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The Wiedemann-Franz (WF) law establishes a link between heat and charge transport due to

electrons in solids. The extent of its validity in presence of inelastic scattering is a question raised in

different contexts. We report on a study of the electrical, σ, and thermal, κ, conductivities in WP2

single crystals. The WF holds at 2 K, but a downward deviation rapidly emerges upon warming. At

13 K, there is an exceptionally large mismatch between Lorenz number and the Sommerfeld value.

We show that this is driven by a fivefold discrepancy between the T -square prefactors of electrical

and thermal resistivities, both caused by electron-electron scattering. This implies the existence of

abundant small-scattering-angle collisions between electrons, due to strong screening. By quanti-

fying the relative frequency of collisions conserving momentum flux, but degrading heat flux, we

identify a narrow temperature window where the hierarchy of scattering times may correspond to

the hydrodynamic regime.

INTRODUCTION

The electrical conductivity of a metal σ and its thermal counterpart κ are linked to each other by the Wiedemann-

Franz (WF) law, provided that the heat carried by phonons is negligible and electrons do not suffer inelastic scattering.

This law states that the ratio of the two conductivities divided by temperature should be equal to a universal number

set by fundamental constants. The validity of the WF law is expected both at very low temperatures, where elastic

scattering by disorder dominates, and above the Debye temperature, where scattering by phonons becomes effectively

elastic. At intermediate temperatures, inelastic scattering is known to degrade thermal current more efficiently than

the electrical current [1]. Experiments have found a zero-temperature validity combined to a downward departure in

elemental metals (due to electron-phonon scattering) [2, 3] as well as in correlated metals (because of electron-electron



scattering) [4, 5]. During the past decade, the search for a possible breakdown of the WF law near a quantum critical

point [6] motivated high-resolution experiments, which verified its zero-temperature validity within experimental

margin and quantified the deviation at finite temperature [7–10].

Gooth et al. [11] have recently reported on thermal transport in micrometric samples of WP2 down to 5K and

found a drastic breakdown of the WF law. WP2 is a type-II Weyl semimetal with a room-temperature Residual

Resistivity Ratio (RRR) expressed in five digits and an impressively large magnetoresistance [12]. The observation

raised fundamental questions regarding the relevance of the scattering-based theory of charge and entropy transport

by mobile electrons to this non-trivial solid. The possible link between WF breakdown and electron hydrodynamics

is a subject of attention [13–17].

In this paper, we present a study of thermal conductivity in bulk millimetric single crystals of WP2. By performing

concomitant measurements of thermal and electrical transport between 2K and 40K, we find that: (i) The WF law is

obeyed at 2K, but a drastic downward deviation of exceptional amplitude emerges at higher temperatures; (ii) Thanks

to the low-temperature data, one can distinguish between the contributions to the thermal and electrical resistivities

arising from electron-electron and electron-phonon scattering; iii) The downward deviation arises because of a large

(fivefold) difference between the amplitudes of the T-square prefactors in the two (electrical and thermal) resistivities

due to electron-electron scattering. We conclude that electron-electron scattering is the origin of the exceptionally large

downward deviation from the Wiedemann-Franz law. This can happen if small-angle momentum-relaxing scattering

events are unusually frequent. Thus, the semi-classical transport theory is able to explain a large mismatch between

Lorenz number and Sommerfeld number at finite temperature. However, the large T-square thermal resistivity caused

by momentum-conserving scattering among electrons, together with the long mean-free-path of the electrons, opens

a window for entering into the hydrodynamic regime.

RESULTS

Fig.1.a shows the resistivity as a function of temperature in a WP2 single crystal. The RRR for this sample is

ρ(300K)/ρ(2K) = 9600. The residual resistivity ρ0 of the different samples was found to lie between 4 and 6 nΩ.cm.

With a carrier density of 2.5× 1021 cm−3 [11], this implies a mean-free-path in the range of 70 to 140 µm, and, given

the dimensions of the sample, a proximity to the ballistic limit.

The temperature dependence of κ/T , the thermal conductivity divided by temperature, is plotted in panel (b) of the

Figure 1. Note that in our whole temperature range of study, the phonon contribution to heat transport is negligible

(See the Supplemental Material). The extracted Lorenz number, L(T ) = κρ
T , is to be compared with the Sommerfeld

number L0 = π2

3 (kBe )2. As seen in Fig.1.c, according to our data, L/L0 is close to 0.5 at 40K and decreases with

decreasing temperature until it becomes as low as 0.25 at 13K, in qualitative agreement with the observation originally

reported by Gooth et al. [11], who first reported on a very low magnitude of the L/L0 ratio in WP2. As seen in the

Figure 1.c, however, the two sets of data diverge at low temperature and we recover the expected equality between L

and L0 at low temperature.

