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Abstract

We consider a generalization of the classic lin-

ear regression problem to the case when the

loss is an Orlicz norm. An Orlicz norm is

parameterized by a non-negative convex func-

tion G : R+ → R+ with G(0) = 0: the

Orlicz norm of a vector x ∈ R
n is defined

as ‖x‖G = inf {α > 0 | ∑n
i=1 G(|xi|/α) ≤ 1} .

We consider the cases where the function G(·)
grows subquadratically. Our main result is based

on a new oblivious embedding which embeds the

column space of a given matrix A ∈ R
n×d with

Orlicz norm into a lower dimensional space with

`2 norm. Specifically, we show how to efficiently

find an embedding matrix S ∈ R
m×n,m < n

such that ∀x ∈ R
d,Ω(1/(d log n)) · ‖Ax‖G ≤

‖SAx‖2 ≤ O(d2 log n) · ‖Ax‖G. By applying

this subspace embedding technique, we show an

approximation algorithm for the regression prob-

lem minx∈Rd ‖Ax−b‖G, up to a O(d log2 n) fac-

tor. As a further application of our techniques, we

show how to also use them to improve on the al-

gorithm for the `p low rank matrix approximation

problem for 1 ≤ p < 2.

1. Introduction

Numerical linear algebra problems play a significant role

in machine learning, data mining, and statistics. One of the

most important such problems is the regression problem,

see some recent advancements in, e.g., (Zhong et al., 2016;

Bhatia et al., 2015; Jain & Tewari, 2015; Liu et al., 2014;

Dhillon et al., 2013). In a linear regression problem, given a

data matrix A ∈ R
n×d with n data points A1, A2, · · · , An

in R
d and the response vector b ∈ R

n, the goal is to find a

set of coefficients x∗ ∈ R
d such that

x∗ = argminx∈Rd l(Ax− b), (1)
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where l : Rn → R+ is the loss function. When l(y) =
‖y‖22 =

∑n
i=1 y

2
i , then the problem is the classic least

square regression problem (`2 regression). While there has

been extensive research on efficient algorithms for solving

`2 regression, it is not always a suitable loss function to use.

In many settings, alternative choices for a loss function

lead to qualitatively better solutions x∗. For example, a

popular such alternative is the least absolute deviation (`1)

regression — with l(y) = ‖y‖1 =
∑n

i=1 |yi| — which

leads to solutions that are more robust than those of `2
regression (see (Wikipedia; Gorard, 2005). In a nutshell, the

`2 regression is suitable when the data contains Gaussian

noise, whereas `1 — when the noise is Laplacian or sparse.

A further popular class of loss functions l(·) arises from

M-estimators, defined as l(y) =
∑n

i=1 M(yi) where M(·)
is an M-estimator function (see (Zhang, 1997) for a list of

M-estimators). The benefit of (some) M-estimators is that

they enjoy advantages of both `1 and `2 regression. For

example, when M(·) is the Huber function (Huber et al.,

1964), then the regression looks like `2 regression when yi
is small, and looks like `1 regression otherwise. However,

these loss functions come with a downside: they depend

on the scale, and rescaling the data may give a completely

different solution!

Our contributions. We introduce a generic algorithmic

technique for solving regression for an entire class of loss

functions that includes the aforementioned examples, and

in particular, a “scale-invariant” version of M-estimators.

Specifically, our class consists of loss functions l(y) that

are Orlicz norms, defined as follows: given a non-negative

convex function G : R+ → R+ with G(0) = 0, for x ∈
R

n, we can define ‖x‖G to be an Orlicz norm with respect to

G(·): ‖x‖G , inf {α > 0 | ∑n
i=1 G(|xi|/α) ≤ 1} . Note

that `p norm, for p ∈ [1,∞), is a special case of Orlicz

norm with G(x) = xp. Another important example is the

following “scale-free” version of M-estimator. Taking f(·)
to be a Huber function, i.e.

f(x) =

{

x2/2 |x| ≤ δ
δ(|x| − δ/2) otherwise

for some constant δ, we take G(x) = f(f−1(1)x). Then

the norm ‖x‖G looks like `2 norm when x is flat, and looks

like `1 norm when x is sparse. Figure 1 shows the unit norm

ball of this kind of Orlicz norm.
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Figure 1. Unit norm balls of Orlicz norm induced by normalized

Huber functions with different δ.

Our main result is a generic algorithm for solving any re-

gression problem Eqn. (1) with any loss function that is a

“nice” Orlicz norm; see Section 2 for a formal definition of

“nice”, and think of it as subquadratic for now.

Our main result employs the concept of subspace embed-

dings, which is a powerful tool for solving numerical lin-

ear algebra problems, and as such has many applications

beyond regression. We say that a subspace embedding ma-

trix S ∈ R
m×n embeds the column space of A ∈ R

n×d

(n > m) with u-norm into a subspace with v-norm, if

∀x ∈ R
d, we have ‖Ax‖u/α ≤ ‖SAx‖v ≤ β‖Ax‖u

where αβ is called distortion (approximation). A long line

of work studied `2 regression problem based on `2 subspace

embedding techniques; see, e.g., (Clarkson & Woodruff,

2009; 2013; Nelson & Nguyên, 2013). Furthermore, there

are works on `p regression problem based on `p subspace

embedding techniques (see, e.g. (Sohler & Woodruff, 2011;

Meng & Mahoney, 2013; Clarkson et al., 2013; Woodruff

& Zhang, 2013)), and similarly for M-estimators (Clarkson

& Woodruff, 2015).

Our overall results are composed of four parts:

1. We develop the first subspace embedding method for

all “nice” Orlicz norms. The embedding obtains a

distortion factor polynomial in d, which was recently

shown necessary (Wang & Woodruff, 2018).

2. Using the above subspace embedding, we obtain the

first approximation algorithm for solving the linear

regression problem with any “nice” Orlicz norm loss.

3. As a further illustration of the power of the subspace

embedding method, we employ it towards improving

on the best known result for another problem: `p low

rank approximation for 1 ≤ p < 2 from (Song et al.,

2017), which is the “`p-version of PCA”.

