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Abstract — The 5™ generation network is expected to enable a
fully connected society and handle a wide range of services in the
mobile communication world. The demands of a fully connected
society and wide diversity of services are characterized by
tremendous growth in connectivity, stringent constraint in
reliability and ultra-low latency in transmit activity. Corresponding
to the new requirements of applications and services, the 5G system
aims to provide a scalable implementation of network services and
a flexible platform enabling vertical-structural business model. One
this basis, a network slicing enabled Network Function
Virtualization (NFV) paradigm emerges as a promising future-
proof framework. Network Function Virtualization (NFV) enables
scalable implementation of network services on cloud
infrastructure. Besides, Network Slicing is an infrastructure
adhering to the commercial and technical requirements of different
industries. Attentions are heavily paid on core network function
virtualization recently, Radio Access Network (RAN) network
slicing enabled NFV is seldom highlighted by research field. This
paper introduces 5G NFV RAN Network Slicing Bench, a set of
workloads that represent common performances of Network Slicing
enabled NFV system at Radio Access Network. 5G NFV RAN
Network Slicing Bench selects mobile network platforms
OpenAirinterface and FlexRAN as its benchmark systems, since
OAI and FlexRAN are the most comprehensive open-sourced
systems including network slicing enabled eNodeB and EPC
(Evolved Packet Core). In the 5G NFV RAN Network Slicing
Bench, we also show up the -comprehensive workloads
characterizations in OAI and FlexRAN systems.
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L. INTRODUCTION

The dramatic growth of mobile data traffic driven by
Internet and smart devices has triggered the 5G for the next
generation of mobile telecommunication. The proliferation of
connected objects and devices paves the way to a wide range of
new services in various industry sectors and vertical markets
(e.g. Energy, e-health, smart city, connected cars, industrial
manufacturing, etc.) 5G networks aim to provide a scalable and
flexible implementation of network services enabling new
business cases which integrating vertical industries.

In responding to the next generation network requirements
and challenges, 5G Networks explore Network Function
Virtualization and network slicing to enhance its functional and
architectural viability. Network Function Virtualization (NFV)
is a novel paradigm that enables scalable and flexible
implementation of network services on cloud infrastructure.
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The network slicing feature will satisfy the demand of vertical
sectors which request dedicated telecommunication services by
providing customer on-demand network slice.

Today, most of work highlights the Network Function
Virtualization on core network [1] [2] [3], research
concentrating on radio access network is not adequate. The
radio access network (RAN) — the expensive and complex part
of the mobile network infrastructure, offers great opportunities
to benefit from NFV ideas.

Radio Access Network experimentations over testbeds with
commercial equipment restricts configuration capabilities and
flexible deployment due to constraints imposed by operators
and large vendors. This has resulted in the need for an open
and flexible radio access network experimentation platform
with high degree realism. In recent years, several radio access
network emulation projects are proposed [4] [5]. Among open-
source solutions, Eurecom’s OpenAirinterface (OAI) appears
to be the most promising and complete project. OAI allows one
to carry out experiments flexibly and provides the possibility to
analysis and develop the features of Radio Access Network
system.

Network slicing attracts the attention of the research and
industrial community recently, network slicing at radio access
network side are still in its infancy, even though many
architectures and prototypes have been proposed for core
network (CN) slicing [6] [7] [8]. FIexRAN, to the best of our
knowledge, is the only open-source RAN platform tailored to
support network slicing feature. FlexRAN 1is designed with
flexibility, programmability and ease of deployment. FlexRAN
offers a degree of flexibility to dynamically realize mobile
operations inside base stations.

This paper proposes 5G NFV RAN Network Slicing Bench.
5G NFV RAN Network Slicing Bench selects mobile network
platforms OpenAirlnterface and FlexRAN as its benchmark
systems, since OAI and FlexRAN are the most comprehensive
open-sourced systems including network slicing enabled
eNodeB and EPC (Evolved Packet Core). The contributions of
this paper are as follows: 1) We provide comprehensive
workload characterizations that represent the performance of
OpenAirinterface and FlexRAN testbeds 2) Through the
performance analysis, we put out bottleneck in
OpenAirlnterface and FlexRAN testbeds which need to be
improved in the future work.