Comparison with two other metals, Ag and CeRhIn5, is instructive. Fig.1.d displays the temperature dependence
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of L/L0 in the heavy fermion antiferromagnet, CeRhIn5 as reported by Paglione et al. [4]. The L/L0 ratio, close to

unity at 8K, decreases with decreasing temperature and becomes as low as 0.5 at 2K, before shooting upwards and

attaining unity around 100mK. In Ag, as seen in Fig.1.e, which presents our data obtained on a silver wire, a similar

downward deviation of the L/L0 ratio is detectable. Close to unity below 8K, it decreases with warming and attains

a minimum of 0.6 at 30K before increasing again.

It is also instructive to recall the case of semi-metallic bismuth, in which thermal transport is dominated by phonons.

In such a compensated system, an ambipolar contribution to the thermal conductivity, arising from a counter-flow

of heat-carrying electrons and holes, was expected to be present [18, 19]. An ambipolar diffusion would have led

to an upward deviation of L/L0 from unity. However, Uher and Goldsmid [18] found (after subtracting the lattice

contribution) that L/L0 < 1 in bismuth, which indicates that there is no ambipolar contribution to the thermal

conductivity. The absence of a significant phononic contribution in our data makes the interpretation even more

straightforward, and we also find no evidence for ambipolar heat transport in WP2. The reason is that the electron

and hole gases are degenerate both in Bi (below room temperature) and WP2 (for all temperatures of interest), and

thus the ambipolar contribution is small in proportion to T/EF .

The scattering-based Boltzmann picture provides an explanation for such downward deviations. Thermal and

electrical transport are affected in different ways by inelastic collisions labeled as “horizontal” and “vertical” (See

Fig.2.a). In a horizontal scattering event, the change in the energy of the scattered carrier is accompanied by a drastic

change of its momentum. Such a large-q process degrades both charge and heat currents. A vertical process, on the

other hand, is a small-q scattering event, which marginally affects the carrier momentum, but modifies its energy as

strongly as a horizontal process of similar intensity. In the case of momentum transport, the presence of a (1-cos θ)

pondering factor disfavors small angle scattering. No such term exists for energy transport. This unequal importance

of vertical events for electrical and thermal conductivities, pulls down the L(T )/L0 ratio at finite temperature and

generates a finite-temperature breakdown of the Wiedemann-Franz law [1]. Such a behavior was observed in high-

purity Cu half a century ago [2], in other elements, such as Al and Zn [3], in heavy-fermion metals such as UPt3 [5],

CeRhIn5 [4] or CeCoIn5 [7] as well as in magnetically-ordered elements like Ni [20] or Co [21].

On the microscopic level, two distinct types of vertical scattering have been identified. The first is electron-phonon

scattering [1], relevant in elemental metals. At low-temperatures, the Bloch-Grüneisen picture of electron-phonon

scattering yields a T 5 electric resistivity and a T 3 thermal resistivity. The higher exponent for charge transport is due

to the variation of the typical wave-vector of the thermally-excited phonons with temperature: qph = kBT
~vs . Small-angle

phonon-scattering becomes more frequent with cooling. Therefore, phonons’ capacity to degrade a momentum current

declines faster than their ability to impede energy transport. This power-law difference leads to L(T )/L0 < 1 in the

intermediate temperature window (below the Debye temperature), when phonon scattering dominates over impurity

scattering, but all phonons are not thermally excited. A second source of q-selectivity concerns momentum relaxing

electron-electron scattering (See Fig.2.b). The quadratic temperature dependence of resistivity in a Fermi liquid is a

manifestation of such scattering [22]. This is because the phase space for collision between two fermionic quasi-particles

scales with the square of temperature. Since the total momentum before and after collision is conserved, electron-

electron collisions degrade the flow of momentum only when the scattering is accompanied by losing part of the total
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momentum to the lattice. Two known ways for such a momentum transfer are often invoked [23]. The first is Baber

mechanism, in which electrons exchanging momentum belong to two distinct reservoirs and have different masses.

The second is an Umklapp process, where the change in the momentum of the colliding electrons is accompanied

by the loss of one reciprocal lattice wave-vector (Fig.2.b). Abundant small-angle electron-electron scattering (which

could be either Umklapp or Baber-like) would generate a mismatch in prefactors of the T -square resistivities with the

electrical prefactor lower than the thermal one. This is a second route towards L(T )/L0 < 1, prominent in correlated

metals [24, 25].

In order to determine what set of microscopic collisions causes the downward deviation from the WF law in WP2,

we identified and quantified various contributions to the thermal and electrical resistivities of the system.