4. Finally, we complement our theoretical results with

experimental evaluation of our algorithms. Our experi-

ments reveal that that the solution of regression under

the Orlicz norm induced by Huber loss is much better

than the solution given by regression under `1 or `2
norms, under natural noise distributions in practice. We

also perform experiments for Orlicz regression with

different Orlicz functions G and show their behavior

under different noise settings, thus exhibiting the flexi-

bility of our framework.

To the best of our knowledge, our algorithms are the first low

distortion embedding and regression algorithms for general

Orlicz norm. For the problem of low rank approximation

under `p norm, p ∈ [1, 2), our algorithms achieve simulta-

neously the best approximation and the best running time.

In contrast, all the previous algorithms achieve either the

best approximation, or the best running time, but not both

at the same time.

Our algorithms for subspace embedding and regression are

simple, and in particular are not iterative. In particular, for

the subspace embedding, the embedding matrix S is gener-

ated independently of the data. In the regression problem,

we multiply the input with the embedding matrix, and thus

reduce to the `2 regression problem, for which we can use

any of the known algorithm.

Technical discussion. Next we highlight some of our

techniques used to obtain the theoretical results.

Subspace embedding. Our starting point is a technique

introduced in (Andoni et al., 2017) for the Orlicz norms,

which can be seen as an embedding that has guarantees

for a fixed vector only. In contrast, our main challenge

here is to obtain an embedding for all vectors x ∈ R
n

in a certain d-dimensional subspace. Consider a random

diagonal matrix D ∈ R
n×n with each diagonal entry is

a “generalized exponential” random variable, i.e., drawn

from a distribution with cumulative distribution function

1− e−G(x). Then, for a fixed x ∈ R
d, (Andoni et al., 2017)

show that ‖D−1Ax‖∞ is not too small with high probability.

We can combine this statement together with a net argument

and the dilation bound on ‖D−1Ax‖G, to argue that ∀x ∈
R

d, ‖D−1Ax‖∞ is not too small.

The other direction is more challenging — to show that

for a given matrix A ∈ R
n×d, and any fixed x ∈ R

d,
‖D−1Ax‖G cannot be too large. Once we show this “dila-

tion bound”, we combine it with the well-conditioned basis

argument (similar to (Dasgupta et al., 2009)), and prove that

∀x ∈ R
d, ‖D−1Ax‖G cannot be too large. Overall, we

have that ∀x ∈ R
d, ‖D−1Ax‖G ≤ O(d2 log n) · ‖Ax‖G,

and ‖D−1Ax‖∞ ≥ Ω(1/(d log n)) · ‖Ax‖G. Since `2
norm is sandwiched by ‖ · ‖G and `∞ norm, we have

that ∀x ∈ R
d,Ω(1/(d log n)) · ‖Ax‖G ≤ ‖D−1Ax‖2 ≤

O(d2 log n) · ‖Ax‖G. Then, the remaining part is to use

standard techniques (Woodruff & Zhang, 2013; Woodruff,

2014) to perform the `2 subspace embedding for the column

space of D−1A. See Theorem 16 for details.

The actual proof of the dilation bound is the most techni-

cally intricate result. Traditionally, since the pth power of

the `p norm is the sum of the pth power of all the entries, it

is easy to bound the expectation by using linearity of the

expectation. However it is impossible to apply this analysis

to Orlicz norm directly since Orlicz norm is not an ”entry-

wise” norm. Instead, we exploit a key observation that the
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Orlicz norm of vectors which are on the unit ball can be seen

as the sum of contribution of each coordinate. Thus, we

propose a novel analysis for any fixed vector by analyzing

the behavior of the normalized vector which is on the unit

Orlicz norm ball. To extend the dilation bound for a fixed

vector to all the vectors in a subspace, we generalize the

definition of `p norm well-conditioned basis to the Orlicz

norm case, and then show that the Auerbach basis provides

a good basis for Orlicz norm. To the best of our knowledge,

this is the first time Auerbach basis are used to analyze the

dilation bound of an embedding method for a norm distinct

from an `p norm. See Section 3 for details.

Regression with Orlicz norm. Here, given a matrix A ∈
R

n×d, a vector b ∈ R
n, the goal is to solve Equation 1

with Orlicz norm loss function. We can now solve this

problem directly using the subspace embedding from above,

in particular by applyingit to the column space of [A b].
We obtain an O(d3 log2 n) approximation ratio, which we

can further improve by observing that it actually suffices

to have the dilation bound on ‖D−1Ax∗‖G only for the

optimal solution x∗ (as opposed to for an arbitrary x). Using

this observation, we improve the approximation ratio to

O(d log2 n). See Theorem 18 for details. We evaluate the

algorithm’s performance and show that it performs well

(even when n is not much larger than d). See Section 5.

`p low rank matrix approximation. The `p norm is a special

case of the Orlicz norm ‖ · ‖G, where G(x) = xp. This

connection allows us to consider the following problem:

given A ∈ R
n×d, n ≥ d ≥ k ≥ 1, find a rank-k matrix

B ∈ R
n×d such that ‖A − B‖p is minimized. Here we

consider the case of 1 ≤ p < 2 and k = ω(log n). The best

known algorithm for this problem is from (Song et al., 2017),

which uses the dense p-stable transform to achieves k2 ·
poly(log n) approximation ratio. It has the downside that its

runtime does not compare favorably to the golden standard

of runtime linear in the sparsity of the input. To improve the

runtime, one can apply the sparse p-stable transform and

achieve input sparsity runtime, but that comes at the cost of

an Ω(k6) factor loss in the approximation ratio.

Using the above techniques, we develop an algorithm with

best of both worlds: k2 · poly(log n) approximation ratio

and the input sparsity running time at the same time. In par-

ticular, the main inefficiency of the algorithm (Song et al.,

2017) is the relaxation from `p norm to `2 norm, which in-

curs a further poly(k) approximation factor. In contrast, the

embedding based on exponential random variables embeds

`p norm to `2 norm directly, without further approximation

loss. Our embedding also comes with its own pitfalls — as

we now need to deal with mixed norms — thus requiring a

new analysis of the overall algorithm. See Theorem 23 for

details.