II.  RELATED WORK

Network Virtualization Networks (NFV) has received
substantial attention from the research community in recent
years with both academia and industry recognizing its benefits
on operational mobile networks. Although most of the work
highlights the NFV process on core networks [1] [1] [1] [1],
there are still several NFV projects [1] [1] [1] proposed at side
the of radio access networks. As a complementary part, the
network slicing [1] [1] [1] are always put out as a branch
feature under radio access networks virtualization projects.

While the scope of the above mentioned works includes the
RAN virtualization and network slicing realization, none of
them provide a systematic benchmark for the performance that
represent common protocols and functions in RAN networks.
In the last few years, several works [1] [1] [1] [1] provide the
performance  analysis and study on the overall
OpenAirlnterface system. [1] [2] introduce the concepts and
architecture of the OpenAirlnterface system. [1] performs a
thorough profiling of OAI in terms of execution time, on the
user plane data flow. [2] validates two MAC schedulers and
analyzes the OpenAirlnterface system, in terms of memory
occupancy and execution time

A key limitation of the aforementioned works is that none
of them provide comprehensive workloads characterization for
OpenAirlnterface and FlexRAN system, which serves as the
motivation of our work in this paper.

III.  5G NFV RAN NETWORK SLICING BENCH OVERVIEW

This section gives a high-level overview of the
OpenAirinterface and FlexRAN platform, the key testbed of
5G NFV RAN Network Slicing Bench. Fig. 1 illustrated 5G
NFV RAN Network Slicing Bench architecture.
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Fig. 1. OAI and FlexRAN system overview

The OpenAirlnterface (OAI) is the most complete open-
source RAN software experimentation and prototyping
platform created by the Mobile Communications Department
at EURECOM. The OAI platform includes a full software
implementation of mobile cellular systems compliant with
3GPP standards in C under realtime Linux optimized for x86.
For the 3GPP Access-Stratum, OAI provides standard-
compliant implementations of PHY, MAC, RLC, PDCP and
RRC, spanning the entire protocol stack from the physical to
networking layer, for both eNB and UE. Moving to the core
network, the OAI also comprises of standard compliant
implementations of a subset of 3GPP EPC component with the
Serving Gateway (S-GW), the Packet Data Network Gateway
(P-GW), the Mobility Management Entity (MME), the Home
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Subscriber Server (HSS) and the Non-Access Stratum (NAS)
protocols. Fig. 2 shows a schematic of implemented software
stack in the OAL
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Fig. 2. OpenAirInterface Architecture

FlexRAN is a RAN slicing system design that is in line
with the demand of network slicing and the needs of flexible
configuration in mobile network. Fig. 3 provides a high-level
schematic of the FlexRAN platform, which is made up of two
main components: the FlexRAN Service/Control Plane and
FlexRAN Application plane. The FlexRAN service and control
plane follows a hierarchical design and is composed of a Real-
time Controller (RTC) which is connected to a number of
underlying RAN runtime, one for each RAN module. The
FlexRAN protocol facilitates the communication between the
real-time controller and the RAN agent embedded in runtime
environment. RAN control applications are realized on the top
of the RAN runtime which allowing to coordinate, monitor,
and control the state of RAN infrastructure

Edge Open Data APIs

Realtime Contraoller ‘

| |X86-based Edge Cloud Infrastructure

FlexRAN
Control Protocol

]

|

|
ol
£
8,
o
=
8!
ﬁl
k-
£
gn
2]
i

'

'

Control Plane

il

RAN Runtime RAN Runtime
RAN AP| RAN AP|
_Uu,Split-IF RAN Data RAN Data [,
Plane Plane