Fig.3 shows the electrical resistivity, ρ, and thermal resistivity, WT , as a function of T 2. In order to keep the two

resistivities in the same units and comparable to each other, we define WT = TL0

κ , as in reference [4]. One can see

that at low temperatures, the temperature-induced increase in ρ and WT is linear in T 2, confirming the presence of

a T -square component in both quantities. The intercept is equal in both plots, which means that the WF law is valid

in the zero-temperature limit. But the two slopes are different and the deviation from the low-temperature quadratic

behavior occurs at different temperatures and in different fashions.

DISCUSSION

Admitting three distinct contributions (scattering by defects, electrons and phonons) to the electrical and thermal

resistivities, the expressions for ρ and WT become:

ρ = ρ0 + A2T
2 + A5T

5 (1)

WT = W0T + B2T
2 + B3T

3 (2)

We assume these scattering mechanisms to be additive. Note that since the data are limited to a temperature

window in which T > ~
kBτ

, no Altshuler-Aronov corrections are expected [26]. As seen above, ρ0 = W0T , but

A2 6= B2. The insets in Fig.3 show that ρ− ρ0 −A2T
2 is linear in T 5 and WT −W0T − B2T

2 is proportional to T 3,

in agreement with what is expected from equations (1) and (2).

It is now instructive to compare WP2 and Ag to examine the possible role played by inelastic phonon scattering.

Fig.4 compares the amplitude of the T 5 terms in WP2 and Ag. As seen in the Figure 4, the amplitude of both A5

and B3 is larger in WP2. More quantitatively, A5(WP2)/A5(Ag) = 3.4 and B3(WP2)/B3(Ag) = 3.6. In other words,

the B3 and A5 ratios of WP2 and Ag are similar in magnitude, which implies that phonon scattering is not the origin

of the unusually low magnitude of the Lorenz number in WP2.

Having ruled out a major role played by phonon scattering in setting the low magnitude of L/L0, let us turn our

attention to electron-electron scattering. As stated above, the prefactors of the T-square terms in ρ and WT , namely
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A2 and B2, are unequal. The ratio A2/B2 is as low as 0.22, well below what was observed in other metals, such as

CeRhIn5 (A2/B2 ' 0.4) [4], UPt3 (A2/B2 ' 0.65) [5], or nickel (A2/B2 ' 0.4) [20]. This feature, which pulls down

the magnitude of the L/L0 ratio in WP2, may be due to unusually abundant vertical events (involving a small change

in the wave-vector of one of the colliding electrons), which could be either Umklapp or inter-band involving collisions

between hole-like and electron-like carriers belonging to different pockets.

To have electron-electron collisions which are simultaneously small-angle, Umklapp and intra-band, one needs a

Fermi surface component located at the zone boundary [27]. Interestingly, as seen in Fig.5, this is the case of WP2.

The figure shows the Fermi surface obtained by our DFT calculations (See supplement), consistent with previous

reports [28, 29]. It is composed of 2 hole-like and 2 electron-like pockets, each located at the boundary of the Brillouin

zone. Such a configuration allows abundant intra-band low-q Umklapp scattering. According to previous theoretical

calculations [24, 25], the weight of small-angle scattering can pull down the A2/B2 (and the L/L0) ratio. However,

the lowest number found by these theories ('0.38) is well above what was found here by our experiment on WP2

(A2/B2 ' 0.22), as well as what was reported long ago in the case of tungsten [30] (See the supplement).

Following the present experimental observation, Li and Maslov showed [31] that in a compensated metal with a

long-range Coulomb interaction among the charge carriers, the Lorenz ratio is given by

L/L0 = (κ/kF )2/2 (3)

where κ is the (inverse) screening length and kF is the (common) Fermi momentum of the electron and hole pockets.

By assumption, κ� kF and thus L/L0 can be arbitrarily small in this model.

Let us now turn our attention to the possibility that WP2 enters the hydrodynamic regime [11]. In order to

address this question, let us first recall what is known in the case of normal-liquid 3He. The latter presents a thermal

conductivity inversely proportional to temperature [32] (strictly equivalent to our WT being proportional to T 2) and

a viscosity proportional to T−2 [33] at very low temperatures. Both features are caused by fermion-fermion collisions

[34], which are normal and conserve total momentum. As one can see in Fig.6, the magnitude of B2 (prefactor of

the thermal T-square resistivity) in 3He, in CeRhIn5, in WP2 and in W plotted vs. γ, the fermionic specific heat,

lies close to the universal Kadowaki-Woods plot. This means that while A2 quantifies the size of momentum-relaxing

collisions and B2 is a measure of energy-relaxing, yet momentum-conserving collisions, both scale roughly with the

size of the phase space for fermion-fermion scattering, which (provided a constant fermion density) is set by γ2 . As a

consequence, the magnitude of B2 opens a new window to determine where one may expect electron hydrodynamics.

