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Abstract. Model-finding tools like the Alloy Analyzer produce concrete
examples of how a declarative specification can be satisfied. These formal
tools are useful in a wide range of domains: software design, security,
networking, and more. By producing concrete examples, they assist in
exploring system behavior and can help find surprising faults.
Specifications usually have many potential candidate solutions, but model-
finders tend to leave the choice of which examples to present entirely to
the underlying solver. This paper closes that gap by exploring notions of
coverage for the model-finding domain, yielding a novel, rigorous metric
for output quality. These ideas are realized in the tool CompoSAT, which
interposes itself between Alloy’s constraint-solving and presentation stages
to produce ensembles of examples that maximize coverage.
We show that high-coverage ensembles like CompoSAT produces are
useful for, among other things, detecting overconstraint—a particularly
insidious form of specification error. We detail the underlying theory and
implementation of CompoSAT and evaluate it on numerous specifications.

1 Introduction

Model-finding tools, like the popular Alloy Analyzer [1], find concrete examples
of how a set of declarative constraints can be satisfied. These tools have found
application in a wide range of domains because of their power and generality.
Specifying a network configuration may yield examples of packets traversing a
firewall [2]. A UML class diagram may yield corresponding object diagrams [3, 4].
Other applications abound in security [5, 6], protocol design [7], network switch
programming [8, 9] and more. Output models can either act as counterexamples
to expected properties or more generally improve intuition and aid understanding
of a system. However, specifications define a (frequently large) set of models,
each of which is useful to differing degrees (e.g., some showing a bug, some not).
The choice of which models to present and in what order is usually left entirely
to the underlying solvers, which are performance-focused and unconcerned with
the quality of each model found.

Some have proposed more rigorous notions of model quality. For instance,
minimal models [10–12] disgard extraneous information that may clutter the
model and hamper comprehension. Although it is appealing in broad strokes,
minimality falls short when it comes to showing what is merely possible or
contingent—negating one of the chief strengths of model finding. Indeed, recent



studies [13] suggest that purely-minimal output does not suffice. Most current
model-quality notions are also defined only in terms of the content of the models
themselves—i.e., they are purely semantic—rather than what models can reveal
about the specification, making them ill-suited to debugging.

In this work, we break with this trend to explore syntax-guided notions of which
models are best. For any specification, we extract a maximally representative
ensemble (i.e., set) of models from the considerably larger stream provided by the
solver. To do so, we draw inspiration from test-suite coverage [14] but, as we will
show, doing so is subtle in this domain. One complication lies in the fact that,
with traditional coverage, code and tests are in principle written independently.
In contrast, the solver generates models directly from the specification. Thus,
using the specification to dictate whether a model is “good” may appear circular.
However, the essence of our work consists in filtering the generation process itself.
We detect how a specification constrains portions of a model in context, effectively
showing the “weight” of individual constraints in the specification. Where the
default enumeration may produce bad coverage, ours does far better—with
relatively few models. We demonstrate this in Sec. 2.

Our theory and algorithms are realized in CompoSAT, a new extension to
the Alloy Analyzer ecosystem. CompoSAT directs users to high-coverage models
that exercise contingencies in the specification, rather than ignoring contingent
behavior (like a minimal model-finder) or potentially concealing them in a stream
of mediocrity (like Alloy’s default enumeration). Similarly to classical coverage,
this approach can also reveal when portions of the specification are never exercised
by any output model. Finally, as we will show, coverage is particularly suited to
detecting overconstraint bugs, which the online Alloy tutorial [15] goes so far as
to call the “bane of declarative modeling”.

2 Motivation and Example

We first show a small running example: an address book for email contacts. (Sec. 8
examines more substantial, real-world specifications.) This example is similar to
others in Jackson [1, Chapter 2] but, for brevity, is less complete.

1 abstract sig Target {}

2 abstract sig Name extends Target {}

3 sig Alias , Group extends Name {}

4 sig Addr extends Target {}

5 one sig Book {

6 entries: Name -> Target

7 } {

8 all n: Name | n not in n.^ entries -- No cycles

9 all a: Name | some a.entries -- Names denote

10 }

11 run {}

Lines 1–4 declare types (called sigs in Alloy). The abstract keyword says
that a type is equal to the union of its subtypes. Addrs are meant to denote
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Fig. 1. The two-model ensemble produced for the specification of Sec. 2.

actual email addresses; Names denote Aliases or Groups that address books will
translate. At this stage, only one Book (lines 5–10) is allowed in each model.
Books have an entries field—a relation between Names and Targets. Line 8 says
that no Name atom is self-reachable via entries (^ denotes transitive closure and
-> means product). Line 9 says that the book contains entries for all Names.

The final line tells Alloy to run the specification and produce models up to
the default size bound: 3 of each top-level sig. At this bound, Alloy produces 21
non-isomorphic models—daunting to page through, even at this small scale. On
the other hand, a minimal model finder would produce only one: the leftmost
model in Fig. 1, which contains nothing but an empty Book. This is because no
constraint forces Names to exist, in spite of the fact that lines 9 and 10 apply
if any do. Neither solution is ideal: one risks overloading the user with a huge
example set, but the other hides important insight into how constraints behave.

