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Abstract – The 5th generation network is expected to enable a 

fully connected society and handle a wide range of services in the 
mobile communication world. The demands of a fully connected 
society and wide diversity of services are characterized by 
tremendous growth in connectivity, stringent constraint in 
reliability and ultra-low latency in transmit activity. Corresponding 
to the new requirements of applications and services, the 5G system 
aims to provide a scalable implementation of network services and 
a flexible platform enabling vertical-structural business model. One 
this basis, a network slicing enabled Network Function 
Virtualization (NFV) paradigm emerges as a promising future-
proof framework. Network Function Virtualization (NFV) enables 
scalable implementation of network services on cloud 
infrastructure. Besides, Network Slicing is an infrastructure 
adhering to the commercial and technical requirements of different 
industries. Attentions are heavily paid on core network function 
virtualization recently, Radio Access Network (RAN) network 
slicing enabled NFV is seldom highlighted by research field. This 
paper introduces 5G NFV RAN Network Slicing Bench, a set of 
workloads that represent common performances of Network Slicing 
enabled NFV system at Radio Access Network. 5G NFV RAN 
Network Slicing Bench selects mobile network platforms 
OpenAirInterface and FlexRAN as its benchmark systems, since 
OAI and FlexRAN are the most comprehensive open-sourced 
systems including network slicing enabled eNodeB and EPC 
(Evolved Packet Core). In the 5G NFV RAN Network Slicing 
Bench, we also show up the comprehensive workloads 
characterizations in OAI and FlexRAN systems.  
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I. INTRODUCTION  
The dramatic growth of mobile data traffic driven by 

Internet and smart devices has triggered the 5G for the next 
generation of mobile telecommunication. The proliferation of 
connected objects and devices paves the way to a wide range of 
new services in various industry sectors and vertical markets 
(e.g. Energy, e-health, smart city, connected cars, industrial 
manufacturing, etc.) 5G networks aim to provide a scalable and 
flexible implementation of network services enabling new 
business cases which integrating vertical industries.  

In responding to the next generation network requirements 
and challenges, 5G Networks explore Network Function 
Virtualization and network slicing to enhance its functional and 
architectural viability. Network Function Virtualization (NFV) 
is a novel paradigm that enables scalable and flexible 
implementation of network services on cloud infrastructure. 

The network slicing feature will satisfy the demand of vertical 
sectors which request dedicated telecommunication services by 
providing customer on-demand network slice. 

Today, most of work highlights the Network Function 
Virtualization on core network [1] [2] [3], research 
concentrating on radio access network is not adequate. The 
radio access network (RAN) – the expensive and complex part 
of the mobile network infrastructure, offers great opportunities 
to benefit from NFV ideas. 

Radio Access Network experimentations over testbeds with 
commercial equipment restricts configuration capabilities and 
flexible deployment due to constraints imposed by operators 
and large vendors. This has resulted in the need for an open 
and flexible radio access network experimentation platform 
with high degree realism. In recent years, several radio access 
network emulation projects are proposed [4] [5]. Among open-
source solutions, Eurecom’s OpenAirinterface (OAI) appears 
to be the most promising and complete project. OAI allows one 
to carry out experiments flexibly and provides the possibility to 
analysis and develop the features of Radio Access Network 
system. 

Network slicing attracts the attention of the research and 
industrial community recently, network slicing at radio access 
network side are still in its infancy, even though many 
architectures and prototypes have been proposed for core 
network (CN) slicing [6] [7] [8]. FlexRAN, to the best of our 
knowledge, is the only open-source RAN platform tailored to 
support network slicing feature. FlexRAN is designed with 
flexibility, programmability and ease of deployment. FlexRAN 
offers a degree of flexibility to dynamically realize mobile 
operations inside base stations. 

This paper proposes 5G NFV RAN Network Slicing Bench. 
5G NFV RAN Network Slicing Bench selects mobile network 
platforms OpenAirInterface and FlexRAN as its benchmark 
systems, since OAI and FlexRAN are the most comprehensive 
open-sourced systems including network slicing enabled 
eNodeB and EPC (Evolved Packet Core). The contributions of 
this paper are as follows: 1) We provide comprehensive 
workload characterizations that represent the performance of 
OpenAirInterface and FlexRAN testbeds 2) Through the 
performance analysis, we put out bottleneck in 
OpenAirInterface and FlexRAN testbeds which need to be 
improved in the future work. 



