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Latent Normalizing Flows for Discrete Sequences
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Abstract

Normalizing flows have been shown to be a pow-

erful class of generative models for continuous

random variables, giving both strong performance

and the potential for non-autoregressive genera-

tion. These benefits are also desired when mod-

eling discrete random variables such as text, but

directly applying normalizing flows to discrete

sequences poses significant additional challenges.

We propose a generative model which jointly

learns a normalizing flow-based distribution in

the latent space and a stochastic mapping to an

observed discrete space. In this setting, we find

that it is crucial for the flow-based distribution

to be highly multimodal. To capture this prop-

erty, we propose several normalizing flow archi-

tectures to maximize model flexibility. Experi-

ments consider common discrete sequence tasks

of character-level language modeling and poly-

phonic music generation. Our results indicate that

an autoregressive flow-based model can match the

performance of a comparable autoregressive base-

line, and a non-autoregressive flow-based model

can improve generation speed with a penalty to

performance.

1. Introduction

The goal of generative modeling is to learn the joint distri-

bution of a high-dimensional random variable. One class

of models that has shown particularly strong performance

are autoregressive models, which parameterize the joint

density such that each variable depends on all previous as-

signments. These models give state-of-the-art performance

across many tasks (van den Oord et al., 2016; Salimans

et al., 2017; Vaswani et al., 2017; Al-Rfou et al., 2018), and

are particularly dominant in natural language processing

(NLP) (Vaswani et al., 2017; Al-Rfou et al., 2018). One

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

downside of autoregressive models, however, is that their

sampling procedure requires sampling tokens one-by-one

and is therefore serial in the length of the sequence, which

can pose problems in real-world applications.

Normalizing flows are a class of generative model that im-

plicitly represent the joint distribution of a high-dimensional

random variable via an invertible deterministic transfor-

mation from a base density (Rezende & Mohamed, 2015;

Kingma et al., 2016). Normalizing flows have been explored

both to increase the flexibility of the variational posterior dis-

tribution in the context of variational autoencoders (Rezende

& Mohamed, 2015; Kingma et al., 2016), and to model ob-

served space, which is the focus of this work. Normalizing

flows provide two key advantages: model flexibility and

control over computational tradeoffs. Flows generalize stan-

dard autoregressive models (Papamakarios et al., 2017) and

give more distributional flexibility. Furthermore, normaliz-

ing flows can be designed that are non-autoregressive during

sampling (van den Oord et al., 2018; Kingma & Dhariwal,

2018), enabling parallel generation. Recent work around

images has demonstrated accuracy for non-autoregressive

models approaching that of autoregressive models in the

continuous setting (Kingma & Dhariwal, 2018).

Both properties are desirable in the discrete domain, where

autoregressive models are the dominant paradigm. Unfortu-

nately, normalizing flows rely on parameterized applications

of the change-of-variables formula. Applying related meth-

ods, e.g. via the discrete change of variables or a relaxation,

to discrete random variables leads to significant additional

challenges. A method for applying flows to discrete data and

creating flows flexible enough to model highly multimodal

discrete data has not yet been demonstrated.

In this work, we propose an alternative approach for discrete

sequence modeling with normalizing flows. We develop a

generative model that jointly learns a flow-based density in

the latent space and a simple mapping to discrete observa-

tions. Specifically we propose (1) a latent variable model

that learns all dynamics of the observed discrete space in the

latent continuous space, and (2) three specific normalizing

flow architectures designed to capture these dynamics, in

particular the extreme multimodality inherent in discrete

data.

Experiments consider discrete latent generative models for
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Latent Normalizing Flows for Discrete Sequences

character-level language modeling and polyphonic music

modeling. We find that the latent flow model is able to

describe the character-level dataset as well as a compara-

ble baseline LSTM-based model, and is able to describe

the polyphonic music datasets comparably to other autore-

gressive latent variable models. We further find that the

parallel-generation version of the model is able to generate

sentences faster than the baseline model, with a penalty to

modeling performance. Finally, we analyze the functional-

ity of the model and demonstrate how it induces the high

degree of multimodality needed to map between continuous

and discrete spaces.