2. Notations and preliminaries
In this paper, we denote R+ to be the set of nonnegative re-

als. Define [n] = {1, 2, · · · , n}. Given a matrix A ∈ R
n×d,

∀i ∈ [n], j ∈ [d], Ai and Aj denotes the ith row and the

jth column of A respectively. nnz(A) denotes the number

of nonzero entries of A. The column space of A ∈ R
d is

{y | ∃x ∈ R
d, y = Ax}. ∀p 6= 2, ‖A‖p , (

∑ |Ai,j |p)1/p,

i.e. entrywise p-norm. ‖A‖F defines the Frobenius norm

of A, i.e. (
∑

A2
i,j)

1/2. A† denotes the Moore-Penrose

pseudoinverse of A. Given an invertible function f(·), let

f−1(·) be the inverse function of f(·). If f(·) is not invert-

ible in (−∞,+∞) but it is invertible in [0,+∞), then we

denote f−1(·) to be the inverse function of f(·) in domain

[0,+∞). inf and sup denote the infimum and supremum re-

spectively. f ′(x), f ′
+(x), f

′
−(x) denote the derivative, right

derivative and left derivative of f(x), respectively. Simi-

larly, define f ′′(x) for the second derivatives, and we define

f ′′
+(x) = limh→0+(f

′(x+h)−f ′
+(x))/h. In the following,

we give the definition of Orlicz norm.

Definition 1 (Orlicz norm) For any nonzero monotone

nondecreasing convex function G : R+ → R+ with

G(0) = 0. Define Orlicz norm ‖ · ‖G as: ∀n ∈ Z, n ≥
1, x ∈ R

n, ‖x‖G = inf {α > 0 | ∑n
i=1 G(|xi|/α) ≤ 1} .

For any function G1(·) which is valid to define an Orlicz

norm, we can always “simplify/normalize” the function

to get another function G2 such that computing ‖ · ‖G1
is

equivalent to computing ‖ · ‖G2
.

Fact 2 Given a function G1 : R+ → R+ which

can induce an Orlicz norm ‖ · ‖G1
(Definition 1), de-

fine function G2 : R+ → R+ as the following:

G2(x) =

{

G1(G
−1
1 (1)x) 0 ≤ x ≤ 1

sx− (s− 1) x > 1
where s =

sup {(G2(y)−G2(x)) /(y − x) | 0 ≤ x ≤ y ≤ 1} . Then

‖ · ‖G2
is a valid Orlicz norm. Furthermore, ∀n ∈ Z, n ≥

1, x ∈ R
n, we have ‖x‖G1

= ‖x‖G2
/G−1

1 (1).

Thus, without loss of generality, in this paper we consider

the Orlicz norm induced by function G which satisfies

G(1) = 1, and G(x) is a linear function for x > 1. In

addition, we also require that G(x) grows no faster than

quadratically in x. Thus, we define the property P of

a function G : R → R+ as the following: 1) G is a

nonzero monotone nondecreasing convex function in [0,∞);
2) G(0) = 0, G(1) = 1, ∀x ∈ R, G(x) = G(−x); 3)

G(x) is a linear function for x > 1, i.e. ∃s > 0, ∀x >
1, G(x) = sx + (1 − s); 4) ∃δG > 0 such that G is twice

differentiable on interval (0, δG). Furthermore, G′
+(0) and

G′′
+(0) exist, and either G′

+(0) > 0 or G′′
+(0) > 0; 5)

∃CG > 0, ∀0 < x < y,G(y)/G(x) ≤ CG(y/x)
2.

The condition 1 is required to define an Orlicz norm. The

conditions 2,3 are required because we can always do the

simplification/normalization (see Fact 2). The condition 4

is required for the smoothness of G. The condition 5 is

due to the subquadratic growth condition. Subquadratic
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Table 1. Some of M-estimators.

HUBER

{

x2/2 |x| ≤ c
c(|x| − c/2) |x| > c

`1 − `2 2(
√

1 + x2/2− 1)
“FAIR” c2 (|x|/c− log(1 + |x|/c))

growth condition is necessary for sketching
∑n

i=1 G(xi)
with sketch size sub-polynomial in the dimension n, as

shown by (Braverman & Ostrovsky, 2010). For example,

if G(x) = xp for some p > 2, then ‖ · ‖G is the same as

‖ · ‖p. It is necessary to take Ω(n1−2/p) space to sketch `p
norm in n-dimensional space. Condition 5 is also necessary

for 2-concave property, (Kwapien & Schuett, 1985; Kwapie

& Schtt, 1989) shows that ‖ · ‖G can be embedded into `1
space if and only if G is 2-concave. Although (Schtt, 1995)

gives an explicit embedding to `1, it cannot be computed

efficiently.

There are many potential choices of G(·) which satis-

fies property P , the following are some examples: 1)

G(x) = |x|p for some 1 ≤ p ≤ 2. In this case ‖ · ‖G
is exactly the `p norm ‖ · ‖p; 2) G(x) can be a normal-

ized M-estimator function (see (Zhang, 1997)), i.e. de-

fine f(x) to be one of the functions in Table 1. and let

G(x) =

{

f(f−1(1)x) |x| ≤ 1
G′

−(1)|x| − (G′
−(1)− 1) |x| > 1

.

The following presents some useful properties of function

G with property P. See Appendix for details of proofs of

the following Lemmas.
Lemma 3 Given a function G(·) with property P , then

∀0 ≤ x ≤ 1, x2/CG ≤ G(x) ≤ x.

Lemma 4 Given a function G(·) with property P , then

∀x ∈ R
n, ‖x‖2/

√
CG ≤ ‖x‖G ≤ ‖x‖1.

Lemma 5 Given a function G(·) with property P , then

∀0 < x < y, we have y/x ≤ G(y)/G(x).

