) of Γ, is defined by h(Γ) := min
{

|∂A|
|A|

: A ⊆ V, 0 < |A| ≤ 1
2
|V |

}

. The graph

Γ is d-regular if each vertex is adjacent to exactly d others. An infinite family

of expanders is an infinite family of regular graphs whose Cheeger constants are

uniformly bounded away from 0. More precisely, for n ≥ 1, let Γn = (Vn, En) be a

sequence of graphs such that each Γn is dn-regular and |Vn| → ∞ as n → ∞. We say

that the members of the sequence form a family of expanders if the corresponding

sequence
(

h(Γn)
)

is bounded away from zero, i.e. there exists a real number c > 0

such that h(Γn) ≥ c for all n ≥ 1. In general, one would like the valency sequence

(dn)n≥1 to be growing slowly with n, and ideally, to be bounded above by a constant.

For examples of families of expanders, their theory and applications, see Davidoff,

Sarnak and Valette [8], Hoory, Linial and Wigderson [10], and Krebs and Shaheen

[12].

The adjacency matrix A = A(Γ) of a graph Γ = (V,E) has its rows and columns

labeled by V and A(x, y) equals the number of edges between x and y (i.e. 0 or

1). When Γ is simple, the matrix A is symmetric and therefore, its eigenvalues are

real numbers. For j between 1 and the order of Γ, let λj = λj(G) denote the j-th

eigenvalue of A. For an arbitrary graph Γ, it is hard to find or estimate h(Γ), and

often it is done by using the second-largest eigenvalue λ2(Γ) of the adjacency matrix

of Γ. If Γ is a connected d-regular graph, then 1
2

(

d− λ2

)

≤ h(Γ) ≤
√

d2 − λ2
2. The

lower bound was proved by Dodziuk [9] and independently by Alon-Milman [1] and

by Alon [2]. In both [1] and [2], the upper bound on h(Γ), namely
√

2d(d− λ2)

was provided. Mohar in [20] improved the upper bound to the one above. See

[5, 10, 12], for terminology and results on spectral graph theory and connections

between eigenvalues and expansion properties of graphs. The difference d − λ2

which is present is both sides of this inequality above, also known as the spectral gap

of Γ, provides an estimate on the expansion ratio of the graph. In particular, for an

infinite family of d-regular graphs Γn, the sequence
(

h(Γn)
)

is bounded away from

zero if and only if the sequence
(

d−λ2(Γn)
)

is bounded away from zero. A d-regular
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connected graph Γ is called Ramanujan if λ2(Γ) ≤ 2
√
d− 1. Alon and Boppana

[22] proved that this bound is asymptotically best possible for any infinite family

of d-regular graphs and their results imply that for any infinite family of d-regular

connected graphs Γn, λ2(Γn) ≥ 2
√
d− 1 − on(1). For functions f, g : N → R+, we

write f = on(g) if f(n)/g(n) → 0 as n → ∞.

For the rest of the paper, let q = pe, where p is a prime and e is a positive integer.

For a sequence of prime powers (qm)m≥1, we always assume that qm = pemm , where

pm is a prime and em ≥ 1. Let Fq be the finite field of q elements and Fk
q be the

cartesian product of k copies of Fq. Clearly, Fk
q is a vector space of dimension k over

Fq. For 2 ≤ i ≤ k, let hi be an arbitrary polynomial in 2i− 2 indeterminants over

Fq. We define the bipartite graph BΓk = BΓ(q; h2, . . . , hk), k ≥ 2, as follows. The

vertex set of BΓk is the disjoint union of two copies of Fk
q , one denoted by Pk and the

other by Lk. We define edges of BΓk by declaring vertices p = (p1, p2, . . . , pk) ∈ Pk

and l = (l1, l2, . . . , lk) ∈ Lk to be adjacent if the following k − 1 relations on their

coordinates hold:

pi + li = hi(p1, l1, p2, l2, . . . , pi−1, li−1), i = 2, . . . , k. (1)

The graphs BΓk were introduced by Lazebnik and Woldar [15], as generalizations

of graphs introduced by Lazebnik and Ustimenko in [14] and [16]. For surveys on

these graphs and their applications, see [15] and Lazebnik, Sun and Wang [13]. An

important basic property of graphs BΓk (see [15]) is that for every vertex v of BΓk

and every α ∈ Fq, there exists a unique neighbor of v whose first coordinate is α.

This implies that each BΓk is q-regular, has 2qk vertices and qk+1 edges.

