
This paper is included in the Proceedings of the

16th USENIX Symposium on Networked Systems

Design and Implementation (NSDI ’19).

February 26–28, 2019 • Boston, MA, USA

ISBN 978-1-931971-49-2

Open access to the Proceedings of the

16th USENIX Symposium on Networked Systems

Design and Implementation (NSDI ’19)

is sponsored by

Alembic: Automated Model Inference

for Stateful Network Functions

Soo-Jin Moon, Carnegie Mellon University; Jeffrey Helt, Princeton University;

Yifei Yuan, Intentionet; Yves Bieri, ETH Zurich; Sujata Banerjee, VMware Research;

Vyas Sekar, Carnegie Mellon University; Wenfei Wu, Tsinghua University;

Mihalis Yannakakis, Columbia University; Ying Zhang, Facebook, Inc.

https://www.usenix.org/conference/nsdi19/presentation/moon

Alembic: Automated Model Inference for Stateful Network Functions∗

Soo-Jin Moon1, Jeffrey Helt2, Yifei Yuan3, Yves Bieri4, Sujata Banerjee5

Vyas Sekar1, Wenfei Wu6, Mihalis Yannakakis7, Ying Zhang8

1Carnegie Mellon University, 2Princeton University, 3Intentionet, 4ETH Zurich
5VMware Research, 6Tsinghua University, 7Columbia University, 8Facebook, Inc.

Abstract

Network operators today deploy a wide range of complex,

stateful network functions (NFs). Typically, they only have ac-

cess to the NFs’ binary executables, configuration interfaces,

and manuals from vendors. To ensure correct behavior of NFs,

operators use network testing and verification tools, which

often rely on models of the deployed NFs. The effectiveness

of these tools depends on the fidelity of such models. Today,

models are handwritten, which can be error prone, tedious,

and does not account for implementation-specific artifacts. To

address this gap, our goal is to automatically infer behavioral

models of stateful NFs for a given configuration. The problem

is challenging because NF configurations can contain diverse

rule types and the space of dynamic and stateful NF behaviors

is large. In this work, we present Alembic, which synthesizes

NF models viewed as an ensemble of finite-state machines

(FSMs). Alembic consists of an offline stage that learns sym-

bolic FSM representations for each NF rule type and an online

stage that generates a concrete behavioral model for a given

configuration using these symbolic FSMs. We demonstrate

that Alembic is accurate, scalable, and sheds light on subtle

differences across NF implementations.

1 Introduction

Modern production networks include a large number of propri-

etary network functions (NFs), such as firewalls (FWs), load

balancers (LBs), and intrusion detection systems (IDSs) [21].

To help debug network problems, ensure correct behavior,

and verify security, there are many efforts in network testing

and verification [22, 35, 40, 41] as well as “on-boarding” new

virtual NFs [32].

Such network management tools rely on NF models to

create test cases, generate verification proofs, and run compat-

ibility tests. These models are required because NF implemen-

∗Contributions by Soo-Jin Moon were made in-part during a former in-

ternship at Hewlett Packard Labs. Other contributors from former employees

at Hewlett Packard Labs include Sujata Banerjee, Ying Zhang and Wenfei

Wu.

tations are often proprietary, leaving operators with only con-

figuration interfaces and vendor manuals. Today, NF models

are handcrafted based on manual investigation [22,40], which

is tedious, time-consuming, and error-prone. Further, mod-

els do not capture subtle implementation differences across

vendors [22, 30, 35]. Using low-fidelity models can affect the

correctness and effectiveness of these management tools (§2).

Ideally, we want to automatically synthesize high-fidelity

NF models. Synthesizing such models is challenging because:

(1) NFs have large state spaces; (2) their state may be mutated

by any incoming packet; and (3) in response, the NF may

react with any number of diverse and possibly even nondeter-

ministic actions. In this paper, we present Alembic, a system

that addresses a scoped portion of this open challenge. Specif-

ically, we focus on modeling NFs where their internal states

are mutated by incoming TCP packets and their actions are

restricted to dropping and forwarding packets, possibly with

header modification. Our goal is to synthesize high-fidelity

NF models given only the binary executable, vendor manu-

als, and a specific configuration with which the NF is to be

deployed. We adopt this pragmatic approach as vendors may

not be willing to share their source code, even with customers.

Even this scoped problem presents significant challenges:

• C1) Modeling and representing stateful NF behaviors: The

behavior of an NF often depends on the history of observed

traffic, making it difficult to discover and concisely repre-

sent its internal states.

• C2) Large configuration space: Concrete configurations

(e.g., a FW rule-set) are composed of multiple rules. Fields

within a rule (e.g., source IP) can take large sets of values

or ranges of values (e.g., IP prefix), making it impractical

to infer models for all possible configurations.

• C3) Large traffic space: Given the stateful behavior, the

input space potentially includes all possible sequences of

TCP packets. Naively enumerating this large space would

be prohibitively expensive.

• C4) NF actions: NFs such as NATs can modify packet

headers, making model inference more difficult.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 699

False positive (no violation but

reports a violation)

Test

Packets

Intended

Policy

Actual

Network

Buzz

Model

Forward Forward Forward

Forward Forward Forward

Drop Drop Forward

: Packets from an internal host A1 to an external host B1SYN SA ACKPacket

Legend
SYN SA ACK

ESTABL

-ISHED

SYN

SENT

NULL

SYN! / Drop
SYN / Forward

! / DropSA

/ ForwardSA/Forward

Handwritten Model (BUZZ, NSDI16)

: Packets from an external host B1 to an internal host A1

Limitations of a handwritten model

FIN

FIN

SYN

SYN

SA

/ Forward

FIN

FIN

FIN

! FIN

Figure 2: A handwritten model of a stateful firewall (FW)

which incorrectly reports a policy violation

To implement these policies, the FW is configured with

the rule shown in Figure 1. Since many FWs implement a

default-drop policy, there is no explicit drop rule for packets

originating externally. Note we do not need explicit rules for

Policy 2 and 3 as they should be performed by the FW when

following the TCP protocol.

To check if the network correctly implements the intended

policies, operators use testing and verification tools [22, 35,

40]. These tools use NF models to generate test traffic [22,41]

or to verify intended properties [35]. If these models are inac-

curate, the results can have any of the following error types:

(1) false positives, where the tool reports violations when

there is no violation; (2) false negatives, where the tool fails

to discover violations; or (3) inability to test or verify where

the tool fails completely because the models are not expres-

sive enough. As an example, consider BUZZ [22], a recently-

developed network testing tool. BUZZ uses a model-based

testing approach to generate test traffic for checking if the

network implements a policy, and the original paper includes

several handwritten models. In the remainder of this section,

we present three examples of how operators can encounter is-

sues while using the BUZZ tool due to discrepancies between

handwritten models and NF implementations. Our goal is

not to pinpoint limitations of the BUZZ tool but to highlight

shortcomings of handwritten models. We find that models

from other tools lead to similar problems [35, 40].

To control for NF-specific artifacts (for now), we use two

custom, Click-based [31] FWs that correctly implement the

above policies.2 Figure 2 shows the handwritten model of a

stateful FW used in the BUZZ tool [22]. We use the BUZZ

FW model for comparison as it implements a policy similar

to our example (i.e., the FW only forwards packets belonging

to a TCP connection initiated by an internal host).

Test case (policy 1): The operator uses the BUZZ tool to gen-

erate test traffic and check if TCP packets from B1 can reach

A1. Figure 2 shows a sample test traffic sequence generated

by BUZZ: SYNInternal
A1)B1 (i.e., TCP SYN packet from A1 to B1),

SYN-ACKExternal
B1)A1 , and finally SYNExternal

B1)A1 . Our Click-based

2Because BUZZ’s included FW model does not encode the notion of

out-of-window packets, we wrote a FW that adheres to policies 1 and 2 for a

fair comparison, and a separate FW for policy 3.

FW drops the last SYN from B1, which matches the policy

intent as the TCP handshake did not complete. However, ac-

cording to the handwritten model, SYNExternal
B1)A1 is marked as

forwarded. Specifically, the model updates the state to ES-

TABLISHED on receiving a SYN-ACK (SA in Figure 2)

from B1, allowing SYNExternal
B1)A1 to be forwarded to A1. This

discrepancy between the model and the Click-based FW will

be flagged as a policy violation, resulting in a false positive.

Test case (policy 2): The operator wants to test if a RST from

A1 actually resets the connection state of the FW. However,

as we see in Figure 2, the handwritten model only checks for

FIN packets but not RST packets to reset the connection state.

Hence, the test cases generated by the handwritten model will

have discrepancies with the Click-based FW, resulting in a

false positive (similar to policy 1).

Test case (policy 3): The operator wants to test whether the

FW correctly handles packets with out-of-window seq and

ack numbers. We observe that many FW vendors enable this

feature by default (e.g., §8.4). Unfortunately, the handwrit-

ten model is not expressive enough to encode the notion of

packets with correct and incorrect seq and ack numbers.

To make matters worse, existing tools (e.g., [22, 35, 40])

assume homogeneous models across vendor implementations

for a given NF type. However, we found non-trivial differ-

ences in implementations (§8.4). Further, NF models fed to

testing and verification tools need to be aware of the impact of

specific configurations, which can easily be missed by hand-

written models. For instance, the BUZZ FW model assumes

a default drop policy from the external interface, which is

consistent with many vendors. However, while running model

inference using Alembic, we found that one specific NF (Un-

tangle FW) allows packets by default [7]. To implement a

default-drop policy in Untangle, we need an explicit drop-all

rule, and a model for Untangle needs to be customized for

this configuration.

3 Alembic System Overview

In this section, we state our goals, identify the key challenges,

describe our insights to address these challenges, and provide

an end-to-end overview of Alembic.

Preliminaries: We introduce the terminology related to NF

configurations, which describe an NF’s runtime behavior. A

configuration schema contains NF rule types. Each rule

type has various configuration fields, and the data types these

fields accept (e.g., “srcip” takes an IPv4 range). Once we

specify the concrete values for the fields (concrete values can

be wild-card), we obtain a concrete rule of the rule type.

A concrete configuration consists of multiple concrete

rules. Figure 3 shows an example of a firewall (FW) and a

network address translation (NAT) configuration schema and

their corresponding concrete configurations. In the NAT Rule

type, the outsrcip field denotes the possible output IP values

used in address translation.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 701

ProprietaryNF FW

ConfigSchema:

Rule type 1 (Accept): 〈srcip:IPv4 range, srcport:Port range, dstip:IPv4

range, dstport:Port range, action:1 〉
Rule type 2 (Deny): 〈 srcip:IPv4 range, srcport:Port range, dstip:IPv4

range, dstport:Port range, action:0 〉
ConcreteConfig:

Rule 1: 〈 srcip:10.1.1.1,srcport:*,dstip:156.4.0.1,dstport:*, action:1 〉
Rule 2: 〈 srcip:10.8.0.0/16,srcport:*,dstip:151.0.0.0/8,dstport:*,action:0〉

PfSense outbound NAT

ConfigSchema:

Rule type 1: 〈srcip: IPv4 range, srcport: Port range, dstip: IPv4 range,

dstport: Port range, outsrcip: IPv4 range, outsrcport: Port range〉
ConcreteConfig:

Rule 1: 〈srcip:10.1.0.0/16,srcport:*,dstip:156.4.0.0/16,dstport:*,

outsrcip:126.2.0.0/16,outsrcport=* 〉
Rule 2: 〈srcip:10.0.0.0/8,srcport:*,dstip:162.4.0.0/16,dstport:*,

outsrcip:192.1.0.0/16,outsrcport=* 〉

Figure 3: Example of a simplified ConfigSchema and Con-

creteConfig for a FW and a NAT

3.1 Problem formulation

Given an NF with a concrete configuration, Alembic’s goal is

to automatically synthesize a high-fidelity behavioral model

of the NF. Since NF implementations do not change often,

we can afford several tens of hours of offline profiling per NF.