The hydrodynamic regime [35, 36] of electronic transport (identified long ago by Gurzhi [37]) requires a specific

hierarchy of scattering times. Momentum-conserving collisions should be more frequent than boundary scattering and

the latter more abundant than momentum-relaxing collisions. Let us show that this hierarchy can be satisfied in our

system thanks to the combination of an unusually low A2/B2 ratio and low disorder. The combination of a residual

resistivity as low as 4 nΩ.cm and a carrier density of 2.5× 1021 cm−3 according to [11] (compared to 2.9× 1021 cm−3

according to our DFT calculations) implies that we are at the onset of the ballistic limit. It yields a mean-free-path

of 140 µm. This is to be compared to the sample width and thickness of 0.1 mm.

Like in many other cases [38], the Dingle temperature of quantum oscillations yields a mean-free-path much shorter
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than this. A particularly large discrepancy between the Dingle and transport mobilities has been observed in low-

density semi-metals such as Sb [39]. In the system under study, the difference is as large as three orders of magnitude

[12]. This is presumably because of a very long screening length, weakening large-angle scattering and helping

momentum conservation along long distances.

This feature, combined with the fact that momentum-conserving collisions are 4-5 times more frequent than momen-

tum relaxing ones, implies that the system satisfies the required hierarchy of scattering times in a limited temperature

window, as one can seen in Fig.7. This figure compares the temperature dependence of momentum-relaxing collisions

(with other electrons and phonons), momentum-conserving collisions (among electrons) and the boundary scatter-

ing. The three terms are represented by their contributions to resistivity, convertible to scattering rates by the same

material-dependent factor. Note the narrowness of the temperature window and the modesty of the difference be-

tween the three scattering rates. Note also that the hydrodynamic regime coincides with the observed minimum in

L/L0 representing an excess of momentum flow in comparison to energy flow. In the hydrodynamic scenario, this

coincidence is not an accident. However, the position and the width of this window are not solidly set. Assuming

that the residual resistivity is not entirely fixed by the boundary scattering (i.e ρ0 = ρ00 + ρimp) would shift this

temperature window and beyond a threshold ρimp, the window will close up.

In purely hydrodynamic transport, momentum relaxation occurs only at the boundary of the system. Momentum-

conserving collisions then set the magnitude of the viscosity and the fluid drifts in presence of an external force.

However, this does not happen in WP2 or in any other metal, because the finite B2/A2 ratio means that momentum-

relaxing events are not absent. In our hydrodynamic regime, an electron traveling from one end of the sample to

the other suffers few collisions and four-out-of-five of them conserve momentum. Because the three scattering times

(momentum-conserving, momentum-relaxing and boundary) are of the same order of magnitude, any hydrodynamic

signature would lead to modest corrections to what can be described in the diffusive or ballistic regimes, such as

subtle departures in size-dependent transport properties [36].

One message of this study is that a finite-temperature departure from the WF law by itself cannot be a signature of

hydrodynamic transport, but thermal transport can be used to quantify the relative weight of momentum-conserving

collisions and to identify where to expect eventual hydrodynamic features. Specifically, our study highlights two

features which were not explicitly considered in previous discussions about the hydrodynamics of electrons. First,

as for phonons [40], the hydrodynamic regime for electrons is expected to occur in a finite temperature window

squeezed between the ballistic and diffusive regimes. Second, the phase spaces for momentum-relaxing and momentum-

conserving collisions for electrons follow the same (T-square) temperature dependence. This is in a contrast to

the case of phonons where Umklapp scattering vanishes exponentially with temperature whereas normal scattering

follows a power law [41]. This difference makes electron hydrodynamics more elusive in comparison with its phononic

counterpart [42].

We note also that the two solids showing anomalously low L/L0 (W and WP2) are those in which the T = 0 ballistic

limit is accessible and a hydrodynamic window can open up. Future studies on samples with different dimensions [11]

using a four-contact measurement setup are necessary to reach a definite conclusion.

In summary, we found that WP2 obeys the Wiedemann-Franz law at 2K, but there is a large downward devia-
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tion which emerges at higher temperatures. We recalled that the dichotomy between charge and heat transport is

ubiquitous in metallic systems, since low-q scattering affects heat conduction more drastically than charge transport.

The exceptionally low magnitude of L/L0 ratio mirrors the discrepancy between the amplitude of T-square prefactors

in thermal and electrical resistivities. The large difference between momentum-conserving and momentum-relaxing

collisions among electrons opens a narrow temperature window where the hierarchy of scattering times conforms to

hydrodynamic requirements.

