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Abstract

Recent work on formal verification of differential privacy
shows a trend toward usability and expressiveness ś gener-
ating a correctness proof of sophisticated algorithm while
minimizing the annotation burden on programmers. Some-
times, combining those two requires substantial changes to
program logics: one recent paper is able to verify Report
Noisy Max automatically, but it involves a complex verifica-
tion system using customized program logics and verifiers.
In this paper, we propose a new proof technique, called

shadow execution, and embed it into a language called Shad-
owDP. ShadowDP uses shadow execution to generate proofs
of differential privacy with very few programmer annota-
tions and without relying on customized logics and verifiers.
In addition to verifying Report Noisy Max, we show that it
can verify a new variant of Sparse Vector that reports the gap
between some noisy query answers and the noisy threshold.
Moreover, ShadowDP reduces the complexity of verification:
for all of the algorithms we have evaluated, type checking
and verification in total takes at most 3 seconds, while prior
work takes minutes on the same algorithms.

CCS Concepts · Software and its engineering → For-

mal software verification.
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1 Introduction

Differential privacy is increasingly being used in industry
[22, 27, 37] and government agencies [1] to provide statis-
tical information about groups of people without violating
their privacy. Due to the prevalence of errors in published
algorithms and code [29], formal verification of differential
privacy is critical to its success.
The initial line of work on formal verification for differ-

ential privacy (e.g., [6ś10]) was concerned with increasing
expressiveness. A parallel line of work (e.g., [31, 33, 35, 43])
focuses more on usability ś on developing platforms that
keep track of the privacy cost of an algorithm while limiting
the types of algorithms that users can produce.
A recent line of work (most notably LightDP [42] and

Synthesizing Coupling Proofs [2]) has sought to combine
expressiveness and usability by providing verification tools
that infer most (if not all) of the proof of privacy. The bench-
mark algorithms for this task were Sparse Vector [20, 29] and
Report Noisy Max [20]. LightDP [42] was the first system
that could verify Sparse Vector with very few annotations,
but it could not verify tight privacy bounds on Report Noisy
Max [20]. It is believed that proofs using randomness align-

ment, the proof technique that underpins LightDP, are often
simpler, while approximate coupling, the proof technique that
underpins [6ś10], seems to be more expressive [2]. Subse-
quently, Albarghouthi and Hsu [2] produced the first fully
automated system that verifies both Sparse Vector and Re-
port Noisy Max. Although this new system takes inspiration
from randomness alignment to simplify approximate cou-
pling proofs, its verification system still involves challenging
features such as first-order Horn clauses and probabilistic
constraints; it takes minutes to verify simple algorithms. The
complex verification system also prevents it from reusing
off-the-shelf verification tools.
In this paper, we present ShadowDP, a language for veri-

fying differentially private algorithms. It is based on a new
proof technique called łshadow executionž, which enables
language-based proofs based on standard program logics.
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Built on randomness alignment, it transforms a probabilistic
program into a program in which the privacy cost is explicit;
so that the target program can be readily verified by off-
the-shelf verification tools. However, unlike LightDP, it can
verify more challenging algorithms such as Report Noisy
Max and a novel variant of Sparse Vector called Difference
Sparse Vector. We show that with minimum annotations,
challenging algorithms that took minutes to verify by [2]
(excluding proof synthesis time) now can be verified within
3 seconds with an off-the-shelf model checker.
One extra benefit of this approach based on randomness

alignment is that the transformed program can also be ana-
lyzed by standard symbolic executors. This appears to be an
important property in light of recent work on detecting coun-
terexamples for buggy programs [12, 17, 23, 24]. Producing
a transformed program that can be used for verification of
correct programs and bug-finding for incorrect programs is
one aspect that is of independent interest (however, we leave
this application of transformed programs to future work).

In summary, this paper makes the following contributions:

1. Shadow execution, a new proof technique for differential
privacy (Section 2.4).

2. ShadowDP, a new imperative language (Section 3) with
a flow-sensitive type system (Section 4) for verifying
sophisticated privacy-preserving algorithms.

3. A formal proof that the verification of the transformed
program by ShadowDP implies that the source code is
ϵ-differentially private (Section 5).

4. Case studies on sophisticated algorithms showing that
verifying privacy-preserving algorithms using ShadowDP
requires little programmer annotation burden and verifi-
cation time (Section 6).

5. Verification of a variant of Sparse Vector Technique that
releases the difference between noisy query answers and
a noisy threshold at the same privacy level as the original
algorithm [20, 29]. To the best of our knowledge, this
variant has not been studied before.

2 Preliminaries and Illustrating Example

2.1 Differential Privacy

Differential privacy is now considered a gold standard in
privacy protections after recent high profile adoptions [1,
22, 27, 37]. There are currently several popular variants of
differential privacy [13, 18, 19, 32]. In this paper, we focus on
the verification of algorithms that satisfy pure differential
privacy [19], which has several key advantages ś it is the
strongest one among them, the most popular one, and the
easiest to explain to non-technical end-users [34].
Differential privacy requires an algorithm to inject care-

fully calibrated random noise during its computation. The
purpose of the noise is to hide the effect of any person’s
record on the output of the algorithm. In order to present the
formal definition, we first define the set of sub-distributions

over a discrete set A, written Dist(A), as the set of functions
µ : A → [0, 1], such that

∑
a∈A µ(a) ≤ 1. When applied to an

event E ⊆ A, we define µ(E) ≜
∑

e ∈E µ(e).
1

Differential privacy relies on the notion of adjacent databases
(e.g., pairs of databases that differ on one record). Since
differentially-private algorithms sometimes operate on query
results from databases, we abstract adjacent databases as an
adjacency relation Ψ ⊆ A ×A on input query answers. For
differential privacy, the most commonly used relations are:
(1) each query answer may differ by at most n (for some
number n), and (2) at most one query answer may differ, and
that query answer differs by at most n. This is also known
as sensitivity of the queries.

Definition 1 (Pure Differential privacy). Let ϵ ≥ 0. A proba-

bilistic computationM : A → B is ϵ-differentially private with

respect to an adjacency relation Ψ if for every pair of inputs

a1,a2 ∈ A such that a1Ψa2, and every output subset E ⊆ B,

P(M(a1) ∈ E) ≤ eϵP(M(a2) ∈ E).

2.2 Randomness Alignment

Randomness Alignment [42] is a simple yet powerful tech-
nique to prove differential privacy. Here, we illustrate the
key idea with a fundamental mechanism for satisfying dif-
ferential privacyśthe Laplace Mechanism [30].
Following the notations in Section 2.1, we consider an

arbitrary pair of query answers a1 and a2 that differ by at
most 1, i.e., −1 ≤ a1 − a2 = c ≤ 1. The Laplace Mechanism
(denoted as M) simply releases a + η, where η is a random
noise sampled from the Laplace distribution of mean 0 and
scale 1/ϵ ; we use p1/ϵ to denote its density function. The goal
of randomness alignment is to łalignž the random noise in
two executionsM(a1) andM(a2), such thatM(a1) = M(a2),
with a corresponding privacy cost. To do so, we create an
injective function f : R → R that maps η to η + c . Obviously,
f is an alignment since a1 + η = a2 + f (η) for any a1, a2.
Then for an arbitrary set of outputs E ⊆ R, we have:

P(M(a1) ∈ E) =
∑

η |a1+η∈E

p1/ϵ (η) ≤
∑

η |a2+f (η)∈E

p1/ϵ (η)

≤ eϵ
∑

η |a2+f (η)∈E

p1/ϵ (f (η))

= eϵ
∑

η |a2+η∈E

p1/ϵ (η) = eϵP(M(a2) ∈ E)

The first inequality is by the definition of f : a1 + η ∈ E =⇒

a2+ f (η) ∈ E. The eϵ factor results from the fact that p1/ϵ (η+
c)
/
p1/ϵ (η) ≤ e |c | ·ϵ ≤ eϵ , when the Laplace distribution has

scale 1/ϵ . The second to last equality is by change of variable
from f (η) to η in the summation, using the injectivity of f .
In general, let H ∈ R

n be the random noise vector that a
mechanismM uses. A randomness alignment for a1Ψa2 is a
function f : Rn → R

n such that:
1As is standard in this line of work (e.g., [8, 42]), we assume a sub-
distribution instead of a distribution, since sub-distribution gives rise to an
elegant program semantics in face of non-terminating programs [28].
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1. M(a2) with noise f (H ) outputs the same result asM(a1)

with noise H (hence the name Randomness Alignment).
2. f is injective (this is to allow change of variables).