The spectral and combinatorial properties of three specializations of graphs BΓk has

received particular attention in recent years. Cioabă, Lazebnik and Li [7] determined

the complete spectrum of the Wenger graphs Wk(q) = BΓ(q; h2, . . . , hk+1) with

hi = p1l
i−1
1 , 2 ≤ i ≤ k + 1. Cao, Lu, Wan, Wang and Wang [6] determined

the eigenvalues of the linearized Wenger graphs Lk(q) = BΓ(q; h2, . . . , hk+1) with

hi = pp
i−2

1 l1, 2 ≤ i ≤ k + 1, and Yan and Liu [24] determined the multiplicities

of the eigenvalues the linearized Wenger graphs. Moorhouse, Sun and Williford

[21] studied the spectra of graphs D(4, q) = BΓ(q; p1l1, p1l2, p2l1), and in particular,
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proved that the second largest eigenvalues of these graphs are bounded from above

by 2
√
q (so D(4, q) is ‘close’ to being Ramanujan).

Let V1 and V2 denote the partite sets or color classes of the vertex set of a bipartite

graph Γ. The distance-two graph of Γ on V1 is the graph having V1 as its vertex set

with the adjacency defined as follows: two vertices x 6= y ∈ V1 are adjacent if there

exists a vertex z ∈ V2 adjacent to both x and to y in Γ (which is equivalent of saying

that x and y are at distance two in Γ). If Γ is d-regular and contains no 4-cycles,

then Γ(2) is a d(d−1)-regular simple graph. There is simple connection between the

eigenvalues of Γ and the eigenvalues of Γ(2) (see, e.g., [7]): every eigenvalue λ of Γ(2)

with multiplicity m, corresponds to a pair of eigenvalues ±
√
λ+ d of Γ, each with

multiplicity m (or a single eigenvalue 0 of multiplicity 2m in case λ = −d).

This relation between the spectra of q-regular bipartite graph Γ and its q(q − 1)-

regular distance-two graph Γ(2) has been utilized in each of the papers [7, 6, 21]

in order to find or to bound the second-largest eigenvalue of Γ, and then use this

information to claim the expansion property of Γ. In each of these cases, Γ(2) turned

out to be a Cayley graph of a group, that allowed to use representation theory to

compute its spectrum. In [7, 6] the group turned out be abelian, as in [21] it was

not for odd q.

The main motivation behind the construction below is to directly generalize the

defining systems of equations for W
(2)
k (q) and of L

(2)
k (q), thereby obtaining a family

of q(q − 1)-regular Cayley graphs of an abelian group. The adverb directly used

in the previous sentence was to stress that the graphs we build are not necessarily

distance-two graphs of q-regular bipartite graphs Γ. Examples when they are not

will be discussed in Remark 1 of Section 7.

2 Main Results

In this section, we define the main object of this paper, the family of graphs S(k, q)

and we describe our main results. Let k be an integer, k ≥ 3. Let fi, gi ∈ Fq[X ],
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3 ≤ i ≤ k, be 2(k − 2) polynomials of degrees at most q − 1 such that gi(−X) =

− gi(X) for each i. We define S(k, q) = S(k, q; f3, g3, · · · , fk, gk) as the graph with

the vertex set Fk
q and edges defined as follows: a = (a1, a2, . . . , ak) is adjacent to

b = (b1, b2, . . . , bk) if a1 6= b1 and the following k − 2 relations on their coordinates

hold:

bi − ai = gi(b1 − a1)fi

(b2 − a2
b1 − a1

)

, 3 ≤ i ≤ k. (2)

Clearly, the requirement gi(−X) = − gi(X) is used for the definition of the adjacency

in S(k, q) to be symmetric. One can easily see that S(k, q) is a Cayley graph with the

underlying group G being the additive group of the vector space Fk
q with generating

set
{(

a, au, g3(a)f3(u), · · · , gk(a)fk(u)
)

| a ∈ F
∗
q , u ∈ Fq

}

.

This implies that S(k, q) is vertex transitive of degree q(q − 1).

Note that for fi = X i−1 and gi = X, 3 ≤ i ≤ k + 1, S(k + 1, q) = W
(2)
k (q) is

the distance-two graph of the Wenger graphs Wk(q) on lines and for fi = Xpi−2

and gi = X, 3 ≤ i ≤ k + 1, S(k + 1, q) = L
(2)
k (q) is the distance-two graph of the

linearized Wenger graphs Lk(q) on lines.

In order to present our results, we need a few more notation. For any α ∈ Fq, let

Tr(α) = α+αp+ · · ·+αpe−1

be the trace of α over Fp. It is known that Tr(α) ∈ Fp.

For any element β ∈ Fp, let β∗ denote the unique integer such that 0 ≤ β∗ < p and

the residue class of β∗ in Fp is β. For any complex number c, the expression cβ will

mean cβ
∗

. Let ζp = exp(2π
p
i) be a complex p-th root of unity. For every f ∈ Fq[X ],

we call εf =
∑

x∈Fq

ζ
Tr
(

f(x)
)

p the exponential sum of f .

We are ready to state the main results of this paper.

The following theorem describes the spectrum of the graphs S(k, q).