2. Related Work

Latent Variable Models for Sequences In the context of

language modeling, Bowman et al. (2016) experiment with

a variational autoencoder (VAE) of fixed size continuous

latent space and an autoregressive RNN decoder. In practice,

the VAE encodes little information about the sentence in

the latent space because the decoder is powerful enough to

model the data well, reducing the VAE to a standard autore-

gressive model. Recent work has focused on increasing the

amount of information the model places in the latent space,

either by modifying the prior density (Xu & Durrett, 2018),

the decoder structure (Yang et al., 2017), or the variational

inference procedure (Kim et al., 2018), though in all cases

the model still relies heavily on the discrete decoder. Our

proposed model removes the discrete autoregressive decoder

entirely.

Other methods construct VAEs for sequence data with a

variable size latent variable composed of one latent vector

per input token (Bayer & Osendorfer, 2015; Chung et al.,

2015; Gu et al., 2015). While similar to the model proposed

in this work in the layout of the latent dimensions, these

models also include an autoregressive discrete decoder.

Chen et al. (2017) propose a VAE model for images with a

learned normalizing-flow based prior and a weaker decoder.

The latent size is fixed, the model is applied to continuous

random variables, and the decoder still allows for depen-

dence between the random variables. This differs from our

latent sequence model. To the best of our knowledge, no

previous works explore the setting of a latent continuous

sequence model with a weak discrete decoder.

Non-Autoregressive Generation In the domain of nat-

ural images, Dinh et al. (2017) and Kingma & Dhariwal

(2018) propose flow-based models using affine “coupling

layers” to allow for non-autoregressive generation. Com-

pared to state-of-the-art autoregressive models, their non-

autoregressive model performs both training and generation

in parallel but suffers a penalty to model accuracy.

In the domain of text Gu et al. (2018) propose a model

which uses fertility scores as a latent variable, approaching

the performance of autoregressive models. While this works

for translation due to the aligned nature of the sentences, the

fertility framework and required pre-trained autoregressive

model preclude the technique from more general applica-

tion. Lee et al. (2018) propose a deterministic model based

on a denoising process to iteratively improve the quality

of a non-autoregresively generated sentence. The authors

demonstrate strong performance at neural machine transla-

tion, but the technique does not model the full distribution

and requires a task-specific predetermined denoising pro-

cess.

In an alternative approach for faster neural machine trans-

lation, Kaiser et al. (2018) propose to use a discrete latent

space of variable but reduced size (e.g. 8x fewer tokens than

the length of the sentence). While this technique speeds up

the translation process, it is still serial. Furthermore, the

method makes no claims about fully modeling the distribu-

tion of the data.

3. Background: Normalizing Flows

Normalizing flows are a class of model that define a density

through a parameterized invertible deterministic transforma-

tion from a base density, such as a standard Gaussian (Tabak

& Vanden-Eijnden, 2010). Define an invertible transforma-

tion fθ : ǫ → Z and base density pǫ(ǫ). These specify

density pZ(z) via the change-of-variables formula:

pZ(z) = pǫ(f
−1

θ (z))

∣

∣

∣

∣

det
∂f−1

θ (z)

∂z

∣

∣

∣

∣

Consider two core operations defined with flows: (a) Sam-

pling, z ∼ pZ , is performed by first sampling from the

base distribution, ǫ ∼ pǫ, and then applying the forward

transformation z = fθ(ǫ); (b) density evaluation, pZ(z) for

a known z, is computed by inverting the transformation,

ǫ = f−1

θ (z), and computing the base density pǫ(ǫ). If fθ is

chosen to have an easily computable Jacobian determinant

and inverse, both of these can be computed efficiently.

One method for satisfying these criteria is to compose in-

vertible components, such as scalar affine transformations,

and arrange them to ensure a triangular Jacobian matrix

and therefore a linear determinant calculation. We consider

three different variants on this theme, and discuss the com-

putational tradeoffs for sampling and density evaluation.

For this section we assume without loss of generality that

Z = R
D with ordered dimensions 1, . . . , D.

Autoregressive Flow (AF) Autoregressive flows, origi-

nally proposed in Papamakarios et al. (2017), ensure an

invertible transformation and triangular Jacobian matrix by
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ǫ1 z1

ǫ2 z2

ǫ3 z3

θ

...

(a) AF (←)

ǫ1 z1

ǫ2 z2

ǫ3 z3

θ

...

(b) IAF (→)

ǫ1 z1

ǫ2 z2

ǫ3 z3

ǫ4 z4

θ

(c) SCF (↔)

ǫ1

ǫ2

ǫ3

ǫ11

ǫ12

ǫ13

ǫ21

ǫ22

ǫ23

z1

z2

z3

θ1 θ2 θ3

...