2.3 The Report Noisy Max Algorithm

To illustrate the challenges in proving differential privacy,
we consider the Report Noisy Max algorithm [20], whose
source code is shown on the top of Figure 1. It can be used
as a building block in algorithms that iteratively generate
differentially private synthetic data by finding (with high
probability) the identity of the query for which the synthetic
data currently has the largest error [25].
The algorithm takes a list q of query answers, each of

which differs by at most 1 if the underlying database is re-
placed with an adjacent one. The goal is to return the index
of the largest query answer (as accurately as possible subject
to privacy constraints).

To achieve differential privacy, the algorithm adds appro-
priate Laplace noise to each query. Here, Lap (2/ϵ) draws
one sample from the Laplace distribution with mean zero
and a scale factor (2/ϵ). For privacy, the algorithm uses the
noisy query answer (q[i] + η) rather than the true query an-
swer (q[i]) to compute and return the index of the maximum
(noisy) query answer. Note that the return value is listed
right below the function signature in the source code.

Informal proof using randomness alignment Proofs of
correctness of Report NoisyMax can be found in [20].Wewill
start with an informal correctness argument, based on the
randomness alignment technique (Section 2.2), to illustrate
subtleties involved in the proof.
Consider the following two databases D1,D2 that differ

on one record, and their corresponding query answers:

D1 : q[0] = 1, q[1] = 2, q[2] = 2

D2 : q[0] = 2, q[1] = 1, q[2] = 2

Suppose in one execution onD1, the noise added to q[0], q[1],

q[2] is α (1)
0 = 1, α (1)

1 = 2, α (1)
2 = 1, respectively. In this case,

the noisy query answers are q[0] + α (1)
0 = 2, q[1] + α (1)

1 = 4,

q[2] + α (1)
2 = 3 and so the algorithm returns 1, which is the

index of the maximum noise query answer of 4.

Aligning randomness As shown in Section 2.2, we need
to create an injective function of random bits in D1 to ran-
dom bits in D2 to make the output the same. Recall that

α
(1)
0 ,α

(1)
1 ,α

(1)
2 are the noise added toD1, now let α (2)

0 ,α
(2)
1 ,α

(2)
2

be the noise added to the queries q[0],q[1],q[2] in D2, re-
spectively. Consider the following injective function: for any
query except for q[1], use the same noise as on D1; add 2 to

the noise used for q[1] (i.e., α (2)
1 = α

(1)
1 + 2).

In our running example, execution on D2 with this align-
ment function would result in noisy query answers q[0] +

α
(2)
0 = 3, q[1] + α (2)

1 = 5, q[2] + α (2)
2 = 3. Hence, the output

once again is 1, the index of query answer 5.

function NoisyMax (ϵ , size : num⟨0,0⟩ ; q : list num⟨∗,∗⟩ )

returns max : num⟨0,∗⟩

precondition ∀i ≥ 0. − 1 ≤ q̂◦[i] ≤ 1 ∧ q̂†[i] = q̂◦[i]

1 i := 0; bq := 0; max := 0;

2 while (i < size)

3 η := Lap (2/ϵ) , Ω ? † : ◦ , Ω ? 2 : 0 ;

4 if (q[i] + η > bq ∨ i = 0)

5 max := i;

6 bq := q[i] + η;

7 i := i + 1;

The transformed program (slightly simplified for readability),
where underlined commands are added by the type system:

1 vϵ := 0;

2 i := 0; bq := 0; max := 0;

3 b̂q
◦
:= 0; b̂q

†
:= 0;

4 while (i < size)

5 assert (i < size);

6 havoc η; vϵ := Ω ? (0 + ϵ) : (vϵ + 0);

7 if (q[i] + η > bq ∨ i = 0)

8 assert (q[i] + q̂◦[i] + η + 2 > bq + b̂q
†
∨ i = 0);

9 max := i;

10 b̂q
†
:= bq + b̂q

†
- (q[i] + η);

11 bq := q[i] + η;

12 b̂q
◦
:= q̂

◦
[i] + 2;

13 else

14 assert (¬(q[i] + q̂◦[i] + η + 0 > bq + b̂q
◦
∨ i = 0));

15 // shadow execution

16 if (q[i] + q̂†[i] + η > bq + b̂q
†
∨ i = 0)

17 b̂q
†
:= q[i] + q̂

†
[i] + η − bq;

18 i := i + 1;

Figure 1.Verifying Report NoisyMaxwith ShadowDP. Here,
q is a list of query answers from a database, and max is the
query index of the maximum query with Laplace noise gener-
ated at line 3. To verify the algorithm on the top, a program-
mer provides function specification as well as annotation for
sampling command (annotations are shown in gray, where
Ω represents the branch condition). ShadowDP checks the
source code and generates the transformed code (at the bot-
tom), which can be verified with off-the-shelf verifiers.

In fact, we can prove that under this alignment, every exe-

cution on D1 where 1 is returned would result in an execution
on D2 that produces the same answer due to two facts:

1. On D1, q[1] + α
(1)
1 has the maximum value.

2. On D2, q[1] + α
(2)
1 is greater than q[1] + α (1)

1 + 1 on D1

due to α (2)
1 = α

(1)
1 + 2 and the adjacency assumption.

Hence, q[1] + α (2)
1 on D2 is greater than q[i] + α

(1)
i + 1 on

D1 for any i . By the adjacency assumption, that is the same

as q[1] + α
(2)
1 is greater than any q[i] + α

(2)
i on D2. Hence,
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D1:

D2:

q[0]=1          q[1]=2          q[2]=2          q[3]=4

q[0]=2          q[1]=1          q[2]=2          q[3]=4

noise

shadow

execution

alignment

 α
0
(1)=1           α

1
(1)=2           α

2
(1)=1           α

3
(1)=1

 α
0
(†)=1           α

1
(†)=2           α

2
(†)=1           α

3
(†)=1

 α
0
(2)=3           α

1
(2)=4           α

2
(2)=1           α

3
(2)=3

Figure 2. Selective alignment for Report Noisy Max

based on the same argument in Section 2.2, we can prove
that the Report Noisy Max algorithm is ϵ-private.

Challenges Unfortunately, the alignment function above
only applies to executions on D1 where index 1 is returned.
If there is one more query q[3] = 4 and the execution gets

noise α (1)
3 = 1 for that query, the execution on D1 will return

index 3 instead of 1. To align randomness on D2, we need
to construct a different alignment function (following the
construction above) that adds noise in the following way:
for any query except for q[3], use the same noise as on D1;

add 2 to the noise used for q[3] (i.e., α (2)
3 = α

(1)
3 + 2). In other

words, to carry out the proof, the alignment for each query
depends on the queries and noise yet to happen in the future.
One approach of tackling this challenge, followed by ex-

isting language-based proofs of Report Noisy Max [2, 8], is
to use the pointwise lifting argument: informally, if we can
show that for any value i , execution on D1 returns value i
implies execution on D2 returns value i (with a privacy cost
bounded by ϵ), then a program is ϵ-differential private. How-
ever, this argument does not apply to the randomness align-
ment technique. Moreover, doing so requires a customized
program logic for proving differential privacy.

2.4 Approach Overview

In this paper, we propose a new proof technique łshadow
executionž, which enables language-based proofs based on
standard program logics. The key insight is to track a shadow
execution onD2 where the same noise is always used as onD1.
For our running example, we illustrate the shadow execution

in Figure 2, with random noise α (†)
0 , α (†)

1 and so on. Note that

the shadow execution uses α (†)
i = α

(1)
i for all i .

With the shadow execution, we can construct a random-
ness alignment for each query i as follows:

Case 1: Whenever q[i] + α (1)
i is the maximum value so far

on D1 (i.e.,max is updated), we use the alignments
on shadow execution for all previous queries but a

noise α (1)
i + 2 for q[i] on D2.

Case 2: Whenever q[i] + α (1)
i is smaller than or equal to any

previous noise query answer (i.e., max is not up-
dated), we keep the previous alignments for previous

queries and use noise α (1)
i for q[i] on D2.

We illustrate this construction in Figure 2. After seeing
q[1] onD1 (Case 1), the construction uses noise in the shadow

execution for previous query answers, and uses α (1)
1 + 2 = 4

as the noise for q[1] on D2. After seeing q[2] on D1 (Case 2),
the construction reuses alignments constructed previously,

and use α (1)
2 = 1 as the noise for q[2]. When q[3] comes, the

previous alignment is abandoned; the shadow execution is
used for q[0] to q[2]. It is easy to check that this construction
is correct for any subset of query answers seen so far, since
the resulting alignment is exactly the same as the informal
proof above, when the index of maximum value is known.