Theorem 2.1. Let k ≥ 3. Then the spectrum of S(k, q) is the multiset {λw | w =

(w1, · · · , wk) ∈ F
k
q}, where

λw =
∑

a∈F∗

q ,u∈Fq

ζ
Tr

(

aw1+auw2+
k∑

i=3

gi(a)fk(u)wk

)

p . (3)
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For a fixed k ≥ 3, the theorem below provides sufficient conditions for the graphs

S(k, q) to form a family of expanders.

Theorem 2.2. Let k ≥ 3, (qm)m≥1 be an increasing sequence of prime powers, and

let

S(k, qm) = S(k, qm; f3,m, g3,m, · · · , fk,m, gk,m).

Set d
(m)
f = max

3≤i≤k
deg(fi,m) and d

(m)
g = max

3≤i≤k
deg(gi,m). Suppose 1 ≤ d

(m)
f = om(qm),

d
(m)
g = om(

√
qm), 1 ≤ d

(m)
g < pm, and for all m ≥ 1, at least one of the following

two conditions is satisfied:

1. The polynomials 1, X, f3,m, . . . , fk,m are Fq-linearly independent, and gi,m has

linear term for all i, 3 ≤ i ≤ k.

2. The polynomials f3,m, . . . , fk,m are Fq-linearly independent, and there exists

some j, 2 ≤ j ≤ d
(m)
g , such that each polynomial gi,m, 3 ≤ i ≤ k, contains a

term c
(m)
i,j Xj with ci,j 6= 0.

Then S(k, qm) is connected and λ2

(

S(k, qm)
)

= om(q
2
m).

The following two theorems demonstrate that for some specializations of S(k, q), we

can obtain stronger upper bounds on their second largest eigenvalues.

Theorem 2.3. Let q be an odd prime power with q ≡ 2 mod 3, and 4 ≤ k ≤ q+1.

Let gi(X) = X3 and fi(X) = X i−1 for each i, 3 ≤ i ≤ k. Then S(k, q) is connected,

and

λ2

(

S(k, q)
)

= max
{

q(k − 3), (q − 1)Mq

}

,

where Mq = max
a,b∈F∗

q

εax3+bx ≤ 2
√
q.

For large k, specifically, when (q − 1)Mq ≤ q(k − 3),

λ2

(

S(k, q)
)

= q(k − 3) < q(k − 2) = λ2

(

W
(2)
k−1(q)

)

.

Similarly to Theorem 2.3, when choosing fi(X) = Xpi−2

, the same f functions as in

L
(2)
k (q), we obtain the following upper bounds for the second largest eigenvalue.
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Theorem 2.4. Let q be an odd prime power with q ≡ 2 mod 3, and 3 ≤ k ≤ e+2.

Let gi(X) = X3 and fi(X) = Xpi−2

for each i, 3 ≤ i ≤ k. Then S(k, q) is connected,

and

λ2

(

S(k, q)
)

≤ max
{

q(pk−3 − 1), (q − 1)Mq

}

,

where Mq = max
a,b∈F∗

q

εax3+bx ≤ 2
√
q.

For large k, specifically, when (q − 1)Mq ≤ q(pk−3 − 1),

λ2

(

S(k, q)
)

= q(pk−3 − 1) < q(pk−2 − 1) = λ2

(

L
(2)
k−1(q)

)

.

The paper is organized as follows. In Section 3, we present necessary definitions and

results concerning finite fields used in the proofs. In Section 4, we prove Theorem 2.1.

In Section 5, we study some sufficient conditions on fi and gi for the graph S(k, q)

to be connected and have large eigenvalue gap, and prove Theorem 2.2. In Section

6, we prove Theorem 2.3 and Theorem 2.4. We conclude the paper with several

remarks in Section 7.

3 Background on finite fields

For definitions and theory of finite fields, see Lidl and Niederreiter [18].

Lemma 3.1 ([18], Ch.5). If f(X) = bX + c ∈ Fq[X ] is a polynomial of degree one

or less, then

εf =

{

0, if b 6= 0,

qζTr(c), otherwise.

For a general f ∈ Fq[X ], no explicit expression for the exponential sum εf exists.

The following theorem provides a good upper bound for the exponential sum εf .

Theorem 3.2 (Hasse-Davenport-Weil Bound, [18], Ch.5). Let f ∈ Fq[X ] be a poly-

nomial of degree n ≥ 1. If gcd(n, q) = 1, then

|εf | ≤ (n− 1)q1/2.
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Lemma 3.3. Suppose that g ∈ Fq[X ] and g(−X) = − g(X). Then εg is a real

number.

Proof. We have that

εg =
∑

a∈Fq

ζ Tr(g(a))
p = 1 +

∑

a∈F∗

q

ζ Tr(g(a))
p = 1 +

1

2

∑

a∈F∗

q

(

ζ Tr(g(a))
p + ζ Tr(g(−a))

p

)

= 1 +
1

2

∑

a∈F∗

q

(

ζ Tr(g(a))
p + ζ Tr(−g(a))

p

)

= 1 +
1

2

∑

a∈F∗

q

(

ζ Tr(g(a))
p + ζ −Tr(g(a))

p

)

.