(d) 3-layer AF (←)

Figure 1. Flow diagrams for normalizing flows acting on sequences of scalars. Circles represent random variables ǫd or zd. Diamonds

represent a parameterized invertible scalar transformation, fθ , in this case an affine transformation. Diagrams show the sampling process

(ǫ→ z, read left to right) and density evaluation ( ǫ← z, read right to left). While all models can be used in both directions, they differ

in terms of whether the calculation is serial or parallel, i.e. AF is parallel in evaluation but serial in sampling (←) because z1 is needed to

sample z2, whereas SCF is parallel for both (↔).

conditioning each scalar affine transformation on all previ-

ously observed variables z<d,

fθ(ǫ)d = zd = a(z<d; θ) + b(z<d; θ) · ǫd

f−1

θ (z)d = ǫd =
zd − a(z<d; θ)

b(z<d; θ)

where a and b are the shift and scale functions with shared

parameters θ. The Jacobian matrix is triangular because ∂zi
∂ǫj

is non-zero only for j ≤ i, with determinant
∏

b(z<d; θ).

A flow diagram of AF is shown in Figure 1a. To sample

z, we sample each ǫd on the left. The first z1 is computed

through an affine transformation, and then each subsequent

zd is sampled in serial based on ǫd and z<d. To evaluate the

density, we simply apply individual scalar affine transforma-

tions in parallel, each depending on all previous observed

z<d, and compute the base density.

Inverse Autoregressive Flow (IAF) Inverse autoregres-

sive flows, proposed in Kingma et al. (2016), use affine

transformations that depend on previous ǫ<d instead of z<d.

The transformation fθ for IAF has the form:

fθ(ǫ)d = zd = a(ǫ<d; θ) + b(ǫ<d; θ) · ǫd

f−1

θ (z)d = ǫd =
zd − a(ǫ<d; θ)

b(ǫ<d; θ)

A flow diagram for IAF is shown in Figure 1b. For the

sampling process all zd can be computed given ǫ in parallel;

conversely, density evaluation requires computing each ǫd
serially since ǫ<d is needed for the transformation. In prac-

tice AF and IAF encode different inductive biases which

can hinder the ability of IAF to generalize as well as AF

(van den Oord et al., 2018).

Split Coupling Flow (SCF) Split coupling flows, initially

proposed in Dinh et al. (2017) and followed up on in Kingma

& Dhariwal (2018), utilize “coupling layers” that keep a sub-

set S ⊂ {1, 2, ..., D} of the random variables unchanged,

i.e. zS = ǫS , and use these to condition the transformation

for the rest of the random variables S. The transformation

fθ for SCF and d ∈ S can be written:

fθ(ǫ)d = zd = a(zS ; θ) + b(zS ; θ) · ǫd

f−1

θ (z)d = ǫd =
zd − a(zS ; θ)

b(zS ; θ)

A flow diagram for SCF is shown in Figure 1c, where

S = {1, 2} for visualization. Because only the first two

variables are used to condition the rest of the affine transfor-

mations, both sampling and density evaluation are parallel.

As SCF is a special case of AF it has a strictly reduced mod-

eling flexibility in exchange for improved computational

efficiency (Papamakarios et al., 2017).

Layered Flows Each flow encodes an invertible function

with a linearly computable Jacobian determinant. Because

invertibility is closed under function composition, and the

Jacobian determinant of composed functions is the product

of the individual Jacobian determinants, more flexible dis-

tributions can be created by layering flows and changing

the ordering of the dependencies at each layer (Salimans

et al., 2017). Changing the ordering between layers allows

all zds or ǫds to interact with each other, and is usually

implemented by reversing or shuffling the ordering of de-

pendencies (Kingma & Dhariwal, 2018).

Figure 1d shows an example with three layers of AF, with

reversed dependency ordering between layers. Stacking mul-

tiple layers of flow has been shown to significantly increase

the modeling flexibility of this class of normalizing flows

(Kingma & Dhariwal, 2018; van den Oord et al., 2018).
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x1

x2

...

xT

z1:T

T

ǫ1:T

Flow Prior

Figure 2. Proposed generative model of discrete sequences. The

model first samples a sequence length T and then a latent continu-

ous sequence z1:T . Each xt is shown separately to highlight their

conditional independence given z1:T . Normalizing flow specifics

are abstracted by p(z) are described in Section 4.3.

