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Abstract. We propose a coalgebraic model for constructing and reasoning
about state-based protocols that implement efficient reductions among
random processes. We provide basic tools that allow efficient protocols to
be constructed in a compositional way and analyzed in terms of the trade-
off between latency and loss of entropy. We show how to use these tools
to construct various entropy-conserving reductions between processes.

1 Introduction

In low-level performance-critical computations—for instance, data-forwarding
devices in packet-switched networks—it is often desirable to minimize local
state in order to achieve high throughput. But if the situation requires access to a
source of randomness, say to implement randomized routing or load-balancing
protocols, it may be necessary to convert the output of the source to a form
usable by the protocol. As randomness is a scarce resource to be conserved like
any other, these conversions should be performed as efficiently as possible and
with a minimum of machinery.

In this paper we propose a coalgebraic model for constructing and reason-
ing about state-based protocols that implement efficient reductions among ran-
dom processes. Efficiency is measured by the ratio of entropy produced to en-
tropy consumed. The efficiency cannot exceed the information-theoretic bound
of unity, but it should be as close to unity as can be achieved with simple state-
based devices. We provide basic tools that allow efficient protocols to be con-
structed in a compositional way and analyzed in terms of the tradeoff between
latency and loss of entropy.

We use these tools to construct the following reductions between processes,
where k is the latency parameter:

— d-uniform to c-uniform with loss @ (k1)

— d-uniform to arbitrary rational with loss @ (k=)
— d-uniform to arbitrary with loss @ (k')

— arbitrary to c-uniform with loss ®(logk/k)

- (1/r,(r —1)/r) to c-uniform with loss @ (k')

Omitted proofs can be found in the full version of the paper [11].



1.1 Related Work

Since von Neumann’s classic result showing how to simulate a fair coin with a
coin of unknown bias, many authors have studied variants of this problem. Our
work is heavily inspired by the work of Elias [8], who studies entropy-optimal
generation of uniform distributions from known sources. The definition of con-
servation of entropy and a concept related to latency are defined there. Mos-
sel, Peres, and Hillar [17] characterize the set of functions f : (0,1) — (0,1)
for which it is possible to simulate an f(p)-biased coin with a p-biased coin
when p is unknown. Peres [16] shows how to iterate von Neumann'’s proce-
dure for producing a fair coin from a biased coin to approximate the entropy
bound. Blum [2] shows how to extract a fair coin from a Markov chain. Pae
and Loui [13,14] present several simulations for optimal conversions between
discrete distributions, known and unknown. The main innovation in this pa-
per is the coalgebraic model that allows compositional reasoning about such
reductions.

There is also a large body of related work on extracting randomness from
weak random sources (e.g. [7,12,18,19]). These models typically work with im-
perfect knowledge of the input source and provide only approximate guaran-
tees on the quality of the output. Here we assume that the statistical properties
of the input and output are known completely, and simulations must be exact.

2 Definitions

Informally, a reduction from a stochastic process X to another stochastic pro-
cess Y is a deterministic protocol that consumes a finite or infinite stream of
letters from an alphabet ¥ and produces a finite or infinite stream of letters
from another alphabet I'. If the letters of the input stream are distributed as X,
then the letters of the output stream should be distributed as Y. Of particular
interest are reductions between Bernoulli processes, in which the letters of the
input and output streams are independent and identically distributed accord-
ing to distributions y on X and v on I, respectively. In this case, we say that
procedure is a reduction from y to v.

To say that the protocol is deterministic means that the only source of ran-
domness is the input stream. It makes sense to talk about the expected number
of input letters read before halting or the probability that the first letter emit-
ted is 4, but any such statistical measurements are taken with respect to the
distribution of the input stream.

There are several ways to formalize the notion of a reduction. One approach,
following [16], is to model a reduction as a map f : £* — I'* that is monotone
with respect to the prefix relation on strings; that is, if x, y € £* and x is a prefix
of y, then f(x) is a prefix of f(y). Monotonicity implies that f can be extended
uniquely by continuity to domain 2* U X¢ and range I'* U I'’. The map f
would then constitute a reduction from the stochastic process X = Xp X1 X5 - - -
to f(XpX1Xp - -). To be a reduction from y to v, it must be that if the X; are



independent and identically distributed as y, and if Y; is the value of the ith
letter of f(XoX1Xy - - - ), then the Y; are independent and identically distributed
asv.