However, since concrete configurations (e.g., a FW rule-set)

can change often, we need to generate a new model given a

new configuration quickly, within a few seconds.

Alembic takes five inputs: (1) the NF executable binary, (2)

the configuration schema (ConfigSchema), (3) the high-level

rule processing semantics of parsing the configuration (e.g.,

first match), (4) a list of network interfaces, and (5) the set of

input packet types (e.g., TCP SYN or ACK) the model needs

to cover. For (1), we assume no visibility into the internal

implementation or source code and only have access to its

manual describing configuration. For (2), the ConfigSchema is

typically already available from vendor documentation.3 The

ConfigSchema in Figure 3 assumes we are explicitly given a

set of rule types (e.g., accept or deny), where each rule type

is associated with a different runtime behavior. In practice,

the vendor documentation may only specify a set of fields

and their types. For instance, a FW ConfigSchema provides

one rule type with an action field that takes a binary value, in

which each value leads to a rule type with different runtime

behaviors. We show how we generate a set of all rule types

in such a case (§7). For (3), we assume the rule processing

semantics are available from the vendor documentation. Our

design can handle any NF that applies a single rule per packet.

Our implementation currently supports first-match semantics

but can be easily extended to handle others (e.g., last-match).

For (4), we need to know a list of interfaces that the NF is

configured with. In this work, we assume that we are given

two interfaces (e.g., internal and external-facing interfaces).

3Alembic requires a one-time, manual effort to translate this documenta-

tion into a format compatible with our current workflow.

Lastly, given packet types (5), Alembic will automatically

configure each packet type with appropriate field values.

Here, we focus on modeling TCP-relevant behavior for NFs

that forward, drop, or modify headers (e.g., FWs, NATs, and

LBs). We provide default packet types for TCP, but Alembic

can be extended with additional packet types. We scope the

types of NFs and their actions that Alembic can handle in §3.3

and discuss how to extend Alembic to handle more complex

NFs in §10.

3.2 Key ideas

To highlight our main insights to address challenges C1

through C4 from §1, suppose we want to model an NF with

a concrete configuration C1 composed of N concrete rules

{R1 · · ·RN}. Figure 4 illustrates our ideas to make this model-

ing problem tractable.

A) Compositional model (Fig. 4a): The concrete configura-

tion C1 can be logically decomposed into individual rules. As

seen in Figure 4a, suppose we have models M1 for R1 and M2

for R2. Then, we can create a compositional model for the NF

given the processing semantics defined by the ConfigSchema

(e.g., first-match). If the packet matches Rule1, then apply

Model1, else if it matches Rule2, then apply Model2. Other-

wise, apply Modeldefault.

B) Symbolic model (Fig. 4b): To start, we make two sim-

plifying assumptions, which we relax below: (1) the IP and

port fields in a concrete rule take a single value from a range

(e.g., 10.1.1.1 for srcip); and (2) the NF keeps per-connection

state. Suppose the srcip field in R1 (Figure 4b) takes a single

IP from 10.1.0.0/16. It is infeasible to exhaustively infer the

model for all possible values. Fortunately, we observe that the

logical behavior of the NF for a particular rule type (e.g., FW

accept rule) is homogeneous across different values for the

IPs and ports in this range. Thus, we can efficiently generate

a model by representing each IP and port field in a rule with

a symbolic value. Hence, for each logical rule type (e.g., FW

accept rule), we can learn a symbolic model (e.g., M1(A)).

C) Ensemble representation (Fig. 4c): We relax the as-

sumption that IPs and ports take single values and discuss

how we handle ranges within a rule (i.e., R1 in Figure 4b

takes a /16 prefix for a srcip). We observe that NF behavior

is logically independent for subsets of this large traffic space.

Consider a stateful firewall that keeps per-connection state.

Rather than viewing M1 as a monolithic model that captures

the behavior of all relevant connections, we can view the

model as a collection of independent models, one per connec-

tion (i.e., M1,1 for connection 1, M1,2 for connection 2, etc.).

Combining this idea with B above, we learn a symbolic model

for each rule type and logically clone the model to represent

IP and port ranges (henceforth, an ensemble of models). How-

ever, to leverage this idea, we need to infer the granularity at

which an NF keeps independent states (e.g., per-connection

or per-source). We show in §5 how to automatically infer this.

702 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

NF binary

ConfigGen($7.1)

SymbolicRuleij

Library of

symbolic models

SymbolicRule ij :

(KeyijàSymbolicModelij)

FSM Inference
using Extended L*

($4)

KeyLearning

($5)

For each RuleTypei:

PktTypeProtoConfigSchema

Operator
Offline

Rule 1

Rule 2

… Concrete Model

for a Concrete Config

Library of

symbolic models

(from offline) MatchClone(Rule1)

MatchClone(Rule2)

…

Ensemble

Ensemble

If packet p match Rule1:

Else if packet k match Rule2:

Concrete Config

Online ($7.2)

Figure 6: Alembic Workflow

• For simplicity, we only consider single-function NFs, ex-

cluding cases such as combined NFs processing FW rules

and then NAT rules.

• To make learning tractable, we only look at IP and port

modifications. Our implementation does not consider se-

q/ack numbers, ToS, or other fields (§4.3). We only handle

header modifications for connection-oriented NFs (§6).4

We tackle header modification for an NF that initially mod-

ifies IP/port of a packet, p1, entering from a particular

interface before modifying a packet, p2 (that belongs to the

same connection as p1) entering from the other interface.

Lastly, we cannot infer context-sensitive relations such as

how the modified IP or port (e.g., NAT ports) is chosen.

• We do not explicitly model temporal effects, such as con-

nection timeouts. When we inject input packets into the

NF, we collect outputs for ∆wait (e.g., 100 ms) before in-

jecting the next input packet. Alembic cannot handle cases

where output packets are results of prior input packets (e.g.,

retries after 1 second).

• We support five types of state granularity: per-connection,

per-source (e.g., a scan detector which counts a number

of SYN packets), per-destination (e.g., DDoS detector),

cross-connection, and stateless.

3.4 Alembic workflow

Having described our key insights and scope, we now present

our workflow (Figure 6) consisting of two stages:

Offline stage: From the ConfigSchema, we generate a set of

rule types (§7). Given each rule type, the ConfigGen mod-

ule generates a SymbolicRule, Rsymb, and a corresponding

ConcreteRule. For instance, given a FW ConfigSchema, it

generates two SymbolicRules and ConcreteRules (e.g., FW

accept and deny rule as shown in Figure 7).

4Most header modifying NFs we are aware of are connection-oriented.

R
symb
1 : 〈src:A,srcport:Ap1,dst:B,dstport:Bp1, action:1〉 FW TCP Accept

Rconc
1 : 〈src:10.1.1.1,srcport:2000,dst:156.4.0.1,dstport:5000,action:1〉

R
symb
2 : 〈src:A,srcport:Ap1,dst:B,dstport:Bp1, action:0〉 FW TCP Deny

Rconc
2 : 〈src:10.1.1.1,srcport:2000,dst:156.4.0.1,dstport:5000,action:0〉

Figure 7: SymbolicRules and ConcreteRules for a FW

For each SymbolicRule, we use the FSMInference mod-

ule, which leverages L*-based workflow to infer a symbolic

model where IPs and ports are symbolic (§4) and handles

header modifications (§6). This module uses our version of

L* (i.e., Extended L*). We also design the KeyLearning

module, which leverages the FSMInference module and in-

fers the state granularity (i.e., key type) tracked by the NF

(e.g., per-connection). Using the key type, we can identify

the key, a set of header field values that identifies logically

independent states (e.g., a 5-tuple for per-connection NF).

The offline stage produces a set of symbolic models, mapping

each SymbolicRule to a symbolic model and its key type.

Online stage: Given a new configuration, each rule is

matched to a corresponding SymbolicRule, mapped to a key

type and a symbolic model. Based on the key type, we logi-

cally clone the symbolic model to represent concrete IP and

port ranges (collectively, an ensemble of FSMs). Given the

processing semantics, we logically compose each ensemble

to create the final model for this configuration. Network man-

agement tools can then use the resulting model.

Roadmap: In the interest of clarity, §4 describes the FS-

MInference module of Alembic for a given SymbolicRule

with the following simplifying assumptions: NFs keep per-

connection state and do not modify headers. In subsequent

sections, we relax these assumptions and show how we infer

the state granularity (§5) and handle header-modifying NFs

(§6). §7 discusses how we generate a set of rule types and the

corresponding SymbolicRule and the Alembic online stage.

4 Extended L* for FSM Inference

We now present the FSMInference module, which leverages

the Extended L* for inferring a symbolic model given a Sym-

bolicRule, Rsymb (e.g., in Figure 7). Recall that we are also

given a corresponding ConcreteRule, Rconc, to configure the

NF. For clarity, we start with two simplifying assumptions:

(1) NFs keep per-connection state, and (2) NFs do not modify

packet headers. We relax these assumptions in §5 and §6.

4.1 Background on L* algorithm

Before discussing the challenges of directly applying L*, we

provide a high-level description of the L* algorithm [12],

which infers a FSM for a given blackbox. Given the input

alphabet, Σ (e.g., {a,b} where a, b are input symbols), L*

generates sequences (e.g., a, aa, aba), and probes the black-

box, resetting the box between sequences. For each input

704 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Initialize
Equivalence

Oracle

Generate query

+Probe Blackbox
Update Complete?

Yes
No

Done

If counterexample
Refinement Stage

HypothesisItr

Equivalence Oracle

(counter-example)

Alphabet, w = {a,b}*

1

0

a/1, b/0
aa ! 10

ab ! 11

ba ! 00

bb ! 01

0 1
a/1

b/0

a/0, b/1
input, i=abbb

M(i) ! 1111

Blackbox(i) ! 1110

2
0 1 2

a/1

b/0 b/1

a/0 aba ! 110

abb ! 111

. . .

abba ! 1110
0 1 2 3

a/1

b/0 b/1 b/1

a/0 a/0 ∗/0
No counterexample

Terminate

Flowchart

Detailed Steps

Refinement Stage

Target FSM

M1

Input seq, i=abbb

M1(i) à 1111

Blackbox(i) à 1110

M2

Figure 8: L* overview and example

sequence, L* builds a hypothesis FSM consistent with the

input-output pairs seen so far. Specifically, it builds a Mealy

machine whose outputs are a function of its current state and

inputs. As shown in Figure 8, L* iteratively refines the hypoth-

esis FSM until it is complete (i.e., the set of probing sequences

cover the state space of this hypothesis). After the hypothesis

converges, L* queries an Equivalence Oracle (EO), which

checks if the inferred FSM is identical to the blackbox and

provides a counterexample if they are not. If the EO reports

that the hypothesis is identical to the blackbox, the algorithm

terminates. Otherwise, L* uses the counterexample to further

refine the hypothesis. The process repeats until the EO reports

no counterexamples. L*’s runtime complexity is polynomial

in the number of states and transitions of a minimal FSM rep-

resenting the target FSM as well as the length of the longest

counterexample used to refine the hypothesis [12].

Example: Figure 8 illustrates an example of the steps in L*

for the target FSM shown with Σ = {a,b}. Initially, L* starts

with the inputs, a and b, and a single-state FSM. It generates

four sequences to refine the model and converges to M1 as

shown. It then queries the EO and finds a counterexample

where Blackbox(abbb)=1110 but M1(abbb)=1111, which is

used to update the model. To explore the state space of the

new hypothesis, L* generates longer sequences. After this

second iteration, the EO finds no counterexamples (as M2 is

identical to the blackbox), and the algorithm terminates.

4.2 Challenges in using L* for NFs

While L* is a natural starting point, there are practical chal-

lenges in applying it directly to NFs. We will describe these

challenges using Figure 9 and discuss our solutions.

1) Generating input alphabet (§4.3): L* assumes the input

alphabet (Σ) is known. As discussed in §3, we can set Σ for

Alembic to be a set of located symbolic packets, which are

packets with symbolic IPs and ports associated to interfaces.