Randomness alignment with shadow execution To in-
corporate the informal argument above to a programming
language, we propose ShadowDP. We illustrate the key com-
ponents of ShadowDP in this section, as shown in Figure 1,
and detail all components in the rest of this paper.
Similar to LightDP [42], ShadowDP embeds randomness

alignments into types. In particular, each numerical variable

has a type in the form of num⟨n◦,n† ⟩ , where n
◦ and n

† repre-
sent the łdifferencež of its value in the aligned and shadow
execution respectively. In Figure 1, non-private variables,
such as ϵ, size , are annotated with distance 0. For private
variables, the difference could be a constant or an expression.
For example, the type of q along with the precondition speci-
fies the adjacency relation: each query answer’s difference is
specified by ∗, which is desugared to a special variable q̂◦[i]
(details discussed in Section 4). The precondition in Figure 1
specifies that the difference of each query answer is bounded
by 1 (i.e., query answers have sensitivity of 1).
ShadowDP reasons about the aligned and shadow execu-

tions in isolation, with the exception of sampling commands.
A sampling command (e.g., line 3 in Figure 1) constructs the
aligned execution by either using values from the aligned
execution so far (symbol ◦), or switching to values from the
shadow execution (symbol †). The construction may depend
on program state: in Figure 1, we switch to shadow values iff
q[i]+η is the max onD1. A sampling command also specifies
the alignment for the generated random noise.

With function specification and annotations for sampling
commands, the type system of ShadowDP automatically
checks the source code. If successful, it generates a non-
probabilistic program (as shown at the bottom of Figure 1)
with a distinguished variable vϵ . The soundness of the type
system ensures the following property: if vϵ is bounded by
some constant ϵ in the transformed program, then the origi-
nal program being verified is ϵ-private.

Benefits Compared with previous language-based proofs
of Report Noisy Max [2, 8] (both are based on the pointwise
lifting argument), ShadowDP enjoys a unique benefit: the
transformed code can be verified based on standard program
semantics. Hence, the transformed (non-probabilistic) pro-
gram can be further analyzed by existing program verifiers
and other tools. For example, the transformed program in
Figure 1 is verifiedwith an off-the-shelf tool CPAChecker[11]
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Reals r ∈ R

Normal Vars x ∈ NVars
Random Vars η ∈ RVars
Linear Ops ⊕ ::= + | −
Other Ops ⊗ ::= × | /
Comparators ⊙ ::= < |> |=|≤|≥
Bool Exprs b ::= true | false | x | ¬b | n1 ⊙ n2

Num Exprs n ::= r | x | η | n1 ⊕ n2 |
n1 ⊗ n2 | b? n1 : n2

Expressions e ::= n | b | e1 :: e2 | e1[e2]
Commands c ::= skip | x := e | η := д | c1; c2 |

return e | while e do (c) |
if e then (c1) else (c2)

Distances d ::= n | ∗
Types τ ::= num⟨d◦,d† ⟩ | bool | list τ
Var Versions k ∈ {◦, †}
Selectors S ::= e ? S1 : S2 | k
Rand Exps д ::= Lap r , S , nη

Figure 3. ShadowDP: language syntax.

without any extra annotation within seconds. Although not
explored in this paper, the transformed program can also be
analyzed by symbolic executors to identify counterexamples
when the original program is incorrect. We note that doing
so will be more challenging in a customized logic.

3 ShadowDP: Syntax and Semantics

In this section, we present the syntax and semantics of Shad-
owDP, a simple imperative language for designing and veri-
fying differentially private algorithms.

3.1 Syntax

The language syntax is given in Figure 3. Most parts of Shad-
owDP is standard; we introduce a few interesting features.

Non-probabilistic variables and expressions ShadowDP
supports real numbers, booleans as well as standard oper-
ations on them. We use n and b to represent numeric and
boolean expressions respectively. A ternary numeric expres-
sion b ? n1 : n2 evaluates to n1 when the comparison evalu-
ates to true, and n2 otherwise. Moreover, to model multiple
queries to a database and produce multiple outputs during
that process, ShadowDP supports lists: e1 :: e2 appends the
element e1 to a list e2; e1[e2] gets the e2-th element in list e1,
assuming e2 is bound by the length of e1.

Random variables and expressions To model probabilis-
tic computation, which is essential in differentially private
algorithms, ShadowDP uses random variable η ∈ RVars to
store a sample drawn from a distribution. Random variables
are similar to normal variables (x ∈ NVars) except that they
are the only ones who can get random values from random
expressions, via a sampling command η := д.
We follow the modular design of LightDP [42], where

randomness expressions can be added easily. In this paper,
we only consider the most interesting random expression,

Lap r . Semantically, η := Lap r draws one sample from the
Laplace distribution, with mean zero and a scale factor r , and
assigns it to η. For verification purpose, a sampling command
also requires a few annotations, which we explain shortly.

Types Types in ShadowDP have the form ofB⟨d◦,d† ⟩ , where

B is the base type, and d
◦, d† represent the alignments for the

execution on adjacent database and shadow execution respec-
tively. Base type is standard: it includes num (numeric type),
bool (Boolean), or a list of elements with type τ (list τ ).
Distance d is the key for randomness alignment proof.

Intuitively, it relates two program executions so that the
likelihood of seeing each is bounded by some constant. Since
only numerical values have numeric distances, other data
types (including bool, list τ and τ1 → τ2) are always asso-
ciated with ⟨0, 0⟩, hence omitted in the syntax. Note that this
does not rule out numeric distances in nested types. For ex-
ample, (list num⟨1,1⟩) stores numbers that differ by exactly
one in both aligned and shadow executions.
Distance d can either be a numeric expression (n) in the

language or ∗. A variable x with type num⟨∗,∗⟩ is desugared as
x : Σ(⟨x̂ ◦:num⟨0,0⟩, x̂

†:num⟨0,0⟩ ⟩)
num⟨x̂ ◦, x̂ † ⟩ , where x̂

◦, x̂† are distin-
guished variables invisible in the source code; hiding those
variables in a Σ-type simplifies the type system (Section 4).

The star type is useful for two reasons. First, it specifies
the sensitivity of query answers in a precise way. Consider
the parameter q in Figure 1 with type list num⟨∗,∗⟩ , along
with the precondition ∀i ≥ 0. −1 ≤ q̂◦[i] ≤ 1. This notation
makes the assumption of the Report Noisy Max algorithm
explicit: each query answer differs by at most 1. Second,
star type serves as the last resort when the distance of a
variable cannot be tracked precisely by a static type system.
For example, whenever ShadowDP merges two different
distances (e.g., 3 and 4) of x from two branches, the result
distance is ∗; the type system instruments the source code
to maintain the correct values of x̂◦, x̂† (Section 4).

Sampling with selectors Each sampling instruction is at-
tached with a few annotations for proving differential pri-
vacy, in the form of (η := Lap r ,S,nη). Note that just like
types, the annotations S, nη have no effects on the program
semantics; they only show up in verification. Intuitively, a se-
lector S picks a version (k ∈ {◦, †}) for all program variables
(including the previously sampled variables) at the sampling
instruction, as well as constructs randomness alignment for
η, specified by nη (note that the distance cannot be ∗ by syn-
tactical restriction here). By definition, both S and nη may
depend on the program state when the sampling happens.

Return to the running example in Figure 1. As illustrated
in Figure 2, the selective alignment is to

• use shadow variables and align the new sample by 2

whenever a new max is encountered,
• use aligned variables and the same sample otherwise.
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Hence, the sampling command in Figure 1 is annotated
as (η := Lap (2/ϵ),Ω ? † : ◦,Ω ? 2 : 0), where Ω is q[i]+η >
bq ∨ i = 0, the condition when a new max is found.

3.2 Semantics

As standard, the denotational semantics of the probabilistic
language is defined as a mapping from initial memory to a
distribution on (possible) final outputs. Formally, let M be a
set of memory states where eachm ∈ M maps all (normal
and random) variables (NVars ∪ RVars) to their values.
The semantics of an expression e of base type B is inter-

preted as a function JeK : M → JBK, where JBK represents
the set of values belonging to the base type B. We omit
expression semantics since it is standard. A random expres-
sion д is interpreted as a distribution on real values. Hence,
JдK : Dist(JnumK). Moreover, a command c is interpreted as
a function JcK : M → Dist(M). For brevity, we write JeKm
and JcKm instead of JeK(m) and JcK(m) hereafter. Finally, all
programs have the form (c; return e) where c contains no
return statement. A program is interpreted as a function
m → DistJBK where B is the return type (of e).

The semantics of commands is available in the full version
of this paper [40]; the semantics directly follows a standard
semantics in [28].

4 ShadowDP: Type System

ShadowDP is equipped with a flow-sensitive type system. If
successful, it generates a transformed program with needed
assertions to make the original program differentially private.
The transformed program is simple enough to be verified by
off-the-shelf program verifiers.