In this paper we propose an alternative state-based approach in which pro-
tocols are modeled as coalgebras  : S x £ — S x I'*, where S is a (possibly
infinite) set of states. This approach allows a more streamlined treatment of
common programming constructions such as composition, which is perhaps
more appealing from a programming perspective.

2.1 Protocols and Reductions

Let %, I be finite alphabets. Let 2* denote the set of finite words and X% the
set of w-words (streams) over X. We use x, 1, ... for elements of * and «, §, . ..
for elements of X“. The symbols < and < denote the prefix and proper prefix
relations, respectively.

If u is a probability measure on X, we endow L% with the product measure
in which each symbol is distributed as p. The notation Pr(A) for an event A
refers to this measure. The measurable sets of 2. are the Borel sets of the Can-
tor space topology whose basic open sets are the intervals {x € X% | x < a}
for x € %, and pu({a € X | x < a}) = u(x), where yu(ayay---a,) =
u(a)p(az) - - plan).

A protocol is a coalgebra (S, ) where 6 : S x £ — S x I'". We can immedi-
ately extend J to domain S x ¥* by coinduction:

d(s,€) = (s, )
5(s,ax) = let (t,y) = 6(s,a) inlet (u,z) = (¢, x) in (u, yz).
Since the two functions agree on S x X, we use the same name. It follows that
O(s,xy) = let (t,z) = (s, x) inlet (u,w) = 6(t,y) in (u, zw).

By a slight abuse, we define the length of the output as the length of its second
component as a string in I'* and write | (s, x) | for |z|, where 6(s, x) = (t,z).
A protocol § also induces a partial map 0% : S x X — I' by coinduction:

0¥ (s,an) = let (t,z) = 6(s,a) inz-6“(¢,a).
It follows that
8Y(s,xa) =let (t,z) = 6(s,x) inz - 6Y(t ).

Given a € X%, this defines a unique infinite string in 6“ (s, «) € I' except in the
degenerate case in which only finitely many output letters are ever produced.
A protocol is said to be productive (with respect to a given probability measure
on input streams) if, starting in any state, an output symbol is produced within
finite expected time. It follows that infinitely many output letters are produced
with probability 1.



Now let v be a probability measure on I'. Endow I'’ with the product mea-
sure in which each symbol is distributed as v. As with y, define v(aja, - - - a,) =
v(ay)v(ap) - --v(ay) for a; € T. We say that a protocol (S,6,s) with start state
s € Sis areduction from y to v if forally € T,

Pr(y < 6%(s,a)) = v(y), ©)

where the probability Pr is with respect to the product measure y on X“. This
implies that the symbols of 6“ (s, «) are independent and identically distributed
asv.

2.2 Restart Protocols

A prefix code is a subset A C X* such that every element of X has at most
one prefix in A. Thus the elements of a prefix code are <-incomparable. A
prefix code is exhaustive (with respect to a given probability measure on in-
put streams) if Pr({a € X has a prefixin A}) = 1. By Kénig’s lemma, if every
« € X has a prefix in A, then A is finite.

A restart protocol is protocol (S, 4, s) of a special form determined by a func-
tion f : A — I'*, where A is an exhaustive prefix code. Here s is a designated
start state. Intuitively, starting in s, we read symbols of X from the input stream
until encountering a string x € A, output f(x), then return to s and repeat. Note
that we are not assuming A to be finite.

Formally, we can take the state space to be

S={ueXf|xAuforanyx € A}

and define§ : S x X — S x I'* by

) (ua,e), ua g A,
o(u,8) = {(s,z), ua € Aand f(ua) =z

with start state €. Then for all x € A, (e, x) = (¢, f(x)).
As with the more general protocols, we can extend to a function on streams,
but here the definition takes a simpler form: for x € A,

0 (e, xa) = f(x)-8Y(e,n), x €A ac€X.