From now on, when we say packets, we refer to located pack-

ets. The main disconnect here is that the NF (i.e., the blackbox

Input Alphabet
L* Algo

Equivalence

Oracle

NF
(Concrete Rule)

$4.3

Generating

input alphabet

Symbolic pkt

{Symbolic pkt}

concrete pkt concrete pkt

Symbolic pkt $4.4 Classifying

output packets

$4.5

Figure 9: Key challenges in adopting the L* workflow for

NF model inference

in the L* workflow) takes in concrete packets and not sym-

bolic packets. Thus, we need to map a symbolic packet to a

concrete packet. Two challenges exist here: First, the possible

header space for concrete packets is large (i.e., all IPs and

ports), and second, the concrete packets need to exercise the

internal states of the NF (e.g., trigger the NF behavior).

2) Classifying output packets (§4.4): Next, for each sym-

bolic packet suggested by L*, we need to map it to an NF

action. The practical challenge is that NFs may require an

unpredictable delay. If we assume a processing delay that is

too short and classify the action as a drop, we might learn a

spurious model. While a delay that is too long will lead to our

inferences taking a long time. Thus, we need a robust way to

map an input to the observed output.

3) Building an equivalence oracle (§4.5): L* assumes ac-

cess to an EO (Figure 9). In cases where we do not have

access to the ground truth, we can only approximate the or-

acle via input-output observations. There are two practical

issues. First, existing approaches (e.g., [17, 25]) to building

an EO generate a large number of equivalence queries, creat-

ing a scalability bottleneck. Second, different approaches for

building an EO may affect the soundness of Alembic (§4.5).

4.3 Generating input alphabet

We now describe how we generate a set of located sym-

bolic packets for the input alphabet and how we map each

located symbolic packet to a concrete packet. As discussed

in §3, we are given the representative packet types of interest

PktTypeProto (e.g., TCP handshake) as an input.

To illustrate these challenges, consider two straw-man so-

lutions that generate packets for: (1) every possible combi-

nations of header fields, and (2) randomly generated header

fields. (1) is prohibitively expensive, and (2) may not exercise

the relevant stateful behaviors. Our idea is to use the symbolic

and concrete rules to identify relevant header fields and their

values. Specifically, we observe that the header fields and

their values (e.g., IP-port) in Rconc will trigger relevant NF be-

haviors. Thus, we generate all combinations of these relevant

IP-port pairs using their concrete values from Rconc. Using a

pair of R
symb
1 and Rconc

1 as an example (Figure 7), we identify

A=10.1.1.1 as a possible candidate for both source and des-

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 705

tination IPs across all interfaces (i.e., A can be a source or

destination IP on packets entering from internal or external

interfaces). We consider all interfaces, as a packet entering

different interfaces can be treated differently.

We also consider the scenario where the packet does not

match any rules. One approach is to pick concrete header

values that do not appear in the concrete rule and generate a

corresponding symbolic packet (e.g., not A=12.1.0.1). How-

ever, this would double the size of Σ. Instead, we leverage

our insight regarding the compositional behavior of NFs and

view this as composing the action with the default behavior

of the NF when no concrete rule is installed. We separately

infer a model, Mde f ault , with an empty configuration (e.g., a

FW without any rules).5

Example: From Rsymb, we mark A:Ap1 and B:Bp1 as pos-

sible IP:port pairs, where A:Ap1 and B:Bp1 refer to sr-

cip:srcport and dstip:dstport pairs from Rsymb. Then, we gen-

erate all possible combinations across source and destina-

tion IP/ports and network interfaces: (1) TCPInternal
A:Ap1)B:Bp1

(corresponding to a TCP packet with srcip:port=A1:Ap1

and dstip:port=B1:Bp1 on the internal interface), (2)

TCPExternal
A:Ap1)B:Bp1, (3) TCPInternal

B:Bp1)A:Ap1, . . ., etc. Suppose the

packet types of interest are: {SYN,SYN-ACK,ACK}. Then,

for (1), we obtain SYNInternal
A:Ap1)B:Bp1, SYN-ACKInternal

A:Ap1)B:Bp1,

· · · . We follow the similar procedure for (2) and (3). Essen-

tially, SYNInternal
A:Ap1)B:Bp1 is a symbolic packet which maps to a

concrete SYN packet with A=10.1.1.1 and Ap1=2000 that is

injected from the internal interface. Alembic internally tracks

the symbolic-to-concrete map (i.e., A=10.1.1.1) to connect the

symbolic packet used by L* to the concrete packets into the

NF. Finally, we (optionally) prune out packets that are infea-

sible given the known reachability properties of the network.

For instance, it is infeasible for a packet with srcip=10.1.1.1

to enter from the external interface.

4.4 Classifying output packets

To classify the output from the NF, we monitor for output

packets at all interfaces of the NF and map them to their

symbolic representations. For instance, after detecting a SYN

on the external interface with source IP:port, 10.1.1.1:2000,

and destination IP:port, 156.4.0.1:5000, we assign the output

symbols as SYNExternal
A:Ap1)B:Bp1. Specifically, Alembic monitors

all interfaces for ∆wait and reports the set of observed packets

(e.g., Lout and Rin). ∆wait is critical for classifying dropped

packets and we cannot have an arbitrarily assigned values. Un-

fortunately, an NF sometimes introduces unexpectedly long

delays in packets (≥ 200ms). For instance, Untangle performs

connection setup steps with variable latency upon receiving

SYN packets, and ProprietaryNF experiences periodic spikes

in CPU usage leading to delayed packets. Such delays can

5We acknowledge an assumption that rule matching is correctly imple-

mented by the NF. If the NF has a rule for src=A and dst=B but a buggy

implementation that matches A’ and B’, we will not uncover this behavior.

result in misclassifying a packet as a drop and affect the learn-

ing process. For these NFs, ∆wait is determined by injecting

the TCP packets and measuring the maximum observed delay.

Further, we extended L* with an option to probe the same

sequence multiple times and pick the action that occurs in the

majority of test sequences.

4.5 Building an equivalence oracle

Building an efficient oracle is difficult with just black-box ac-

cess [17,25]. Any EO will be incomplete as it cannot generate

all sequences. Our goal is to achieve soundness with respect

to the generated Σ without sacrificing scalability.

We tested three standard approaches for generating EOs

that LearnLib [38], an open-source tool for FSM learning,

supports: (1) Complete Oracle (CO), which exhaustively

searches sequences to a specified length; (2) Random Oracle

(RO), which randomly generates sequences; and (3) Partial W-

method (Wp-method) [25], which takes d as an input parame-

ter which is an upper bound on the number of additional states

from its current estimate at each iteration.6 We discarded the

CO as it simply performs an exhaustive search and the RO as

it is not systematic in exploring the state space. Instead, we

use the Wp-method, a variant of the W-method [17] that uses

fewer test sequences without sacrificing W-method’s cover-

age guarantees. Briefly, the W-method uses a characterization

set, the W-set, which is a set of sequences that distinguish

every pair of states in the hypothesis FSM. The W-method

searches for new states that are within d additional inputs of

the current hypothesis and uses the W-set to confirm the new

states. In theory, one can set d to be large but increases the

runtime by a factor of |Σ|d . For this reason, we set d = 1 in

Alembic. Alembic can only discover additional NF states that

are discoverable by the Wp-method with d = 1; i.e., Alembic

with Wp-method (d = 1) is sound. Even with d = 1, Alem-

bic synthesizes models that are more expressive than many

handwritten models and discovers implementation-specific

differences (§8).

Distributed learning: Both L* and Wp-method for d = 1 are

polynomial in runtime. However, the Wp-method is the bot-

tleneck as the number of sequences generated by Wp-method

is approximately |Σ| factor higher than that of the L*. For-

tunately, the equivalence queries can be parallelized. In our

system implementation (§8), we run equivalence queries in

parallel across multiple workers until we find a counterex-

ample. Using this technique, we can significantly reduce the

time for learning a complex behavioral models (§8.3).

5 KeyLearning: Learning State Granularity

Thus far, we assumed that the NF maintains per-connection

state. We now relax this assumption and show how we tackle

6In practice, the number of states can grow by > d at each iteration.

706 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

NFs that maintains other key types (e.g., per-source). Specifi-

cally, we implement a KeyLearning module. Given a Symbol-

icRule, the module outputs the key type, a set of header fields

that identify a relevant model in an ensemble representation.

Note that here we still assume that the NF does not modify

packet headers, which we will relax next in §6.

High-level intuition: Consider a FW configured with a rule

that keeps per-connection state. A packet from one connection

only affects its own FSM and is unaffected by packets that

belong to other connections. Now, consider an NF which

keeps per-source state, and packets, p1 and p2, with the same

srcip, but with different dstip. The arrival of p1 affects not

only the state for processing p1, but also the state associated

with p2 because they share the same srcip. The KeyLearning

algorithm builds on the above intuition; if two connections

are independent with respect to an NF’s processing logic, then

the packet corresponding to one connection only affects the

state of its FSM. Thus, to infer the key type, we construct test

cases using multiple connections to validate the independence

assumptions across these connections. We show how we can

validate independence by inspecting two connections using

carefully constructed source and destination values.

The KeyLearning algorithm is composed of test cases

to distinguish between different key types. As a con-

crete example of a test case, suppose we have a Symbol-

icRule, which takes 〈srcip=A, dstip=B〉 where A and B

are ranges of IPs (e.g., A=10.1.0.0/16 and B=156.4.0.0/16).

First, we infer two models with two separate ConcreteRules,

where we configure each IP using a concrete singleton

(e.g., Rconc
1 , with 〈srcip=10.1.1.1,dstip=156.4.0.1〉 to learn

Model1, and Rconc
2 with 〈srcip=10.1.1.1,dstip=156.4.0.2〉 to

learn Model2). Note that these two have the same srcip. We

leverage the FSMInference module in §4. We first gener-

ate Σ1 for Rconc
1 and use the FSMInference in §4 to obtain

Model1, and then repeat for Model2. Assuming these models

are independent, we run a logical FSM composition opera-

tion to construct Modelcomposite (Def.7 in §C). This is what

the hypothetical model will be if these two connections are

independent. As a second step, we now learn a joint model

Modeljoint, where we combine input alphabets from both con-

nections. Specifically, we configure a ConcreteRule, where

the dstip takes a range of IPs (e.g., 156.4.0.1-156.4.0.2).

For example, consider a scan detector, that keeps per-source

state. As the above two connections have the same srcip,

Modeljoint will reflect that the packets affect each other’s state

(i.e., Modeljoint is not equivalent to Modelcomposite, which as-

sumes independence across two connections). But, for a per-

connection model, the two connections are independent (i.e.,

Modeljoint would be equivalent to Modelcomposite). Thus, we

now have a simple logical test to distinguish between per-

connection and per-source.

Inference Algorithm: Our inference algorithm generalizes

the basic test described above. By crafting different Con-

creteRules (i.e., changing the overlap on srcip or dstip) and

Test1:

Cross-Conn Test

Key=

Cross-Conn

Test2:

Per-Src Test

Test3:

Per-Dst Test

Key=

Per-src

Key=

Per-dst

Key=

Per-Conn

No No No

YesYesYes

Start

Stateless Per-conn Per-src Per-dst Cross-conn

Test 1

(diff src, diff dst)

N N N N Y

Test 2

(same src, diff dst)

N N Y N Y

Test 3

(diff src, same dst)

N N N Y Y

Decision Tree

Test Cases (diff means different)

Figure 10: KeyLearning Decision Tree

running the equivalence tests between Modelcomposite and

Modeljoint for each case, we create a decision tree to iden-

tify the key type maintained by the NF, which are: (1) per-

connection, (2) per-source (e.g., a scan detector), (3) per-

destination, (4) cross-connection, or (5) stateless. 7

Figure 10 shows the result of test cases for these key types.