X86-based Edge Cloud Infrastructure

Fig. 3. FlexRAN Architecture

IV. EXPERIMENT SETUP

As illustrated in Figure 4, the experimental testbed consists
of one/two units of Commercial Off-The-Shelf (COTS) UE,
one unit of OAI eNB and one unit of EPC. We use Intel Core
machines (Core i7-8700 @ 3.20GHz 16GB RAM) for eNB,
Intel Xeon machine (E5405 @ 2.00GHz 4G RAM) for EPC
and Huawei Honor 8 as our UE. FlexRAN is implemented in
the same machine with eNB. The eNB version we use is master



branch v0.6.1. For EPC and FlexRAN, we use develop branch.
The Operation system used for both machines is Ubuntu 16.04.
The testbed is implemented with a real RF front-end (Ettus
B210 USRP). All the experiments were conducted with the
same eNodeB configuration, namely FDD with 5 MHz
bandwidth in band 7. We utilize app ‘Speedtest’ to generate
traffic in the UE side.
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Fig. 4. OpenAirInterface Experiment Setup

Intel VTune Amplifier is an application used to analyze
software performance for x86 based machines using hardware
performance counters. For the 5G NFV Network slicing bench,
we use Intel VTune Amplifier to profile the benchmarks and
collect micro-architectural data.

TABLE 1 is the source file names we monitored in the
experiment related to the LTE protocol Modules and network
stack defined by the OAI software.

Module MAC eNB_scheduler.c,
eNB_scheduler bch.c.
eNB_scheduler dlsch.c,
eNB_scheduler primitives.c
eNB_scheduler ulsch.c,

Ppreprocessor.c

Module DCI dci.c, dei_tools.c

Module CRC crc_byte.c

Module Coding 3gpplte_sse.c,
3gpplte_turbo_decoder_avx2 16bit.c
3gpplte_turbo_decoder sse 16bit.,

dlsch_coding.c, ulsch _decoding.c

ModuleRate Matching Ite_rate_matching.c

Module Scrambling dlsch_scrambling.c,

Ite_ul channel estimation.c

Module Modulation dlsch_modulation.c,
Ite_mcs.c,

ulsch_demodulation.c

Module OFDM Ite dfts.c, ofdm mod.c
Layer Mapping
Precoding

Resource Mapping

Module Control Channel pbch.c, pefich.c, phich.c pmch.c
prach.c

Module USRP RF usrp_lib.cpp

Module PHY Procedures Ite_enb.c,

Top-level procedures phy procedures_lte common.c,

phy procedures Ite eNb.c

Module User Interface intertask _interface.c,

intertask interface dump.c

TABLE I. SOURCE FILES INSIDE OAI MODULE
LTE Protocol Modules and Source File Names
Network Stack
Module Initial Ite_init.c, pss.c, sss.c
Module RRC L2 _interface.c,

rrc_common.c,
rre_eNB.c,
rrc_eNB_UE_context.c
Module PDCP pdep.c,
pdep_fifo.c,
pdep_primitives.c,
pdep_util.c
Module RLC rlc.c,
rlc_am.c,

rlc am timer reordering.c,
rlc_mac.c,

rlc um.c,

rlc_ am_timer poll retransmit.c,
rlc um_dar.c,

rlc um reassembly.c,

rlc_ um_receiver.c,

rlc um segment.c
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V. BENCHMARK CHARACTERIZATION

In this section, we provide a detailed description for the
performance of OAI and FlexRAN platform.

A. Opendirlnterface and FlexRAN Overall performance

Fig. 5 represents inefficiencies in CPU usage for the overall
OpenAirlnterface system. We can see that the retiring part is
just 43.68%, which is not satisfying. Back-End Bound, Front-
End Bound is 37.4% and 23.80%, respectively. Back-End
Bound is deteriorated so severely that optimization for the
Back-End implementation becomes inevitable. Inside Back-
End Bound, Memory Bound is 23.8% and Core Bound is
13.6%. The high memory Bound is mainly caused by LI
Bound and L3 Bound and the high core Bound is mainly
caused by Port Utilization. For the Front-End Bound, the
Front-End latency is 12.5%, which means that the
improvement is needed for OpenAirlnterface system to reduce
the Front-End latency.
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Fig. 5. Example of a figure caption. (figure caption)