A restart protocol is positive recurrent (with respect to a given probability
measure on input streams) if, starting in the start state s, the probability of even-
tually returning to s is 1, and moreover the expected time before the next visit
to s is finite. All finite-state restart protocols are positive recurrent, but infinite-
state ones need not be.



2.3 Convergence

We will have the occasion to discuss the convergence of random variables.
There are several notions of convergence in the literature, but for our purposes
the most useful is convergence in probability. Let X and X,,, n > 0 be bounded
nonnegative random variables. We say that the sequence X, converges to X in

probability and write X, 1> X if for all fixed 6 > 0,
Pr(| X, — X| > ) =o(1).
Let E(X) denote the expected value of X and V(X)) its variance.

Lemma 1.

Q) If X 5 X and Xy —5 Y, then X = Y with probability 1.

(i) If Xp % Xand Yy =5 Y, then Xn + Yo —% X + Y and X, Y, —% XY.
(iii) If X, £> X and X is bounded away from 0, then 1/ X, ﬁ) 1/X.
(iv) If V(X,) = 0(1) and E(X,,) = e for all n, then X, e,

Proof. Clause (iv) follows from the Chebyshev bound. Please see [11] for details.
(]

See [4,9] for a more thorough introduction.

2.4 CEfficiency

The efficiency of a protocol is the long-term ratio of entropy production to en-
tropy consumption. Formally, for a fixed protocol § : S x ¥ — S xI'*,s € §,
and a € X%, define the random variable

_ |9(s,an)| H(v)
n H(p)’

where H is the Shannon entropy H(p1,...,pn) = — Y4 pilog p; (logarithms
are base 2 if not otherwise annotated),  and v are the input and output distribu-
tions, respectively, and a;, is the prefix of a of length n. Intuitively, the Shannon
entropy measures the number of fair coin flips the distribution is worth, and the
random variable E, measures the ratio of entropy production to consumption
after n steps of ¢ starting in state s. Here | (s, a,)| H(v) (respectively, nH(u))
is the contribution along « to the production (respectively, consumption) of en-

E,(a)

()

tropy in the first n steps. We write E}* when we need to distinguish the E,
associated with different protocols and start states.

In most cases of interest, E, converges in probability to a unique constant
value independent of start state and history. When this occurs, we call this con-
stant value the efficiency of the protocol § and denote it by Eff;. Notationally,

Ey, RN Effs. One must be careful when analyzing infinite-state protocols: The



efficiency is well-defined for finite-state protocols, but may not exist in general.
For restart protocols, it is enough to measure the ratio for one iteration of the
protocol.

In §3.2 we will give sufficient conditions for the existence of Eff; that is sat-
isfied by all protocols considered in §4.

2.5 Latency

The latency of a protocol from a given state s is the expected consumption be-
fore producing at least one output symbol, starting from state s. This is pro-
portional to the expected number of input letters consumed before emitting at
least one symbol. The latency of a protocol is finite if and only if the protocol is
productive. All positive recurrent restart protocols that emit at least one symbol
are productive. We will often observe a tradeoff between latency and efficiency.

Suppose we iterate a positive recurrent restart protocol only until at least
one output symbol is produced. That is, we start in the start state s and choose
one string x in the prefix code randomly according to u. If at least one output
symbol is produced, we stop. Otherwise, we repeat the process. The sequence
of iterations to produce at least one output symbol is called an epoch. The la-
tency is the expected consumption during an epoch. If p is the probability of
producing an output symbol in one iteration, then the sequence of iterations
in a epoch forms a Bernoulli process with success probability p. The latency
is thus 1/p, the expected stopping time of the Bernoulli process, times the ex-
pected consumption in one iteration, which is finite due to the assumption that
the protocol is positive recurrent.

3 Basic Results

Letd : S x X — S x I'* be a protocol. We can associate with each y € I'* and
state s € S a prefix code in £*, namely

pcs(s,y) = {minimal-length strings x € £* such thaty < é(s, x) }.

The string y is generated as a prefix of the output if and only if exactly one
x € pcs(s,y) is consumed as a prefix of the input. These events must occur with
the same probability, so

v(y) = Pr(y < 6“(s,a)) = u(pes(s,y))- ®)
Note that pcs(s, ) need not be finite.