Since ζβp + ζ−β
p ∈ R for any β ∈ Fp, it follows that εg ∈ R.

4 Spectra of the graphs S(k, q)

The proof we present here is based on the same idea as the one in [7]. Namely,

computing eigenvalues of Cayley graphs by using the method suggested in Babai [3].

The original completely different (and much longer) proof of Theorem 2.1 that used

circulants appears in Sun [23].

Theorem 4.1 ([3]). Let G be a finite group and S ⊆ G such that 1 6∈ S and

S−1 = S. Let {π1, . . . , πk} be a representative set of irreducible C-representations

of G. Suppose that the multiset Λi := {λi,1, λi,2, . . . , λi,ni
} is the spectrum of the

complex ni×ni matrix πi(S) =
∑

s∈S

πi(s). Then the spectrum of the Cayley graph X =

Cay(G, S) is the multiset formed as the union of ni copies of Λi for i ∈ {1, 2, . . . , k}.

Proof of Theorem 2.1. As we mentioned in Section 2, S(k, q) is a Cayley graph

with the underlying group G being the additive group of the vector space F
k
q , and

connection set

{(

a, au, g3(a)f3(u), · · · , gk(a)fk(u)
)

| a ∈ F
∗
q , u ∈ Fq

}

.

Since G is an abelian group, it follows that the irreducible C-representations of G

are linear (see [11], Ch. 2). They are given by

πw(v) = [ζ Tr(w1v1+···+wkvk)
p ],
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where w = (w1, · · · , wk) ∈ Fk
q and v = (v1, · · · , vk) ∈ Fk

q .

Using Theorem 4.1, we conclude that the spectrum of S(k, q) is a multiset formed

by all λw, w = (w1, · · · , wk) ∈ Fk
q , of the form:

λw =
∑

s∈S

ζ Tr(w1s1+···+wksk)
p

=
∑

a∈F∗

q ,u∈Fq

ζ
Tr
(

aw1+auw2+
k∑

i=3

gi(a)fi(u)wi

)

p .

5 Connectivity and expansion of the graphs S(k, q)

It is hard to get a closed form of λw in (3) for arbitrary fi and gi. But if the degrees

of the polynomials fi and gi satisfy some conditions, we are able to show that the

components of the graphs S(k, q) have large eigenvalue gap. For these fi and gi,

we find sufficient conditions such that the graphs S(k, q) are connected, and hence

form a family of expanders.

From now on, for any graph S(k, q; f3, g3, · · · , fk, gk), we let dg = max
3≤i≤k

deg(gi) and

df = max
3≤i≤k

deg(fi). We also assume that df ≥ 1 and dg ≥ 1. For each i, 3 ≤ i ≤ k,

let ci,j be the coefficient of Xj in the polynomial gi, for any j, 1 ≤ j ≤ dg, i.e.

gi(X) = ci,1X + ci,2X
2 + . . .+ ci,dgX

dg .

For any w = (w1, · · · , wk) in Fk
q , let Nw be the number of u’s in Fq satisfying the

following system

w1 + uw2 +

k
∑

i=3

ci,1fi(u)wi = 0,

k
∑

i=3

ci,jfi(u)wi = 0, 2 ≤ j ≤ dg (4)

9



and let Sw be the set of all u’s in Fq such that the following inequality holds for

some j, 2 ≤ j ≤ dg,
k

∑

i=3

ci,jfi(u)wi 6= 0. (5)

If dg = 1, then system (4) contains only the first equation, and Sw = ∅.

Lemma 5.1. Let k ≥ 3. If 1 ≤ dg < p, then for any w = (w1, · · · , wk) in Fk
q , the

eigenvalue λw of S(k, q) in (3) is at most

Nw(q − 1) + |Sw|[(dg − 1)
√
q + 1]. (6)

Moreover, λw = q(q − 1) if and only if Nw = q.

Proof. Let w = (w1, . . . , wk) ∈ Fk
q . Using Theorem 2.1, we have

λw =
∑

u∈Fq

∑

a∈F∗

q

ζ
Tr

(

a(w1+uw2)+
k∑

i=3

gi(a)fi(u)wi

)

p

=
∑

u∈Fq

∑

a∈F∗

q

ζ
Tr

(

a
[

w1+uw2+
k∑

i=3

ci,1fi(u)wi

]

+a2
k∑

i=3

ci,2fi(u)wi+···+adg
k∑

i=3

ci,dgfi(u)wi

)

p

=
∑

u∈Fq

zu,

where

zu =
∑

a∈F∗

q

ζ
Tr

(

a
[

w1+uw2+
k∑

i=3

ci,1fi(u)wi

]

+a2
k∑

i=3

ci,2fi(u)wi+···+adg
k∑

i=3

ci,dgfi(u)wi

)

p .