Lemma 6 Given a function G(·) with property P , there

exist a constant αG > 0 which may depend on G, such that

∀0 ≤ a, b, if ab ≤ 1, then G(a)G(b) ≤ αGG(ab).

3. Subspace embedding for Orlicz norm using

exponential random variables
In this section, we develop the subspace embedding under

the Orlicz norms which are induced by functions G with

the property P . We first show how to embed the subspace

with ‖ · ‖G norm into a subspace with `2 norm, and then

we use dimensionality reduction techniques for the `2 norm.

Overall, we will prove Theorem 16 stated at the end of

this section. Before discussing the details, we give formal

definitions of subspace embedding.

Definition 7 (Subspace embedding for Orlicz norm)

Given a matrix A ∈ R
n×d, if S ∈ R

m×n satisfies

∀x ∈ R
d, ‖Ax‖G/α ≤ ‖SAx‖v ≤ β‖Ax‖G where

α, β ≥ 1, ‖ · ‖v is a norm (can still be ‖ · ‖G), then we say

S embeds the column space of A with Orlicz norm into the

column space of SA with v-norm. The distortion is αβ.

If the distortion and the v-norm are clear from the context,

we just say S is a subspace embedding matrix for A.

Definition 8 (Subspace embedding for `2 norm)

Given a matrix A ∈ R
n×d, if S ∈ R

m×n satisfies

∀x ∈ R
d, (1− ε)‖Ax‖22 ≤ ‖SAx‖22 ≤ (1+ ε)‖Ax‖22, then

we say S is a subspace embedding of column space of A.

There are many choices of `2 subspace embedding matrix

A satisfying the above definition. Examples are: random

sign JL matrix (Achlioptas, 2003; Clarkson & Woodruff,

2009), fast JL matrix (Ailon & Chazelle, 2009), and sparse

embedding matrices (Clarkson & Woodruff, 2013; Meng &

Mahoney, 2013; Nelson & Nguyên, 2013).

The main technical thrust is to embed ‖·‖G into `2 norm. As

the embedding matrix, we use S = ΠD−1 where Π is one of

the above `2 embedding matrices and D is a diagonal matrix

of which diagonal entries are i.i.d. random variables draw

from the distribution with CDF 1 − e−G(t). Equivalently,

each entry on the diagonal of D is G−1(u), where u is an

i.i.d. sample from the standard exponential distribution,

i.e. CDF is 1 − e−t. In Section 3.1, we will prove that

∀x ∈ R
d, ‖D−1Ax‖Gwill not be too large. In Section 3.2,

we will show that ∀x ∈ R
d, ‖D−1Ax‖∞ cannot be too

small. Then due to Lemma 4, we know that ‖D−1Ax‖2 is

a good estimator to ‖Ax‖G. In Section 3.3, we show how

to put all the ingredients together.

3.1. Dilation bound

We construct a randomized linear map f : R
n → R

n:

(x1, x2, ..., xn)
f7−→ (x1/u1, x2/u2, ..., xn/un) where each

ui is drawn from a distribution with CDF 1− e−G(t). No-

tice that for proving the dilation bound, we do not need to

assume ui are independent.

Theorem 9 Given x ∈ R
n, let ‖ · ‖G be an Orlicz norm

induced by function G(·) which has property P , and

let f(x) = (x1/u1, x2/u2, ..., xn/un), where each ui is

drawn from a distribution with CDF 1 − e−G(t). Then

with probability at least 1 − δ − O(1/n19), ‖f(x)‖G ≤
O(αGδ

−1 log(n))‖x‖G, where αG is a constant may de-

pend on function G(·).
Proof sketch: By taking union bound, we have ∀i ∈
[n], ui ≥ G−1(1/n20) with high probability. Let α =
‖x‖G. For γ ≥ 1, we want to upper bound the prob-

ability that ‖f(x)‖G ≥ γα. This is equivalent to upper

bound the probability that ‖f(x)/(γα)‖G ≥ 1. Notice that

Pr(‖f(x)/(γα)‖G ≥ 1) = Pr(
∑

G(xi/α·1/(γui)) ≥ 1).
By Markov inequality, it suffices to bound the expectation

of
∑

G(xi/α ·1/(γui)) conditioned on ui are not too small.

By lemma 6,
∑

G(xi/α · 1/(γui)) ≤ αG/γ ·
∑

G(xi/α) ·
1/G(ui). Because ui is not too small, the conditional ex-

pectation of 1/G(ui) is roughly O(log n). So the proba-

bility that ‖f(x)‖G ≥ γα is bounded by O(αG log n/γ),
set γ = O(log n)αG/δ, we can complete the proof. See

appendix for the details of the whole proof.
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The final step is to use a well-conditioned basis; see details

in appendix.We then obtain the following theorem.

Theorem 10 Let G(·) be a function which has property P.
Given a matrix A ∈ R

n×m with rank d ≤ n, let D ∈ R
n×n

be a diagonal matrix of which each entry on the diagonal

is drawn from a distribution with CDF 1 − e−G(t). Then,

with probability at least 0.99, ∀x ∈ R
m, ‖D−1Ax‖G ≤

O(αGd
2 log n)‖Ax‖G, where αG ≥ 1 is a constant which

only depends on G(·).

3.2. Contraction bound

As in Section 3.1, we construct a randomized linear map f :

R
n → R

n: (x1, x2, ..., xn)
f7−→ (x1/u1, x2/u2, ..., xn/un)

where each ui is an i.i.d. random variable drawn from a

distribution with CDF 1−e−G(t). Notice that the difference

from proving the dilation bound is that we need ui to be

independent here. We use the following theorem:

Theorem 11 (Lemma 3.1 of (Andoni et al., 2017))

Given x ∈ R
n, let ‖ · ‖G be an Orlicz norm in-

duced by function G(·) which has property P , and let

f(x) = (x1/u1, x2/u2, ..., xn/un) , where each ui is an

i.i.d random variable drawn from a distribution with CDF

1 − e−G(t). Then for α ≥ 1, with probability at least

1− e−α, ‖f(x)‖∞ ≥ ‖x‖G/α.
By combining the result with the net argument (see ap-

pendix), and Theorems 11, 10, we get the following:

Theorem 12 G(·) is a function with property P. Given a

matrix A ∈ R
n×m with rank d ≤ n, let D ∈ R

n×n be

a diagonal matrix of which each entry on the diagonal

is an i.i.d. random variable drawn from the distribution

with CDF 1− e−G(t). Then, with probability at least 0.98,
∀x ∈ R

m,Ω(1/(α′
Gd log n))‖Ax‖G ≤ ‖D−1Ax‖∞,

where α′
G ≥ 1 is a constant which only depends on G(·).