Lemma 2. If A C T is a prefix code, then so is Uyc 4 pcs(s,y) € Z*, and

v(A) = u(|J pes(s,y))-

yEA

If A C T* is exhaustive, then so is UyeA pcs(s,y) C X%



Proof. Please see [11]. a
Lemma 3.

(i) The partial function 6“ (s, —) : £« — I'“’ is continuous, thus Borel measurable.
(ii) 6“(s,w) is almost surely infinite; that is, u(dom % (s, —)) = 1.
(iii) The measure v on T% is the push-forward measure v = p o 6“ (s, —) L.

Proof. Please see [11]. O

Lemma 4. If § is a reduction from y to v, then the random variables E,, defined in (2)
are continuous and uniformly bounded by an absolute constant R > 0 depending only
on pyandv.

Proof. Please see [11]. O

3.1 Composition
Protocols can be composed sequentially as follows. If
61:SxXT —=SxT* 6y : TxT — TxA¥,

then

(61;02) :SXTXE—=SxTxA"

(01;02)((s,t),a) =let (u,y) = d1(s,a) inlet (v,z) = & (t,y) in ((4,v),z).

Intuitively, we run é; for one step and then run é, on the output of 4. The
following theorem shows that the map on infinite strings induced by the se-
quential composition of protocols is almost everywhere equal to the functional
composition of the induced maps of the component protocols.
Theorem 1. The partial maps (81 ; 62)“ ((s,t), —) and 65 (t, 0y (s, —)) of type £ —
AY are defined and agree on all but a p-nullset.
Proof. We restrict inputs to the subset of £“ on which 4}’ is defined and pro-
duces a string in I'Y on which 65 is defined. These sets are of measure 1. To
show that (1 ; 62)“((s,t),a) = 85 (t, 0y (s, ) ), we show that the binary relation

BRY & Jne€X¥Ise ST eT = (01;0)((st),a) Ny =205 (t(s,«a))
on A% is a bisimulation. Please see [11] for details. O

Corollary 1. If 61 (s, —) is a reduction from p to v and 6,(t, —) is a reduction from v
to o, then (61 ; 82)((s,t), —) is a reduction from y to o.
Proof. Please see [11]. a

Theorem 2. If 61(s, —) is a reduction from p to v and 5, (t, —) is a reduction from v
to o, and if Eff5, and Effs, exist, then Effs 5, exists and Effs .5, = Effs - Effs,.

Proof. Please see [11]. g

In the worst case, the latency of compositions of protocols is also the product
of their latencies: if the first protocol only outputs one character at a time, then
the second protocol may have to wait the full latency of the first protocol for
each of the characters it needs to read in order to emit a single one.



3.2 Serial Protocols

Consider a sequence (Sy, 9o, 0), (S1,01,51), - .. of positive recurrent restart pro-
tocols defined in terms of maps f; : Ay — I'*, where the Ay are exhaustive
prefix codes, as described in §2.2. These protocols can be combined into a single
serial protocol J that executes one iteration of each d, then goes on to the next.
Formally, the states of J are the disjoint union of the S, and J is defined so that
O(sk, x) = (Sgr1, fr(x)) for x € Ay, and within S behaves like dy.

Let Cx and P, be the number of input symbols consumed and produced,
respectively, in one iteration of the component protocol J starting from sy. Let
e(n) be the index of the component protocol J,(,,) in which the n-th step of the
combined protocol occurs. These are random variables whose values depend
on the input sequence « € X¢. Let ¢y = E(Cy) and py = E (D).

To derive the efficiency of serial protocols, we need a form of the law of
large numbers (see [4, 9]). Unfortunately, the law of large numbers as usually
formulated does not apply verbatim, as the random variables in question are
bounded but not independent, or (under a different formulation) independent
but not bounded. Our main result, Theorem 3 below, can be regarded as a spe-
cialized version of this result adapted to our needs.