If u satisfies (4), then zu = q − 1. If u ∈ Sw, then zu is an exponential sum of a

polynomial of degree at least 2 and at most dg. By the assumption of the theorem

that dg < p and Weil’s bound in Theorem 3.2, it follows that

|zu| ≤ (dg − 1)
√
q + 1.

Finally, for the remaining q −Nw − |Sw| elements u ∈ Fq, we have

w1 + uw2 +
k

∑

i=3

ci,1fi(u)wi 6= 0

10



k
∑

i=3

ci,jfi(u)wi = 0, 2 ≤ j ≤ dg. (7)

If dg = 1, then system (7) contains only the first inequality. In both cases, we have

zu = −1. Therefore, we have

λw = Nw(q − 1) +
∑

u∈Sw

zu + (q −Nw − |Sw|)(−1)

≤ (Nw − 1)q + |Sw|[(dg − 1)
√
q + 2]

≤ Nw(q − 1) + |Sw|[(dg − 1)
√
q + 1].

Let us now prove the second statement of the lemma. It is clear that if Nw = q,

then |Sw| = 0 and λw = q(q−1). For the rest of this proof, we assume that Nw < q,

and show that λw < q(q − 1).

If e > 1, then (dg − 1)
√
q + 1 < q − 1 as dg < p. Therefore, λw < q(q − 1).

For e = 1, we consider the following two cases: q = p = 2 and q = p ≥ 3.

If q = p = 2, then dg = 1 as dg < p, and hence |Sw| = 0. Therefore, λw < q(q − 1).

If q = p ≥ 3, then, as λw is a real number and |zu| ≤ p− 1, we have

λw ≤ |λw| = |
∑

u∈Fp

zu| ≤
∑

u∈Fp

|zu| ≤ p(p− 1),

and λw = p(p − 1) if and only if zu = p − 1 for all u ∈ Fp. The latter condition is

equivalent to

Tr
(

a
[

w1+uw2+

k
∑

i=3

ci,1fi(u)wi

]

+ a2
k

∑

i=3

ci,2fi(u)wi+ · · ·+ adg
k

∑

i=3

ci,dgfi(u)wi

)

= 0

for all u ∈ Fp. For x ∈ Fp, Tr(x) = 0 if and only if x = 0. This implies that

a
[

w1 + uw2 +
k

∑

i=3

ci,1fi(u)wi

]

+ a2
k

∑

i=3

ci,2fi(u)wi + · · ·+ adg
k

∑

i=3

ci,dgfi(u)wi = 0

for any a ∈ F∗
p. Therefore, the polynomial

X
[

w1 + uw2 +
k

∑

i=3

ci,1fi(u)wi

]

+X2
k

∑

i=3

ci,2fi(u)wi + · · ·+Xdg

k
∑

i=3

ci,dgfi(u)wi,

11



which is over Fp, has p distinct roots in Fp and is of degree at most dg, dg < p.

Hence, it must be zero polynomial, and so Np = p, a contradiction. Hence, λw <

p(p− 1).

Let (qm)m≥1 be an increasing sequence of prime powers. For a fixed k, k ≥ 3,

we consider an infinite family of graphs S(k, qm; f3,m, g3,m, · · · , fk,m, gk,m). Hence,

|V
(

S(k, qm)
)

| = qkm → ∞ when m → ∞. Let d
(m)
f = max

3≤i≤k
deg(fi,m) and d

(m)
g =

max
3≤i≤k

deg(gi,m), for each m. In what follows we present conditions on d
(m)
f and d

(m)
g

which imply that the components of these graphs have large eigenvalue gaps.

Theorem 5.2. Let (qm)m≥1 be an increasing sequence of prime powers. Suppose

that d
(m)
f ≥ 1 and 1 ≤ d

(m)
g < pm for all m. Let λ(m) be the largest eigenvalue of

S(k, qm) which is not qm(qm − 1) for any m. Then

λ(m) = max
(

O(d
(m)
f qm), O(d(m)

g q3/2m )
)

.

Proof. For any w ∈ F
k
qm, the eigenvalue λw of S(k, qm) is at most

Nw(qm − 1) + |Sw|[(d(m)
g − 1)

√
qm + 1],

by Lemma 5.1.

It is clear that for any w ∈ Fk
qm , system (4) has either Nw = qm solutions or at most

d
(m)
f solutions with respect to u. If Nw = qm, then λw = qm(qm − 1) by Lemma 5.1.

If Nw < qm, then Nw ≤ d
(m)
f . Therefore, we have

λw ≤ d
(m)
f (qm − 1) + qm[(d

(m)
g − 1)

√
qm + 1]

≤ d
(m)
f qm + d(m)

g q3/2m = max
(

O(d
(m)
f qm), O(d(m)

g q3/2m )
)

.