Proof sketch: Set ε = 1/poly(nd), we can build an ε-net

(see Appendix) N for the column space of A. By taking

the union bound over all the net points, we have ∀x ∈ N,
‖D−1x‖∞ is not too small. Due to Theorem 10, we have

∀x in the column space of A, ‖D−1x‖G is not too large.

Now, for any unit vector y in the column space of A, we

can find the closest point x ∈ N, and ‖x− y‖2 ≤ ε. Since

‖D−1y‖∞ ≥ ‖D−1x‖∞−‖D−1(y−x)‖∞, ‖D−1x‖∞ is

not too small, and ‖D−1(y − x)‖∞ is not too large, we can

get a lower bound for ‖D−1y‖∞. See appendix for details.

3.3. Putting it all together

We now combine Theorem 12, Theorem 10, and Lemma 4,

to get the following theorem.

Theorem 13 Let G(·) be a function which has property

P. Given a matrix A ∈ R
n×m with rank d ≤ n, let

D ∈ R
n×n be a diagonal matrix of which each entry on

the diagonal is an i.i.d. random variable drawn from the

distribution with CDF 1 − e−G(t). Then, with probabil-

ity at least 0.98, ∀x ∈ R
m,Ω(1/(α′

Gd log n))‖Ax‖G ≤

‖D−1Ax‖2 ≤ O(α′′
Gd

2 log n)‖Ax‖G, where α′′
G, α

′
G ≥ 1

are two constants which only depend on G(·).

The above theorem successfully embeds ‖ · ‖G into `2 space.

We now use `2 subspace embedding to reduce the dimension.

The following two theorems provide efficient `2 subspace

embeddings.

Theorem 14 ( (Clarkson & Woodruff, 2013)) Given ma-

trix A ∈ R
n×m with rank d. Let t = Θ(d2/ε2), S = ΦY ∈

R
t×n, where Y ∈ R

n×n is a diagonal matrix with each

diagonal entry independently uniformly chosen to be ±1,

Φ ∈ R
t×n is a binary matrix with Φh(i),i = 1, ∀i ∈ [n],

and remaining entries 0. Here h : [n] → [t] is a random

hashing function such that for each i ∈ [n], h(i) is uni-

formly distributed in [t]. Then with probability at least 0.99,
∀x ∈ R

m, (1 − ε)‖Ax‖22 ≤ ‖SAx‖22 ≤ (1 + ε)‖Ax‖22.
Furthermore, SA can be computed in nnz(A) time.

Theorem 15 (See e.g. (Woodruff, 2014)) Given matrix

A ∈ R
n×m with rank d. Let t = Θ(d/ε2), S ∈ R

t×n be

a random matrix of i.i.d. standard Gaussian variables

scaled by 1/
√
t. Then with probability at least 0.99,

∀x ∈ R
m, (1− ε)‖Ax‖22 ≤ ‖SAx‖22 ≤ (1 + ε)‖Ax‖22.

We conclude the full theorem for our subspace embedding:

Theorem 16 Let G(·) be a function which has property

P. Given a matrix A ∈ R
n×d, d ≤ n, let D ∈ R

n×n

be a diagonal matrix of which each entry on the diagonal

is an i.i.d. random variable drawn from the distribution

with CDF 1 − e−G(t). Let Π1 ∈ R
t1×n be a sparse em-

bedding matrix (see Theorem 14) and let Π2 ∈ R
t2×t1 be

a random Gaussian matrix (see Theorem 15) where t1 =
Ω(d2), t2 = Ω(d). Then, with probability at least 0.9, ∀x ∈
R

d,Ω(1/(α′
Gd log n))‖Ax‖G ≤ ‖Π2Π1D

−1Ax‖2 ≤
O(α′′

Gd
2 log n)‖Ax‖G, where α′′

G, α
′
G ≥ 1 are two

constants which only depend on G(·). Furthermore,

Π2Π1D
−1A can be computed in nnz(A) + poly(d) time.

4. Applications
In this section, we discuss regression problem with Orlicz

norm error measure, and low rank approximation problem

with `p norm, which is a special case of the Orlicz norms.

4.1. Linear regression under Orlicz norm

We first give the definition of regression problem with Orlicz

norm.

Definition 17 Function G(·) has property P . Given A ∈
R

n×d, b ∈ R
n, the goal is to solve the following minimiza-

tion problem minx∈Rd ‖Ax− b‖G.

Theorem 18 Let G(·) have property P . Given A ∈
R

n×d, b ∈ R
n, Algorithm 1 can output a solution x̂ ∈ R

d

such that with probability at least 0.8, ‖Ax̂ − b‖G ≤
O(βGd log

2 n)minx∈Rd ‖Ax − b‖G, where βG is a con-

stant which may depend on G(·). In addition, the running

time of Algorithm 1 is nnz(A) + poly(d).



Subspace Embedding and Linear Regression with Orlicz Norm

Algorithm 1 Linear regression with Orlicz norm ‖ · ‖G

1: Input: A ∈ R
n×d, b ∈ R

n.
2: Output: x̂.
3: Let t1 = Θ(d2), t2 = Θ(d).
4: Let Π1 ∈ R

t1×n be a random sparse embedding matrix,
Π2 ∈ R

t2×t1 be a random gaussian matrix, and D ∈ R
n×n

be a random diagonal matrix with each diagonal entry inde-

pendently drawn from distribution whose CDF is 1− e−G(t).
(See Theorem 16.)