Our version requires that the variances of certain random variables vanish
in the limit. This holds under a mild condition (4) on the growth rate of m,,, the
maximum consumption in the nth component protocol, and is true for all serial
protocols considered in this paper. The condition (4) is satisfied by all finite
serial protocols in which m,, is bounded, or m,, = O(n) and ¢, is unbounded.

Lemma 5. Let V(X)) denote the variance of X. Let my, = maxyca, |x|- H(pu). If

n—1
My = 0( Z Cl)/ (4)
i=0
then
Z?:O Ci Cn
A\ =o0(1 A\ =o0(1). 5
( ?:oci) (1) (Z?;olci> (1) (5)
If in addition p, = ©(cy,), then
nop. P,
V(Sr—r) =o(1) V(o) =o(1). (6)
;’1:0 pi Z?;ol pi
Proof. Please see [11]. O

The following is our main theorem.

Theorem 3. Let 0 be a serial protocol with finite-state components &y, 61, . . . satisfying

(4). If the limit £ = lim,, % exists, then the efficiency of the serial protocol exists
i=0 "1

and is equal to £.

Proof. Please see [11]. a



4 Reductions

In this section we present a series of reductions between distributions of certain
forms. Each example defines a sequence of positive recurrent restart protocols
(§2.2) indexed by a latency parameter k with efficiency tending to 1. By Theorem
3, these can be combined in a serial protocol (§3.2) with asymptotically optimal
efficiency, albeit at the cost of unbounded latency.

4.1 Uniform = Uniform

Let ¢,d > 2. In this section we construct a family of restart protocols with la-
tency k mapping d-uniform streams to c-uniform streams with efficiency 1 —
@(k~1). The Shannon entropy of the input and output distributions are logd
and log c, respectively.

Let m = |klog,d]. Then ¢" < d¥ < ¢"+1. It follows that

" mlogc
= — —=— < 1.
7 o(1) 1-0(1) < Klogd = (7)
Let the c-ary expansion of d be
m .
d* =Y a;c, (8)
i=0

where 0 <a; <c—1,a, #0.

The protocol Py is defined as follows. Do k calls on the d-uniform distribu-
tion. For each 0 < i < m, for aici of the possible outcomes, emit a c-ary string of
length i, every possible such string occurring exactly a; times. For ay outcomes,
nothing is emitted, and this is lost entropy, but this occurs with probability
apd k. After that, restart the protocol.

By elementary combinatorics,

mil(m —i)a;ct < mil(m —i)(c—1)' = % —m. )
i=0

i=0
In each run of P, the expected number of c-ary digits produced is

m . m ) m .
Y iaicld ™ =AY maic’ — Y (m —i)a;c)
m_
% —m) by (8) and (9)

=m—0(1) by (7),

>m—d

thus the entropy production is at least mlogc — ®(1). The number of d-ary
digits consumed is k, thus the entropy consumption is k log d. The efficiency is

mlogc—O(1)

>1-0(k™).
klogd z1-0(")



The output is uniformly distributed, as there are " , a;c’ equal-probability
outcomes that produce a string of length ¢ or greater, and each output letter a
appears as the /th output letter in equally many strings of the same length, thus
is output with equal probability.

4.2 Uniform = Rational

Let c,d > 2. In this section, we will present a family of restart protocols Dy
mapping d-uniform streams over ¥ to streams over a c-symbol alphabet I' =
{1,...,c} with rational symbol probabilities with a common denominator d,
eg.p1=m/d,..., pc = ac/d. Unlike the protocols in the previous section, here
we emit a fixed number of symbols in each round while consuming a variable
number of input symbols according to a particular prefix code S C 2*. The pro-
tocol Dy has latency at most kH(py, . . ., pc) / log d + 2 and efficiency 1 — @ (k™ 1),
exhibiting a similar tradeoff to the previous family.

To define Dy, we will construct an exhaustive prefix code S over the source
alphabet, which will be partitioned into pairwise disjoint sets S, C X* associ-
ated with each k-symbol output word y € T*. All input strings in the set Sy will
map to the output string y.

By analogy with pq,..., pc, let p, denote the probability of the word y =
s1 - - - s in the output process. Since the symbols of y are chosen independently,
py is the product of the probabilities of the individual symbols. It is therefore of
the form p, = ayd_k, where a, = as, - - - a5, is an integer.