CompoSAT stakes out a position between these two extreme approaches. The
high-coverage ensemble it generates contains two models (both shown in Fig. 1).
These are not chosen arbitrarily: they together demonstrate—in a way we will
make precise in the next sections—all possible ways the constraints force truth
or falsity in models of the specification.

3 Adapting Coverage to Model Finding

Coverage for software [14] measures test-suite quality in terms of the statements
or branches of the program it exercises. Obtaining a similar definition for model
finding is subtle. We might start by defining the coverage of a model analogously
to line coverage in software by saying that a top-level constraint (e.g., line 8 in
Sec. 2) is covered by a model if it is true in that model. But this is unhelpful
since all models found must make every such constraint true!

The difficulty is that, even if a constraint is true in a model, it does not
directly determine the contents of that model in the same way that executing a
program statement determines that program’s behavior. We would nevertheless
like to capture an analogous intuition. Our solution has two components.

First, we focus on the non-determinism in constraints that comes from disjunc-
tion, implication, existential quantifiers, etc. Each disjunctive choice is analogous
to a branch-point in a program, so we might imagine defining a coverage metric
that captures the different ways that models satisfy constraints. Unfortunately,
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this approach is computationally infeasible: if a specification has 100 possible
branches—a modest number compared to many—there are up to 2100 − 1 paths
to cover, and in the worst case just as many models to present! Moreover, the fact
that a constraint was satisfied does not imply that it actually had impact in the

model. For instance, consider the constraint-set (A or B) and (A and B). The
first conjunct is satisfied in the model { A, B } but without the second conjunct,
either literal could be consistently negated.

We therefore restrict our attention to branches that force what we call local

necessity in the model (we make this precise in Sec. 4). Informally, a portion
of a model is locally necessary if altering it would violate the specification in
context of the rest of the model. For instance, in the right model of Fig. 1, the
address-book entries are locally necessary because (1) a constraint said every
Name must have an entry and (2) there were no other entries for that Name already
present. CompoSAT takes the view that a model is “good” to the extent that it
provides new demonstrations of local necessity.

Note that a granularity of top level constraints (rather than branches) is
too broad for even the simple example in Sec. 2. CompoSAT must be able to
distinguish different ways that constraints apply—some, but not all, of which
may be unexpected or otherwise useful to show. Because branches often involve
expansion and instantiation of high-level constraints, we cannot define coverage

only in terms of source locations and must instead work with logical formulas.

4 Foundations

Formally, Alloy specifications are theories of relational logic with transitive closure.
Their syntax includes the usual Boolean connectives (conjunction, negation, etc.)
along with first-order quantification (all, some) and relational operators (product,
join, transpose, transitive closure, etc.). Readers interested in the full grammar
of Alloy are encouraged to peruse Jackson [1] or the Alloy documentation [16].

Given a specification T , its satisfying models, denoted Mod(T ), are the set
of finite first-order models1 M that satisfy it, i.e., in which it evaluates to true.
Truth in a model is defined in the usual, recursive manner [18], e.g. the constraint
α ∧ β is true in model M if and only if both α and β are true in M.

4.1 Bounded Model Finding

These definitions mean that the model-finding is just the (finite) satisfiability
problem for first-order logic with transitive closure. Unfortunately, this is well-
known to be undecidable [19] in general. In order to render satisfiability checking
feasible, Alloy performs bounded model-finding. In addition to a specification
and the name of a predicate to run (essentially just an additional constraint
in the specification), users must provide an explicit bound B be given on all

1 We use the term model in its mathematical sense: a relational structure over a set. We
follow Milicevic [17] and others in referring to the constraint-set as the specification.
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top-level sigs to check up to. Once given these numeric bounds, Alloy creates
concrete atoms (like Alias$1, Book$0, etc.) that populate the potential universe
of models within the bounds given. This yields a finite search space.

We will implicitly enrich the language with a distinct constant for every
element in the generated bounds and abuse notation somewhat to write formulas
involving these constants, e.g., “Alias$1 -> Addr$2 in entries”. When a for-
mula only expresses whether a product of atoms is in some sig or field name, we
will refer to it as atomic. A literal is either an atomic formula or its negation. The
vital intuition here is that each atomic formula is essentially bound to a Boolean
variable in each model, since under a bound every specification is a propositional
theory—which is what enables Alloy’s use of SAT-solving technology. Finally, the
diagram of a model M, which we denote as ∆(M), is the set of literals true in M.

4.2 Local Necessity and Provenance

Our goal is to identify when constraints have direct impact upon model contents.
To make this intuition precise, we need to define what it means to have “impact”.
We introduce the following helpful definitions from prior work [20].

Definition 1 (L-alternate model). Let T be a specification and M a model

satisfying it. Let L be a literal true in M. The L-alternate of M, ML, is the model

with the same universe as M but with ∆(ML) = (∆(M) \ {L}) ∪ {¬L}.

Definition 2 (Local Necessity). L is said to be locally necessary for T in M

if and if only if M makes T true but ML does not.

That is, a literal is locally necessary if changing its value from positive to negative
(or vice versa) would necessitate other changes in the model. This means that
whenever a literal is locally necessary, some constraint forces it to hold in the
context of the larger model. Local necessity is far weaker than entailment: T may
have models whose diagram contains L’s negation, but L cannot be consistently
changed in this particular model without other concurrent changes.