For instance, Test 1 configures two connections to have differ-

ent sources and destinations, to check whether the NF keeps

cross-connection state. Test 2 configures two connections to

have the same sources, but with different destinations. If Test 2

outputs that two connections affect the states relevant for each

other, then the NF is maintaining either a cross-connection

or per-source state. The decision tree (Figure 10) uniquely

distinguishes the key and the correctness naturally follows

from our carefully constructed test cases. We formally prove

the correctness of this approach in §C.

6 Handling NF Header Modifications

Now, we extend our FSMInference in §4 to handle header

modifications, such as a NAT rewriting a private IP-port pair to

a public IP-port pair. We currently only handle NFs that main-

tain per-connection state while modifying IPs and ports. We

consider two cases of possible header modifications: (1) static

(e.g., a source NAT modifies a private port to a static public

port), and (2) dynamic (e.g., a source NAT or LB randomly

generates port mappings across resets). We first describe how

we handle each case individually, then present our combined

workflow to handle both cases. Our workflow does not require

knowing a priori that an NF modifies header fields, which

field it modifies, or how it modifies packet headers (i.e., static

or dynamic).

Static header modifications: Consider a source NAT that

deterministically maps a source IP-port pair (e.g., A:Ap1) to

a public source IP-port pair (e.g., X:Xp1). To discover the

NAT’s behavior that rewrites the public IP-port back to the

private IP-port, we need to generate a symbolic packet using

7The key for a stateless NF is a 5-tuple. We can view a stateless NF as an

FSM with a single state, which is identical to each 5-tuple keeping one state.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 707

the public (modified) IP-port (i.e., X:Xp1). However, we may

not know the concrete value of X:Xp1 a priori. Hence, we

cannot generate a complete set of |Σ|. Our idea is to first

run the inference module (§4) and check whether a symbolic

model has additional symbolic IPs and ports. If so, we append

the new IP-port pairs to the Σ and re-run the inference. We

repeat this step until the output FSM contains no new IP-port

pairs. Given that the static modification maps an IP-port to

the same IP-port pair, this approach converges.

Dynamic header modification: The above approach of up-

dating the input alphabet will not converge for NFs that dy-

namically modify packet headers, however. Consider a NAT

that randomly picks one of the available ports for the same 5-

tuple (e.g., a private IP-port (e.g., A:Ap1 first maps to X:Xp1

but then to X:Xp2 after L* resets the NF). Since L* assumes

a deterministic FSM, it will crash as a result of this nondeter-

minism. Our idea is simple. If L* crashes, then we identify the

IP-port pair that caused the nondeterministic behavior. Next,

we mask this nondeterministic behavior of the NF from L* by

explicitly mapping such IP-port pairs to consistent symbolic

values (e.g., Alembic maps SYNInternal
A)B to SYNInternal

X)B regard-

less of the concrete value of the rewritten source IP). Since the

concrete value of X will change across resets, the extended

L* uses the most-recently observed concrete value of X when

playing sequences.

Combining both cases, we first run the FSMInference mod-

ule (§4). If L* completes but discovers new symbols (i.e.,

static modification), then we re-run the workflow with new

symbols. However, if L* crashes due to a nondetermistic FSM

(i.e., dynamic modification), we mask the non-deterministic

behavior as discussed. After the required modifications are

applied, the L* is repeated until it converges. As we only

handle modification for per-connection NF, we assume the

key is per-connection for an NF that modifies packet headers.

7 Handling an Arbitrary Config

We now discuss how we generate a set of SymbolicRules

(§7.1) and then how the online stage constructs a concrete

model given a concrete configuration (§7.2).

7.1 Generating SymbolicRules

The ConfigGen module generates a set of SymbolicRules. As

discussed in §3.1, the vendor documentation may not clearly

give a set of rule types where each type is associated with a

different runtime behavior (e.g., FW accept vs. deny). Sup-

pose the FW ConfigSchema specifies a rule types as 〈srcip,

srcport, dstip, dstport, action〉 where “action” takes a binary

value. To obtain a set of logical rule types, we use a set of con-

servative heuristics. Typically, we observe that fields which

take a large set of values (e.g., IPs and ports) demonstrate sim-

ilar behaviors across values within the set. For fields that only

take a small set of values (e.g., action), each value typically

carries a distinct runtime behavior. Based on this observation,

the ConfigGen module first assigns a new symbol (i.e., A for

srcip) to each field that takes a large set of values. Then for

each combination of other small fields (e.g., action), this mod-

ule generates a SymbolicRule (for each rule type). We also

generate a corresponding ConcreteRules by sampling a value

for each field. For the example above, ConfigGen generates

two rule types, accept and deny.

7.2 Alembic online

We now describe Alembic’s online stage, which constructs

a concrete model for a given a configuration. The concrete

model then uses our operational model (Algo. 1) to model

how an NF processes incoming packets.

Constructing a concrete model: For each concrete rule, R,

in a concrete configuration, we first fetch the corresponding by

SymbolicRule by substituting fields that were made symbolic

with concrete values from the rule, R (e.g., 〈srcip=10.1.0.1

· · · action=1〉 matches a SymbolicRule, 〈srcip=A · · · action

=1〉). Then, we fetch the corresponding symbolic FSM and the

key type, and use the key type (e.g., srcip-port for per-source

NF) to appropriately clone the symbolic model to create an

ensemble representation. There is one additional step when

the key type is not per-connection; we must substitute any

ranges based upon the key type. For example, for a per-source

NF, dstip-port in a concrete model refers to a range of concrete

values specified in R for dstip and dstport. The output is an

ensemble of concrete models for each rule in a configuration.

Processing incoming packets: Upon receiving a packet, the

NF fetches the corresponding rule in a configuration using

the processing semantics (e.g., first-match). The NF then uses

the key to access the relevant concrete FSM in an ensemble of

FSMs and the current state associated with the packet (Line 9

in Algo. 1). Finally, the NF applies the appropriate action

and updates the current state associated with that packet. We

present a more detailed description of how we instantiate an

ensemble of FSMs in §B.

8 Implementation & Evaluation

System Implementation: We implemented Alembic us-

ing Java for the extended L*, C for monitoring NF actions,

and Python for the rest. We create packet templates using

Scapy [6]. Then, Alembic feeds the output of prior mod-

ules into the Extended L* built atop LearnLib [38]. We

re-architected the Learnlib framework to enable distributed

learning where queries are distributed to workers via JSON-

RPC [4].8 Our L* implementation tracks the symbol-concrete

mapping of IPs and ports to translate between symbolic and

concrete packets. The symbolic FSM output is stored in DOT

format, which is then consumed by the online stage.

8Due to some unhandled edge cases, our current implementation requires

using only one worker for NFs with dynamic header modifications.

708 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Table 1: Coverage of models over input packet types
FW staticNAT randNAT LB

PktType pf ut pNF pf pNF pf pf hp

correct-seq # G# G# #

combined-seq

pf: PfSense, ut: Untangle, pNF: ProprietaryNF, hp: HAProxy

G#: TCP-handshake pkts, {SYNC,SYN-ACKC,ACKC}, for both interfaces

#: G# set excluding SYNC from the external interface

L* assumes that we have the ability to reliably reset the NF

between every sequences. For Alembic, we need to reset the

connection states. For some NFs, this can be performed using

a single command (e.g., pfctl -k in PfSense). However,

other NFs required that the VM be rebooted (e.g., Untangle).

In such cases, we take a snapshot of the initial state of the

VM and restore the state to emulate a reset. This does cost up

to tens of seconds but is a practical alternative to rebooting.

Experimental Setup: We used Alembic to model a variety of

synthetic, open-source, and proprietary NFs. First, we created

synthetic NFs using Click [31] to validate the correctness of

Alembic. Each Click NF takes an FSM as input and processes

packets accordingly, so we know NF’s ground-truth FSM. To

validate against real NFs, we generated models of PfSense [5]

(FW, static NAT, NAT that randomizes the port mappings,

and LB), ProprietaryNF (FW, static NAT), Untangle [7] (FW),

HAProxy [2] (LB). We now use NAT to refer to a static NAT

and a randNAT to refer to a NAT that randomizes the IP-port

mappings. Our experiments were performed using Cloud-

Lab [1]. We ran PfSense, Untangle, ProprietaryNF, HAProxy,

and Click in VMs running on VirtualBox [8]. Recall that ∆wait

needs to be customized for each NF. We used ∆wait of 100 for

PfSense and Click-based NFs, 250 ms for ProprietaryNF, 200

ms for Untangle, and 300 ms for HAProxy. For NFs that incur

unexpected delays (e.g., HAProxy, ProprietaryNF, Untangle),

we took a majority vote of 3.

Packet types: We use two TCP packet types. First, the

correct-seq set consists of standard TCP packets, {SYNC,

SYN-ACKC, ACKC, RST-ACKC, FIN-ACKC}, where the

handling of seq and ack are under-the-hood. Instead of in-

troducing seq and ack numbers in Σ, we introduce additional

logic in the Extended L* to track seq and ack of the transmit-

ted packets and rewrite them during the inference to adhere

to the correct semantics (i.e., update the ack of SYN-ACKC

after we observed an output of SYNC).9 Second, we introduce

combined-seq set to model the interaction of TCP packets in

the presence of out-of-window packets. We extend the correct-

seq set with packets with randomly-chosen, incorrect seq and

ack values, {SYN-ACKI, ACKI, RST-ACKI, FIN-ACKI}.

8.1 Validation using synthetic NFs

A) Inferring the ground-truth model: We provide

Click [31] with a 4-state FSM that describes a stateful FW

9The seq number is incremented by 1 for packets with a SYN or FIN

flag set and otherwise, by the data size. T. The ack number for a side of a

connection is 1 greater than any received packet’s sequence number.

Table 2: Results of stress testing

NF (pkt type) accuracy NF (pkt type) accuracy

PfSense FW (C) 98.8-100% ProprietaryNF FW (C) 99.9-100%

PfSense FW (CI) 94.8-100% ProprietaryNF FW (CI) 98-100%

PfSense NAT (C) 99.1-100% PfSense randNAT (C) 98.2-100%

PfSense LB (C) 96.4-97.4% ProprietaryNF NAT (C) 98.8-100%

C : correct-seq CI : combined-seq

that only accepts packets from external hosts after a valid

three-way handshake. We also constructed another 18-state

FSM that describes a similar FW and a 3-state FSM that de-

scribes a source NAT (SNAT). In all three cases, Alembic

inferred the ground-truth FSM.

B) Finding intent violations: We used a red-team exercise

to evaluate the effectiveness of Alembic in finding intent vio-

lations in NF implementations. In each scenario, we modified

the FSM from A to introduce violations and verified that the

Alembic-generated model captured the behavior for all of the

following four cases. A and B refer to an internal and external

host, respectively: (1) a FW prevents the connection from

being established by dropping SYN-ACK packets; (2) a FW

proactively sends SYN-ACK upon receiving SYN from A to

B; (3) a SNAT rewrites the packet to unspecified srcip-port;

and (4) a SNAT rewrites a dstip-port. Some of these scenarios

are inspired by real-world NFs.

C) Validating key learning: We wrote additional Click [31]

NFs that track the number of TCP connections based on dif-

ferent keys. We applied the key learning algorithm to each

and confirmed it identifies the correct key (Table 5 in §C).

8.2 Correctness with real NFs

As summarized in Table 1, we generated models for PfSense

and ProprietaryNF FWs using both correct-seq and combined-

seq sets. For the other NF types, we used only the correct-seq

set because the FW models for these NFs already modeled the

interaction of TCP packets in the presence of out-of-window

packets. For an NF that uses dynamic modification (e.g., rand-

NAT), we cannot correctly instantiate the model in the pres-

ence of RST-ACK and FIN-ACK packets (§B). Hence, we

only showcased how this NF handles connection establish-

ment. Untangle and HAProxy have SYN retries and spurious

resets (i.e., temporal effects) that are beyond our current scope

(§3.3) and could not be disabled. Thus, we again only model

how these NFs handle connection establishment. Further, dur-

ing our attempts to infer models, we discovered these two NFs

are connection-terminating, where an external SYNC packet

interfered with the connection initiation attempt from the in-

ternal host, which violates our independence assumption. To

make the learning tractable, we removed the SYNC from the

external interface for these connection-terminating NFs.