Let my = |log,a,| and let a, = Z;n:yo ay;d/ be the d-ary expansion of a,. We
will choose a set of ¥, -« Z;.n:yo ay; prefix-incomparable codewords and assign

them to the Sy so that each S, contains a,; codewords of length k — j for each
0 < j < my. This is possible by the Kraft inequality (see [5, Theorem 5.2.1]

or [1, Theorem 1.6]); we need only verify that Zyefk Z;":yo ayjd*(kfj) < 1.In fact,
equality holds:

mny ' my .
Y ayd "D =ad*=p, so) Y ad V=Y p,=1 (0
j=0 yerk j=0 yerk
Since the d symbols of the input process are distributed uniformly, the prob-
ability that the input stream begins with a given string of length # is d=". So
mmy ‘
Pr(y <8¢ (xx)) =Pr(Ix € Sy:x 2x) = Y d ¥ =Y a0 ¢
x€Sy j=0

is py as required, and Dy is indeed a reduction. Moreover, by (10), the probabil-
ity that a prefix is in some S, is 1, so the code is exhaustive.
To analyze the efficiency of the simulation, we will use the following lemma.

10



Lemma 6. Let the d-ary expansion of a be Y-I" y a;d’, where m = |log, a]. Then
24 -1 d oo
_ = - -~ Al < .
<logda d_1>11<<m d_l)a<§)zald_ma
Proof. Please see [11]. a

Observe now that

WZy .
Y dlxl x| = Z%M]k-ﬁ ) = kpy — Zﬂ%w C=kpy—d Y jayd
j=0

XESy

6 _ 2d -1 2d -1 _
<kpy—d* (logd ay — d—l) ay = kpy — (logd (pyd*) — d—l) ayd

2d — 1 2d — 1
= kpy = (logapy + k= Z— | py = 7 Py~ Pylogapy.

Thus the expected number of input symbols consumed is

_ 2d —1 2d—1  kH(p1, ..., pc)
Y Y alhx< ) (pypylogdpy>:= + :
yeTk XSy JeTk d—1 d—1 logd

and as H(Uy) = logd, the expected consumption of entropy is at most

2d -1  kH(p1,...,pc)\ _ 2d —1

The number of output symbols is k, so the production of entropy is kH(p1, . . ., pc)-
Thus the efficiency is at least

kH(p1,...,pc) _ 1
2d-1 14+ 0(k1)
d—1

=1-0(k1).

H(p1,...,pc) +logd -

4.3 Uniform = Arbitrary

Now suppose the target distribution is over an alphabet I' = {1,...,c} with ar-
bitrary real probabilities pJ, ..., p{. We exhibit a family of restart protocols Dy
that map the uniform distribution over a d-symbol alphabet X to the distribu-
tion {p;} with efficiency 1 — ®(k~1). Moreover, if the p} and basic arithmetic
operations are computable, then so is Dy. We assume that d > 1/ min; p;, so by
the pigeonhole principle, d > c. If we want to convert a uniform distribution
over fewer symbols to {p;}, we can treat groups of k subsequent symbols as a
single symbol from a d*-sized alphabet.

Unlike the other protocols we have seen so far, these protocols require in-
finitely many states in general. This follows from a cardinality argument: there

11



are only countably many reductions specified by finite-state protocols, but un-
countably many probability distributions on c symbols.

We will use the set of real probability distributions {Py}yerk on k-symbol
output strings as our state space. As the initial state, we use the extension of the
target distribution onto k-symbol strings {p; } with p{ .5, = p3, - ps,.

The construction of the protocol Dy at each state {py}yerk closely follows the
one for rational target distributions presented in §4.2. Since we can no longer
assume that the probabilities p, are of the form ayd_k for some integer a,, we
will instead use the greatest a, such that g, := a,d % < p,, namely a, = p,d*]|.
We have py, — gy > d~*. Of course, these may no longer sum to 1, and so we
also define a residual probability rd ¥ =1 — Lyerk gy < (c/d)k.