A multilayer flow represents a true invertible vector trans-

formation fθ(ǫ) with a dense Jacobian matrix. Forming the

building blocks for the discrete flow models, we denote a

multilayer AF as fAF(ǫ; θ), a multilayer IAF as fIAF(ǫ; θ),
and a multilayer SCF fSCF(ǫ; θ).

4. Latent Flows for Discrete Sequences

Using these building blocks, we aim to develop flexible flow-

based models for discrete sequences. The first difficulty is

that any deterministic non-trivial mapping between a dis-

crete space and a continuous space or between two discrete

spaces is not invertible. Instead we explore using a latent-

variable model, with a continuous latent sequence modeled

through normalizing flows. We begin by describing the full

generative process and then focus on the flow-based prior.

4.1. Generating Discrete Sequences

Our central process will be a latent-variable model for a

discrete sequence. However, unlike standard discrete au-

toregressive models, we aim to lift the main dynamics of

the system into continuous space, i.e. into the prior. In

particular, we make the strong assumption that each discrete

symbol is conditionally independent given the latent.

Concretely, we model the generation of a discrete sequence

x1:T = {x1, ..., xT } conditioned on a latent sequence z1:T

made up of continuous random vectors {z1, ..., zT } with

zt ∈ R
H and H is a hidden dimension. Define p(z1:T |T ) as

our prior distribution, and generate from the conditional dis-

tribution over discrete observed variables p(x1:T |z1:T , T ).
The conditional likelihood generates each xt conditionally

independently: p(x1:T |z1:T , T ) =
∏T

t=1
p(xt|z1:T , T ),

where the emission distribution depends on the dataset.

To allow for non-autoregressive generation, the length of

the sequence T is explicitly modeled as a latent variable

and all parts of the model are conditioned on it. Length

pixel value

p(
x t

|x
<
t)

pixel value

p(
x t

|x
<
t)

pixel value

p(
x t
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<
t)
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x t
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<
t)
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<
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char index

p(
x t
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<
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Figure 3. Example conditional distributions p(xt|x<t) from con-

tinuous (PixelCNN++, 10 mixture components, trained on CIFAR-

10) and discrete (LSTM char-level LM trained on PTB) autoregres-

sive models.

conditioning is elided in the following discussion (see the

Supplementary Materials for details). The complete graphi-

cal model is shown in Figure 2.

4.2. Criteria for Effective Flow Parameterization

The prior p(z1:T ) in this process needs to capture the dy-

namics of the discrete system in a continuous space. Unlike

common continuous spaces such as images, in which con-

ditional distributions p(xt|x<t) are often modeled well by

unimodal or few-modal distributions, discrete spaces with

fixed generation order are highly multimodal.

Figure 3 illustrates this difficulty. First consider the continu-

ous distributions generated by an AF model (PixelCNN++

(Salimans et al., 2017)) with 10 mixture components. De-

spite its flexibility, the resulting distributions have a limited

modality indicating that increasing flexibility does not bet-

ter model the data. Further corroborating this hypothesis,

(Salimans et al., 2017) report that using more than 5 mixture

components does not improve performance.

In contrast, Figure 3b shows a similar experiment on dis-

crete data. Here the first and third distributions are highly

multimodal (given previous characters there are multiple

different possibilities for the next character). Furthermore,

the degree of multimodality can vary significantly, as in the

second example, requiring models to be able to adjust the

number of indicated modes in addition to their locations.

In the proposed model, because the conditional likelihood

models each xt as independent, this multimodality at each

time step needs to exist almost exclusively in the latent space

with each likelihood p(xt|z) being highly constrained in its

conditioning.

4.3. Flow Architectures for Sequence Dynamics

We consider three flow architectures that describe relations

across the time and hidden dimensions that aim to maximize
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This transformation has five pseudo-parameters instead of

the two for the affine. It reduces to the affine function in

the case where c = 0. When c 6= 0, the function effec-

tively adds a perturbation with position controlled by g and

scale controlled by c and d, which even in 1D can induce

multimodality. Under conditions on the scale parameter

c the function can be guaranteed to be invertible, and the

analytical inverse is the solution to a cubic equation (see

Supplementary Materials for details).