METHODS

The samples used in this study were needle-like single-crystals (grown along the a-axis). Their typical dimensions

were 1 − 2 × 0.1 × 0.1 mm3. The samples are similar to those detailed in [12] : they were grown by chemical

vapor transport. Starting materials were red phosphorous (Alfa-Aesar, 99.999%) and tungsten trioxide (Alfa-Aesar,

99.998%) with iodine as a transport agent. The materials were taken in an evacuated fused silica ampoule. The

transport reaction was carried out in a two-zone-furnace with a temperature gradient of 1000◦C (T1) to 900◦C

(T2) for several weeks. After reaction, the ampoule was removed from the furnace and quenched in water. The

metallic needle-like crystals were later characterized by X-ray diffraction. The measurements were performed with

a standard one-heater-two-thermometers set-up, with Cernox chips, allowing to measure thermal conductivity κ and

the electrical resistivity ρ with the same electrodes and the same geometrical factor. Contacts were made with 25 µm

Pt wires connected via silver paste with a contact resistance ranging from 1 to 10 Ω. The electric and heat currents

were injected along the a-axis of the sample. By studying three different samples with different RRRs, we checked

the reproducibility of our results (see the supplemental material).

Supplementary information : Supplementary information accompanies the paper on the npj Quantum Materials

website.
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FIG. 1: a) Resistivity of WP2, ρ, measured along the a-axis, as a function of temperature. b) Thermal conductivity divided
by temperature, κ

T
(jQ//a-axis) as a function of temperature in the same sample with the same electrodes. c) Ratio of Lorenz,

L(T ) = κ
Tσ

to Sommerfeld L0 = 2.44 × 10−8 W.Ω.K−2, numbers as a function of temperature (red). The data reported for
a micro-ribbon of WP2 [11] are shown in green. d) L(T )/L0 as a function of temperature in CeRhIn5 [4]. e) L(T )/L0 as a
function of temperature for an Ag wire with a 50 µm diameter and 99.99% purity. WP2 and Ag were measured with the same
experimental setup. Error bars are due to the error on the measurement of the resistance of the thermometers which are used
to evaluate the temperature gradient in the sample.

11



!"#

$%&'(%)*+,--
./+&01234

51&*'6+,--
.78+,,234

!"#$%&'#

9)
1&
0:

!"

#" !"#$

!"#%

!&#$

!&#%

! !

!"#$

!"#%

!&#%

!&#$

'()*+, -*!,+..

!"#$!"#%

FIG. 2: a) A schematic representation highlighting the difference between horizontal and vertical inelastic scattering. Both
kind of processes degrade heat transport. Their effect on momentum transport is however very different. Arrows indicate
scattering from one state to another. b) A sketch of Normal and Umklapp scattering in the case of a simple circular Fermi
surface (blue), inside a rectangular Brillouin zone (red). They differ by the balance of quasi-momentum exchange after collision.
�dQ = �k2f + �k1f − �k2i − �k1i is zero in a normal process and equal to a unit vector of the reciprocal lattice in an Umklapp one.

2.5

5

7.5

10

12.5

 (n
.c

m
)

0 50 100 150
T2 (K2)

0

10

20

30

W
T 

(n
.c

m
)

0 3 6
T3 (104K3)

0

200

400

W
T

0 2.5 5
T5 (107K5)

0

125

250

a)

b)

FIG. 3: a) Electrical resistivity, ρ, as a function of T 2. The dotted line is a linear fit to the T < 10K data. The inset shows
δρ = ρ − ρ0 − AT 2 as a function of T 5 expressed in nΩ.cm. b) Thermal resistivity, WT = L0T

κ
, as a function of T 2. The

dotted line is a linear fit to the T < 8K data. The inset shows δWT = WT − W0T − BT 2 as a function of T 3 expressed in
nΩ.cm.

12



0 1 2 3 4
T5 (106K5)

0

5

10

15

20

 - 
0 - 

AT
2  (n

.c
m

)

WP2
Ag

0 1 2 3 4 5
T3 (104 K3)

0

100

200

300

W
T 

- W
0T 

- B
.T

2  (n
.c

m
) WP2

Ag

a) b)

FIG. 4: a) Inelastic electrical resistivity δρ caused by phonon scattering in WP2 (Black) and Ag (Red) as a function of T 5. b)
Inelastic thermal resistivity, δWT , in WP2 (Black) and Ag (Red) as a function of T 3. The ratio of the two slopes is similar for
heat and charge transport.