As an immediate corollary from Theorem 5.2, we have the following theorem.

Theorem 5.3. Let (qm)m≥1 be an increasing sequence of prime powers. Suppose

that 1 ≤ d
(m)
f = om(qm), d

(m)
g = om(

√
qm) and 1 ≤ d

(m)
g < pm for all m. Let λ(m) be

the largest eigenvalue of S(k, qm) which is not qm(qm − 1) for any m. Then

λ(m) = om(q
2
m).
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Our next theorem provides a sufficient condition for the graph S(k, q) to be con-

nected.

Theorem 5.4. For k ≥ 3, let S(k, q) = S(k, q; f3, g3, · · · , fk, gk) and 1 ≤ dg < p. If

at least one of the following two conditions is satisfied, then S(k, q) is connected.

1. The polynomials 1, X, f3, . . . , fk are Fq-linearly independent, and gi contains a

linear term for each i, 3 ≤ i ≤ k.

2. The polynomials f3, . . . , fk are Fq-linearly independent, and there exists some

j, 2 ≤ j ≤ dg, such that each polynomial gi, 3 ≤ i ≤ k, contains a term ci,jX
j

with ci,j 6= 0.

Proof. First, notice that the number of components of S(k, q) is equal to the mul-

tiplicity of the eigenvalue q(q − 1). By Lemma 5.1, this multiplicity is equal to
∣

∣{w ∈ Fk
q : Nw = q}

∣

∣. As the equality Nw = q is equivalent to the statement that

system (4) (with respect to u) has q solutions, the set {w ∈ F
k
q : Nw = q} is a

subspace of Fk
q .

Let v1 = (1, 0, · · · , 0), v2 = (X, 0, · · · , 0), and vi = (ci,1fi, · · · , ci,dgfi), 3 ≤ i ≤
k. Let rank(v1, v2, v3 · · · , vk) denote the dimension of the subspace generated by

{v1, v2, v3 · · · , vk}. Then, we have,

∣

∣{w ∈ F
k
q : Nw = q}

∣

∣ = qk−rank(v1,v2,v3··· ,vk).

It is clear that if one of the two conditions in the statement of the theorem is satisfied,

then v1, v2, v3, · · · , vk are Fq-linearly independent, and hence

rank(v1, v2, v3, · · · , vk) = k.

Therefore, the graph S(k, q) is connected.

We are ready to prove Theorem 2.2.

Proof of Theorem 2.2. Theorem 2.2 is an immediate corollary of Theorem 5.3

and Theorem 5.4.

13



We conclude this section with an example of families of expanders. Their expansion

properties follow from Theorem 2.2.

Example 5.5. Fix k ≥ 3. Choose (bn)n≥1 and (cn)n≥1 to be two increasing sequences

of positive real numbers such that bn = o(n), and cn = o(
√
n).

Let (qm)m≥1 be an increasing sequence of prime powers such that bq1 ≥ k.

Let f3,m, . . . , fk,m be such that 1, X, f3,m, . . . , fk,m are Fq-linearly independent and

1 ≤ d
(m)
f < bq. Let g3,m, . . . , gk,m be such that gi,m(−X) = −gi,m(X) for each i, the

coefficient of X in gi,m is non-zero and 1 ≤ d
(m)
g < min(pm, cqm). Then the graphs

S(k, qm) = S(k, qm; f3,m, g3,m, · · · , fk,m, gk,m), m ≥ 1, form a family of expanders.

6 Spectra of the graphs S(k, q) for gi(X) = X3

In this section, we provide some specializations of the graphs S(k, q) for gi(X) = X3,

3 ≤ i ≤ k, and bound or compute their eigenvalues. Our goal is to prove Theorems

2.3 and 2.4.

Lemma 6.1. Let q be an odd prime power with q ≡ 2 mod 3 and k ≥ 3. Suppose

that gi(X) = X3 for any i, 3 ≤ i ≤ k. For any w ∈ Fk
q , let Tw be the number of

u ∈ Fq such that f3(u)w3 + · · · + fk(u)wk = 0. Then λw is either q(Tw − 1) or at

most (q − Tw)Mq, where Mq = max
a,b∈F∗

q

εax3+bx ≤ 2
√
q.

Proof. By (3), we have the following,

λw =
∑

a∈F∗

q ,u∈Fq

ζ
Tr
(

a(w1+uw2)+a3
k∑

i=3

fi(u)wi

)

p ,

for any w = (w1, · · · , wk). Let F (X) = f3(X)w3 + · · ·+ fk(X)wk.

Case 1: For w of the form (0, 0, w3, · · · , wk), we have:

λw =
∑

u∈Fq

F (u)=0

∑

a∈F∗

q

ζ
Tr
(

a3F (u)
)

p +
∑

u∈Fq

F (u)6=0

∑

a∈F∗

q

ζ
Tr
(

a3F (u)
)

p

14



= (q − 1)Tw +
∑

u∈Fq

F (u)6=0

∑

a∈F∗

q

ζ
Tr
(

a3F (u)
)

p .