Figure 5 illustrates the transformation. Figure 5a, b show

an example of four compositions of NLSq functions, and

the initial and final density. Whereas the affine transforma-

tion would simply scale and shift the Gaussian, the NLSq

function induces multimodality. As a final example of the

ability of this function to model a multimodal distribution

within the flow framework, Figure 5c shows the learned

2D density for a toy dataset consisting of a mixture of four

Gaussians. Consistent with Huang et al. (2018), we find

that an AF even with many layers fails to learn to model the

same distribution.

5. Variational Inference and Training

To train the model, we need to learn both the simple like-

lihood and the prior models. This requires being able to

efficiently perform posterior inference, i.e. compute the

posterior distribution p(z1:T |x1:T ), which is computation-

ally intractable. We instead use the standard approach of

amortized variational inference (Kingma & Welling, 2014)

by introducing a trained inference network, qφ(z1:T |x1:T ).
This distribution q models each zt as a diagonal Gaussian

with learned mean and variance:

qφ(z1:T |x1:T ) =

T
∏

t=1

N (zt|µt(x1:T ;φ), σ
2

t (x1:T ;φ)IH).

While this mean-field factorization results in a weak infer-

ence model, preliminary experiments indicated that increas-

ing the flexibility of the inference model with e.g. IAF

(Kingma et al., 2016) did not improve performance.

This inference network is trained jointly with the model to

maximize the evidence lower-bound (ELBO),

log p(x) ≥ Eqφ [log p(x|z)]− KL(qφ(z|x)‖p(z))

Training proceeds by estimating the expectation with monte-

carlo samples and optimizing the lower bound for both the

inference network parameters φ as well as the prior p(z)
and likelihood p(x|z) parameters.

6. Methods and Experiments

We consider two standard discrete sequence modeling tasks:

character-level language modeling and polyphonic music

Table 1. Character-level language modeling results on PTB. NLL

for generative models is estimated with importance sampling using

50 samples, the reconstruction term and KL term refer to the

two components of the ELBO. The LSTM from Cooijmans et al.

(2017) uses the standard character-setup which crosses sentence

boundaries (see footnote).

Model Test NLL Reconst. KL

(bpc) (bpc) (bpc)

LSTM 1.38 - -

LSTM (sentence-wise) 1.41 - -

AF-only 2.90 0.15 2.77

AF / AF 1.42 0.10 1.37

AF / SCF 1.46 0.10 1.43

IAF / SCF 1.63 0.21 1.55

modeling. For all experiments, we compute the negative

log-likelihood (NLL) estimated with importance sampling

and evaluate on a held-out test set to evaluate distribution-

modeling performance. As a baseline, we use a LSTM-

based language model as in Press & Wolf (2017), the stan-

dard discrete autoregressive model. For all experiments we

use a baseline LSTM of the same size as the flow-based

model. For all flow-based models, a BiLSTM is used to

compute the likelihood model p(xt|z) and the inference

network q(zt|x). All flow-based models use NLSq unless

otherwise noted. Optimization and hyperparameter details

are given in the Supplementary Materials.

6.1. Character-Level Language Modeling

Character-level language modeling tests the ability of a

model to capture the full distribution of high entropy data

with long-term dependencies. We use the Penn Treebank

dataset, with the standard preprocessing as in (Mikolov et al.,

2012). The dataset consists of approximately 5M characters,

with rare words replaced by “<unk>” and a character-level

vocabulary size of V = 51.2

Table 1 shows results. The LSTM baseline establishes a

“gold standard” representing a model trained directly on the

observed discrete sequence with the same T conditioning

as the proposed model. In terms of absolute NLL score,

AF / AF nearly matches the LSTM baseline, whereas AF

2 Unlike previous works on character-level language modeling
which consider the dataset to be a single continuous string of
characters, non-autoregressive generation requires the dataset to
be split up into finite chunks. Following previous text-based VAE
works in the literature (Bowman et al., 2016), the dataset is split
into sentences. To avoid extreme outliers, the dataset is limited to
sentences of length less than 288 tokens, which accounts for 99.3%
of the original dataset. Due to these two modifications the absolute
NLL scores are not precisely comparable between this dataset and
the one used in previous works, although the difference is small.