Vertical 
Process 

Cold Hot

Horizontal

Process

Fermi Level

Text

Fermi Level

Text

eJ

Text

Horizontal 

Process 

a) b)

c) d)

Thermal	Current Electrical	Current

ki,1
kf,1

kf,2 ki,2
q

G+q

a) b)

FIG. 5: a) DFT-computed 3D Fermi Surface of WP2. b) Top view of the Fermi surface. Arrows illustrate wave-vectors during an

inter-band Umklapp and small-angle scattering event. ~ki,n and ~kf,n are carrier momenta, ~kf,2− ~ki,2 = ~q and ~kf,1− ~ki,1 = ~G+~q.

13



100 102 104

 (mJ.mol-1 .K-2)

10-8

10-6

10-4

10-2

100

102

104

A 2 (
.c

m
.K

-2
)

Re

CeAl3 CeCu6
YbRh2Si2

YbNi2B2C
CeRu2Si2

LiV2O4

UPt2

CeB6

V2O3
UIn3

UPt

CeNi

YCO2

LuCO2

ScCO2

UGa3
Nb3Sn

V3Si

CePd3

(Y,Sc)Mn2
UAl2

YbCu5

YbCu4Ag

CeSn3
YbCu4Al

YbNi2Ge2

YbInAu2YbInCu4

YbAl2 YbAl3

Fe
CoPt

Ni

Pd

A / 2 = 1.0 10-5

UBe13
YbRh2Si2 (H=6T)

Os

Liquid 3He

WP2
WP2

W

W

CeCu2SI2

USn3

YbCuAl

A / 2 = 0.4 10-6

YbCu4,5

YbCu2Si2

CeRhIn5

CeRhIn5

UPt3UPt3

100 102 104

 (mJ.mol-1 .K-2)

10-8

10-6

10-4

10-2

100

102

104

A 2 (
.c

m
.K

-2
)

Re

CeAl3 CeCu6
YbRh2Si2

YbNi2B2C
CeRu2Si2

LiV2O4

UPt2

CeB6

V2O3 UPt

CeNi

YCO2

LuCO2

ScCO2

UGa3
Nb3Sn

V3Si

CePd3

(Y,Sc)Mn2
UAl2

YbCu5

CeSn3
YbCu4Al

YbNi2Ge2

YbInAu2YbInCu4

YbAl2 YbAl3

Fe
CoPt

Ni

Pd

A / 2 = 1.0 10-5

UBe13
YbRh2Si2 (H=6T)

Os

Liquid 3He

WP2
WP2

W

W

CeCu2SI2

USn3

A / 2 = 0.4 10-6

YbCu4,5

YbCu2Si2

UPt3UPt3

YbCuAl

YbCu4Ag

CeRhIn5

CeRhIn5

100 101 102 103 104

 (mJ.mol-1 .K-2)

10-6

10-4

10-2

100

102

104

YbRh2Si2 (H=6T)

Pt

YbRh2Si2

UBe13
CeCu6

CeAl3
CeCu2SI2

YbNi2B2C
CeRu2Si2

YbCu4,5

YbCu5

LiV2O4

CeB6
USn3

(Y,Sc)Mn2

UAl2

UPt2

Re
Os

Fe

Co
Ni

Pd

YbAl3 YbInCu4

CeSn3

YbCu4Al

YbInAu2

YbNi2Ge2
CeNi

V2O3

YbCu4Ag

YbCu2Si2

UPt
YbCuAl

CePd3

Nb3Sn

V3Si

YbAl2

UGa3

UIn3

LuCo2

YCo2

ScCo2

A / 2 = 0.4 10-6

WP2

WP2

W

W

UPt3

CeRhIn5

CeRhIn5

3He

UPt3

A / 2 = 1.0 10-5

FIG. 6: a) The Kadowaki-Woods plot with A2 and B2 plotted as a function of fermionic specific heat γ( C =γT). To the plot
compiled by Tsujii et al. [43], we have added the data for 3He [32, 44, 45], WP2 (This work), W [30] and CeRhIn5 [4, 46].
These compounds are indicated by boxes.

00
 ,A

2T2 +A
5T5 ,B

2T2  (n
.c

m
)

Ba
llis

tic

H
yd

ro
dy

na
m
ic

D
iff
us

iv
e

Ba
llis

tic

H
yd

ro
dy

na
m
ic

D
iff
us

iv
e

D
iff
us

iv
e

H
yd

ro
dy

na
m
ic

Ba
llis

tic

a) b) c)

0

Boundary

FIG. 7: The magnitude of B2T
2, proportional to momentum-conserving (MC) electron-electron collisions is compared to

ρimp+A2T
2+A5T

5, which is proportional to momentum-relaxing (MR) collisions by electrons and phonons and ρ0, which is
a measure of boundary scattering. In a limited temperature window (7<T<13 K), the hierarchy for hydrodynamic regime is
satisfied.