Complementary testing methodologies: Since we do not

know the ground truth models and thus cannot report the cov-

erage of code paths inside the NF, we used three approaches

to validate the correctness of our models: (1) iperf [3] testing,

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 709

Table 3: Time to infer a symbolic model (h: hours, m: min)

NF (pkt type) time NF (pkt type) time

PfSense FW (C) 11 m ProprietaryNF FW (C) 48 h

PfSense FW (CI) 16 h ProprietaryNF FW (CI) 25 h 18 m

PfSense NAT (C) 28 m PfSense randNAT (C) 14 m

PfSense LB (C) 14 m ProprietaryNF NAT (C) 48 h

Untangle FW (C) 37 m HAProxy LB (C) 20 m

generating valid sequences of TCP packets; (2) fuzz testing,

randomly picking a packet type and a concrete IP and port;

and (3) stress testing, generating packets by first picking a

packet type and selecting concrete IP and port values to acti-

vate at least one rule.

For each test run, we generated an arbitrary configuration.

For NFs that take multiple rules (e.g., FW and NAT), we var-

ied the number of rules between 1, 5, 20, and 100. For each

concrete rule, we randomly sampled a field from the field type

defined by the ConfigSchema. We ensured that we picked con-

crete configurations different from the ones used during the

inference (§4). For FWs and NATs, the generated configura-

tions were installed on one interface (i.e., internal). Further, as

Alembic cannot compose models for multi-function NFs (i.e.,

a FW with NAT), we set allow rules on the FWs when we

inferred models for NATs and LBs. For iperf [3] testing, we

set up a client and a server and collect the traces on each in-

terface. Because iperf [3] generates a deterministic sequence

of packets, we only tested with 1 accept rule. For stress and

fuzz testing, we generated sequences of 20, 50, 100, and 300

packets. In each setting, we measured model accuracy by cal-

culating the fraction of packets for which the model produced

the exact same output as the NF. Each setting is a combina-

tion of the NF vendor and type (e.g., PfSense FW with the

correct-seq set), input packet type (e.g., 300 packets), and the

number of rules (e.g., 20 rules).

Iperf testing: Our models predicted the behavior of all NFs

with 100% accuracy.

Fuzz testing: Across all settings for ProprietaryNF and Pf-

Sense FWs (both combined-seq and correct-seq set), the ac-

curacy was 100%. For PfSense and ProprietaryNF NATs, the

accuracy was 99.8% to 100%.

Stress testing: We summarize the results in Table 2. For

many NFs (e.g., ProprietaryNF and PfSense FWs), we see the

lowest accuracy (e.g., 98%) for 1 rule with 300 packets. This

is expected because our testing generates a long sequence

of packets that the Wp-method with d = 1 did not probe.

Also, given the same FW (e.g., PfSense FW), we observe

higher accuracy for an NF modeled with the correct-seq set

compared to that modeled using the combined-seq set. We

confirm that the model learned using the combined-seq set

is rather large (> 100 states) resulting from the many ways

in which the correct and incorrect packets can interact. Note

that ProprietaryNF NAT correct-seq took 49 hours to model

and ProprietaryNF FW combined-seq took 5 days to infer

the model. Going back to our earlier requirements that we

Table 4: Scalability benefits of our design choices

Runtime

(|Σ|)

1 connection

(Σ=6)

2 connections

(Σ=12)

3 connection

(Σ=18)

26 min 10 hr > 3 days

Runtime

(d in Wp-method)

d=1 d=2 d=3

13 min 1 hr 10 min 7 hr

can afford several tens of hours (i.e., a couple days) for the

offline stage, we ran the accuracy testing on an intermediate

model inferred after 48 hours, which still achieved high accu-

racy. We did not perform fuzz or stress testing for Untangle

FW and HAProxy LB. These NFs have temporal effects that

result in mis-attribution, which is outside our scope (§3.3).

We see that Alembic achieves high accuracy even with large

configurations.

8.3 Scalability

We now evaluate the runtime of Alembic’s components.

Time to learn symbolic models: For each NF, we report the

longest time to model one SymbolicRule as learning can be

parallelized across symbolic rules. In all cases, we use 20

servers setup, except for with PfSense random NAT which

used one. 8 The results are summarized in Table 3. In sum-

mary, we achieved our goal of inferring high-fidelity models

in less than 48 hours. We find that the runtime depends on: (1)

the size of the FSM and |Σ|, and (2) Alembic or NF-specific

details (e.g., rebooting). For (1), as the size of |Σ| was double

for the combined-seq set, it took more than 48 hours to dis-

cover 72-state FSM (ProprietaryNF FW, combined-seq) but

less than 26 hours for 79-state with the correct-seq set. For (2),

discovering the NAT model ProprietaryNF NAT (correct-seq)

took longer than the FW as the NAT inference ran in two

phases (§6). Lastly, PfSense models take less time to infer as

PfSense does not require rebooting, and has shorter ∆wait.

Time to validate the key: We use PfSense FW (correct-seq)

to report the time to infer the key. It took 6 hours to infer the

key (e.g., 2 hrs for each test).

Time for the online stage: For ProprietaryNF FW, the time

to compose a concrete model is 75 ms for 10 rules, 0.6 s for

100 rules, and 5 seconds for 1,000 rules. The result generalizes

to other NFs.

Scalability benefits of our design choices: The insights

to leverage compositional modeling and KeyLearning allow

Alembic are critical in achieving reasonable runtime by re-

ducing the size of Σ. Suppose one FW rule takes a source

IP field takes a /16 prefix. Without KeyLearning, we need to

infer a model with all 216 connections. Similarly, for a con-

figuration with 20 rules, we need to infer a model with all

relevant connections. The top half of the Table 4 shows how

the runtime drastically increases as we increase the number of

connections using a Click-based [31] FWs from §8.1 (using

just one worker). Further, we measured the runtime as a func-

tion of d in Wp-method (bottom of Table 4). Using d = 1, we

710 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 1 2

SYN SYN

*

* DROP

DROP

SYN SYN

PfSense FW TCP Accept

Host B

External

FA RA

SYN SA ACK SYN SA ACK

FA RA

NF

Packet Legend

FA RA

SYN SA ACK

*

*

*

* . . .

RA RA
SYN DROP

FA RA

SA ACK

Host A

Internal

SYN

Figure 11: The light/dark coloring indicates packets on

host A/B’s interface, respectively. The figure below shows

the 3 states for PfSense FW accept rule

were still able to infer the ground truth while reducing the run-

time. These results demonstrate how reducing the size of |Σ|

is critical to obtain a reasonable runtime. Lastly, distributed

learning helps scalability. The Click-based [31] FW with 18

states takes 1.6 hours with 1 worker but only 16 minutes with

19 workers (and 1 controller).

8.4 Case studies

We now highlight vendor-specific differences found using

Alembic. For clarity, we present and discuss only partial rep-

resentations of the inferred FSMs (as some FSMs are large).

Firewall (correct-seq): A common view of stateful FWs

in many tools is a three-state abstraction (SYN, SYN-ACK,

ACK) of the TCP handshake. Using Alembic, however, we

discovered that the reality is significantly more complex. With

a single FW accept rule, the inferred PfSense model (correct-

seq) shows that a TCP SYN from an internal host, A, is suffi-

cient for an external host, B, to send any TCP packets (Fig-

ure 11). Furthermore, FIN-ACK, which signals termination

of the connection, does not cause a state transition. We find

that ProprietaryNF FW has 79 states for a FW accept rule in

contrast to 3 states for PfSense FW. ProprietaryNF, too, does

not check for entire three-way handshake (e.g., only SYN,

SYN-ACK). We find that the complexity of the FSM (i.e.,

79 states) results from the number of ways in which the two

TCP handshakes (from A and B) can interfere with each other.

Such behavior could not have been exposed through handwrit-

ten models. Untangle FW actually behaves like a connection-

terminating NF (Figure 13 in §A for partial model). The FW

lets the first SYN from A through, but when B replies with

a SYN-ACK, Untangle forwards it but preemptively replies

with an ACK. When the A replies with ACK, Untangle drops

it to prevent a duplicate.

Firewall (combined-seq): Surprisingly, for PfSense, we

learned 257 states with combined-seq. The complexity is

a result of packets with incorrect seq and ack causing state

transitions, where many are forwarded. We learned a 72-state

FSM for the ProprietaryNF FW after 48 hours and the full

model (104-state) after 5 days. The cause for the larger FSM

for PfSense is that the incorrect seq and ack packets often

0 1 2

SYN

*

*

HAProxy LBRST

RST

SA

*

*

RST

RST

ACK SYN

ACK DROP

ACK

ACKSA …

0 1

SYN

*

*

PfSense LB

. . .
DROP

DROP

SYN

SYN SYN

ACK ACK

SYN

2

SA SA

DROP

SYN RA

SYN

Figure 12: First 3 states of the HAProxy and PfSense LB.

Stars on head/tail of packets indicate src/dst modification

cause state transitions more frequently than ProprietaryNF

FWs. Further, it is interesting to see how PfSense only had 3

states for the correct-seq set but 257 states with combined-seq,

in contrast to ProprietaryNF where the number of states for

both sets are similar. At a high-level, we find that obtaining

such model is useful as it could possibly be used to generate a

sequence of packets to bypass the firewall, but this is beyond

the scope of our work.

Load balancer: HAProxy (Figure 12) follows the NF’s

connection-terminating semantics. It completes the TCP hand-

shake with the client before sending packets to the server.

After the handshake, the source of outgoing packets is mod-

ified to server-facing IP of LB, and destination is modified

to the server (i.e., star on both-ends of TCP SYN in Fig. 12).

In contrast, PfSense LB behaves like a NAT. When a client

sends a SYN to the LB, the destination is modified to the

server’s IP (i.e., star in state 1 in Figure 12). Then, the LB

modifies destination of packets from both client and server.

We confirmed that PfSense indeed implements load balancing

this way [37]. Alembic automatically discovered this without

prior assumptions of any connection-termination behavior.

Further, the connection-termination semantics of HAProxy

differ from those of Untangle FW. Unlike HAProxy, Untangle

lets SYN packets through and preemptively completes the

connection with the external host. This is yet another example

of non-uniformity across NF implementations.

8.5 Implications for network verification

We use two existing tools, BUZZ [22] and VMN [35], to

demonstrate how Alembic can aid in network testing and

verification. Using a Click-based [31] FW which adheres

policy 1 and 2 (§2), we compare the test output using: (1)

MAlembic inferred using Alembic, and (2) existing Mhand for

FW. Using MAlembic, BUZZ did not report a violation. Using

Mhand , BUZZ reported a violation (false-positive) as 1 of 6

test traces did not match (trace in §2). Similarly, for policy 2,

BUZZ reported a violation using Mhand . The failed test case is:

SYNInternal
A)B , RSTExternal

B)A , RSTExternal
B)A . Mhand predicts that both

RST packets are dropped, as the model does not check for

RST flags. However, Click NF allows the first RST packet to

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 711

reset the NF state. We also plugged the model for PfSense into

a network verification tool, VMN [35]. The existing model in

VMN does not check TCP flags. Using VMN, we verified the

property: “TCP packets from an external host, B, can reach A

even if no SYN packet is sent from A.” Recall that in PfSense,

SYNInternal
A)B needs to be sent for B to send TCP packets to A.

Hence, the property is NOT SATISFIED. Using Modelhand,

the tool returned that the property is SATISFIED whereas

using ModelAlembic indicated that it is not (i.e., false-negative

for Modelhand).

9 Related Work

NF modeling: There is a large body of work on understand-

ing and modeling NFs [19, 26, 30, 35, 39]. Joseph and Sto-

ica [30] propose a language to model stateless NFs to ease

the NF deployment process. NFactor [45] uses code analysis

techniques to extract packet forwarding models in the form

of a match-action table. While this can be complementary, it

may be difficult to obtain source-code for proprietary NFs.