Constraints may act to force L in different ways. We make this precise by
defining provenances as particular conditions that satisfy constraint branches
and cause L to be locally necessary:

Definition 3 (Provenance). A provenance for L in M with respect to T is

a set of sentences α1, ..., αn where each αi is true in both M and M
L such that

T ∧ α1 ∧ ... ∧ αn entails L under the user-provided bounds B.

For instance, the constraint on line 9 of Sec. 2’s example, under the rightmost
model in Fig. 1, induces the provenance { Group$0 in Name } for the local
necessity of the book entry Group$0->Addr$0—because the element Group$0 is
a valid instantiation of the quantifier.

We restrict our attention to provenances that are partial instantiations and
expansions of original constraints. Although in principle we could consider prov-
inances that are fully expanded into conjunctions of literals, this would result in
a plethora of provenances, many of which would imply each other modulo T .
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E+(β ∨ γ) =











E+(β) ∨ E+(γ) if M |= β and M |= γ

E+(β) if M |= β and M 6|= γ

E+(γ) if M 6|= β and M |= γ

E+(β ∧ γ) = E+(β) ∧ E+(γ)

E+(¬β) = ¬E
−
(β)

E+(L) = L where L is a literal

Fig. 2. Expansion function E+for expanding provenance formulas in a positive context.
For brevity, we omit the symmetric negative-context E

−
, as well as cases for routine

syntactic sugar like bi-implication. Quantifiers are eliminated by instantiation up to the
(always finite) pertinent upper bound.

5 Algorithmics of Coverage

We might stop with the definitions in Sec. 4 and define the provenance-coverage
of a model M, denoted Provs(M), to be the set of provenances that it induces
across all literals. However, this definition proves to be unsatisfying. We discuss
and address three improvements that make it more practicable.

5.1 Expansion

Consider the constraint all a: Name | some a.entries in Sec. 2’s example,
along with the rightmost model in Fig. 1. Why is it locally necessary that the
Book’s entries contain the tuple Alias$0 -> Addr$0? Because: (1) Alias$0

is a Name and thus the variable a can be bound to it, and (2) there are no other
extant entries for Alias$0. Without some means of telling the two cases apart,
the provenance for the Group$0 entry is identical. That is, a model with (say)
only Groups would cover the constraint applying to an Alias.

To account for this and other (possibly nested) disjunction2 in provenance
formulas, we expand each formula to reflect which disjunctive branches satisfy
it in M. In the above example, then, the first formula becomes either Alias$0
in Alias or Group$0 in Group, depending on context. This difference reflects
the different insight these two provenances bring. Fig. 2 gives the expansion
function E+, which maps formulas to expanded formulas, in more detail. The
input formula must be an α from some provenance (and thus true in both M and
M

L). The output formula is fully desugared and instantiated, in that it will only
contain the operators ∧, ∨, ¬, and literals.

5.2 Canonicalization

While expansion makes provenance-coverage more fine-grained, there are cases
in which we need to do the opposite and gloss over differences. For instance,

2 The original constraint is equivalent to all a: Alias+Group | some a.entries.
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two models that are identical except for atom names will have differing prove-
nance sets, yet their provenances give the same information. To eliminate this
and other similar issues caused by atom names, we canonicalize provenances
(post-expansion) to eliminate variation in atom name. This amounts to simple
substitution: replacing atom names and integer constants with canonical represen-
tatives. A provenance that has undergone both expansion and canonicalization is
called a provenance skeleton.

5.3 Coverage and Subsumption

The provenance coverage of a model M, Provs(M), is a set of provenance skeletons:

{p|p is a provenance skeleton for some literal L in M with respect to T }

We lift this to a set E of models: Provs(E) ,
⋃

M∈E Provs(M). It is now reason-
able to speak of one set (i.e., ensemble) of models providing more provenance
information than another. Naturally, Mod(T ) has the largest provenance coverage
for T . As user time and attention is precious, the ideal goal is thus to find a
minimal set of models E with the same coverage.

While attempting to cover a set of skeletons, we observe that some contain
strictly more information than others. By not attempting to cover superfluous
skeletons, we can reduce the runtime and memory requirements of coverage
computation (Sec. 6), and even the eventual ensemble size.

Consider the (propositional) constraint (q or r) implies s and three mod-
els that satisfy it: M1, M2, and M3 with diagrams ∆(M1) = {q,¬r, s}, ∆(M2) =
{¬q, r, s}, and ∆(M3) = {q, r, s}. The literal s is locally necessary in all three.
Let p1, p2, p3 be provenance skeletons for s from M1, M2, and M3 respectively.
In explaining why s holds, p3 gives q and r as a reason, while p1 and p2 give
either q or r but not both. Because p3 blames a strict superset of branches that
p1 and p2 do, we say that p3 subsumes p1 and p2. Formally, the provenance sub-
sumption relation ≤ is a preorder on provenance skeletons. Given two provenance
skeletons for the same literal P1 = {α1, ..., αn} and P2 = {β1, ..., βm}, P1 ≤ P2

iff ∀αi, ∃βj , αi ≤ βj , where the subsumption relation on subformulas is given in
Fig. 3. If pi ≤ pj and pj 6≤ pi, then pi strictly contains information less than pj ,
so we can safely remove pi from consideration.