330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

Latent Normalizing Flows for Discrete Sequences

Table 2. Ablation experiments. AF / AF is the same result as in

Table 1. -NLSq indicates the affine transformation is used instead

of the NLSq transformation. -AF hidden indicates no dependencies

across hidden (an independent vector affine transformation is used

instead).

Model Test NLL Reconst. KL

(bpc) (bpc) (bpc)

AF / AF 1.42 0.10 1.37

- NLSq 1.50 0.11 1.51

- AF hidden 1.57 0.14 1.57

- AF hidden and NLSq 1.56 0.29 1.56

/ SCF is within 0.05 of the LSTM baseline. These results

demonstrate that the combination of AF-in-hidden and the

NLSq scalar invertible function induce enough multimodal-

ity in the continous distribution to model the discrete data.

The AF-only “unigram” model removes the relationships

across time in the prior model, effectively dropping the

time-dynamics.

The IAF / SCF model performs worse than the other mod-

els, which reflects the additional challenges associated

with non-autoregressive sampling. The same effect is seen

with normalizing flow-based generative models for images

(Dinh et al., 2017; Kingma & Dhariwal, 2018), where non-

autoregressive models have not reached the state-of-the-art

performance. Still, compared to the AF-only baseline the

autoregressive model clearly learns important dependencies

between characters.

Interestingly, in all models the KL term dominates the

ELBO, always accounting for over 90% of the ELBO. This

is in stark contrast to previous NLP latent-variable models

with strong likelihood models. In these models, the KL term

accounts for less than 5% of the ELBO (Bowman et al.,

2016; Kim et al., 2018; Xu & Durrett, 2018), or less than

30% of the ELBO when using a specially designed auxiliary

loss (Goyal et al., 2017). This indicates that the model 1)

is using the latent space to predict each letter, and 2) is re-

warded in terms of NLL for accurately encoding the discrete

tokens in both the reconstruction term and the KL term.

Table 2 shows model ablations. Without either the NLSq

function or the AF-in-hidden dependencies the performance

degrades. Once AF-in-hidden is removed, however, further

removing NLSq appears to make only a small difference

in terms of NLL. These results provide further evidence to

our hypothesis that modeling discrete data requires a high

degree of multimodality. Furthermore, standard normalizing

flows without these additions do not achieve the required

flexibility.

_ g r o

u p s _

Figure 6. Conditional prior densities corresponding to characters

in the string ‘ groups ’ ( indicates a space), from top left to bottom

right. Each figure shows p(zt|z<t) for increasing t, where z1:T

is sampled from q(z1:T |x1:T ) and x1:T comes from validation.

Visualizing learned distributions Figure 6 shows the

prior densities of AF /AF with H = 2. A continuous se-

quence of 2-vectors z is sampled from q(z|x). The AF / AF

model is used to evaluate p(z), which gives p(zt|z<t) at

every timestep. The figure shows the series of 8 distributions

p(zt|z<t) corresponding to the characters “ groups ”. In

the first plot we can see that given the previous z<t the prior

distribution is unimodal, indicating the model identifies that

following the continuous representation for “business” there

is only one likely token (a space). At the next timestep, how-

ever, corresponding to the token that starts the next word,

the distribution is highly multimodal, indicating uncertainty

of the new word. As the model sees more of the context in

the continuous space corresponding to successive charac-

ters in the word “groups”, the number of modes decreases.

In two cases, corresponding to the token following “gro”

and the token following “group” the distribution is bimodal,

indicating a clear two-way branching decision.

6.2. Polyphonic Music Modeling

Next we consider the polyphonic music modeling task

(Boulanger-Lewandowski et al., 2012). Here each timestep

consists of an 88-dimensional binary vector indicating the

musical notes played. Unlike character-level language mod-

eling where one token appears at each time step, multiple

notes are played simultaneously giving a maximum effective

vocabulary size of 288. For this dataset all models are modi-

fied so the emission distributions p(xt|x<t) and p(xt|z) are

independent Bernoulli distributions instead of Categorical

distributions.

Table 3 presents the results, split into model classes.

RNN/LSTM is the weakest class, capturing the temporal

dependencies but treating the 88 notes as independent. RNN-

NADE is the strongest class, explicitly modeling the joint

distribution of notes in addition to the temporal dependen-

cies. The rest are different latent variable approaches to this
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language modeling for use in e.g. character-level transla-

tion. Furthermore,We hope this work encourages further

exploration of the interplay between and relative merits of

discrete and continuous representations.
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