5: Compute x̂ = (Π2Π1D
−1A)†Π2Π1D

−1b.

Proof sketch: Let S = Π2Π1D
−1 be the sub-

space embedding for column space of [A b]. Let

x∗ = argminx∈Rd ‖Ax − b‖G. Due to Theorem 16,

‖Ax̂ − b‖G is bounded by O(d log n)‖S(Ax̂ − b)‖2 ≤
O(d log n)‖S(Ax∗−b)‖2 ≤ O(d log n)‖D−1(Ax∗−b)‖2.
Due to Theorem 9, ‖D−1(Ax∗−b)‖2 ≤ O(1)‖D−1(Ax∗−
b)‖G ≤ O(log n)‖Ax∗ − b‖G.
4.2. Regression with combined loss function

In this section, we want to point out that our technique can

be used on solving regression problem with more general

cost function. Recall that the goal is to solve the minimiza-

tion problem minx∈Rd ‖Ax− b‖G. Now, we consider there

are multiple goals, and we want to minimize a linear combi-

nation of the costs. Now we give the definition of regression

problem with combined cost function.

Definition 19 Suppose function G1(·), G2(·), ..., Gk(·) sat-

isfies property P . Given A1 ∈ R
n1×d, A2 ∈

R
n2×d, ..., Ak ∈ R

nk×d, b1 ∈ R
n1 , b2 ∈ R

n2 , ..., bk ∈
R

nk , the goal is to solve the following minimization prob-

lem minx∈Rd

∑k
i=1 ‖Aix− bi‖Gi

.

The idea of solving this problem is that we can embed

every term into l1 space, and then merge them into one

term. By the standard technique, there is a way to embed l2
space to l1 space. We show the embedding as below. For

the completeness, we put the proof of this lemma to the

appendix.

Lemma 20 Let Q ∈ R
t×n be a random matrix with each

entry drawn uniformly from i.i.d. N (0, 1) Gaussian distri-

bution. Let B = (
√

π/2/t) ·Q. If t = Ω(ε−2n log(nε−1)),
then with probability at least 0.98, ∀x ∈ R

n, ‖Bx‖1 ∈
((1− ε)‖x‖2, (1 + ε)‖x‖2).

Theorem 21 Let k > 0 be a constant, and

G1(·), G2(·), ..., Gk(·) satisfy property P . Given

A1 ∈ R
n1×d, A2 ∈ R

n2×d, ..., Ak ∈ R
nk×d, b1 ∈

R
n1 , b2 ∈ R

n2 , ..., bk ∈ R
nk , Algorithm 2

can output a solution x̂ ∈ R
d such that with

probability at least 0.7,
∑k

i=1 ‖Aix̂ − bi‖Gi
≤

O(β′
Gd log

2 n)minx∈Rd

∑k
i=1 ‖Aix− bi‖Gi

, where β′
G is

a constant which may depend on G1(·), G2(·), ..., Gk(·).
In addition, the running time of Algorithm 2 is
∑k

i=1 nnz(Ai) + poly(d).

Algorithm 2 Linear regression with combined loss functions

1: Input: A1 ∈ R
n1×d, A2 ∈ R

n2×d, ..., Ak ∈ R
nk×d, b1 ∈

R
n1 , b2 ∈ R

n2 , ..., bk ∈ R
nk

2: Output: x̂.
3: Let t1 = Θ(d2), t2 = Θ(d), t3 = Θ(t2 log(t2)).

4: Let Π
(1)
1 ∈ R

t1×n1 , · · ·Π(k)
1 ∈ R

t1×nk be k random sparse

embedding matrices, Π
(1)
2 , · · · ,Π(k)

2 ∈ R
t2×t1 be k ran-

dom Gaussian matrices, and D(1) ∈ R
n1×n1 , · · · , D(k) ∈

R
nk×nk be k random diagonal matrices where each diag-

onal entry of D(i) is independently drawn from distribu-

tion whose CDF is 1 − e−Gi(t). (See Theorem 16.) Let
Q(1), · · · , Q(k) ∈ R

t3×t2 be random matrices with each
entry drawn uniformly from i.i.d. N (0, 1) Gaussian dis-

tribution. ∀i ∈ [k], let B(i) = (
√

π/2/t3) · Q(i) (see

Lemma 20.) Let B ∈ R
kt3×kt2 ,Π2 ∈ R

kt2×kt1 ,Π1 ∈

R
kt1×

∑k
j=1 nj , D ∈ R

∑k
j=1 nj×

∑k
j=1 nj be four block diago-

nal matrices such that ∀i ∈ [k], the ith block of B,Π2,Π1, D

is B(i),Π
(i)
2 ,Π

(i)
1 , D(i) respectively.

5: Let A = [A>
1 , A

>
2 , ..., A

>
k ]

>, b = [b>1 , b
>
2 , ..., b

>
k ]

> and S =
BΠ2Π1D

−1.
6: Use classical method of solving l1 regression to get x̂ =

argminx∈Rd ‖S(Ax− b)‖1.

Proof Sketch: Let A = [A>
1 , A

>
2 , ..., A

>
k ]

>, b =
[b>1 , b

>
2 , ..., b

>
k ]

>, and S = BΠ2Π1D
−1 be the sub-

space embedding for column space of [A b]. Let

Si = B(i)Π
(i)
2 Π

(i)
1 (D(i))−1. Notice that ∀x, ‖S(Ax −

b)‖1 =
∑k

i=1 ‖Si(Aix − bi)‖1. Let x∗ =

argminx∈Rd

∑k
i=1 ‖Aix − bi‖Gi

. Due to Theorem 16

and Lemma 20,
∑k

i=1 ‖Aix̂ − bi‖Gi
is bounded by

O(d log n)
∑k

i=1 ‖Si(Aix̂ − bi)‖1 = O(d log n)‖S(Ax̂ −
b)‖1 ≤ O(d log n)‖S(Ax∗ − b)‖1 =

∑k
i=1 ‖Si(Aix

∗ −
bi)‖1. Due to Theorem 16,

∑k
i=1 ‖Si(Aix

∗ − bi)‖1 ≤
O(log n)

∑k
i=1 ‖Aix

∗ − bi‖Gi
.