L1 ≤ L2 , L1 = L2 for literals L1, L2

n
∨

i

Ai ≤
m
∨

j

Bj , ∀Ai, ∃Bj , Ai ≤ Bj

¬A ≤ ¬B , A ≤ B

Fig. 3. Subformula subsumption relation ≤. (The conjunction case is defined similarly.)
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6 Implementation

CompoSAT is implemented as an extension to Alloy, leveraging our Amalgam [20]
provenance-generation toolkit. High-coverage ensembles are enabled via menu
options. We made this design choice so that users can seamlessly transition from
default Alloy to CompoSAT and back again without disruption—or even exiting
the tool. CompoSAT supports the same rich subset of Alloy that Amalgam does,
namely relational and boolean operators, transitive closure, set cardinality and
numeric inequalities without arithmetic.

Given a (user-defined) time budget, the tool first enumerates as many models
as possible, behind the scenes, via the underlying solver. As each model arrives,
CompoSAT generates all provenances via Amalgam, then performs expansion
and canonicalization to produce a skeleton set for each model. A subsumption
check then removes extraneous skeletons. Once the time limit or the supply of
models has expired, CompoSAT solves the set-cover problem to produce the
optimal ensemble. We use the Z3 [21] solver for this purpose.

In principle, a specification may have far more models than can feasibly
be enumerated. In such cases, CompoSAT reports that its enumeration was
incomplete: enumeration has produced only a subset of Mod(T ). Thus, the
provenances obtained form a subset of Provs(Mod(T )). However, even when
the provenances obtained are a strict subset of Provs(Mod(T )), our evaluation
(Sec. 8) shows that the tool still often produces an ensemble that is demonstrably
better than what Alloy’s enumeration would provide, skipping over dozens or
hundreds of models that give no new provenance information. Moreover, as we
will discuss in Sec. 7, even an incomplete high-coverage enumeration can be useful
in revealing errors and giving modelers new insight.

7 Qualitative Use Case: Overconstraint

We now discuss two key qualitative advantages of high-coverage ensembles. Both
are related to a class of specification bug called overconstraint. A specifica-
tion is said to be underconstrained if it is satisfied by unintended models and
overconstrained if some intended models do not satisfy it. One of the advantages
of model finding is that underconstraint can be discovered by simply viewing
surprising models. Overconstraint, however, is more challenging: missing models
cannot be discovered without iterating through all of them and then remembering
what was never seen. For specifications with many models, this is impractical.

Both of these issues are easy to accidentally introduce when refining con-
straints. To mitigate this risk, experienced Alloy users often run testing predicates
that characterize models that should or should not satisfy the specification. Sur-
prising results then indicate over- and underconstraint respectively. But this
technique requires anticipating potential problems in advance; unexpected bugs
and failures of intuition can still occur. Moreover, one of the strengths of Alloy is
that it facilitates both in-depth, detailed analysis and lightweight experimentation.
In the latter case, codifying detailed expectations can be premature.
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7.1 Detecting Overconstraint via Local Necessity

Overconstraint can often appear as unexpected local necessity. In such cases,
showing the user which portions of their models are locally necessary can lead to
surprise and insight. For example, suppose that the constraint on line 9 in Sec. 2
overconstrains: it was meant to say that the book must contain an entry for all
Aliases, but empty Groups should be permitted. Unfortunately, the user has
committed a common error and quantified over a too-general type: Name. Alloy
will never produce an unexpected model due to this error, but it will neglect
models that the author expected to see—those with empty Groups.

Showing the rightmost model in Fig. 1 along with the information that
Group$0’s entry is forced by the constraint on line 9 points immediately to the
issue and suggests possible sites to implement a fix. Amalgam, which CompoSAT
invokes for provenance generation, does exactly this. However, Amalgam’s feed-
back is per-model, and so this useful information will never appear if suspect
models come late. (We have observed empirically that most users rarely view
more than the first few models unless they have reason to believe they have made

an error. This is especially true for more complex specifications where models
may require time and effort to understand.)

In this case, the first suspect model Alloy, and therefore Amalgam, produces
is the sixth—i.e., the user must click “Next” five times to have any chance of
discovering the bug, even with local-necessity highlighting.3 But as mentioned in
Sec. 2, CompoSAT produces an ensemble of only two models, one of which contains
the suspect necessity. Coverage thus enables far superior model enumeration in
this context.

7.2 Highlighting Uncovered Constraints

High-coverage ensembles have power even without displaying local necessity. If a
constraint can never contribute to a provenance, it may indicate either that the
uncovered constraint is too weak or that some other constraint overshadows it.
Space limitations preclude a full example, but consider again the propositional
constraint-set (A or B) and (A and B). The first conjunct can never contribute
to a provenance since the second conjunct only admits the model { A, B }.
This benefit is similar to that observed by Torlak [23], except that we consider
highlighting induced by constraint coverage rather than unsatisfiable cores.