4.1 Notations

We denote by Γ the typing environment which tracks the
type of each variable in a flow-sensitive way (i.e., the type
of each variable at each program point is traced separately).
All typing rules are formalized in Figure 4. Typing rules
share a common global invariant Ψ, such as the sensitiv-
ity assumption annotated in the source code (e.g., the pre-
condition in Figure 1). We also write Γ(x) = ⟨d◦, d†⟩ for
∃ B. Γ(x) = B⟨d◦,d† ⟩ when the base type B is irrelevant.

4.2 Expressions

Expression rules have the form of Γ ⊢ e : τ , which means
that expression e has type τ under the environment Γ. Most
rules are straightforward: they compute the distance for
aligned and shadow executions separately. Rule (T-OTimes)
makes a conservative approach for nonlinear computations,
following LightDP [42]. Rule (T-VAR) desugars star types
when needed. The most interesting rule is (T-ODot), which
generates the following constraint:

Ψ ⇒ (e1 ⊙ e2 ⇔ (e1+n1) ⊙ (e2+n3) ∧ (e1+ n2) ⊙ (e2+n4))

This constraint states that the boolean value of e1 ⊙ e2 is
identical in both aligned and shadow executions. If the con-
straint is discharged by an external solver (our type system
uses Z3 [16]), we are assured that e1 ⊙ e2 has distances ⟨0, 0⟩.

4.3 Commands

The flow-sensitive type system tracks and checks the dis-
tances of aligned and shadow executions at each program
point. Typing rules for commands have the form of

pc ⊢ Γ {c ⇀ c ′} Γ′

meaning that starting from the previous typing environment
Γ, the new typing environment is Γ′ after c . We will discuss
the other components pc and c ′ shortly.

4.3.1 Aligned Variables

The type system infers and checks the distances of both
aligned and shadow variables. Since most rules treat them
in the same way, we first explain the rules with respect to
aligned variables only, then we discuss shadow variables in
Section 4.3.2. To simplify notation, we write Γ instead of Γ◦

for now since only aligned variables are discussed.

Flow-Sensitivity In each typing rule pc ⊢ Γ {c ⇀ c ′} Γ′,
an important invariant is that if c runs on two memories that
are aligned by Γ, then the final memories are aligned by Γ

′.
Consider the assignment rule (T-Asgn). This rule com-

putes the distance of e’s value, n◦, and updates the distance
of x ’s value after assignment to n

◦.
More interesting are rules (T-If) and (T-While). In (T-If),

we compute the typing environments after executing c1 and
c2 as Γ1 and Γ2 respectively. Since each branch may update
x ’s distance in arbitrary way, Γ1(x) and Γ2(x) may differ. We
note that numeric expressions and ∗ type naturally form a
two level lattice, where ∗ is higher than any n. Hence, we
use the following rule to merge two distances d1 and d2:

d1 ⊔ d2 ≜

{
d1 if d1 = d2

∗ otherwise

For example, (3 ⊔ 4 = ∗), (x +y ⊔ x +y = x +y), (x ⊔ 3 = ∗).
Hence, (T-If) ends with Γ1 ⊔ Γ2, defined as λx . Γ1(x) ⊔ Γ2(x).

As an optimization, we also use branch conditions to sim-
plify distances. Consider our running example (Figure 1): at
Line 4, η has (aligned) distance Ω ? 2 : 0, where Ω is the
branch condition. Its distance is simplified to 2 in the true
branch and 0 in the false branch.
Rule (T-While) is similar, except that it requires a fixed

point Γf such that pc ⊢ Γ ⊔ Γf {c} Γf . In fact, this rule is de-
terministic since we can construct the fixed point as follows
(the construction is similar to the one in [26]):

pc ⊢ Γ
′
i {c ⇀ c ′i } Γ

′′
i for all 0 ≤ i ≤ n

where Γ′0 = Γ, Γ
′
i+1 = Γ

′′
i ⊔ Γ, Γ

′
n+1 = Γ

′
n .
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Typing rules for expressions

Γ ⊢ r : num⟨0,0⟩
(T-Num)

Γ ⊢ b : bool
(T-Boolean)

Γ(x) = B⟨d◦,d† ⟩ n
⋆
=

{
x̂⋆ if d

⋆
= ∗

d
⋆ otherwise

⋆ ∈ {◦, †}

Γ ⊢ x : B⟨n◦,n† ⟩

(T-Var)

Γ ⊢ e1 : num⟨n1,n2 ⟩ Γ ⊢ e2 : num⟨n3,n4 ⟩

Γ ⊢ e1 ⊕ e2 : num⟨n1⊕n3,n2⊕n4 ⟩

(T-OPlus)
Γ ⊢ e1 : num⟨0,0⟩ Γ ⊢ e2 : num⟨0,0⟩

Γ ⊢ e1 ⊗ e2 : num⟨0,0⟩
(T-OTimes)

Γ ⊢ e1 : num⟨n1,n2 ⟩

Γ ⊢ e2 : num⟨n3,n4 ⟩

Ψ ⇒ (e1 ⊙ e2 ⇔ (e1+n1) ⊙ (e2+n3))
∧(e1 ⊙ e2 ⇔ (e1+n2) ⊙ (e2+n4))

Γ ⊢ e1 ⊙ e2 : bool
(T-ODot)

Γ ⊢ e1 : bool Γ ⊢ e2 : τ Γ ⊢ e3 : τ

Γ ⊢ e1 ? e2 : e3 : τ
(T-Ternary)

Γ ⊢ e : bool

Γ ⊢ ¬e : bool
(T-Neg)

Γ ⊢ e1 : τ Γ ⊢ e2 : list τ

Γ ⊢ e1 :: e2 : list τ
(T-Cons)

Γ ⊢ e1 : list τ Γ ⊢ e2 : num⟨0,0⟩
Γ ⊢ e1[e2] : τ

(T-Index)

Typing rules for commands

pc ⊢ Γ {skip⇀ skip} Γ
(T-Skip)

Γ ⊢ e : B⟨n◦,n† ⟩ ⟨Γ′, c†⟩ =

{
⟨Γ[x 7→ B⟨n◦,n† ⟩], skip⟩, if pc = ⊥

⟨Γ[x 7→ B⟨n◦,∗⟩], x̂
† := x + n

† − e⟩, else

pc ⊢ Γ {x := e ⇀ c†;x := e} Γ′
(T-Asgn)

pc ⊢ Γ {c1 ⇀ c ′1} Γ1 pc ⊢ Γ1 {c2 ⇀ c ′2} Γ2

pc ⊢ Γ {c1; c2 ⇀ c ′1; c
′
2} Γ2

(T-Seq)
Γ ⊢ e : num⟨0,d⟩ or Γ ⊢ e : bool

pc ⊢ Γ {return e ⇀ return e} Γ
(T-Return)

pc ′ = updPC(pc, Γ, e)
pc ′ ⊢ Γ {ci ⇀ c ′i } Γi

Γi , Γ1 ⊔ Γ2,pc
′ ⇛ c ′′i i ∈ {1, 2} c†=

{
skip, if (pc = ⊤ ∨ pc ′ = ⊥)

Lif e then c1 else c2, Γ1 ⊔ Γ2M
†
, else

pc ⊢ Γ
{
if e then c1 else c2 ⇀

(
if e then (assert (Le, ΓM◦); c ′1; c

′′
1 ) else (assert (¬Le, ΓM◦); c ′2; c

′′
2 )
)
; c†

}
Γ1 ⊔ Γ2

(T-If)

pc ′ = updPC(pc, Γ, e)
pc ′ ⊢ Γ ⊔ Γf {c ⇀ c ′} Γf

Γ, Γ ⊔ Γf ,pc
′ ⇛ cs

Γf , Γ ⊔ Γf ,pc
′ ⇛ c ′′

c† =

{
skip, if (pc = ⊤ ∨ pc ′ = ⊥)

Lwhile e do c, Γ ⊔ Γf M
†
, else

pc ⊢ Γ {while e do c ⇀ cs ; (while e do (assert (Le, ΓM
◦); c ′; c ′′)); c†} Γ ⊔ Γf

(T-While)

Typing rules for random assignments

pc = ⊥ Γ
′
= λx . ⟨S(⟨n◦

,n
†⟩),n†⟩ where Γ ⊢ x : B⟨n◦,n† ⟩ Ψ ⇒ ((η + nη){η1/η} = (η + nη){η2/η} ⇒ η1 = η2)

pc ⊢ Γ {η := Lap r ;S,nη ⇀ η := Lap r ;S,nη} Γ
′[η 7→ num⟨nη,0⟩]

(T-Laplace)