Some works focus on the NF internal states and how to man-

age them [26, 39]. Our work is orthogonal as we focus on NF

behavioral models of externally-visible actions.

FSM inference: L* algorithm by Angluin lays the founda-

tion for learning the FSM [12]. The techniques of learning

FSMs has been used for model checking blackbox systems

(e.g., [28,36]). Symbolic finite automata (SFA) [42] are FSMs

where the alphabet is given by a Boolean algebra with an infi-

nite domain. While Alembic does not directly formulate the

problem to infer SFAs, we use the homogeneity assumption

in the IP and port ranges to learn a symbolic model. Hence,

using abstractions like SFA may help us to naturally embed

symbolic encodings. We could potentially leverage a tool

(e.g., [20]) that extends L* to infer the SFA. However, using

SFA does not address the NF-specific challenges (e.g., infer-

ring the key, handling modifications) but may serve as the

basis for interesting future work.

NF model use cases: Many network testing and verification

tools need NF models [22,35,43]. Some [35,40] proposed new

modeling languages to represent NFs. However, it is unclear

how to represent existing NFs using these languages. Sym-

net [40] wrote parsers to automatically generate NF models

using their language, SEFL. Again, it is unclear whether the

parser generalizes to other FWs or to arbitrary configurations.

However, not all network verification tools require models.

Vigor [46] uses the C code of a NAT to verify properties such

as memory-safety, which are orthogonal to our approach.

Application of L*: L* has been used to discover protocol vul-

nerabilities (e.g., [15, 16]) or specific attacks (e.g., cross-site

scripting) against web-application firewalls [13]. However,

these approaches do not tackle the NF-specific challenges

(e.g., handling large configuration space and header modifica-

tions). Other works also use L* to infer models of various pro-

tocols (e.g., TLS [18]). While Fiterau-Brostean et al. [23, 24]

inferred the behavior of TCP/ IP implementations in an op-

erating system, these tools leverage a simple extension of L*

and cannot model NFs with a large configuration space.

10 Discussion

Before we conclude, we discuss outstanding issues.

Handling more protocols: NFs such as layer-7 load bal-

ancers (LB), transparent proxy, or deep packet inspection

(DPI) operate at the application layer. To model these cases,

Alembic needs to generate relevant input packet types for these

protocols (e.g., GET, POST, PUT for HTTP). However, the

main challenge is to model the multi-layer interactions.

Representing complex NFs: Some NFs exhibit complex ac-

tions that cannot be captured with “packet in and packet out”

semantics. For instance, to represent quantitative properties

(e.g., rate-limiting), we need to incorporate them as part of

the input alphabet (e.g., “sessions sent at a certain rate”) and

monitor relevant properties to classify NF actions. Similarly,

to handle temporal effects (e.g., timeout), we need to add the

passage of time (e.g., wait 30 s) to the input alphabet. While

we could extend our current infrastructure to handle these

NFs, it may be worthwhile to consider more native abstrac-

tions other than deterministic FSMs. For instance, many have

proposed different abstractions to represent quantitative prop-

erties (e.g., [9, 11, 29, 33]) and timing properties (e.g., [10]).

Once we pick the abstraction, we can find relevant techniques

that extend L* (i.e., [14,27]). It is difficult to find one abstrac-

tion to model multiple properties at once, and we need to pick

the abstraction based on the properties of interest.

Handling more complex ConfigSchema: To handle more

complex configuration semantics such as “if condition, do

X,” and “go to rule X”, we still need to model a rule type

(e.g., both X in the above example) similar to our workflow.

To incorporate new processing semantics, we need to change

how we compose individual models in the online stage.

11 Conclusions

We proposed Alembic, a system to automatically synthesize

NF models. To tackle the challenges stemming from large

configuration spaces, we synthesize NF models viewed as an

ensemble of FSMs. Alembic consists of an offline stage that

learns symbolic models and an online stage to compose con-

crete models given a configuration. Our evaluation shows that

Alembic is accurate, scalable, and enables more accurate net-

work verification. While Alembic demonstrates the promise of

NF model synthesis, there remain some open challenges (§3.3

and §10) that present interesting avenues for future work.

712 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

12 Acknowledgments

We thank our shepherd, Aurojit Panda, and the anonymous

reviewers for their suggestions. We also thank Tianhan Hu

for his help in implementing a distributed version of Alembic,

and Bryan Parno, Swarun Kumar, Matthew Mccormack, and

Adwait Dongare for providing feedback on this paper. This

work was funded in part by NSF awards CNS-1440065, CNS-

1552481, CCF-1703925, and CCF-1763970.

References

[1] Cloudlab. https://www.cloudlab.us/.

[2] Haproxy. http://www.haproxy.org/.

[3] iPerf Performance Tool. https://iperf.fr/.

[4] jsonrpc. https://github.com/briandilley/jsonrpc4j.

[5] pfsense. https://www.pfsense.org/.

[6] Scapy. http://www.secdev.org/projects/scapy/.

[7] untangle. https://www.untangle.com/.

[8] Virtualbox. https://www.virtualbox.org/.

[9] ALUR, R., DANTONI, L., DESHMUKH, J., RAGHOTHAMAN, M., AND

YUAN, Y. Regular functions and cost register automata. In Logic in

Computer Science (LICS), 2013 28th Annual IEEE/ACM Symposium

on (2013), IEEE, pp. 13–22.

[10] ALUR, R., AND DILL, D. L. A theory of timed automata. Theor.

Comput. Sci. 126, 2 (April 1994), 183–235.

[11] ALUR, R., FISMAN, D., AND RAGHOTHAMAN, M. Regular program-

ming for quantitative properties of data streams. In Proceedings of the

25th European Symposium on Programming Languages and Systems -

Volume 9632 (New York, NY, USA, 2016), Springer-Verlag New York,

Inc., pp. 15–40.

[12] ANGLUIN, D. Learning regular sets from queries and counterexamples.

Inf. Comput. 75, 2 (November 1987), 87–106.

[13] ARGYROS, G., STAIS, I., JANA, S., KEROMYTIS, A. D., AND KI-

AYIAS, A. Sfadiff: Automated evasion attacks and fingerprinting using

black-box differential automata learning. In Proceedings of the 2016

ACM SIGSAC Conference on Computer and Communications Security

(New York, NY, USA, 2016), CCS ’16, ACM, pp. 1690–1701.

[14] BALLE, B., AND MOHRI, M. Learning weighted automata. In Alge-

braic Informatics (Cham, 2015), A. Maletti, Ed., Springer International

Publishing, pp. 1–21.

[15] CHO, C. Y., BABI Ć, D., SHIN, E. C. R., AND SONG, D. Inference

and analysis of formal models of botnet command and control pro-

tocols. In Proceedings of the 17th ACM Conference on Computer

and Communications Security (New York, NY, USA, 2010), CCS ’10,

ACM, pp. 426–439.

[16] CHO, C. Y., BABIĆ, D., POOSANKAM, P., CHEN, K. Z., WU, E. X.,

AND SONG, D. Mace: Model-inference-assisted concolic exploration

for protocol and vulnerability discovery. In Proceedings of the 20th

USENIX Conference on Security (Berkeley, CA, USA, 2011), SEC’11,

USENIX Association, pp. 10–10.

[17] CHOW, T. S. Testing software design modeled by finite-state machines.

IEEE Trans. Softw. Eng. 4, 3 (May 1978), 178–187.

[18] DE RUITER, J., AND POLL, E. Protocol state fuzzing of TLS imple-

mentations. In 24th USENIX Security Symposium (USENIX Security

15) (Washington, D.C., 2015), USENIX Association, pp. 193–206.

[19] DETAL, G., HESMANS, B., BONAVENTURE, O., VANAUBEL, Y., AND

DONNET, B. Revealing middlebox interference with tracebox. In Pro-

ceedings of the 2013 Conference on Internet Measurement Conference

(New York, NY, USA, 2013), IMC ’13, ACM, pp. 1–8.

[20] DREWS, S., AND D’ANTONI, L. Learning symbolic automata. In

International Conference on Tools and Algorithms for the Construction

and Analysis of Systems (2017), Springer, pp. 173–189.

[21] EDELINE, K., AND DONNET, B. On a middlebox classification, 2017.

[22] FAYAZ, S. K., YU, T., TOBIOKA, Y., CHAKI, S., AND SEKAR, V.

Buzz: Testing context-dependent policies in stateful networks. In

Proceedings of the 13th Usenix Conference on Networked Systems

Design and Implementation (Berkeley, CA, USA, 2016), NSDI’16,

USENIX Association, pp. 275–289.

[23] FITERĂU-BROŞTEAN, P., JANSSEN, R., AND VAANDRAGER, F.

Learning fragments of the tcp network protocol. In International

Workshop on Formal Methods for Industrial Critical Systems (2014),

Springer, pp. 78–93.

[24] FITERĂU-BROŞTEAN, P., JANSSEN, R., AND VAANDRAGER, F. Com-

bining model learning and model checking to analyze tcp implemen-

tations. In International Conference on Computer Aided Verification

(2016), Springer, pp. 454–471.

[25] FUJIWARA, S., VON BOCHMANN, G., KHENDEK, F., AMALOU, M.,

AND GHEDAMSI, A. Test selection based on finite state models. IEEE

Trans. Softw. Eng. 17, 6 (June 1991), 591–603.

[26] GEMBER-JACOBSON, A., VISWANATHAN, R., PRAKASH, C.,

GRANDL, R., KHALID, J., DAS, S., AND AKELLA, A. Opennf:

Enabling innovation in network function control. In Proceedings of the

2014 ACM Conference on SIGCOMM (New York, NY, USA, 2014),

SIGCOMM ’14, ACM, pp. 163–174.

[27] GRINCHTEIN, O. Learning of timed systems. PhD thesis, Acta Univer-

sitatis Upsaliensis, 2008.

[28] GROCE, A., PELED, D., AND YANNAKAKIS, M. Adaptive model

checking. In Proceedings of the 8th International Conference on Tools

and Algorithms for the Construction and Analysis of Systems (London,

UK, UK, 2002), TACAS ’02, Springer-Verlag, pp. 357–370.

[29] HENZINGER, T. A. The Theory of Hybrid Automata. Springer Berlin

Heidelberg, Berlin, Heidelberg, 2000, pp. 265–292.

[30] JOSEPH, D., AND STOICA, I. Modeling middleboxes. Netwrk. Mag.

of Global Internetwkg. (2008).

[31] KOHLER, E., MORRIS, R., CHEN, B., JANNOTTI, J., AND

KAASHOEK, M. F. The click modular router. ACM Trans. Comput.

Syst. 18, 3 (August 2000), 263–297.

[32] MAKAYA, C., AND FREIMUTH, D. Automated virtual network func-

tions onboarding. In IEEE SDN-NFV Conference (2016).

[33] MOHRI, M. Weighted automata algorithms. In Handbook of weighted

automata. Springer, 2009, pp. 213–254.

[34] MONSANTO, C., REICH, J., FOSTER, N., REXFORD, J., AND

WALKER, D. Composing software defined networks. In 10th USENIX

Symposium on Networked Systems Design and Implementation (NSDI

13) (Lombard, IL, 2013), USENIX Association, pp. 1–13.

[35] PANDA, A., LAHAV, O., ARGYRAKI, K., SAGIV, M., AND SHENKER,

S. Verifying reachability in networks with mutable datapaths. In 14th

USENIX Symposium on Networked Systems Design and Implementation

(NSDI 17) (Boston, MA, 2017), USENIX Association.

[36] PELED, D., VARDI, M. Y., AND YANNAKAKIS, M. Black box check-

ing. J. Autom. Lang. Comb. 7, 2 (November 2001), 225–246.

[37] PFSENSE. Inbound Load Balancing. https://doc.pfsense.org/

index.php/Inbound_Load_Balancing.