8 Evaluation

We evaluate CompoSAT with a variety of metrics in order to answer 3 research
questions. Namely: (RQ1) Can a relatively small ensemble of models cover a large
quantity of total provenances? (RQ2) Can model enumeration reasonably be used
to discover the provenances of a specification? (RQ3) How much coverage does

3 Model-ordering is dependent on solver engine and other settings. Here, we use
Minisat [22] with unsatisfiable cores and symmetry-breaking enabled.
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enumerating only minimal models achieve? Together, these questions evaluate
the practicality of high-coverage ensembles as well as comparing them against
the two extremes discussed in Sec. 2: all models and minimal models.

8.1 Experimental Setup

We evaluate on a wide variety of specifications that exercise different Alloy
operations and represent multiple domains. When examples came with only
unsatisfiable commands (e.g., properties without counterexamples) we added a
command run {} to enumerate all models to the default bound.

Paper is the example from Sec. 2. From the Amalgam suite, we include col-
ored, undirected trees (ctrees), directed graph (digraph), directed tree (dtree,
dtbug), a logic puzzle (abc), trees without a vertex of degree 2 (gwh), and two
labs from an Alloy course: transitive closure and garbage collection (tclab and
gclab). Bad employee (bempl), grade book (grade), and other groups (other)
originally come from Saghafi, et al. [11]. Address book (addr), geneology (gene)
and own-grandpa (grand) come from the basic examples in the Alloy distribution.
Hotel-locking (hl4), ring election (elect), media asset management (media),
and memory (simplem, fixedm, cachem) come from the longer case-studies
in Jackson [1]. Flowlog [9] (flow) specifies a program written in Flowlog, a
software-defined network programming language. Model finding reveals a bug in
the program. Our UML diagram specifications (uml1, uml2) come from Maoz,
et al. [3], and the semantic differences between those diagrams (cddiff1, cddiff2)
likewise come from Maoz, et al.’s CDDiff [4].

Various tools perform automatic compilation to Alloy from other input
languages—the UML, Semantic Differences, and Flowlog specifications were
all machine generated in this way. Since specification errors can be introduced
by these compilers, improved model output benefits not only end-users but also
compiler authors, who must have high confidence in their translation.

All experiments were performed on a Xeon E3-1240 v5 CPU at 3.50 GHz
running Debian 9.1. No experiment but media consumed more than 4 GB of
memory; for uniformity, we terminated media when recording its many large
provenances exceeded 4 GB. Fig. 4 summarizes the results.

8.2 RQ1: Do small ensembles suffice?

For each experiment, column 5 (Ensm size) shows the ensemble sizes needed to
achieve 50%, 70%, 90%, and 100% coverage discovered of provenance skeletons.
To compute these, we enumerate models and find the optimal 100% ensemble as
specified in Sec. 6. We then order each model in the ensemble by number of new
skeletons and report how far into the ensemble the pertinent coverage level is
reached. This is a conservative metric, as a better ensemble might exist for, say,
50% coverage than a 50% subset of the the optimal 100% ensemble. Low sizes
may therefore be especially encouraging.

The largest 100% ensembles by far belong to incompletely enumerated exper-
iments: media (16 and 19) being the highest. It is possible that high-coverage
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Command and # Time (s) [# mdls] to get Ensm size Total Total Minimal
Spec Max bound skels. All? 50% 70% 90% 100% 50% 70% 90% 100% enum time (s) # mdls skels. [missed]

paper {} 3 5 <1 [4] <1 [4] <1 [6] <1 [6] 1 1 1 2 21 <1 1 1 [4]
ctrees {} 3 17 <1 [2] <1 [4] <1 [4] <1 [5] 1 1 2 2 12 <1 1 3 [14]
ctreesb {} 3 16 <1 [1] <1 [6] <1 [6] <1 [6] 1 1 2 2 14 <1 1 3 [13]
digraph test 4 5 <1 [1] <1 [1] <1 [5] <1 [5] 1 1 1 2 6343 19 1 3 [2]
dtree partialTree 7 6 <1 [2] <1 [2] <1 [2] <1 [2] 1 1 1 1 2 <1 1 1 [5]
dtbug isDTBug 4 10 <1 [2] <1 [2] <1 [2] <1 [2] 1 1 1 1 15 <1 1 2 [10]
tclab connectedK 3 28 <1 [1] <1 [1] <1 [3] <1 [5] 1 1 2 3 55 2 1 23 [5]
gclab completeness 6 34 7 <1 [1] 1 [2] 4 [36] 338 [2092] 1 1 1 2 21904 3600 > 3000 34 [2]
abc {} 3 13 <1 [1] <1 [1] <1 [1] <1 [1] 1 1 1 1 2 <1 2 12 [1]
gwh {} 6 10 <1 [1] <1 [1] <1 [1] <1 [1] 1 1 1 1 2 1 2 10 [0]
grade noGradeOwn 3 25 <1 [1] <1 [1] <1 [1] <1 [1] 1 1 1 1 2428 41 1 25 [0]
bempl noThief 3 21 <1 [1] <1 [1] <1 [2] <1 [6] 1 1 1 1 33283 432 3 18 [5]
other noThief 3 10 <1 [1] <1 [2] 5 [581] 6 [682] 1 1 1 1 1620 10 1 9 [3]
ring {} 6 7 <1 [1] <1 [1] <1 [1] <1 [1] 1 1 1 1 52 4 9 7 [0]
addr inAddr 4 16 7 <1 [7] 2 [37] 39 [820] 495 [7700] 1 1 1 2 47339 3600 1 8 [11]
grand ownGrandpa 4 36 <1 [1] <1 [1] <1 [1] 1 [4] 1 1 1 2 36 5 36 36 [0]
gene Show 6 37 1 [1] 1 [1] 1 [1] 1 [1] 1 1 1 1 768 321 768 37 [0]
hl4 {} 3 245 1 [1] 3 [3] 34 [38] 67 [70] 1 2 3 6 168 166 3 182 [66]