Instrumentation rule

Γ1 ⊑ Γ2

c◦ = {x̂◦ := n | Γ1(x) = num⟨n,d1 ⟩ ∧ Γ2(x) = num⟨∗,d2 ⟩}

c† = {x̂† := n | Γ1(x) = num⟨d1,n⟩ ∧ Γ2(x) = num⟨d2,∗⟩} c ′ =

{
c◦; c† if pc = ⊥

c◦ if pc = ⊤

Γ1, Γ2,pc ⇛ c ′

Select function

◦(⟨e1, e2⟩) = e1 † (⟨e1, e2⟩) = e2 (e ? S1 : S2)(⟨e1, e2⟩) = e ? S1(⟨e1, e2⟩) : S2(⟨e1, e2⟩)

PC update function

updPC(pc, Γ, e) =

{
⊥ , if pc = ⊥ ∧ Ψ ⇒ (e ⇔ Le, ΓM†)

⊤ , else

Figure 4. Typing rules and auxiliary rules. Ψ is an invariant that holds throughout program execution. In most rules, shadow
distances are handled in the same way as aligned distances, with exceptions highlighted in gray boxes.
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It is easy to check that Γ′n = Γ
′
n+1 = Γ

′′
n ⊔ Γ and pc ′ ⊢

Γ
′
n {c ⇀ c ′i } Γ

′′
n by construction. Hence, Γ′′n is a fixed point:

pc ⊢ Γ ⊔ Γ
′′
n {c ⇀ c ′i } Γ

′′
n . Moreover, the computation above

always terminates since all typing rules are monotonic on
typing environments2 and the lattice has a height of 2.

Maintaining dynamically tracked distances Each typ-
ing rule pc ⊢ Γ {c ⇀ c ′} Γ

′ also sets the value of x̂◦ to
maintain distance dynamically whenever Γ′(x) = ∗. This is
achieved by the instrumented commands in c ′.
None of rules (T-Skip, T-Asgn, T-Seq, T-Ret) generate ∗

type, hence they do not need any instrumentation. Themerge
operation in rule (T-If) generates ∗ type when Γ1(x) , Γ2(x).
In this case, we use the auxiliary instrumentation rule in the
form of Γ1, Γ2,pc ⇛ c ′, assuming Γ1 ⊑ Γ2. In particular, for
each variable x whose distance is łupgradedž to ∗, the rule
sets x̂◦ to the distance previously tracked by the type system
(Γ1(x)). Moreover, the instrumentation commands c ′′1 , c

′′
2 are

inserted under their corresponding branches.
Consider the following example:

if (x > 1) x := y; else y := 1;

staring with Γ0 : {x : 1,y : 0}. In the true branch, rule (T-
Asgn) updates x to the distance of y, resulting Γ1 : {x : 0,y :

0}. Similarly, we get Γ2 : {x : 1,y : 0} in the false branch.
Moreover, when wemerge the typing environments Γ1 and Γ2
at the end of branch, the typing environment becomes Γ3 =
Γ1 ⊔ Γ2 = {x : ∗,y : 0}. Since Γ1(x) , Γ2(x), instrumentation
rule is also applied, which instruments x̂◦ := 0 after x :=

y and x̂◦ := 1 after y := 1.
Rule (T-While) may also generate ∗ types. Following the

same process in rule (T-If), it also uses the instrumentation
rule to update corresponding dynamically tracked distance
variables. The instrumentation command cs is inserted before
loop and c ′′ after the commands in the loop body.

Well-Formedness Whenever an assignment x := e is exe-
cuted, no variable’s distance should depend on x . To see why,
consider x := 2 with initial Γ◦(y) = x andm(x) = 1. Since
this assignment does not modify the value of y, the aligned
value of y (i.e., y + Γ◦(y)) should not change. However, Γ◦(y)
changes from 1 to 2 after the assignment.
To avoid this issue, we check the following condition for

each assignment x := e: ∀y ∈ Vars. x < Vars(Γ(y)). In case
that the check fails for some y, we promote its distance to ∗,
and use the auxiliary instrumentation⇛ to set ŷ◦ properly.
Hence, well-formedness is guaranteed: no variable’s distance
depends on x when x is updated.

Aligned branches For differential privacy, we require the
aligned execution to follow the same branch as the original
execution. Due to dynamically tracked distances, statically
checking that in a type system could be imprecise. Hence,

2That is, ∀pc, c, Γ1, Γ2, Γ′1, Γ
′
2, c1, c2 . pc ⊢ Γi {c ⇀ c′i }Γ

′
i i ∈ {1, 2} ∧ Γ1 ⊑

Γ2 =⇒ Γ
′
1 ⊑ Γ

′
2 .

we use assertions in rules (T-If) and (T-While) to ensure the
aligned execution does not diverge. In those rules, Le, ΓM◦

simply computes the value of e in the aligned execution; its
full definition is in the full version of this paper [40].

4.3.2 Shadow Variables

In most typing rules, shadow variables are handled in the
same way as aligned ones, which is discussed above. The key
difference is that the type system allows the shadow execu-
tion to take a different branch from the original execution.

The extra permissiveness is the key ingredient of verifying
algorithms such as Report Noisy Max. To see why, consider
the example in Figure 2, where the shadow execution runs
on D2 with same random noise as from the execution on
D1. Upon the second query, the shadow execution does not
update max, since its noisy value 3 is the same as the previous
max; however, execution on D1 will update max, since the
noisy query value of 4 is greater than the previous max of 2.

To capture the potential divergence of shadow execution,
each typing rule is associated with a program counterpc with
two possible values ⊥ and ⊤ (introducing program counters
in a type system is common in information flow control to
track implicit flows [36]). Here, ⊤ (resp. ⊥) means that the
shadow execution might take a different branch (resp. must
take the same branch) as the original execution.
When pc = ⊥, the shadow execution is checked in the

same way as aligned execution. When pc = ⊤, the shadow
distances are updated (as done in Rule (T-Asgn)) so that x+x̂†

remains the same. The new value from the shadow execution
will be maintained by the type system when pc transits from

⊥ to ⊤ by code instrumentation for sub-commands in (T-If)

and (T-While), as we show next.
Take a branch (if e then c1 else c2) for example. The

transition happens when pc = ⊥ ∧ pc ′ = ⊤. In this case, we
construct a shadow execution of c by an auxiliary function
Lc, ΓM†. The shadow execution essentially replaces each vari-
able x with their correspondence (i.e., x + x̂†), as is standard
in self-composition [4, 38]. The only difference is that Lc, ΓM†

is not applicable to sampling commands, since we are un-
able to align the sample variables when different amount of
samples are taken. The full definition of Lc, ΓM† is available
in the full version of this paper [40]. Rule (T-While) is very
similar in its way of handling shadow variables.

4.3.3 Sampling Command

Rule (T-Laplace) checks the only probabilistic commandη :=

Lap r ,S ,nη in ShadowDP. Here, the selector S and numeric
distance nη are annotations provided by a programmer to
aid type checking. For the sample η, the aligned distance is
specified by nη and the shadow distance is always 0 (since
by definition, shadow execution use the same sample as the
original program). Hence, the type of η becomes num⟨nη,0⟩ .
Moreover, the selector constructs the aligned execution

from either the aligned (◦) or shadow (†) execution. Since
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the selector may depend on a condition e , we use the selector
function S(⟨e1, e2⟩) in Figure 4 to do so.
Rule (T-Laplace) also checks that each η is generated in

an injective way: the same aligned value of η implies the
same value of η in the original execution.
Consider the sampling command in Figure 1. The typing

environments before and after the command is shown below
(we omit unrelated parts for brevity):

{bq : ⟨∗, ∗⟩, · · · }

η := Lap (2/ϵ) , Ω ? † : ◦ , Ω ? 2 : 0;

{bq : ⟨Ω ? b̂q
†
: b̂q

◦
, b̂q

†
⟩ , η : ⟨Ω ? 2 : 0, 0⟩ , · · · }

In this example, S is Ω ? † : ◦. So the aligned distance of

variable bq will be Ω ? b̂q
†
: b̂q

◦
, the shadow distance of vari-

able bq is still b̂q
†
. The aligned distance of η is ⟨Ω ? 2 : 0, 0⟩,

where the aligned part is specified in the annotation.

4.4 Target Language

One goal of ShadowDP is to enable verification of ϵ-differential
privacy using off-the-shelf verification tools. In the trans-
formed code so far, we assumed assert commands to verify
that certain condition holds. The only remaining challenging
feature is the sampling commands, which requires proba-
bilistic reasoning. Motivated by LightDP [42], we note that
for ϵ-differential privacy, we are only concerned with the
maximum privacy cost, not its likelihood. Hence, in the fi-
nal step, we simply replace the sampling command with a
non-deterministic command havoc η, which semantically
sets the variable η to an arbitrary value upon execution, as
shown in Figure 5.