14



SUPPLEMENTAL MATERIAL FOR ’DEPARTURE FROM THE WIEDEMANN-FRANZ LAW IN WP2

DRIVEN BY MISMATCH IN T-SQUARE RESISTIVITY PREFACTORS’

Samples Measured

We measured 3 different single crystals of WP2, all grown in the same batch. The sample presented in the corpus

is S3. In table I we present their geometries and basic electrical characteristics.

All the samples were measured along the same direction, with j ‖ (a-axis) for both heat and electrical currents. The

result for the electrical conductivity in all three samples are shown in Fig.8. Besides the residual resistivity ρ0, we see

that both the T 2-dependent and T 5-dependent terms are equal from one sample to another.

From Fig.9 we can deduce that the T 2-dependent and T 3-dependent terms of the thermal resistivity, WT , are also

equivalent in the three different samples. We thus confirm that besides the residual terms, the electrical and thermal

resistivities are reproducible from one sample to another with comparable size.

Sample Length (mm) Width (µm) Thickness (µm) ρ0 (nΩ.cm) RRR =ρ(300K)/ρ(2K)

S1 1.5 80-100 110 3.94 11200
S2 1.9 90-100 110 5.85 7600
S3 0.9 80-110 120 4.69 9600

TABLE I: Presentation of the different WP2 samples
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FIG. 8: a) Resistivity ρ, measured along the a-axis, of WP2 as a function of T 2 for the three samples S1, S2 and S3. b) Phonon
contribution to the electrical resistivity δρ = ρ − ρ0 − AT 2 as a function of T 5 for the same three samples. Inset shows a fit
of δρ to a T 5 law with A5 = 3.9 × 10−15 Ω.cm.K−5. We observe a downward deviation for T > 20K.
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FIG. 9: a) Thermal resistivity, WT = L0T
κ
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show WT − W0T as a function of T 2 for the three samples. d) Plot of the phonon component of the thermal resistivity
δWT = WT − W0T − BT 2 as a function of T . The black line corresponds to a T 3 fit.

ELECTRICAL AND THERMAL T 2-DEPENDENT RESISTIVITY : COMPARISON OF DIFFERENT

SYSTEMS

We reference in table II the values of the electrical and thermal resistivities quadractic prefactors for different

materials. The electrical prefactor is noted A2 whereas the thermal T 2-prefactor is B2. We computed the ratio of

these two terms in the third column.

Material Residual Resistivity ρ0 (nΩ.cm) Electrical Prefactor A2 (pΩ.cm.K−2) Thermal Prefactor B2 (pΩ.cm.K−2) A2/B2

WP2 4 - 7 16.6 75.6 0.22
W 0.06 - 0.5 0.9±0.3 6.2±0.9 0.15

UPt3 200 - 600 (1.6±0.59)×106 (2.44±0.9)×106 0.65
Ni 1 - 3 25±5 61 0.40

CeRhIn5 37 21000 57000 0.4

TABLE II: Presentation of the electrical (A2) and thermal (B2) quadratic prefactors of different materials. WP2 data from
this work, W from [30], UPt3 from [5], elemental Ni from [20] and CeRhIn5 from [4].
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QUADRATIC THERMAL RESISTIVITY IN LOW TEMPERATURE LIQUID 3HE

The thermal conductivity, κ, of normal-liquid 3He was measured by Abel et al. [44] and Wheatley [45]. They

expressed their thermal conductivity as : (κT )−1 = a + bT . At low temperature, the first term exceeds by far the

second and κ is basically proportional to the inverse of temperature, implying WT ∝ T 2. This can be seen in figure

10, where we plot WT as a function of T 2.
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FIG. 10: Thermal resistivity WT of saturated normal state liquid 3He from [44, 45] as a function of T 2. WT is behaves as T 2

for temperatures between 2.6mK and 0.2K. The slope is the value used in the Kadowaki-Woods plot in the corpus.

SPECIFIC HEAT OF WP2

In order to derive the specific heat due to phonons without the exact phonon dispersion curve we have to make an

approximation. We will consider that for T � θD with θD = 445K, optical modes are not excited : the thermal energy

is too small. We are left with acoustic modes only. This is the Debye approximation which yields a T 3-dependent

phononic specific heat. But heat capacity can also result from electronic contribution. In that case it takes the form

of linear in T term. We define the specific heat from both contribution in equation 4

Cp = γT + C3.T
3 (4)

Fig.11.a presents the specific heat Cp plotted as Cp/T as a function of T 2 measured in our WP2 samples. Below 4K we

can estimate both contributions. First, from the intercept with the y-axis we determined the electronic contribution

Cel = γT , then the slope gave the phononic contribution C3 = 6.62×10−2 mJ.mol−1.K−4. As temperature is furthered

increased the T 3 contribution is suppressed from the specific heat and we head toward a saturating regime of Cp.