elect-1 AtLeastOne 7 193 7 15 [6] 24 [10] 437 [225] 1304 [619] 2 4 7 13 1568 3600 184 193 [0]
elect-2 looplessPath 12 179 11 [1] 11 [1] 21 [2] 31 [3] 1 1 2 3 3 31 3 179 [0]
media CutPaste 3 674 M 754 [15] 1652 [33] 1899 [38] 2076 [41] 5 8 10 16 41 2077 6 150 [640]
media PasteCut 3 639 M 626 [11] 1184 [22] 3013 [64] 3582 [75] 5 7 9 19 75 3583 14 221 [535]

simplem {} 3 13 <1 [9] <1 [18] <1 [29] 1 [68] 1 1 1 2 5732 139 1 0 [13]
fixedm {} 3 13 <1 [1] <1 [1] <1 [6] <1 [22] 1 1 1 2 769 24 1 0 [13]
cachem {} 3 12 7 <1 [1] <1 [1] 1 [13] 1 [13] 1 1 1 1 86035 3600 1 0 [12]
uml1 cd 10 79 7 7 [1] 7 [1] 11 [2] 530 [104] 1 1 1 3 457 3600 2 40 [39]
uml2 cd 10 48 7 2 [2] 19 [18] 19 [18] 786 [659] 1 1 2 3 1829 3600 3 39 [9]

cddiff1 M1minusM2 6 80 4 [2] 4 [2] 4 [2] 181 [86] 1 1 1 4 385 827 5 74 [6]
cddiff2 M2minusM1 6 63 14 [5] 42 [14] 42 [14] 188 [64] 1 1 1 6 70 211 1 26 [38]
flow isTCReallyTC 4 223 7 18 [2] 43 [5] 115 [13] 1345 [144] 1 2 5 12 383 3600 12 170 [58]

Fig. 4. Summary of results. Each row describes a separate experiment on a distinct specification, predicate (or assertion) and bounds.
Max bound denotes the highest bound used. We report the maximum because model-generation time tends to be exponential in the
bounds. We stop enumeration when either all models have been processed or after one hour has passed. Column 3 (All?) is blank if all
models were enumerated (i.e., the true set of provenances is known). It contains a 7 if enumeration (for that experiment) terminated after
one hour and an M if enumeration is incomplete due to the 4 GB memory limit.
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models (which would reduce the ensemble size) remain undiscovered, but this
will not always be true. These specifications are complex, with many skeletons up
to subsumption. We thus conclude that 100%-coverage ensembles are necessarily
large for some specifications. However, we temper this with two observations.

When we compare even these relatively high ensemble sizes with the total
number of models enumerated in the experiment, we see significant reduction
in the number of models shown. Even in media, the worst case, we see a
3-fold reduction, and in flow a 10-fold reduction. Oftentimes, we see a 100x
(fixedm), 1000x (digraph) or even 10000x (gclab) reduction. We also observe
that ensemble sizes at the 70% and 90% coverage levels are far more manageable.
With the exception of media, the 90% coverage ensembles are all under 10
models and 70% coverage ensembles are no larger than 4—for most, only 1 or 2.

Finally, we see in Column 4 that some experiments find relatively high-
coverage models within the first few enumerated. However, the lion’s share of
these occur in specifications with relatively few total models (gwh with 2 total
or elect-2 with 3). To achieve 90% coverage almost invariably requires a large
number of models be enumerated. This demonstrates the truth of our hypothesis
that automatic enumeration can filter valuable models from the chaff. We defer
questions of time to generate ensembles to the next section, as it separately
evaluates the viability of model-enumeration.

8.3 RQ2: Is enumeration effective?

For each experiment, column 4 reports the time taken and number of models
enumerated before reaching 50%, 70%, 90%, and 100% coverage. This is subtle
since subsumption reduces the number of overall skeletons during enumeration.

If we reported percentages without subsumption, the number of skeletons
shown would not reflect our actual coverage computation and inaccurately inflate
ensemble size. Yet if we reported percentages of the total up to subsumption by

all skeletons found, it would introduce a pro-CompoSAT bias into these results.
To see why, suppose (A) the first model contained provenances {p1, p2} and the
thousandth model contained p3 which subsumed p1 and p2. Then there would be
only one skeleton up to subsumption, not seen until the thousandth model—but
two of the three skeletons in total manifest in the first model. Now consider
(B) the opposite case: the first model contains p3 and the thousandth contains
{p1, p2}, which are both subsumed by p3. Our evaluation should make clear that
the first model achieves 100% coverage, not merely 33%.

Our measurements therefore take subsumption into account only up to the
current model M; skeletons enumerated later will contribute to the denominator
(reducing the coverage of M) but no skeleton will be subsumed by one as-yet-
unseen. This means that in (A), the first model reaches 66% coverage and in (B)
the first model achieves 100%—as expected. This approach ensures that early
models receive “credit” for skeletons they exhibit even if these are later subsumed.