Note that a distinguished variable vϵ is added by the type
system to explicitly track the privacy cost of the original
program. For Laplace distribution, aligning η by the distance
of nη is associated with a privacy cost of |nη |/r . The reason
is that the ratio of any two points that are |nη | apart in
the Laplace distribution with scaling factor r is bounded
by exp(|nη |/r ). Since the shadow execution uses the same
sample, it has no privacy cost. This very fact allows us to
reset privacy cost when the shadow execution is used (i.e., S
selects †): the rule sets privacy cost to 0 + |nη |/r in this case.
In Figure 1, vϵ is set to Ω ? 0 : vϵ + Ω ? ϵ : 0 which is the

same as Ω ? ϵ : vϵ . Intuitively, that implies that the privacy
cost of the entire algorithm is either ϵ (when a new max is
found) or the same as the previous value of vϵ .

The type system guarantees the following important prop-
erty: if the original program type checks and the privacy
cost vϵ in the target language is bounded by some constant
ϵ in all possible executions of the program, then the original
program satisfies ϵ-differential privacy. We will provide a
soundness proof in the next section. Consider the running
example in Figure 1. The transformed program in the target
language is shown at the bottom.With a model checking tool
CPAChecker [11], we verified that vϵ ≤ ϵ in the transformed

η := Lap r ;S,nη ⇒ havoc η; vϵ := S(⟨vϵ , 0⟩) + |nη |/r ;

c ⇒ c , if c is not a sampling command

Figure 5. Transformation rules to the target language. Prob-
abilistic commands are reduced to non-deterministic ones.

program within 2 seconds (Section 6.3). Hence, the Report
Noisy Max algorithm is verified to be ϵ-differentially private.

5 Soundness

The type system performs a two-stage transformation:

pc ⊢ Γ1 {c ⇀ c ′} Γ2 and c ′ ⇒ c ′′

Here, both c and c ′ are probabilistic programs; the dif-
ference is that c executes on the original memory without
any distance tracking variables; c ′ executes on the extended
memory where distance tracking variables are visible. In
the second stage, c ′ is transformed to a non-probabilistic
program c ′′ where sampling instructions are replaced by
havoc and the privacy cost vϵ is explicit. In this section, we
use c, c ′, c ′′ to represent the source, transformed, and target
program respectively.
Overall, the type system ensures ϵ-differential privacy

(Theorem 2): if the value of vϵ in c ′′ is always bounded by a
constant ϵ , then c is ϵ-differentially private. In this section,
we formalize the key properties of our type system and prove
its soundness. Due to space constraints, the complete proofs
are available in the full version of this paper [40].

Extended Memory Command c ′ is different from c since it
maintains and uses distance tracking variables. To close the
gap, we first extend memorym to include those variables,
denoted as V̂ars = ∪x ∈NVars{x̂

◦
, x̂†} and introduce a distance

environment γ : V̂ars → R.

Definition 2. Let γ : V̂ars → R. For anym ∈ M, there is an

extension ofm,writtenm ⊎ (γ ), such that

m ⊎ (γ )(x) =

{
m(x), x ∈ Vars

γ (x), x ∈ V̂ars

We useM ′ to denote the set of extended memory states
andm′

1,m
′
2 to refer to concrete extended memory states. We

note that although the programs c and c ′ are probabilistic, the
extra commands in c ′ are deterministic. Hence, c ′ preserves
the semantics of c , as formalized by the following Lemma.

Lemma 1 (Consistency). Suppose pc ⊢ Γ1 {c ⇀ c ′} Γ2. Then

for any initial and final memorym1,m2 such that JcKm1 (m2) ,

0, and any extensionm′
1 ofm1, there is a unique extensionm

′
2

ofm2 such that

Jc ′Km′
1
(m′

2) = JcKm1 (m2)
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Proof. By structural induction on c . The only interesting
case is the (probabilistic) sampling command, which does
not modify distance tracking variables. □

From now on, we will usem′
2 to denote the unique exten-

sion ofm2 satisfying the property above.

Γ-Relation To formalize and prove the soundness property,
we notice that a typing environment Γ along with distance
environment γ induces two binary relations on memories.
We writem1 ⊎ (γ ) Γ◦ m2 (resp.m1 ⊎ (γ ) Γ† m2) whenm1,m2

are related by Γ
◦ (resp. Γ†) and γ . Intuitively, the initial γ

and Γ (given by the function signature) specify the adjacency
relation, and the relation is maintained by the type system
throughout program execution. For example, the initialγ and
Γ in Figure 1 specifies that two executions of the program is
related if non-private variables ϵ, size are identical, and each
query answer in q[i] differs by at most one.

To facilitate the proof, we simply writem′
1 Γm2 wherem′

1

is an extended memory in the form ofm1 ⊎ (γ ).

Definition 3 (Γ-Relations). Two memoriesm′
1 (in the form

of m1 ⊎ (γ )) and m2 are related by Γ
◦, written m′

1 Γ
◦ m2, if

∀x ∈ Vars ∪ RVars, we have

m2(x) =m
′
1(x) +m

′
1(d

◦) if Γ ⊢ x : num⟨d◦,d† ⟩

We define the relation on non-numerical types and the Γ
†

relation in a similar way.

By the definition above, Γ◦ introduces a function from
M ′ to M. Hence, we use Γ◦m′

1 as the uniquem2 such that
m′

1 Γ
◦ m2. The Γ† counterparts are defined similarly.

Injectivity For alignment-based proofs, given any γ , both
Γ
◦ and Γ

† must be injective functions [42]. The injectivity of
Γ over the entire memory follows from the injectivity of Γ
over the random noises η ∈ RVars, which is checked as the
following requirement in Rule (T-Laplace):

Ψ ⇒ ((η + nη){η1/η} = (η + nη){η2/η} ⇒ η1 = η2)

where all variables are universally quantified. Intuitively, this
is true since the non-determinism of the program is purely
from that of η ∈ RVars.

Lemma 2 (Injectivity). Given c, c ′,pc,m′
,m′

1,m
′
2, Γ1, Γ2 such

that pc ⊢ Γ1{c ⇀ c ′}Γ2, Jc
′Km′m′

1 , 0 ∧ Jc ′Km′m′
2 , 0,⋆ ∈

{◦, †}, then we have

Γ
⋆

2 m
′
1 = Γ

⋆

2 m
′
2 =⇒ m′

1 =m
′
2

Soundness The soundness theorem connects the łprivacy
costž of the probabilistic program to the distinguished vari-
able vϵ in the target program c ′′. To formalize the connection,
we first extend memory one more time to include vϵ :

Definition 4. For any extended memorym′ and constant ϵ ,

there is an extension ofm′, writtenm′ ⊎ (ϵ), so that

m′ ⊎ (ϵ)(vϵ ) = ϵ, and m′ ⊎ (ϵ)(x) =m(x), ∀x ∈ dom(m′).

For a transformed program and a pair of initial and final
memoriesm′

1 andm
′
2, we identify a set of possible vϵ values,

so that in the corresponding executions of c ′′, the initial and
final memories are extensions ofm′

1 andm
′
2 respectively:

Definition 5. Given c ′ ⇒ c ′′,m′
1 andm

′
2, the consistent costs

of executing c ′′ w.r.t.m′
1 andm

′
2, written c

′′ ↾
m′

2

m′
1
, is defined as

c ′′ ↾
m′

2

m′
1
≜ {ϵ | m′

2 ⊎ (ϵ) ∈ Jc ′′Km′
1⊎(0)

}

Since (c ′′ ↾
m′

2

m′
1
) by definition is a set of values of vϵ , we

write max(c ′′ ↾
m′

2

m′
1
) for the maximum cost.

The next lemma enables precise reasoning of privacy cost
w.r.t. a pair of initial and final memories:

Lemma 3 (Pointwise Soundness). Let pc, c, c ′, c ′′, Γ1, Γ2 be
such that pc ⊢ Γ1{c ⇀ c ′}Γ2 ∧ c ′ ⇒ c ′′, then ∀m′

1,m
′
2:

(i) the following holds:

Jc ′Km′
1
(m′

2) ≤ JcK
Γ
†
1m

′
1
(Γ†2m

′
2) when pc = ⊥ (1)

(ii) one of the following holds:

Jc ′Km′
1
(m′

2) ≤ exp(max(c ′′ ↾
m′

2

m′
1
))JcKΓ◦1m

′
1
(Γ◦2m

′
2) (2a)

Jc ′Km′
1
(m′

2) ≤ exp(max(c ′′ ↾
m′

2

m′
1
))JcK

Γ
†
1m

′
1
(Γ◦2m

′
2) (2b)

The point-wise soundness lemma provides a precise pri-
vacy bound per initial and final memory. However, differen-
tial privacy by definition (Definition 1) bounds theworst-case
cost. To close the gap, we define the worst-case cost of the
transformed program.