[38] RAFFELT, H., STEFFEN, B., AND BERG, T. Learnlib: A library for

automata learning and experimentation. In Proc. ACM FMICS 2005.

[39] RAJAGOPALAN, S., WILLIAMS, D., JAMJOOM, H., AND WARFIELD,

A. Split/merge: System support for elastic execution in virtual middle-

boxes. In Proceedings of the 10th USENIX Conference on Networked

Systems Design and Implementation (2013).

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 713

https://www.cloudlab.us/
http://www.haproxy.org/
https://iperf.fr/
https://github.com/briandilley/jsonrpc4j
https://www.pfsense.org/
http://www.secdev.org/projects/scapy/
https://www.untangle.com/
https://www.virtualbox.org/
https://doc.pfsense.org/index.php/Inbound_Load_Balancing
https://doc.pfsense.org/index.php/Inbound_Load_Balancing

[40] STOENESCU, R., POPOVICI, M., NEGREANU, L., AND RAICIU, C.

Symnet: Scalable symbolic execution for modern networks. In Pro-

ceedings of the 2016 Conference on ACM SIGCOMM 2016 Conference

(New York, NY, USA, 2016), SIGCOMM ’16, ACM, pp. 314–327.

[41] TSCHAEN, B., ZHANG, Y., BENSON, T., BENERJEE, S., LEE, J.,

AND KANG, J.-M. SFC-Checker: Checking the Correct Forwarding

Behavior of Service Function Chaining. In IEEE SDN-NFV Conference

(2016).

[42] VEANES, M., HALLEUX, P. D., AND TILLMANN, N. Rex: Symbolic

regular expression explorer. In Proceedings of the 2010 Third Inter-

national Conference on Software Testing, Verification and Validation

(Washington, DC, USA, 2010), ICST ’10, IEEE Computer Society,

pp. 498–507.

[43] VELNER, Y., ALPERNAS, K., PANDA, A., RABINOVICH, A., SAGIV,

M., SHENKER, S., AND SHOHAM, S. Some complexity results for

stateful network verification. In Proceedings of the 22Nd International

Conference on Tools and Algorithms for the Construction and Analysis

of Systems - Volume 9636 (New York, NY, USA, 2016), Springer-Verlag

New York, Inc., pp. 811–830.

[44] WANG, Z., CAO, Y., QIAN, Z., SONG, C., AND KRISHNAMURTHY,

S. V. Your state is not mine: A closer look at evading stateful in-

ternet censorship. In Proceedings of the 2017 Internet Measurement

Conference (New York, NY, USA, 2017), IMC ’17, ACM, pp. 114–127.

[45] WU, W., ZHANG, Y., AND BANERJEE, S. Automatic synthesis of

nf models by program analysis. In Proceedings of the 15th ACM

Workshop on Hot Topics in Networks (New York, NY, USA, 2016),

HotNets ’16, ACM, pp. 29–35.

[46] ZAOSTROVNYKH, A., PIRELLI, S., PEDROSA, L., ARGYRAKI, K.,

AND CANDEA, G. A formally verified nat. In Proceedings of the

Conference of the ACM Special Interest Group on Data Communication

(New York, NY, USA, 2017), SIGCOMM ’17, ACM, pp. 141–154.

A Partial FSM for Use Cases

Figure 13 shows partial FSM for Untangle FW accept, drop,

default rule, and ProprietaryNF accept rule.

0 1 2
SYN SYN

SA*

* DROP

DROP SYN

ACK

SYN

ACK

ACK

SA SA

DROP

DROP

ACK

SA

DROP

Untangle FW accept & FW default

Host A Host B

FA RA

SYN SA ACK SYN SA ACK

FA RA

NF

Legend

0 1 2

SA*

* DROP

DROP ACK

SA SA

DROP

Untangle FW drop all

SYN DROP

ACK ACK
ACK

FA RA

SYN SA ACK

0 1 2

SYN

SYN

*

* DROP

DROP

SA

SA

Proprietary FW accept

. . .

FA

FA RA

SYN SA ACK

FA

RARA

*

*

*

*

Figure 13: Partial FSM for Untangle FW accept, drop, default

rule, and ProprietaryNF accept rule

B Instantiating a Concrete Model

We present a detailed description of how we instantiate a

concrete model in our online stage. We consider three cases:

(1) NFs that keep per-connection state but do not modify

headers, (2) NFs that keep per-connection state and do, and

(3) NFs that keep state according to other keys but do not

modify headers. We do not consider header-modifying NFs

that keep state according to other keys (e.g., per-source) as

they are outside our current scope. For simplicity, we assume

a perfect Equivalence Oracle such that the generated symbolic

model from the offline stage is identical to the ground truth.

Case 1) NFs that keep per-connection state but do not

modify headers

For NFs that do not modify packet headers, we define a key

with (A:Ap1, B:Bp1) where A:Ap1 is a srcip-port and B:Bp1

is a dstip-port. Note that matches for a per-connection key are

bi-directional; a packet with srcip-port, B:Bp1, and dstip-port,

714 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

A:Ap1, would also match the key, (A:Ap1, B:Bp1). Then,

for each concrete value of the key in a rule, we instantiate a

concrete FSM.

We posit that our instantiation logic is correct for an input

packet type with all TCP packet types (e.g., SYN, SYN-ACK,

ACK, RST-ACK) for the following reasons:

1. A model learned using one connection from the offline

stage represents the ground truth (assuming a perfect Equiv-

alence Oracle).

2. Because we assume each connection is independent and

shares the same logical behavior (from §3.3 and Def 4

in §C), cloning a model learned from one connection to

represent other connections does not introduce errors.

Rule Type 1: Lin à Rout

(e.g., source NAT)

Lin : IPL à IPR

NF
Lout : IPR à IPL

Rin : IPR à PIP

Rout : PIP à IPR

IPL : an internal IP-port pair

IPR : an external IP-port pair

PIP : a public-facing IP-port pair

Figure 14: NAT example

Case 2) NFs that keep per-connection state and do

modify headers

We extend the NF operational model presented in Alg 1 to

instantiate a concrete model for header-modifying NFs. Recall

that in the Alembic’s offline stage, we learn a model using a

range, where we infer a model using a symbolic IP and port in

a range. For header-modifying NFs, even though the learned

model contains symbolic IPs and ports, our instantiation logic

is correct because each concrete model is indexed with a

concrete IP and port (Algo. 2).

Consider a NAT with two rule types defined in its Con-

figSchema.

1. Rule Type 1: Lin! Rout where the initial modification

for a new connections happens for Lin (e.g., modifying

the source IP of an internal IP to a public-facing IP).

2. Rule Type 2 : Rin! Lout where the initial modification

for a new connections happens for Rin (e.g., port for-

warding where the port 8080 from the R interface is

forwarded to port 80 on the internal server).

For ease of explanation, we first show how we instantiate a

concrete model for a model inferred for rule type 1 and later

describe how we can easily extend our design to handle rule

type 2. Figure 14 shows the ranges of valid source and desti-

nation IPs and ports for located packets for a NAT configured

with a concrete rule for rule type 1 (e.g., a valid ranges for

Lin is IPL for a srcip pair and IPR for a dstip-port pair).

Algorithm 2 Instantiating a model for a per-connection NF

with header modifications

1: function ONLINEFORMODIFICATION(locatedPkt p, Rule r,

Map[rule, Map[key, state]] stateMap, TL�R, TR�L)

2: if p.interface == L then

3: pout = FWDDIRECTION(p, r, stateMap, TL�R, TR�L)

4: else

5: pout = REVERSEDIRECTION(p, r, stateMap, TL�R,

TR�L)

6: return pout

7: function FWDDIRECTION(locatedPkt p, Rule r, Map[rule,

Map[key, state]] stateMap, TL�R, TR�L)

8: if NewConnection then

9: Update TL�R, TR�L

10: Extract FSM, currentState

11: pout , nextState← Get action from the FSM

12: Update currentState with nextState

13: return pout

14: function REVERSEDIRECTION(locatedPkt p, Rule r, Map[rule,

Map[key, state]] stateMap, TL�R, TR�L)

15: if p ∈ TR�L then

16: Extract FSM, currentState

17: pout , nextState← Get action from the FSM

18: Update currentState with nextState

19: else

20: Extract default FSM, currentState

21: pout , nextState← Get action from default FSM

22: Update currentState with nextState

23: return pout

To tackle the challenge above, we introduce two maps to

associate an output (or modified) packet’s 5-tuple to the cor-

responding input packet’s 5-tuple for both interfaces. Specifi-

cally, we use TL�R to map Lin to Rout, and TR�L to map Rin

to Lout (Algo 2). Algo 2 is a detailed description after Line 3

in the operational model (Algo 1 in §3). Note that for each of

presentation, we assume we found a rule to apply (Line 3 in

Algo 1) for the incoming packet.

If an NF receives a packet from the L interface, the al-

gorithm checks whether the packet is a new connection by

performing a lookup in the map (in FWDDIRECTION). If

the connection does not already exist in the map, we up-

date the TL�R with (IPL, IPR)! (PIP, IPR) and TR�L with

(IPR,PIP)! (IPR, IPL). Then, we extract the corresponding

FSM and the current state (or the initial state if a new con-

nection) to apply the appropriate action (i.e., determine pout).

If the incoming packet is from the R interface, we look up

the corresponding map, TR�L, to fetch the original IP-port

(e.g., IPL). Then, it uses the key to fetch the FSM and deter-

mine the appropriate action for the incoming packet. If the

entry does not exist in the map, our concrete model instead

uses the FSM associated with the NF’s default behavior. Note

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 715

that in the case of static header modification, such as a NAT

configured with a list of static mappings between internal and

external IP-port pairs, we prepopulate TL�R and TR�L with

these static mappings. Hence, for an NF that statically modify

packet headers, we will not reach Line 20 as these mapping

already exist.

Extending for Rule Type 2 : We now discuss how to adapt

the above framework to handle rule type 2 where the initial

modification happens for packet entering the other interface

(e.g., Rin). In contrast to rule type 1, an NF configured with a

concrete rule for rule type 2 initially modifies packet header

for Rin (i.e., not Lin). We need to make two changes in Algo 2:

1. Line 2 must change to call FWDDIRECTION (Line 7) if

the packet comes via the R interface.

2. For the corresponding packet coming from the reverse

direction (i.e., Lin for rule type 2), we need to perform a

look up in TL�R to check if the reverse mapping exists

instead of TR�L (i.e., change Line 15).

Note that our approach does not need a priori knowledge

of which rule type the NF is configured with. We just need

to infer at which interface the initial modification happens

by parsing the generated model. For instance, if the initial

modification happens for Lin (i.e., rule type 1), then we follow

the original algorithm shown in Algo. 2. If the initial modifi-

cation happens for Rin (i.e., rule type 2), then we follow the

algorithm in Algo. 2 with two changes mentioned above.

The above algorithm describes how we instantiate a con-

crete FSM. Now, there are two types of modifications. In the

case of static modification, we know the value of the modi-

fied packet a priori for a given incoming packet, so we can

prepopulate the concrete FSMs with all the known IPs and

ports. However, in the case of dynamic modification where we

cannot predict the modified values in advance, we initialize

an ensemble of concrete FSMs with symbolic IP and port (for

the modified values) and bind them to concrete IPs and ports

as they are revealed (i.e., after injecting packets and observing

outputs).

Given this context, we posit the correctness of these in-

stantiated models (formal proof is outside our current scope).

For per-connection NFs with static header modifications, our

instantiation of FSMs is correct with an input packet type of

all TCP packet types, for the same two reasons described for

case 1. We now state additional reasonings:

1. The same 5-tuple for an input packet maps to the same 5-

tuple for the output packet, and TL�R and TR�L store these

mappings. Thus, we will correctly discover the reverse

mapping during the instantiation.

2. Even in the presence of connection resets, the same 5-tuple

will be mapped to the same output (i.e., 5-tuple). Hence, the

model for each connection is correct even in the presence

of packets that reset the connection state (i.e., we can reuse

the previous mappings stored).