Columns 6 and 7 report the number of models enumerated and the total time
spent. These numbers are often different from the 100% sub-column in column
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4 because there we are measuring only how long it takes to reach full coverage.
Even if all skeletons are seen early, our experiments still run to completion.

The results here somewhat echo Sec. 8.2 above. For completely enumerated
experiments, with one exception (cddiff at roughly 3 minutes) enumeration
produces 100% coverage ensembles in under 70 seconds. We also see many
incomplete experiments (e.g., gclab) reaching full coverage (relative to skeletons
discovered) far quicker than their duration. A small, truly high-coverage ensemble
may be worth the wait. Even if not, the time to achieve 70% and 90% coverage
is far more modest across the board, with 27 of 29 experiments reaching 70% in
under one minute. Media remains an outlier, with new skeletons appearing up
until the very end of the enumeration process. This happens because, in media,
most models only contain a small handful of skeletons. We observe that this case
is not common.

In incomplete cases, it is possible that new skeletons (or superior models)
could be discovered with further enumeration. This is quite likely for media. In
others, such as uml1 (457 enumerated, last skeleton at 104) we see a long trail
of enumeration after a relatively early final skeleton discovery—making it more
likely, although not certain, that few skeletons remain undiscovered.

Overall, although enumeration has its weaknesses, it appears to be effective for
producing high-coverage ensembles in practice. Indeed, as the only other available

option in Alloy at present is manual enumeration, CompoSAT’s approach is, at
worst, automating that process to produce optimal coverage.

8.4 RQ3: Minimal Model Coverage

Column 8 reports the number of minimal models for each experiment, collected
via the Aluminum [10] model-finder. It also gives the total provenance skeletons
found in these. The bracketed number says how many skeletons (column 2)
were not subsumed by any skeleton in a minimal model. Because these numbers
are computed up to subsumption, the found and unfound skeletons need not
always total the value in column 2. Where minimal models do well, it is for
one of two reasons. Some specifications (e.g., gene) are so constrained that all
satisfying models are minimal. Others (e.g., grade) contain no implications with
unnecessary antecedents; here, minimality covers all possible provenances.

For the remaining 23 experiments, minimal models omit swathes of provenance
skeletons. Minimal-model enumeration was complete for all except gclab. Thus,
the bracketed numbers are a strict lower bound on the amount of coverage
neglected in all other incomplete cases; minimal models can do no better than
we report here. Finally, we note that the number of minimal models is often far
larger than the 100% ensemble, and when there are fewer minimal models (as in
Sec. 2), their coverage is under 100% in every case.

9 Related Work

Model finders fall into two classes: SEM-style [24], which reasons about a surface
logic directly, and MACE-style [25], which compiles to Boolean logic and applies
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a SAT solver. Alloy and its internal engine, Kodkod [26], take the latter approach.
Our work is not SAT-specific and could apply to either group.

Model Quality Some effort has been applied to improving output-model quality.
Aluminum [10] and Razor [11] present only minimal models in an attempt to re-
duce distracting example bloat. The Cryptographic Protocol Shapes Analyzer [27]
is a domain-specific model-finder that produces minimal illustrative protocol
runs. Minimal models only contain locally-necessary positive literals—everything
present has a provenance, but negative literals may not be locally necessary. Com-
poSAT is more general, and can detect when the specification disallows either
adding or removing elements. Target-Oriented Model Finding [12, 28] (TOMF)
minimizes distance from user-defined targets, enabling, e.g., maximal models.
Bordeaux [29] uses relative minimization to find near-miss models that fail to
satisfy the specification but nearly do so in terms of edit distance. Our approach
differs starkly from all these as it is syntax-guided rather than purely semantic.

Alloy and other model-finders endeavor to suppress models that are isomorphic

to one already presented. Such symmetry-breaking [30, 31] increases the quality
of the stream of models shown, but in a way orthogonal to ours.

Coverage in Other Settings Coverage [14] has been a valued metric for test suites
since at least the 1960s [32]. While coverage is not without its weaknesses [33],
some of which we share (Sec. 10), it provides powerful insight. Our work is the
first to explore what it means for models to cover constraints.

Concolic testing [34–36] is a coverage-driven technique close to ours in spirit.
It marries concrete test generation and symbolic execution [37] to generate
high-coverage test suites for programs. CompoSAT operates on declarative con-
straints rather than code: there may be no “execution” due to often-deliberate
underconstraint and the fact that not all specifications are temporal.

Coverage has also been applied (e.g., by Hoskote, et al. [38]) to model-checking
to measure how much of a system is exercised by properties. This improves the
set of properties to check, not counterexample quality or overconstraint detection.
Others [39–42] use declarative specifications to aid in testing programs, whereas
we are concerned with helping modelers debug the specification itself. As these
approaches rely on a correct specification, CompoSAT is not only orthogonal,
but also potentially complementary to specification-aided test generation.