B. CPU Time for OpenAirlnterface Protocol Modulese

Fig. 6 shows the CPU time spent by each OpenAirInterface
module as a fraction of the overall system runtime (the module
source files are shown in Table I). We see that the Module
OFDM/Layer Mapping/Precoding/Resource Element Mapping
takes most of the execution time (more than 45%). The second
and third CPU time consuming module is Module DCI and
Module Coding/Decoding. Compared to the WiBench, which
only simulate the PHY layer for Radio Access Network, the
most CPU time consuming part is Turbo decoder. Our result
shows that the most CPU time consuming part is the module
related to OFDM. The reason for this is that WiBench analysis
the UE side, which utilize SC-FDMA algorithm. For
OpenAirlnterface, the analysis is the eNB side, which employ
OFDM algorithm. The ofdm_mod.c(slot generation function)
source file is high CPU consuming compared to the module
used in WiBench. Thus, for high throughput applications,
either Module OFDM/Layer Mapping/Precoding/Resource
Element Mapping should be highly optimized for the
OpenAirlnterface platform.
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Fig. 6. Example of a figure caption. (figure caption)

C. Instructions Execution

Instruction per cycle (IPC) is a fundamental performance
metric indicating the average number of instructions executed
for each clock cycle, which is used to measure instruction level
parallelism. Fig. 7 shows IPC of each OpenAirlnterface
Module. We can see that most of Layer 1 Protocols (Physical
Layer) have middle-level IPC values, greater than that of Layer
2 Protocols (RRC, PDCP, RLC, MAC). The IPC of the Layer 2
protocol workloads ranges from 0.32 to 1.34. PDCP protocol

has the lowest IPC value among Layer 2 protocols workloads.
The IPCs of the Layer 1 protocols have higher IPC values
compared to Layer 1 protocols. For example, scrambling has a
IPC rate with 3.25 and OFDM has a IPC rate with 3.31. The
reason for this is that most of the Layer 1 protocols are
computation-intensive, and hence have a higher IPC. While
Layer 2 protocols are designed to allocate resources and
elements for channels, thus they access memory more
frequently compared to Layer 1 protocols. This leads to poor
temporal locality, causing long-latency memory accesses for
Layer 2 protocols, and hence it has lower IPCs.
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Fig. 7. IPC Rate for OAI Modules

D. Front-End Behaviore

The instruction-fetch stall will prevent core from making
forward progress due to lack of instructions. Instruction cache
(ICache) and Instruction Translation Look-aside Buffer (ITLB)
are two fundamental components, which should be accessed
when fetching instructions from memory.

Figure 8 and Figure 9 present the Instruction cache misses
(Icache misses) and the Instruction TLB overhead (ITLB
overhead), respectively. Layer 2 protocol modules own higher
Instruction cache misses than Layer 1 Physical protocol
modules (Coding, Rate Matching, Scrambling, Modulation and
OFDM procedure). RRC and MAC have large instruction
footprints and suffer from severe L1 Instruction cache misses.
Higher L1 instruction cache misses result in higher instruction
fetch stalls, indicating less efficiency of the front-end. For most
of the others benchmarks, the Layer 1 protocols modules
instruction cache misses are small, especially the OFDM
Procedure Module, whose instruction footprint is relatively
rare.
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Fig. 8. Icache Misses for OAI modules
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Fig. 9. ITLB Overhead for OAI modules

Consistent with the performance trend of instruction cache
misses, Layer 2 protocols modules complete page walks
caused by instruction TLB miss are more frequently than that
of Coding, Rate Matching, Scrambling, Modulation and
OFDM Procedures (Layer 1 Protocols). Page walks will cause
a long latency instruction fetch stall, waiting for correct
physical addresses so as to fetch instructions, and hence result
in inefficiency of front end.