As in §4.2, we construct sets of prefix-incomparable codewords S, for each
k-symbol output word y based on the d-ary expansion of a,, with the aim that
the probability of encountering a codeword in S, is exactly ayd_k . If the protocol
encounters a codeword in S, it outputs y and restarts.

We also construct a set S, based on the d-ary expansion of the residual r. If
a codeword in S, is encountered, then we output nothing, and instead transi-
tion to a different state to run the protocol again with the residual distribution
{py}yerr, where p; is the probability we lost when rounding down earlier:

Pl — Py=y  _Py—y
I e (py —ay) rd =k

The correctness of the protocol follows because each additional generation
of states acts contractively on the distribution of output symbols, with a unique
fixpoint at the true distribution. Roughly speaking, suppose the protocol we
execute at the state {p; } has an error within ¢, i.e. the probability that it will

output the string y is bounded by p’y + e Asin §4.2, at state {p, }, we encounter
a string in Sy and output y with probability g,. With probability rd~¥, we en-
counter a string in S, and pass to the state { p’y}, where we output y with prob-
ability bounded by pj, + e. Hence the total probability of emitting y is bounded
by
gy + rdfk(M +¢) =p,+rd*e
rd—k Y

In particular, the error at {p,} is at most (c/d)Fe.

Lemma 7. If {qy},cpx is such that 0 < pj — qy < 1/d* for all y, then

| — Y gqylogqy —kH(p;,...,pi)| = O(kC™F)
yerk

for some constant C > 1.

Proof. Please see [11]. a

12



Following the analysis of §4.2, the expected number of input symbols con-
sumed in the initial state {pj} is

oy d e ) d

yerk x€Sy XES,
2d —1 L Lyert Gy logqy — rd *log(rd )
d—1 logd
Lemma7 24 — 1 kH(pT,...,P:)-FO(kC*k)
< .
< ] + log d +0(1) (11)

At any state, we emit nothing and pass to a residual distribution with proba-
bility rd =% < ck/d*. Since we know nothing about the structure of the residual
distribution in relation to the original distribution {pj}, the bound (11) does
not apply for the expected number of input symbols consumed at these other
states. However, we have a naive bound of

Y Y aF x4+ Y a x|

y€erk xeSy x€S;
_2d-1, ~Lyertdylogdy - rd~*log(rd )
d—1 log d

2d -1  kH(U.)
<
—d-1 + logd

+0(1) =0O(k)

since the uniform distribution maximizes entropy over all possible distribu-
tions {gy,}, and this is sufficient for our purposes: by the geometric sum for-
mula, the expected number of additional states we will traverse without emit-
ting anything is just ¢t/ (d* — c*) = @(D~*), where D = d/c > 1 by assump-
tion. Hence, in the initial state, we expect to only consume ®(kD~¥) symbols
for some constant D while dealing with residual distributions. We conclude
that the total expected number of input symbols consumed to produce k out-
put symbols, hence the latency, is at most

2d—1  kH(p3,...,ps) “k
I logd +O(kE™")
for a constant E > 1, so as in §4.2, the efficiency is at least 1 — @ (k™ 1).

There is still one issue to resolve if we wish to construct a serial protocol
with kth component Dy. The observant reader will have noticed that, as Dy
is not finite-state, its consumption is not uniformly bounded by some m, as
required by Lemma 5. However, the computation of one epoch of Dj consists
of a series of stages, and the consumption at each stage is uniformly bounded
by my = klogc/logd + 2. In each stage, if digits are produced, the epoch halts,
otherwise the computation proceeds to the next stage. Each stage, when started
in its start state, consumes at most m; digits and produces exactly k digits with
probability at least 1 — (c/d)* and produces no digits with probability at most
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(c/d)k. The next lemma shows that this is enough to derive the conclusion of
Lemma 5.

Lemma 8. Let my be a uniform bound on the consumption in each stage of one epoch
of Dy, as defined in the preceding paragraph. If the my. satisfy condition (4), then the
variances (5) vanish in the limit.

Proof. Please see [11]. O

4.4 Arbitrary = Uniform with ©(log k/k) Loss

In this section describe a family of restart protocols By for transforming an ar-
bitrary d-ary distribution with real probabilities py, ..., p; to a c-ary uniform
distribution with efficiency H(p1,...,ps)/ logc — ©(logk/k). The remainder
of this section is omitted due to space constraints; please see [11].