Definition 6. For any program c ′′ in the target language, we

say the execution cost of c ′′ is bounded by some constants ϵ ,

written c ′′⪯ϵ , iff for anym′
1,m

′
2,

m′
2 ⊎ (ϵ ′) ∈ Jc ′′Km′

1⊎(0)
⇒ ϵ ′ ≤ ϵ

Note that off-the-shelf tools can be used to verify that
c ′′⪯ϵ holds for some ϵ .

Theorem1 (Soundness). Given c, c ′, c ′′,m′
1, Γ1, Γ2, ϵ such that

⊥⊢Γ1{c⇀c ′}Γ2 ∧ c ′⇒c ′′ ∧ c ′′⪯ϵ , one of the following holds:

max
S ⊆M′

(Jc ′Km′
1
(S) − exp(ϵ)JcKΓ◦1m′

1
(Γ◦2 S)) ≤ 0, (3a)

max
S ⊆M′

(Jc ′Km′
1
(S) − exp(ϵ)JcK

Γ
†
1m

′
1
(Γ◦2 S)) ≤ 0. (3b)

Proof. By definition of c ′′⪯ϵ , we have max(c ′′ ↾
m′

2

m′
1
) ≤ ϵ for

allm′
2 ∈ S . Thus, by Lemma 3, we have one of the two:

Jc ′Km′
1
(m′

2) ≤ exp(ϵ)JcKΓ◦1m′
1
(Γ◦2m

′
2), ∀m′

2 ∈ S,

Jc ′Km′
1
(m′

2) ≤ exp(ϵ)JcK
Γ
†
1m

′
1
(Γ◦2m

′
2), ∀m′

2 ∈ S .

If the first inequality is true, then

max
S ⊆M′

(Jc ′Km′
1
(S) − exp(ϵ)JcKΓ◦1m′

1
(Γ◦2 S))

= max
S ⊆M′

∑

m′
2∈S

(Jc ′Km′
1
(m′

2) − exp(ϵ)JcKΓ◦1m′
1
(Γ◦2m

′
2)) ≤ 0
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and therefore (3a) holds. Similarly, (3b) holds if the second
inequality is true. Note that the equality above holds due to
the injective assumption, which allows us to derive the set-
based privacy from the point-wise privacy (Lemma 3). □

We now prove the main theorem on differential privacy:

Theorem2 (Privacy). Given Γ1, Γ2, c, c
′
, c ′′, e, ϵ such that Γ◦1 =

Γ
†
1 ∧ ⊥ ⊢ Γ1{(c; return e)⇀ (c ′; return e)}Γ2 ∧ c ′ ⇒ c ′′,

we have

c ′′⪯ϵ ⇒ c is ϵ-differentially private.

Proof. By the typing rule, we have ⊥ ⊢ Γ1{c ⇀ c ′}Γ2. By the
soundness theorem (Theorem 1) and the fact that Γ◦1 = Γ

†
2 , we

have Jc ′Km′
1
(S) ≤ exp(ϵ)JcKΓ◦1m′

1
(Γ◦2 S). For clarity, we stress

that all sets are over distinct elements (as we have assumed
throughout this paper).
By rule (T-Return), Γ2 ⊢ e : num⟨0,d⟩ or Γ2 ⊢ e : bool. For

any set of values V ⊆ JBK, let S ′V = {m′ ∈ M ′ | JeKm′ ∈ V }

and SV = {m ∈ M | JeKm ∈ V }, then we have Γ◦2 S
′
V ⊆ SV :

m ∈ Γ
◦
2 S

′
V ⇒m = Γ

◦
2m

′ for somem′ ∈ SV

⇒ JeKm = JeKΓ◦2m′ = JeKm′ ∈ V

⇒m ∈ SV .

The equality in second implication is due to the zero distance
when Γ2 ⊢ e : num⟨0,n⟩ , and rule (T-ODot)when Γ2 ⊢ e : bool.
We note that Γ◦2 S

′
V , SV in general since Γ◦2 might not be a

surjection. Let P ′
= (c ′; return e), then for any γ , we have

JP ′Km1⊎(γ )(V ) = Jc ′Km1⊎(γ )(S
′
V )

≤ exp(ϵ)Jc ′KΓ◦1m1⊎(γ )(Γ
◦
2 S

′
V )

≤ exp(ϵ)Jc ′KΓ◦1m1⊎(γ )(SV )

= exp(ϵ)JPKΓ◦1m1⊎(γ )(V ).

Finally, due to Lemma 1, JPKm1 (V ) = JP ′Km1⊎(γ )(V ). There-
fore, by definition of privacy c is ϵ-differentially private. □

Note that the shallow distances are only useful for proofs;
they are irrelevant to the differential privacy property being
obeyed by a program. Hence, initially, we have Γ◦1 = Γ

†
1 (both

describing the adjacency requirement) in Theorem 2, as well
as in all of the examples formally verified by ShadowDP.

6 Implementation and Evaluation

6.1 Implementation

We have implemented ShadowDP into a trans-compiler3

in Python. ShadowDP currently supports trans-compilation
from annotated C code to target C code. Its workflow includes
two phases: transformation and verification. The annotated
source code will be checked and transformed by ShadowDP;
the transformed code is further sent to a verifier.

3Publicly available at https://github.com/cmla-psu/shadowdp.

Transformation As explained in Section 4, ShadowDP
tracks the typing environments in a flow-sensitive way, and
instruments corresponding statements when appropriate.
Moreover, ShadowDP adds an assertion assert (vϵ ≤ ϵ)

before the return command. This assertion specifies the
final goal of proving differential privacy. The implementation
follows the typing rules explained in Section 4.

Verification The goal of verification is to prove the asser-
tion assert (vϵ ≤ ϵ) never fails for any possible inputs that
satisfy the precondition (i.e., the adjacency requirement). To
demonstrate the usefulness of the transformed programs, we
use a model checker CPAChecker [11] v1.8. CPAChecker is
capable of automatically verifying C program with a given
configuration. In our implementation, predicate analysis is
used. Also, CPAChecker has multiple solver backends such as
MathSat [15], Z3 [16] and SMTInterpol [14]. For the best per-
formance, we concurrently use different solvers and return
the results as soon as any one of them verifies the program.
One limitation of CPAChecker and many other tools, is

the limited support for non-linear arithmetics. For programs
with non-linear arithmetics, we take two approaches. First,
we verify the algorithm variants where ϵ is fixed (the ap-
proach taken in [2]). In this case, all transformed code in
our evaluation is directly verified without any modification.
Second, to verify the correctness of algorithms with arbitrary
ϵ , we slightly rewrite the non-linear part in a linear way or
provide loop invariants (see Section 6.2.2). We report the
results from both cases whenever we encounter this issue.

6.2 Case Studies

We investigate some interesting differentially private algo-
rithms that are formally verified by ShadowDP. We only
present the most interesting programs in this section; the
rest are provided in the full version of this paper [40].

6.2.1 Sparse Vector Technique

Sparse Vector Technique [20] is a powerfulmechanismwhich
has been proven to satisfy ϵ-differential privacy (its proof
is notoriously tricky to write manually [29]). In this section
we show how ShadowDP verifies this algorithm and later
show how a novel variant is verified.
Figure 6 shows the pseudo code of Sparse Vector Tech-

nique [20]. It examines the input queries and reports whether
each query is above or below a threshold T . To achieve dif-
ferential privacy, it first adds Laplace noise to the threshold
T , compares the noisy query answer q[i] + η2 with the noisy
threshold T̃ , and returns the result (true or false). The
number of true’s the algorithm can output is bounded by
argument N . One key observation is that once the noise
has been added to the threshold, outputting false pays no
privacy cost [20]. As shown in Figure 6, programmers only
have to provide two simple annotations: ◦ , 1 for η1 and
◦ , Ω ? 2 : 0 for η2. Since the selectors in this example only
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Table 1. Time spent on type checking and verification

Algorithm Type Check (s) Verification by ShadowDP (s) Verification by [2] (s)

Report Noisy Max 0.465 1.932 22
Sparse Vector Technique (N = 1) 0.398 1.856 27

Rewrite Fix ϵ

Sparse Vector Technique 0.399 2.629 1.679 580
Numerical Sparse Vector Technique (N = 1) 0.418 1.783 1.788 4

Numerical Sparse Vector Technique 0.421 2.584 1.662 5
Gap Sparse Vector Technique 0.424 2.494 1.826 N/A