 

 

 

II. RELATED WORK 
Network Virtualization Networks (NFV) has received 

substantial attention from the research community in recent 
years with both academia and industry recognizing its benefits 
on operational mobile networks. Although most of the work 
highlights the NFV process on core networks [1] [1] [1] [1], 
there are still several NFV projects [1] [1] [1] proposed at side 
the of radio access networks. As a complementary part, the 
network slicing [1] [1] [1] are always put out as a branch 
feature under radio access networks virtualization projects. 

While the scope of the above mentioned works includes the 
RAN virtualization and network slicing realization, none of 
them provide a systematic benchmark for the performance that 
represent common protocols and functions in RAN networks. 
In the last few years, several works [1] [1] [1] [1] provide the 
performance analysis and study on the overall 
OpenAirInterface system. [1] [2] introduce the concepts and 
architecture of the OpenAirInterface system. [1] performs a 
thorough profiling of OAI, in terms of execution time, on the 
user plane data flow. [2] validates two MAC schedulers and 
analyzes the OpenAirInterface system, in terms of memory 
occupancy and execution time 

A key limitation of the aforementioned works is that none 
of them provide comprehensive workloads characterization for 
OpenAirInterface and FlexRAN system, which serves as the 
motivation of our work in this paper. 

III. 5G NFV RAN NETWORK SLICING BENCH OVERVIEW 
This section gives a high-level overview of the 

OpenAirInterface and FlexRAN platform, the key testbed of 
5G NFV RAN Network Slicing Bench. Fig. 1 illustrated 5G 
NFV RAN Network Slicing Bench architecture. 

Fig. 1. OAI and FlexRAN system overview 

The OpenAirInterface (OAI) is the most complete open-
source RAN software experimentation and prototyping 
platform created by the Mobile Communications Department 
at EURECOM. The OAI platform includes a full software 
implementation of mobile cellular systems compliant with 
3GPP standards in C under realtime Linux optimized for x86. 
For the 3GPP Access-Stratum, OAI provides standard-
compliant implementations of PHY, MAC, RLC, PDCP and 
RRC, spanning the entire protocol stack from the physical to 
networking layer, for both eNB and UE. Moving to the core 
network, the OAI also comprises of standard compliant 
implementations of a subset of 3GPP EPC component with the 
Serving Gateway (S-GW), the Packet Data Network Gateway 
(P-GW), the Mobility Management Entity (MME), the Home 

Subscriber Server (HSS) and the Non-Access Stratum (NAS) 
protocols. Fig. 2 shows a schematic of implemented software 
stack in the OAI. 

Fig. 2. OpenAirInterface Architecture 

FlexRAN is a RAN slicing system design that is in line 
with the demand of network slicing and the needs of flexible 
configuration in mobile network. Fig. 3 provides a high-level 
schematic of the FlexRAN platform, which is made up of two 
main components: the FlexRAN Service/Control Plane and 
FlexRAN Application plane. The FlexRAN service and control 
plane follows a hierarchical design and is composed of a Real-
time Controller (RTC) which is connected to a number of 
underlying RAN runtime, one for each RAN module. The 
FlexRAN protocol facilitates the communication between the 
real-time controller and the RAN agent embedded in runtime 
environment. RAN control applications are realized on the top 
of the RAN runtime which allowing to coordinate, monitor, 
and control the state of RAN infrastructure 

Fig. 3. FlexRAN Architecture 

IV. EXPERIMENT SETUP 
As illustrated in Figure 4, the experimental testbed consists 

of one/two units of Commercial Off-The-Shelf (COTS) UE, 
one unit of OAI eNB and one unit of EPC. We use Intel Core 
machines (Core i7-8700 @ 3.20GHz 16GB RAM) for eNB, 
Intel Xeon machine (E5405 @ 2.00GHz 4G RAM) for EPC 
and Huawei Honor 8 as our UE. FlexRAN is implemented in 
the same machine with eNB. The eNB version we use is master 
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branch v0.6.1. For EPC and FlexRAN, we use develop branch. 
The Operation system used for both machines is Ubuntu 16.04. 
The testbed is implemented with a real RF front-end (Ettus 
B210 USRP). All the experiments were conducted with the 
same eNodeB configuration, namely FDD with 5 MHz 
bandwidth in band 7. We utilize app ‘Speedtest’ to generate 
traffic in the UE side. 