This is observed in the inset of Fig.11.a. The Dulong-Petit law is then recovered. Also, the heat capacity of phonons

is linked to the thermal conductivity κph through the following equation :

κph =
1

3
Cph × vs × lph (5)

17



Where Cph is the heat capacity per unit of volume, vs is the average speed of the phonons in the system and lph the

mean free path of the phonons. As a matter of fact, we can now derive an upper limit to an contribution to thermal

conductivity caused by phonons in WP2. To do so, we use the phonons’ specific heat determined above, a speed of

sound of vs = 3000m.s−1 and a mean free path as high as possible in our sample, i.e 100µm.

The phonons’ contribution estimated for lph = 100µm and lph = 1mm are plotted respectively as a red dotted line

and a yellow dotted line in Fig.11.b. In order to have an idea of the intrinsic, i.e size independent, contribution of the

phonons to the thermal conductivity of the system, it is instructive to refer to the case of bismuth where the evolution

of the thermal conductivity with size as been documented [47, 48]. This allows us to make a rough sketch of κphonon

in our system. As seen in the figure, the expected contribution of phonons remains an order of magnitude below the

measured thermal conductivity in WP2 in the whole temperature window.

We deduce from this observation that the phonons’ contribution to κ is negligible compared to the electronic

contribution.
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FIG. 11: a) Specific Heat plotted as Cp/T as a function of T 2 for WP2. The inset shows the specific heat plotted as Cp as a
function of T up to 100K. b) Thermal conductivity, κ, as a function of temperature in WP2 (black dots). The red dotted line
is an upper limit to the phonons’ contribution to thermal conductivity in WP2 given the size of our crystal. whereas the yellow
line corresponds to a mean free path of 1mm. Phonon thermal conductivity in Bi crystals of different sizes [48] are shown. The
solid sketched line represents our estimation of maximum phonon contribution in WP2.

18



RESIDUAL RESISTIVITY DECOMPOSED TO BOUNDARY AND IMPURITY SCATTERING

In the main text, we argued that Gurzhi’s hydrodynamic criteria [37] can be satisfied in a narrow temperature

window. Here we show that the width of this window and its very existence is critically dependent on the importance

of impurity scattering. Assuming a carrier density of 2.5 × 1021cm−3, the mean-free-path exceeds the sample width

and the residual resistivity is entirely set by boundary scattering. This will lead to Fig.6.a). In a limited temperature

window (7<T<13 K) the MC, MR and boundary scattering times respect the hydrodynamic requirements. Let us

consider the possibility that the residual resistivity ρ0 contains a sizable component due to impurity scattering. In

this case, one can write:

ρ0 = ρ00 + ρimp (6)

Here, ρ00 is due to boundary scattering whereas ρimp results of impurities and defects. When ρ00 only represents 75%

(Fig6.b)), we can still find a temperature range to satisfy Gurzhi’s conditions. This hydrodynamic window is shifted

to lower temperatures and gets narrower. However, if ρ00 becomes 50% (Fig6.c)) of the residual resistivity, then there

is no range of temperature which allows the emergence of a hydrodynamic regime in WP2.
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FIG. 12: The magnitude of B2T
2, proportional to momentum-conserving (MC) electron-electron collisions is compared to

A2T
2+A5T

5, which is proportional to momentum-relaxing (MR) collisions by electrons and phonons and ρ00, which is a
measure of boundary scattering. A limited window where the required hierarchy for hydrodynamics is satisfied can be found
for the three following cases. a) ρ0 is fully due to boundary scattering. b)ρ00, due to boundary scattering, represents 75% of
the total residual resistivity. c) ρ00, due to boundary scattering, represents 50% of the total residual resistivity.
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COMPUTATIONAL METHODS

The density functional theory calculations were performed using the general full-potential linearized augmented

planewave method as implemented in the wien2k software package [49]. The generalized gradient approximation of

Perdew, Burke and Ernzerhof was used for the exchange-correlation functional. The muffin-tin radii of 2.3 and 2.0 a.u.

were used for W and P, respectively. A 24 × 24× 20 k-point grid was used to perform the Brillouin zone integration

in the self-consistent calculations. The planewave cutoff was set by RKmax = 8, where Kmax is the planewave cutoff

and R is the smallest muffin-tin radius used in the calculations. The DFT calculations yields the following values :

- carrier concentration of holes due to band 1: 1.25× 1021 cm−3

- carrier concentration of holes due to band 2: 1.65× 1021 cm−3

- carrier concentration of electrons due to band 3: 1.69× 1021 cm−3

- carrier concentration of electrons due to band 4: 1.18× 1021 cm−3
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