Coverage for Declarative Specifications Detecting vacuity [43, 44], which can
cause constraints to never apply or properties to be unhelpfully true, can be
seen as another coverage analysis. Heaven and Russo [45] detect vacuity and
other bug-prone patterns in specifications. However, their work is focused on
detecting patterns, not optimizing output. Torlak, et al. [23] improve Alloy’s
unsat-core highlighting, which can be viewed as a coverage metric that applies
only to unsatisfiabile specifications. They observe that a suspiciously small core
suggests a problem with the property or the bounds given. This insight is useful
to debug unsatisfiable results but does not apply to improving models.

AUnit [46, 47] also takes inspiration from code coverage, but differs in founda-
tion and execution. In AUnit, coverage atoms correspond to truth of subformulas
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and cardinality of subexpressions. In our analogy, this is a refinement of state-
ment coverage. CompoSAT considers sets of subexpressions that capture unique
ways in which models are constrained, analogously to path coverage. Moreover,
AUnit enumerates models via SAT invocations until all coverage atoms are seen;
CompoSAT post-filters Alloy’s default enumeration process. Scenario Tour [48]
generates models using a combinatorial test-generation strategy. Combinations
comprise a pair of relations having specific cardinalities (empty, singleton, and
higher) in models found. This interesting approach is nevertheless more related
to pairwise test generation than statement or path coverage.

Provenance Provenance for databases was introduced by Cui and Widom [49] as
the set of tuples in a source database that contribute to a tuple’s presence in a
query answer. Variations exist, e.g., Buneman et al. [50] and others distinguish
between tuples that bear responsibility from tuples that provide data in the
query answer. Meliou, et al. [51, 52] find provenance for negative answers to
conjunctive queries. One key difference between this work and CompoSAT is
that specifications are strictly more expressive than conjunctive queries.

Provenance is also useful in other settings. Vermeer [53], for instance, explains
assertion violations in C programs via causal traces. WhyLine [54, 55] “Why...”
and “Why not...” queries about Java program behavior. Y! [56, 57] finds and
presents both positive and negative provenance for network events. These tools
all extract provenance from deterministic runtime logs, which possess temporal
structure that models need not possess—and are not available to a model finder.

In addition to minimal model output, Razor [11] is also able to give provenance
for every piece of a model. To do so, it draws on constructive model-finding
ideas (the Chase [58] algorithm) while still leveraging SAT. Amalgam [20] gives
provenance in arbitrary, rather than just minimal, models. Although CompoSAT
uses Amalgam as an engine to generate provenances, the core topic of this work—
syntax-guided model-quality criteria—is separate from provenance generation.

10 Conclusion and Discussion

We have introduced specification-guided coverage as a new metric for producing
high-quality model output. We now conclude with discussion.

Coverage vs. Increased Bounds Alloy searches for models of size up to to given
bounds. E.g, we write “for 4 Name” to search for models with up to 4 Names.
Because of this, increasing bounds will never lose provenances. Moreover, as
bounds increase, models can contain more skeletons; a higher bound often means
that a smaller ensemble is possible (at the cost of more models to enumerate). In
Sec. 2’s specification, for instance, raising the bound to 4 reveals a single-model
optimal ensemble. However, if we permit exact rather than upper bounds, this
property fails since exact bounds omit models of smaller size.

Weaknesses of Coverage High-coverage ensembles have one significant weakness:
they are entirely syntax-guided. CompoSAT may thus do poorly at revealing un-

derconstraint bugs: e.g., if a relation is left completely unconstrained, CompoSAT
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may not demonstrate this. This is analogous to program coverage’s blindness
to missing complexity [59] in code, and is thus not unique to this work. We see
CompoSAT as a new and powerful option in what must become a more diverse
toolbox of output strategies, each focusing on a particular set of user needs.

Alternatives to Post-Processing One might wonder why CompoSAT filters Alloy’s
default output, rather than directly interfacing with SAT. For instance, one could
add SAT clauses to find as-yet-unseen locally-necessary literals. Suppose that T
is our specification, and we are interested in enumerating models wherein some
literal L is locally necessary. We could reflect this goal by temporarily adding the
constraint L ∧ ¬T [L 7→ ⊥] to the specification. That is, requiring L to be true in
any model found, and moreover that if L were false, the specification would not
be satisfied.

Example 1. Consider the propositional formula T ≡ (1 ∨ 2) ∧ (¬1 ∨ 3) ∧ (4 ∨ 5).
Suppose L = ¬1. Then ¬T [L 7→ ⊥] ≡ ¬((1 ∨ 2) ∧ (⊥ ∨ 3) ∧ (4 ∨ 5) which is
equivalent to (¬1 ∧ ¬2) ∨ (> ∧ ¬3) ∨ (¬4 ∧ ¬5)). The left and right disjuncts
can be discarded since they contradict the original specification when L holds.
The resulting addition forces the solver to find models where ¬3 holds, which is
enough to render L locally necessary.

Via this technique, CompoSAT could proceed to query SAT for locally-
necessary literals in round-robin fashion, ensuring at least one provenance for
each local necessity early in enumeration. Unfortunately, one literal may be locally
necessary for many different reasons, so this approach, alone, would greatly reduce
the granularity of coverage. CompoSAT distinguishes between different causes

of necessity, which would be challenging to encode in SAT up to subsumption.
Post-processing also allows CompoSAT to act as a modular extension to other
enumeration strategies, such as TOMF [12].
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