4.5 (%’ %) = (r — 1)-Uniform with ® (k~1) Loss

Letr € IN, r > 2. In this section we show that a coin with bias 1/ can gen-
erate an (r — 1)-ary uniform distribution with ®(k~!) loss of efficiency. This
improves the result of the previous section in this special case. The remainder
of this section is omitted due to space constraints; please see [11].

5 Conclusion

We have introduced a coalgebraic model for constructing and reasoning about
state-based protocols that implement entropy-conserving reductions between
random processes. We have provided provide basic tools that allow efficient
protocols to be constructed in a compositional way and analyzed in terms of
the tradeoff between latency and loss of entropy. We have illustrated the use of
the model in various reductions.

An intriguing open problem is to improve the loss of the protocol of 4.4 to
©(1/k). Partial progress has been made in §4.5, but we were not able to gener-
alize this approach.

5.1 Discussion: The Case for Coalgebra

What are the benefits of a coalgebraic view? Many constructions in the infor-
mation theory literature are expressed in terms of trees; e.g. [3, 10]. Here we
have defined protocols as coalgebras (S,6), where 6 : S x L — S x I'¥, a form
of Mealy automata. These are not trees in general. However, the class admits a

final coalgebra D : (I*)=" x £ — (I'*)=" x I'*, where

D(f,a) = (fea, f(a)) fea(x) = f(ax), a €%, x € =7,
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Here the extension to streams D% : (I'*)=" x £¢ — T'“ takes the simpler form

D¥(f,ax) = f(a) - D*(fan, ).

A state f : 7 — I'* can be viewed as a labeled tree with nodes £* and edge
labels I'*. The nodes xa are the children of x for x € £* and a € X. The label
on the edge (x, xa) is f(xa). The tree fex is the subtree rooted at x € £*, where
fex(y) = f(xy). For any coalgebra (S, §), there is a unique coalgebra morphism

h:(S,8) = ((I'*)=", D) defined coinductively by
(h(s)ea, h(s)(a)) = let (t,z) = (s, a) in (h(t),z),

where s € S and a € X. The coalgebraic view allows arbitrary protocols to
inherit structure from the final coalgebra under i}, thereby providing a mech-
anism for transferring results on trees, such as entropy rate, to results on state
transition systems.

There are other advantages as well. In this paper we have considered only
homogeneous measures on 2 and I'’, those induced by Bernoulli processes in
which the probabilistic choices are independent and identically distributed, for
finite ¥ and I'. However, the coalgebraic definitions of protocol and reduction
make sense even if ¥ and I are countably infinite and even if the measures are
non-homogeneous.

We have observed that a fixed measure y on X induces a unique homo-
geneous measure, also called p, on X“. But in the final coalgebra, we can go
the other direction: For an arbitrary probability measure p on ¥¢ and state
f : £T — T*, there is a unique assignment of transition probabilities on T
compatible with y, namely the conditional probability

_ plfa] xa<a))
S = Ty <)

or 0 if the denominator is 0. This determines the probabilistic behavior of the
final coalgebra as a protocol starting in state f when the input stream is dis-
tributed as . This behavior would also be reflected in any protocol (S, §) start-
ing in any state s € h~!(f) under the same measure on input streams, thus
providing a semantics for (S, J) even under non-homogeneous conditions.

In addition, as in Lemma 3(iii), any measure # on X induces a push-forward
measure y o (D¥)~! on I'“. This gives a notion of reduction even in the non-
homogeneous case. Thus we can lift the entire theory to Mealy automata that
operate probabilistically relative to an arbitrary measure p on X¢. These are
essentially discrete Markov transition systems with observations in I'*.

Even more generally, one can envision a continuous-space setting in which
the state set S and alphabets ¥~ and I' need not be discrete. The appropriate
generalization would give reductions between discrete-time, continuous-space
Markov transition systems as defined for example in [6, 15].

As should be apparent, in this paper we have only scratched the surface of
this theory, and there is much left to be done.
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