Improving the L1 instruction cache and instruction TLB hit
ratios can improve the performance of Layer 1 protocols
modules, especially the RRC and MAC module. The third
party libraries used by OpenAirlnterface system may be the
main reason which leads the inefficiency of instruction cache
and TLB. Improvement is necessary to enhance the
performance of OpenAirInterface in Icache and ITLB aspects.

Figure 10 to Figure 12 lists the information for DSB
switches, Front-End Bandwidth MITE and Front-End
Bandwidth DSB, which are the main reasons cause the Front-
End Bound besides Icache misses and ITLB Overhead.
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Fig. 10. DSB Switches for OAI modules
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Fig. 11. Front-End Bandwidth MITE for OAI modules
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Fig. 12. Front-End Bandwidth DSB for OAI modules

DSB Switches measure the penalty when control flows out
of the region cached in the DSB, the front-end incurs a penalty
as uOp issue switches from the DSB to the MITE. From the
Figure 10, we can see that the DSB switches value for OAI
modules is rare, indicating that the OpenAirlnterface system
can utilize DSB (Decoded Stream Buffer) quite well. Front-
End Bandwidth MITE represents a fraction of cycles during
which CPU was stalled due to the MITE fetch pipeline issues,
such as inefficiencies in the instruction decoders. From Figure
11, we can see that the Front-End Bandwidth MITE value are
always below 0.1, except for the module MAC and PHY
Procedure. Some optimization may be needed for these two
modules. Front-End Bandwidth DSB represents a fraction of
cycles during which CPU was likely limited due to DSB
(decoded uop cache) fetch pipeline. From Figure 12, we can
see that most of the OAI module performance well except the
module Init.

E. Back-end Memory Bound - Data Cache and Data TLB
Behaviors

The modern processors introduce a deep memory hierarchy
to reduce the performance impacts of memory wall. A miss
penalty of last-level cache can reach up to several hundred
cycles in modern processor. Figure 13 and 14 shows the L1
Bound and L2 Bound for OAI modules, we can see that for
most of Layer 2 protocols workloads have lower Data cache
misses than that of the Layer 1 protocols workloads. The L1
and L2 cache statistic indicates Layerl protocols workloads
own better locality than the Layer 2 protocols workloads.

L1 Bound
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Fig. 13. L1 Bound for OAI modules
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Fig. 14. L2 Bound for OAI modules

From Figure 15, we can find that for both the Layer 1
Protocols workloads and Layer 2 Protocols workloads have
low L3 Bound value. We can conclude that for most of Layer 1
Protocols and Layer 2 Protocols, modern processor’s LLC is
large enough to cache most of data missed from L1 and L2
cache. Figure 16 shows the completed page walks caused by
Data TLB misses. For most of the OpenAirInterface workloads
with the exception of PHY Procedure and USRP RF Module,
the DTLB value is really very rare. The high value for PHY
Procedure and USRP RF Module may be the reason which
causes the OpenAirInterface System unstable occasionally.
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Fig. 16. DTLB Store Overhead for OAI modules

F. Back-end Core Bound — Port Utilization

Backend Bound is mainly caused by the lack of hardware
resources (e.g. divider unit) or port utilization because of The
instruction dependencies and execution unit overload. In this
section, we only present Port Utilization for OpenAirlnterface
system because the divider bound value is nearly 0 for each
OAI Module. From Fig. 17, we find that most of the OAI
modules suffer from Port Utilization Bound, indicating that the
Port Utilization need to be optimized for each OAI module.
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Fig. 17. Port Utilization for OAI modules

VI. THE SUMMARY OF RAN NFV NETWORK SLICING
BENCH

Radio Access Network Network Function Virtualization
and Network Slicing attract great attention from both academia
and industry recently. Since Benchmarks, as the foundation of
quantitative design approach, are used to evaluate the systems
and new features, we provide the 5G RAN NFV Network
Slicing Bench in this paper.

According to our workload characterization work, the RAN
modules in the same Layer shared inherent characteristics
while owns different properties with other RAN protocol
modules. Besides, we show up bottlenecks in several OAI
protocol modules, which need to be optimized in the future
work.
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