Since q ≡ 2 mod 3, it follows that gcd(q − 1, 3) = 1, and a 7→ a3 defines a

bijection of Fq. Therefore the above term
∑

a∈F∗

q

ζ
Tr
(

a3F (u)
)

p equals −1. Hence,

λw = (q − 1)Tw − (q − Tw) = q(Tw − 1).

Case 2: For those w of the form (w1, 0, w3, · · · , wk) with w1 6= 0, we have,

λw =
∑

u∈Fq

F (u)=0

∑

a∈F∗

q

ζ
Tr
(

aw1+a3F (u)
)

p +
∑

u∈Fq

F (u)6=0

∑

a∈F∗

q

ζ
Tr
(

aw1+a3F (u)
)

p

= −Tw +
∑

u∈Fq

F (u)6=0

(εw1a+F (u)a3 − 1)

= −q +
∑

u∈Fq

F (u)6=0

εw1a+F (u)a3

≤ −q +
∑

u∈Fq

F (u)6=0

Mq (by Lemma 3.3, εw1a+F (u)a3 is real)

≤ −q + (q − Tw)Mq < (q − Tw)Mq.

Case 3: For those w of the form w = (w1, w2, w3, · · · , wk) with w2 6= 0, we have

λw =
∑

u∈Fq

F (u)=0
w1+uw2=0

∑

a∈F∗

q

ζ Tr(aw1+auw2)
p +

∑

u∈Fq

F (u)=0
w1+uw2 6=0

∑

a∈F∗

q

ζ Tr(aw1+auw2)
p (8)

+
∑

u∈Fq

F (u)6=0

∑

a∈F∗

q

ζ
Tr
(

a(w1+uw2)+a3F (u)
)

p . (9)

If F (−w1/w2) = 0, then the number of u ∈ Fq such that F (u) = 0 and

w1 + uw2 = 0 is 1, and hence,

λw = (q − 1)− (Tw − 1) +
∑

u∈Fq

F (u)6=0

∑

a∈F∗

q

ζ
Tr
(

a(w1+uw2)+a3F (u)
)

p

15



= q − Tw +
∑

u∈Fq

F (u)6=0
w1+uw2 6=0

(ε(w1+uw2)a+F (u)a3 − 1)

=
∑

u∈Fq

F (u)6=0
w1+uw2 6=0

ε(w1+uw2)a+F (u)a3

≤ (q − Tw)Mq.

Now assume that F (−w1/w2) 6= 0. Then, w1+uw2 6= 0 if F (u) = 0. Then the

first double sum in (8) has no terms, the second double sum in (8) is equal to

Tw(−1), and splitting the double sum in (9) into two double sums, we obtain:

λw = −Tw +
∑

u∈Fq

F (u)6=0
w1+uw2=0

∑

a∈F∗

q

ζ
Tr
(

a(w1+uw2)+a3F (u)
)

p +
∑

u∈Fq

F (u)6=0
w1+uw2 6=0

∑

a∈F∗

q

ζ
Tr
(

a(w1+uw2)+a3F (u)
)

p

= −Tw +
∑

a∈F∗

q

ζ
Tr
(

a3F (u)
)

p +
∑

u∈Fq

F (u)6=0
w1+uw2 6=0

∑

a∈F∗

q

ζ
Tr
(

a(w1+uw2)+a3F (u)
)

p

= −Tw − 1 +
∑

u∈Fq

F (u)6=0
w1+uw2 6=0

(ε(w1+uw2)a+F (u)a3 − 1)

= −q +
∑

u∈Fq

F (u)6=0
w1+uw2 6=0

ε(w1+uw2)a+F (u)a3

≤ −q + (q − Tw − 1)Mq < (q − Tw)Mq.

As q ≡ 2 mod 3, we have gcd(3, q) = 1. By Theorem 3.2, Mq ≤ 2
√
q, and the

lemma is proven.

Now we prove Theorem 2.3, where fi(X) = X i−1, for any 3 ≤ i ≤ k. In this case,

we are able to determine their second largest eigenvalues.

Proof of Theorem 2.3. Since 3 ≤ k ≤ q+1, it follows that X2, X3, · · · , Xk−1 are

Fq-linearly independent, and hence S(k, q) is connected by Theorem 5.4. For any

16



w = (w1, · · · , wk) ∈ Fk
q , let F (X) = X2w3+X3w4+ · · ·+Xk−1wk = X2(w3+Xw4+

· · · + Xk−3wk), which implies that Tw (defined in the statement of Lemma 6.1) is

either q or between 1 and k−2. By Lemma 6.1, we have that if λw is not q(Tw −1),

then it is at most (q − Tw)Mq ≤ (q − 1)Mq. Therefore, we obtain:

λ2

(

S(k, q)
)

≤ max{q(k − 3), (q − 1)Mq}.