One application of the above Theorem is to solve the

LASSO (Least Absolute Shrinkage Sector Operator) regres-

sion. In LASSO regression problem, the goal is to minimize

‖Ax − b‖22 + λ‖x‖1, where λ is a parameter of regular-

izer. It is easy to show that it is equivalent to minimize

‖Ax − b‖2 + λ′‖x‖1 for some other parameter λ′. When

we look at ‖Ax− b‖2 + λ′‖x‖1, we can set A1 = A, b1 =
b, A2 = λ′I, b2 = 0, G1(·) ≡ x2, G2(·) ≡ x, then we are

able to apply Theorem 21 to give a good approximation.

The merit of our algorithm is that it is very simple, and can

be computed very fast.

4.3. `p norm low rank approximation using exponential

random variables

We discuss a special case of Orlicz norm ‖ · ‖G, `p norm,

i.e. G(x) ≡ xp for p ∈ [1, 2]. When rank parameter k is

ω(log n+log d), by using exponential random variables, we

can significantly improve the approximation ratio of input

sparsity time algorithms shown by (Song et al., 2017). The
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high level ideas combine the results of (Woodruff & Zhang,

2013; Song et al., 2017) and the dilation bound in Section 3.

We define the problem in the following. See Appendix for

the proof of Theorem 23.

Definition 22 Let p ∈ [1, 2]. Given A ∈ R
n×d, n ≥ d, k ∈

Z, 1 ≤ k ≤ min(n, d), the goal is to solve the following

minimization problem: minU∈Rn×k,V ∈Rk×d ‖UV −A‖pp.

Algorithm 3 `p norm low rank approximation using exponential
random variables.

1: Input: A ∈ R
n×d, k ∈ Z,min(n, d) ≥ k ≥ 1.

2: Output: Û ∈ R
n×k, V̂ ∈ R

k×d.
3: Let t1 = Θ(k2), t2 = Θ(k), t3 = Θ(k log k).
4: Let Π1, S1 ∈ R

t1×n be two random sparse embedding matri-
ces, Π2, S2 ∈ R

t2×t1 be two random gaussian matrices, and
D1, D2 ∈ R

n×n be two random diagonal matrices with each
diagonal entry independently drawn from distribution whose

CDF is 1− e−tp . (See Theorem 16.)
5: Let T2, R ∈ R

d×t3 be two random matrix, with i.i.d. entries
drawn from standard p-stable distribution.

6: Let S = S2S1D
−1
1 , T1 = Π2Π1D

−1
2 .

7: Solve X̂, Ŷ = argminX∈R
t2×k,Y ∈R

k×t3 ‖T1ARXY SAT2−

T1AT2‖
2
F .

8: Û = ARX̂, V̂ = Ŷ SA.

Theorem 23 Let 1 ≤ p ≤ 2. Given A ∈ R
n×d, n ≥ d, k ∈

Z, 1 ≤ k ≤ min(n, d), with probability at least 2/3, Û , V̂
outputted by Algorithm 3 satisfies: ‖Û V̂ − A‖pp ≤
αminU∈Rn×k,V ∈Rk×d ‖UV − A‖pp, where α =

O(min((k log k)4−p log2p+2 n, (k log k)4−2p log4+p n)).
In addition, the running time of Algorithm 3 is

nnz(A) + (n+ d)poly(k).

5. Experiments
Implementation setups can be seen in appendix.

5.1. Orlicz Norm Linear Regression

In this section, we show that our algorithm i) has reasonable

and predictable performance under different scenarios and

ii) is flexible, general and easy to use. We perform 3 sets

of experiments. The first is to compare its performance

with the standard `1 and `2 regression under different noise

assumptions and dimensions of the regression problem; the

second is to compare the performance of Orlicz regression

with different G under different noise assumptions; the third

is to experiment with Orlicz function G that is different

from standard `p and Huber function. We evaluate the per-

formance of our Orlicz norm linear regression algorithm on

simulated data.
Comparison with `1 and `2 regression We would like to

see whether Orlicz norm linear regression leads to expected

performance relative to `1 and `2 regression. We choose

our Orlicz norm ‖ · ‖G to be induced by the normalized

Huber function where the Huber function is defined as

f(x) =

{

x2/2 |x| ≤ δ
δ · (|x| − δ/2) o.w.

. We chose the pa-

rameter δ to be 0.75. Intuitively, it is between `1 and `2

Table 2. Comparisons of different regressions in different noise and

dimension settings; each entry is the error of `1, `2, Orlicz norm

regression. As expected, `2/`1 regression lead to best performance

under Sparse/Gaussian noise setting, and the performance of Orlicz

norm regression lies in between.

Gaussian Sparse Mixed

balance 211.2/194.5/197.3 25.3/30.7/30.0 37.9/37.8/37.5

overconstraint 25.3/20.0/24.9 2e-9/1.6/1.5 8.7/7.6/7.5

norm (see Figure 1). In all the simulations, we generate

matrix A ∈ R
n×d, ground truth x∗ ∈ R

d, and b to be Ax∗

plus some particular noise. We evaluate the performance of

each algorithm by the `2 distances between the output x and

the ground truth x∗. In terms of algorithm details, since n, d
are not too large in our simulation, we did not apply the `2
subspace embedding to reduce the dimension; we only use

reciprocal exponential random diagonal embedding matrix

to embed ‖ · ‖G to `2 norm (see Theorem 13)1.

We experiment with two n, d combinations, i) n = 200, d =
10 ii) n = 100, d = 75, and 3 noise setting with i) Gaussian

noise ii) sparse noise and iii) mixed noise (addition of i)

and ii)), altogether 2 × 3 = 6 setting. The detail of data

simulation can be seen in appendix. For each experiment

we repeat 50 times and compute the mean. The results are

shown in Table 2. Orlicz norm regression has better perfor-

mance than `1 and `2 when the noise is mixed. When the

noise is Gaussian or sparse, Orlicz norm regression works

better than `1 and `2 respectively. We did not experiment

with Huber loss regression, since if we rescale the data and

make it small/large in absolute values, the Huber regres-

sion will degenerate into respectively `2/`1 regression (see

Introduction). See appendix for results on approximation

ratio.