Table 5: Validating the correctness of KeyLearning using

Click-based NFs (§8.1)

Ground Truth Test1 Test2 Test3 Result

Cross-conn Y Cross-conn

Per-src N Y Per-src

Per-dst N N Y Per-dst

Per-conn N N N Per-conn

For NFs that dynamically modify packet headers, we posit

that for the input set of TCP-handshake packets (i.e., SYN,

SYN-ACK, ACK). However, when we receive a TCP packet

that resets a connections (e.g., RST-ACK), the concrete IP

and port that was bound to a symbolic IP and port will change

(i.e., after a reset, srcip-port maps to P:Pp2 instead of P:Pp1).

Hence, the generated model will continue to use the map-

ping already stored in TL�R and TR�L, resulting in inaccurate

model.

Case 3: NFs that do not keep per-connection state

We now consider NFs that do not modify packet headers

but have keys other than per-connection. Recall the following

key types and their corresponding header fields:

1. Per-source key, defined by a source IP

2. Per-destination key, defined by a destination IP

3. Cross-connection key, defined by any packet (i.e., all IP

and ports with the range)

4. Stateless key, defined by srcip-port and dstip-port. Note

that we view the stateless NF as keeping a per-connection

state but the FSM is always just a single state.

When we instantiate an ensemble of concrete FSMs for an

NF that keeps per-source state, the IPs and ports that do not

define the key (i.e., srcport, dstip, and dstport) refer to ranges

of values. Hence, the model for a srcip should accept ANY

srcport, dstip, and dstport within the specified range.

We posit that our instantiation logic outputs a correct model

for an input packet type, with all TCP-relevant symbols (i.e.,

All TCP-relevant symbols as there are no modifications) if

the per-source NF adheres to Def. 2 (§C):

1. Our definition for per-source NF assumes that all destina-

tions given the same source IP are treated homogeneously.

Hence, it is correct to use the model learned from one con-

nection and simply replace the symbolic destination in the

model to any destination IP that appears in the configura-

tion.

2. As we assume no header modification, the instantiated

model is correct for all TCP-relevant symbols.

We omit the cases for per-destination, cross-connection,

and stateless for brevity. The correctness arguments for these

cases are similar to that of per-source NFs.

C Correctness of KeyLearning

We formalize the definition of the granularities of states main-

tained by NFs (i.e., keys) and prove the correctness of our

716 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

KeyLearning algorithm in §5.

Recall that each NF SymbolicRule (1 rule) consists of

multiple configuration fields (e.g., FW needs to be config-

ured to allow packets from a subnet X to Y). To simplify

the presentation, let us consider a rule r in an NF that takes

two configuration fields, namely source and destination, and

thus also omit configuration fields that do not affect the key

(e.g., an action and a load-balancing algorithm that do not

affect the key). We use NF
〈X ,Y 〉
r to refer to an NF instance

only with the targeted rule r that is configured with source

X and destination Y. Given such an NF instance, we use L*

to learn a model from it. Particularly, let LΓ(NF
〈X ,Y 〉
r) refer

to the FSM learned by L* for the NF instance NF
〈X ,Y 〉
r using

packets only from the set Γ ⊂ X ×Y ∪Y ×X . We assume

that the FSM learned by L* is correct with respect to the NF

instance. That is, given any sequence of packets with source

a and destination b, running LΓ(NF
〈X ,Y 〉
r) on it obtains the

same output sequence as running NF
〈X ,Y 〉
r on it, provided that

(a,b) ∈ X×Y or (a,b) ∈ Y ×X .

Definition of keys: To prove the correctness of our

KeyLearning algorithm, we first formalize the definition of

NF keys. The following table summarizes the notations we

use.

Term Definition

Σ

Σ(X ,Y)

the set of packets (symbol for FSMInference)

the set of packets with source (destination, resp.)

IP from X (Y , resp.)

σ|(a,b)

Given σ and a source-destination pair) (a,b), σ|(a,b)
is the sequence of packets obtained from σ by

removing all packets that are not with source a and

destination b.

σ|(a,b),(b,a)
Similar to above, but also keeps packets

with source b and destination a.

σ++(a,b)
The sequence obtained by appending (a,b)
to the sequence σ

NF
〈X ,Y 〉
r (σ)

the output of the last packet given

σ to the NF configured with
〈X ,Y 〉
r

The definition of keys is given as follows.

Definition 1 (Cross-connection NF). A rule r in an NF keeps

cross-connection state iff for all NF instances NF
〈X ,Y 〉
r , all

pairs of connections (a,b) and (c,d) such that a,c∈ X, b,d ∈
Y , and (a,b) 6= (c,d), there exists a sequence σ ∈ Σ(a,b), such

that NF
〈X ,Y 〉
r (σ++(c,d)) 6= NF

〈X ,Y 〉
r ((c,d)).

Definition 2 (Per-source NF). A rule r in an NF keeps per-

source state if all its instance NF
〈X ,Y 〉
r satisfies the three con-

ditions:

1. for all a ∈ X and b ∈ Y , there exits a σ over Σ({a},Y), such

that NF
〈X ,Y 〉
r (σ++(a,b)) 6= NF

〈X ,Y 〉
r ((a,b)).

2. for all a ∈ X, b ∈ Y , and σ1,σ2 over Σ({a},Y) such that

σ1 and σ2 have the same length, NF
〈X ,Y 〉
r (σ1 ++(a,b)) =

NF
〈X ,Y 〉
r (σ2 ++(a,b)).

3. for all a ∈ X, b ∈ Y , and σ over Σ(X ,Y),

NF
〈X ,Y 〉
r (σ++(a,b)) = NF

〈X ,Y 〉
r (σ|(a,_)++(a,b)).

Definition 3 (Per-destination NF). A rule r in an NF keeps

per-destination state if all its instance NF
〈X ,Y 〉
r satisfies the

three conditions:

1. for all a ∈ X and b ∈ Y , there exits a σ over Σ(X ,{b}), such

that NF
〈X ,Y 〉
r (σ++(a,b)) 6= NF

〈X ,Y 〉
r ((a,b)).

2. for all a ∈ X, b ∈ Y , and σ1,σ2 over Σ(X ,{b}) such that

σ1 and σ2 have the same length, NF
〈X ,Y 〉
r (σ1 ++(a,b)) =

NF
〈X ,Y 〉
r (σ2 ++(a,b)).

3. for all a ∈ X, b ∈ Y , and σ over Σ(X ,Y),

NF
〈X ,Y 〉
r (σ++(a,b)) = NF

〈X ,Y 〉
r (σ|(_,b)++(a,b)).

Definition 4 (Per-connection NF). A rule r in an NF keeps

per-connection state if all its instance NF
〈X ,Y 〉
r satisfies the

two conditions:

1. for all (a,b) ∈ X × Y ∪ Y × X, there exits a σ

over Σ({a},{b}) ∪Σ({b},{a}), such that NF
〈X ,Y 〉
r (σ++(a,b)) 6=

NF
〈X ,Y 〉
r ((a,b)).

2. for all (a,b) ∈ X ×Y ∪Y ×X, and σ over Σ(X ,Y) ∪Σ(Y,X),

NF
〈X ,Y 〉
r (σ++(a,b)) = NF

〈X ,Y 〉
r (σ|(a,b),(b,a)++(a,b)).

Definition 5 (stateless). A rule r in an NF is called a stateless

NF iff for all NF instance NF
〈X ,Y 〉
r , packet p ∈ Σ(X ,Y), and

sequence σ over Σ(X ,Y), NF
〈X ,Y 〉
r (σ++p) = NF

〈X ,Y 〉
r (p).

In addition, we assume all NFs satisfy the following con-

sistency in the configuration space:

Definition 6 (Consistency in the configuration space). For

all A,B,X ,Y,σ such that A⊂ X, B⊂ Y and σ is a sequence

over Σ(A,B), NF
〈X ,Y 〉
r (σ) = NF

〈A,B〉
r (σ).

FSM composition: The definition of FSM composition is

given below.

Definition 7 (FSM composition for key learning). Given two

FSMs FSMi = (Si,Σi,∆i,δi,s
0
i), where Si is the state space, Σi

is the space of possible input symbols such that Σ1∩Σ2 = /0,

∆i is the set of output symbols, δi : Si×Σi ! Si×∆i is the

transition function, and s0
i ∈ Si is the initial state of FSMi,

the composite FSM of FSM1 and FSM2 is FSMcomposite =
(S1× S2,Σ1 ∪ Σ2,∆1 ∪∆2,δ,s

0
1× s0

2), where δ((s1,s2), p) =
((s′1,s

′
2), p′) if and only if 1) δ1(s1, p) = (s′1, p′) and s2 = s′2;

or 2) δ1(s2, p) = (s′2, p′) and s1 = s′1.

Proof of KeyLearning algorithm: The correctness of our

KeyLearning algorithm is given in the following theorem.

Theorem 1 (Correctness of KeyLearning). Figure 10 is cor-

rect.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 717

Proof Sketch. For brevity, we only prove the column for the

per-source NF; proofs of other columns are similar. The proof

for per-source NF follows from the three lemmas below.

Lemma 1. All NFs that keep per-source state cannot pass

Test 1.

Proof. Let A1 and A2 be the FSM learned for NF
〈{a},{b}〉
r

and NF
〈{c},{d}〉
r respectively (i.e., A1 = L{(a,b)}(NF

〈{a},{b}〉
r),

similarly for A2), B be the FSM learned for

NF
〈{a,c},{b,d}〉
r using packets from (a,b) and (c,d) (i.e.,

B = L{(a,b),(c,d)}(NF
〈{a,c},{b,d}〉
r)), and C be the FSM

composed of A1 and A2. We only need to prove that for

any sequence σ consisting of packets over {(a,b),(c,d)},
B(σ) = C(σ). W.L.O.G., suppose σ ends with (a,b).

Then B(σ) = NF
〈{a,c},{b,d}〉
r (σ) = NF

〈{a,c},{b,d}〉
r (σ|(a,b)) =

B(σ|(a,b)) (condition 3), C(σ) =C(σ|(a,b)) = A1(σ|(a,b)) (the

first equality is by condition 3 and the second is by FSM

composition). But by homogeneity in the config space,

A1(σ|(a,b)) = B(σ|(a,b)). Thus, B(σ) =C(σ). In other words,

B is equivalent to C.

Lemma 2. All NFs that keep per-source state can pass Test

2.

Proof. Let A1 and A2 be the FSM learned for NF
〈{a},{b}〉
r

and NF
〈{a},{c}〉
r respectively, B be the FSM learned for

NF
〈{a},{b,c}〉
r , and C be the FSM composed of A1 and A2. By

the first condition of per-source NF, there exists a σ over

Σ({a},{b,c}), such that B(σ++(a,b)) 6= B((a,b)). By the sec-

ond condition, B(σ++(a,b)) = B(σ′++(a,b)), where σ′

is a sequence consisting of only (a,c). Since C is composed

of A1 and A2, C(σ′ ++(a,b)) = A1((a,b)). But by homo-

geneity in the config space, A1((a,b)) = B((a,b)). Thus,

C(σ′++(a,b)) 6= B(σ′++(a,b)). In other words, B is not

equivalent to the composite FSM of A1 and A2.

Lemma 3. All NFs that keep per-source state cannot pass

Test 3.

Proof. Let A1 and A2 be the FSM learned for NF
〈{a},{b}〉
r

and NF
〈{c},{b}〉
r respectively, B be the FSM learned for

NF
〈{a,c},{b}〉
r , and C be the FSM composed of A1 and A2. Con-

sider any sequence σ over Σ({a,c},{b}). W.L.O.G., suppose σ

ends with (a,b). Then by condition 3, B(σ) = B(σ|(a,b)). By

definition of composition, C(σ) = A1(σ|(a,b)). But by homo-

geneity in the config space, A1(σ|(a,b)) = B(σ|(a,b)). Thus,

C(σ) = B(σ). In order words, B and C are equivalent.

718 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