Partial Sum 0.445 1.922 1.897 14
Prefix Sum 0.449 1.903 1.825 14
Smart Sum 0.603 2.603 2.455 255

function SVT (ϵ , size, T, N : num⟨0,0⟩ ; q : list num⟨∗,∗⟩ )

returns (out : list bool )

precondition ∀i ≥ 0. − 1 ≤ q̂◦[i] ≤ 1 ∧ q̂†[i] = q̂◦[i]

1 η1 := Lap (2/ϵ) , ◦ , 1 ;

2 T̃ := T + η1; count := 0; i := 0;

3 while (count < N ∧ i < size)

4 η2 := Lap (4N /ϵ) , ◦ , Ω ? 2 : 0 ;

5 if (q[i] + η2 ≥ T̃ ) then

6 out := true::out;

7 count := count + 1;

8 else

9 out := false::out;

10 i := i + 1;

The transformed program (slightly simplified for readability),
where underlined commands are added by the type system:

1 vϵ := 0;

2 havoc η1; vϵ := vϵ + ϵ/2;

3 T̃ := T + η1; count:= 0; i := 0;

4 while (count < N ∧ i < size)

5 assert (count < N ∧ i < size);

6 havoc η2; vϵ = Ω ? (vϵ + 2 × ϵ/4N ) : (vϵ + 0);

7 if (q[i] + η2 ≥ T̃ ) then

8 assert (q[i] + q̂◦[i] + η2 + 2 ≥ T̃ + 1);

9 out := true::out;

10 count := count + 1;

11 else

12 assert (¬(q[i] + q̂◦[i] + η2 ≥ T̃ + 1));

13 out := false::out;

14 i := i + 1;

Figure 6. Verifying Sparse Vector Technique with Shad-
owDP (slightly simplified for readability). Annotations are
in gray where Ω represents the branch condition.

select aligned version of variables, the shadow execution is
optimized away (controlled by pc in rule (T-If)). ShadowDP
successfully type checks and transforms this algorithm. How-
ever, due to a nonlinear loop invariant that CPAChecker fails
to infer, it fails to verify the program.With the loop invariant

provided manually, the verification succeeds, proving this
algorithm satisfies ϵ-differential privacy (we also verified a
variant where ϵ is fixed to N to remove the non-linearity).

6.2.2 Gap Sparse Vector Technique

We now consider a novel variant of Sparse Vector Technique.
In this variant, whenever q[i] + η2 ≥ T̃ , it outputs the value
of the gap q[i]+η2−T̃ (how much larger the noisy answer is
compared to the noisy threshold). Note that the noisy query
value q[i] + η2 is reused for both this check and the output
(whereas other proposals either (1) draw fresh noise and
result in a larger ϵ [20], or (2) re-use the noise but do not
satisfy differential privacy, as noted in [29]). For noisy query
values below the noisy threshold, it only outputs false. We
call this algorithm GapSparseVector. More specifically, Line 6
in Figure 6 is changed from out := true::out; to the
following: out := (q[i] + η2 - T̃)::out;. To the best of
our knowledge, the correctness of this variant has not been
noticed before. This variant can be easily verified with little
changes to the original annotation. One observation is that,
to align the out variable, the gap appended to the list must
have 0 aligned distance. Thus we change the distance of η2
from Ω ? 2 : 0 to Ω ? (1 − q̂◦[i]) : 0, the other part of the
annotation remains the same.
ShadowDP successfully type checks and transforms the

program. Due to the non-linear arithmetics issue, we rewrite
the assignment command vϵ := vϵ + (1 − q̂◦[i]) × ϵ/4N; to
assert (|1 − q̂◦[i]| ≤ 2); vϵ := vϵ + 2 × ϵ/4N; and provide
nonlinear loop invariants; then it is verified (we also verified
a variant where ϵ is fixed to 1).

6.3 Experiments

ShadowDP is evaluated on Report Noisy Max algorithm (Fig-
ure 1) along with all the algorithms discussed in Section 6.2,
as well as Partial Sum, Prefix Sum and Smart Sum algorithms
that are included in the full version of this paper [40]. For
comparison, all the algorithms verified in [2] are included
in the experiments (where Sparse Vector Technique is called
Above Threshold in [2]). One exception is ExpMech algo-
rithm, since ShadowDP currently lacks a sampling command
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for Exponential noise. However, as shown in [42], it should
be fairly easy to add a noise distribution without affecting
the rest of a type system.
Experiments are performed on a Dual Intel® Xeon® E5-

2620 v4@2.10GHz CPU machine with 64 GB memory. All
algorithms are successfully checked and transformed by
ShadowDP and verified by CPAChecker. For programs with
non-linear arithmetics, we performed experiments on both
solutions discussed in Section 6.2.2. Transformation and ver-
ification all finish within 3 seconds, as shown in Table 1,
indicating the simplicity of analyzing the transformed pro-
gram, as well as the practicality of verifying ϵ-differentially
private algorithms with ShadowDP.

6.4 Proof Automation

ShadowDP requires two kinds of annotations: (1) function
specification and (2) annotation for sampling commands. As
most verification tools, (1) is required since it specifies the
property being verified. In all of our verified examples, (2)
is fairly simple and easy to write. To further improve the
usability of ShadowDP, we discuss some heuristics to auto-
matically generate the annotations for sampling commands.
Sampling commands requires two parts of annotation:

1. Selectors. The selector has two options: aligned (◦) or
shadow (†), with potential dependence. The heuristic is
to enumerate branch conditions. For Report Noisy Max,
there is only one branch condition Ω, giving us four
possibilities: ◦ / † / Ω ? ◦ : † / Ω ? † : ◦.

2. Alignments for the sample. It is often simple arith-
metic on a small integer such as 0, 1, 2 or the exact dif-
ference of query answers and other program variables.
For dependent types, we can also use the heuristic of
using branch conditions. For Report Noisy Max, this will
discover the correct alignment Ω ? 2 : 0.

This enables the discovery of all the correct annotations for
the algorithm studied in this paper. We leave a systematic
study of proof automation as future work.

7 Related Work

Randomness alignment based proofs The most related
work is LightDP [42]. ShadowDP is inspired by LightDP in
a few aspects, but also with three significant differences.
First, ShadowDP supports shadow execution, a key enabling
technique for the verification of Report Noisy Max based on
standard program semantics. Second, while LightDP has a
flow-insensitive type system, ShadowDP is equipped with
a flow-sensitive one. The benefit is that the resulting type
system is both more expressive and more usable, since only
sampling command need annotations. Third, ShadowDP al-
lows extra permissiveness of allowing two related executions
to take different branches, which is also crucial in verifying
Report Noisy Max. In fact, ShadowDP is strictly more expres-
sive than LightDP: LightDP is a restricted form of ShadowDP

where the shadow execution is never used (i.e., when the
selector always picks the aligned execution).

Coupling based proofs The state-of-the-art verifier based
on approximate coupling [2] is also able to verify the algo-
rithms we have discussed in this paper. Notably, it is able to
automatically verify proofs for algorithms including Report-
Noisy-Max and Sparse Vector. However, verifying the trans-
formed program by ShadowDP is significantly easier than
verifying the first-order Horn clauses and probabilistic con-
straints generated by their tool. In fact, ShadowDP verifies
all algorithms within 3 seconds while the coupling verifier
takes 255 seconds in verifying Smart Sum and 580 seconds
in verifying Sparse Vector (excluding proof synthesis time).
Also, instead of building the system on customized relational
logics to verify differential privacy [3, 5, 8ś10], ShadowDP
bases itself on standard program logics, which makes the
transformed program re-usable by other program analyses.

Other language-based proofs Recent work such as Per-
sonalized Differential Privacy (PDP) [21] allows each individ-
ual to set its own different privacy level and PDP will satisfy
difference privacy regarding the level she sets. PINQ [31]
tracks privacy consumption dynamically on databases and
terminate when the privacy budget is exhausted. However,
along with other work such as computing bisimulations fam-
ilies for probabilistic automata [39, 41], they fail to provide a
tight bound on the privacy cost of sophisticated algorithms.

8 Conclusions and Future Work

In this paper we presented ShadowDP, a new language for
the verification of differential privacy algorithms. ShadowDP
uses shadow execution to generate more flexible randomness
alignments that allows it to verify more algorithms, such as
Report Noisy Max, than previous work based on randomness
alignments. We also used it to verify a novel variant of Sparse
Vector that reports the gap between noisy above-threshold
queries and the noisy threshold.

Although ShadowDP only involves minimum annotations,
one future work is to fully automate the verification using
ShadowDP, as sketched in Section 6.4. Another natural next
step is to extend ShadowDP to support more noise distribu-
tions, enabling it to verify more algorithms such as ExpMech
which uses Exponential noise. Furthermore, we plan to in-
vestigate other applications of the transformed program. For
instance, applying symbolic executors and bug finding tools
on the transformed program to construct counterexamples
when the original program is buggy.
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