Choice of δ for G as a normalized Huber function We

compare the performance of Orlicz norm regression induced

by G as normalized Huber loss function with different δ
under different noise assumptions. We fix n = 500, d = 30
and generate A and x as in the first set of experiments (see

appendix). The noise is a mixture of N(0, 5) Gaussian

noise and sparse noise on 1% entries with different scale of

uniform noise from [−s‖Ax∗‖2, s‖Ax∗‖2], where scale s
is chosen from [0, 0.5, 1, 2]. Under each noise assumptions

with different scale s, we compare the performance of Orlicz

norm regression induced by G with δ from [0.05, 0.1, 0.2,

0.4, 1, 2]. We repeat each experiment 50 times and report

the mean of the `2 distance between output x and the ground

truth x∗. The result is shown in Figure 2. When the scale is

0/2, the noise is almost Gaussian/sparse and we expect `2/`1
norm and thus large/small δ to perform the best; anything

scale lying in between these extremes will have an optimal

δ in between. We observe the expected trend: as s increases,

the performance is optimal with smaller δ.

1We use MATLAB’s linprog to solve `1 regression.
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Table 3. Orlicz regression with different choices of G, mean of

the `2 distances between the output and the ground truth in 50
repetitions of experiments.

`1 `1.5 `2 Gδ=0.25 Gδ=0.75 G`1.5

17.0 45.0 909.8 60.2 405.7 14.7

Beyond Huber function - A General Framework We ex-

plore a variant Orlicz function G and evaluate it under a

particular setting; the evaluation criteria is the same as the

first set of the experiments. The G is of the same form

aforementioned, except that it now grows at the order of

x1.5 when x is small. We denote it by G`1.5 , which is the

normalization of function f , and f is defined as: f(x) =
{

x1.5/1.5 x ≤ δ
δ0.5 · (|x| − δ/3) o.w.

. We generate a 500×30 ma-

trix A and the ground truth vector x∗ in the same way as be-

fore, and then add N(0, 5) Gaussian noises and 1 sparse out-

lier with scale s = 100. We find that the modified G`1.5 un-

der this settings outperforms `1, `2, `1.5, Gδ=0.25, Gδ=0.75

regression by a significant amount where Gδ=0.25, Gδ=0.75

are Orlicz norm induced by regular normalized Huber func-

tion with δ = 0.25, 0.75 respectively. The results are shown

in Table 3. This experiment demonstrates that our algo-

rithm is i) flexible enough to combine the advantage of norm

functions, ii) general for any function that satisfies the nice

property, and iii) easy to experiment with different settings,

as long as we can compute G and G−1.

5.2. `1 low rank matrix approximation

In this section, we evaluate the performance of the `1 low

rank matrix approximation algorithm. We mainly compare

the `1 norm error of our algorithm with the error of (Song

et al., 2017) and standard PCA. Inputs are a matrix A ∈
R

n×d and a rank parameter k; the goal is to output a rank

k matrix B such that ‖A − B‖1 is as small as possible.

The details of implementations are in the appendix. For

each input, we run the algorithm 50 times and pick the best

solution.

Datasets. We first run experiment on synthetic data: we

randomly choose two matrices U ∈ R
2000×5, V ∈ R

5×2000

with each entry drawn uniformly from (0, 1) Then we ran-

domly choose 100 entries of UV , and add random outliers

uniformly drawn from (−100, 100) on those entries, thus

Figure 2. Performance of Orlicz regression with G induced by

different δ under different scale of sparse noise. The larger the

sparse noise, the smaller the δ that leads to the best performance,

which makes the norm closer to `1

we can get a matrix A ∈ R
2000×2000. In our experiment,

‖A‖1 is about 5.0× 106. Then, we run experiments on real

datasets diabetes and glass in UCI repository(Bache & Lich-

man, 2013). The data matrix of diabetes has size 768× 8,

and the data matrix of glass has size 214× 9. For each data

matrix, we randomly add outliers on 1% number of entries.

For each dataset, we evaluate the ‖A−B‖1. The result for

the experiment on synthetic data is shown in Table 4, and

the results for diabetes and glass are shown in Figure 3. The

running time of algorithm in (Song et al., 2017) on diabetes

and on glass are 5.69 and 11.97 seconds respectively, with

ours being 3.18 and 3.74 seconds respectively. We also find

that our algorithm consistently outperforms the other two

alternatives (note that the y-coordinates are at log scale with

base 10).

1 2 3 4 5 6
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10
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10
6
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Cauchy embedding only

Ours, Cauchy+Exponential

PCA

1 2 3 4 5 6 7 8
10

2

10
3

10
4

10
5

glass

 

 

Cauchy embedding only

Ours, Cauchy+Exponential

PCA

Figure 3. `1 norm error v.s. target rank.

Table 4. `1 rank-5 approximation on the synthetic data.

Opt PCA (Song et al., 2017) Ours

`1 loss (×104) 0.50 3.53 1.36 1.04

6. Conclusion and Future Work

In this paper we presented an efficient subspace embedding

algorithm for orlicz norm and demonstrated its usefulness

in regression/low rank approximation problem on synthetic

and real datasets. Nevertheless, O(d log2 n) is still a large

theoretical approximation factor, and hence it is worth i) in-

vestigating whether the theoretical approximation ratio can

be smaller if input are under some statistical distribution ii)

calculating the actual approximation ratio with ground truth

obtained by some slower but more accurate optimization

algorithm. It is also worth examining whether our exponen-

tial embedding sketching method preserves the statistical

properties of the regression error, since we assumed a dif-

ferent noise distribution from Gaussian/double-exponential

as a starting point (Raskutti & Mahoney, 2014; Lopes et al.,

2018).
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