Moreover, if k ≥ 4, then the above inequality becomes equality. Indeed, for any

w ∈ Fk
q of the form w = (0, w2, 0, w4, 0, · · · , 0), where w2, w4 6= 0, the following

holds:

λw =
∑

a∈F∗

q ,u∈Fq

ζ Tr(auw2+a3u3w4)
p

=
∑

x∈Fq

∑

a∈F∗

q ,u∈Fq

au=x

ζ Tr(w2x+w4x3)
p

=
∑

x∈Fq

(q − 1)ζ Tr(w2x+w4x3)
p

= (q − 1)εw2x+w4x3 .

This implies that

max
w=(0,w2,0,w4,0,··· ,0)

w2,w4 6=0

{λw} = (q − 1)Mq.

Therefore, we have λ2(S(k, q)) = max{q(k − 3), (q − 1)Mq}. As q ≡ 2 (mod 3), by

Theorem 3.2, Mq ≤ 2
√
q.

Proof of Theorem 2.4. Since 3 ≤ k ≤ e + 2, it follows that Xp, · · · , Xpk−2

are

Fq-linearly independent, and hence S(k, q) is connected by Theorem 5.4. For any

w = (w1, · · · , wk) ∈ Fk
q , let F (X) = Xpw3 + · · · + Xpk−2

wk = (Xp)w3 + · · · +
(Xp)p

k−3

wk = Y w3 + · · ·+ Y pk−3

wk where Y = Xp. Since a 7→ ap defines a bijection

on Fq, it implies that Tw (defined here as the number of roots of F (X) in Fq), is either

q or at most pk−3. The statement of the theorem then follows from Lemma 6.1.

17



7 Concluding remarks

In this section, we make some remarks on several specializations of S(k, q) considered

in Section 6.

Remark 1. As we mentioned in Section 1, for every q-regular bipartite graph Γ,

every eigenvalue of Γ(2) should be at least −q. For graphs S(3, q; x2, x3) for prime

q between 5 and 19, and for graphs S(4, q; x2, x3, x3, x3) for prime q between 5 and

13, our computations show that their smallest eigenvalues are strictly less than −q.

This implies that these graphs are not distance two graphs of any q-regular bipartite

graphs.

Remark 2. In Section 6, we discussed the graphs S(k, q) with gi(X) = X3. Now

assume that n ≥ 1, and gi(X) = X2n+1 for all i, 3 ≤ i ≤ k. For these graphs,

Lemma 6.1 can be generalized as follows:

Let q be an odd prime power with q 6≡ 1 mod (2n + 1) and (2n + 1, q) = 1. For

any w ∈ Fk
q , let Nw be the number of u ∈ Fq such that w3f3(u) + · · ·+wkfk(u) = 0.

Then λw is either q(Nw − 1) or at most 2n(q −Nw)
√
q.

In the case when 3 ≤ k ≤ q+1, fi(X) = X i−1 and gi(X) = X2n+1 for all i, 3 ≤ i ≤ k,

the conclusion of Theorem 2.3 can be stated in a slightly weaker form:

λ2

(

S(k, q)
)

≤ max{q(k − 3), 2n(q − 1)
√
q}.

Actually, for fixed q, if k is sufficiently large, λ2

(

S(k, q)
)

= q(k − 3) for all n ≥ 1.

Remark 3. The quantity Mq = max
a,b∈F∗

q

εax3+bx in Theorem 2.3 and Theorem 2.4 is

at most 2
√
q by Weil’s bound. From the computational results, Mq ≥ 2

√
q − 2 for

q ≤ 1331. Interestingly, when q = 53 or 55, the Weil’s bound is tight.

Remark 4. Let k ≥ 3 be an integer and let fi, gi ∈ Fq[X ], 3 ≤ i ≤ k + 1, be

2k − 2 polynomials of degree at most q − 1 such that gi(−X) = −gi(X) for each i,

3 ≤ i ≤ k + 1. If S(k + 1, q) = S(k + 1, q; f3, g3, . . . , fk, gk, fk+1, gk+1) and S(k, q) =

S(k, q; f3, g3, . . . , fk, gk), then it is not hard to show that S(k + 1, q) is a q-cover of

S(k, q) (see, e.g., [10, Section 6]). This implies that the spectrum of S(k + 1, q) is a

submultiset the spectrum of S(k, q) and, in particular, λ2(S(k+1, q)) ≥ λ2(S(k, q)).
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Interestingly, in the case when fi(X) = X i−1 and gi(X) = X3 for each i ≥ 3, we

actually have equality in the inequality above for (q, k) whenever k <
q − 1

q
Mq + 2

(immediate from Theorem 2.3).
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