Fig. 4. OpenAirInterface Experiment Setup 

Intel VTune Amplifier is an application used to analyze 
software performance for x86 based machines using hardware 
performance counters. For the 5G NFV Network slicing bench, 
we use Intel VTune Amplifier to profile the benchmarks and 
collect micro-architectural data. 

TABLE I is the source file names we monitored in the 
experiment related to the LTE protocol Modules and network 
stack defined by the OAI software. 

TABLE I.  SOURCE FILES INSIDE OAI MODULE 

LTE Protocol Modules and 
Network Stack 

Source File Names 

Module Initial lte_init.c, pss.c, sss.c 

Module RRC L2_interface.c, 

rrc_common.c, 

rrc_eNB.c, 

rrc_eNB_UE_context.c 

Module PDCP pdcp.c, 

pdcp_fifo.c, 

pdcp_primitives.c, 

 pdcp_util.c 

Module RLC rlc.c, 

rlc_am.c, 

rlc_am_timer_reordering.c, 

rlc_mac.c, 

rlc_um.c, 

rlc_am_timer_poll_retransmit.c, 

rlc_um_dar.c, 

rlc_um_reassembly.c, 

rlc_um_receiver.c, 

rlc_um_segment.c 

Module MAC eNB_scheduler.c, 

eNB_scheduler_bch.c. 

eNB_scheduler_dlsch.c, 

eNB_scheduler_primitives.c 

eNB_scheduler_ulsch.c, 

preprocessor.c 

Module DCI dci.c, dci_tools.c 

Module CRC crc_byte.c 

Module Coding 3gpplte_sse.c, 

3gpplte_turbo_decoder_avx2_16bit.c 

3gpplte_turbo_decoder_sse_16bit., 

 dlsch_coding.c, ulsch_decoding.c 

ModuleRate Matching lte_rate_matching.c 

Module Scrambling dlsch_scrambling.c, 

lte_ul_channel_estimation.c 

Module  Modulation dlsch_modulation.c, 

lte_mcs.c, 

 ulsch_demodulation.c 

Module OFDM  

Layer Mapping 

Precoding 

 Resource  Mapping 

lte_dfts.c, ofdm_mod.c 

Module Control Channel pbch.c, pcfich.c, phich.c pmch.c 

 prach.c 

Module USRP RF usrp_lib.cpp 

Module PHY Procedures 

 Top-level procedures 

lte_enb.c, 

phy_procedures_lte_common.c, 

phy_procedures_lte_eNb.c 

Module User Interface intertask_interface.c, 

intertask_interface_dump.c 

V. BENCHMARK CHARACTERIZATION 
In this section, we provide a detailed description for the 

performance of OAI and FlexRAN platform. 

A. OpenAirInterface and FlexRAN Overall performance 
Fig. 5 represents inefficiencies in CPU usage for the overall 

OpenAirInterface system. We can see that the retiring part is 
just 43.68%, which is not satisfying. Back-End Bound, Front-
End Bound is 37.4% and 23.80%, respectively. Back-End 
Bound is deteriorated so severely that optimization for the 
Back-End implementation becomes inevitable. Inside Back-
End Bound, Memory Bound is 23.8% and Core Bound is 
13.6%. The high memory Bound is mainly caused by L1 
Bound and L3 Bound and the high core Bound is mainly 
caused by Port Utilization. For the Front-End Bound, the 
Front-End latency is 12.5%, which means that the 
improvement is needed for OpenAirInterface system to reduce 
the Front-End latency.  
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Fig. 5. Example of a figure caption. (figure caption) 

B. CPU Time for OpenAirInterface Protocol Modulese 
Fig. 6 shows the CPU time spent by each OpenAirInterface 

module as a fraction of the overall system runtime (the module 
source files are shown in Table I). We see that the Module 
OFDM/Layer Mapping/Precoding/Resource Element Mapping 
takes most of the execution time (more than 45%). The second 
and third CPU time consuming module is Module DCI and 
Module Coding/Decoding. Compared to the WiBench, which 
only simulate the PHY layer for Radio Access Network, the 
most CPU time consuming part is Turbo decoder. Our result 
shows that the most CPU time consuming part is the module 
related to OFDM. The reason for this is that WiBench analysis 
the UE side, which utilize SC-FDMA algorithm. For 
OpenAirInterface, the analysis is the eNB side, which employ 
OFDM algorithm. The ofdm_mod.c(slot generation function) 
source file is high CPU consuming compared to the module 
used in WiBench. Thus, for high throughput applications, 
either Module OFDM/Layer Mapping/Precoding/Resource 
Element Mapping should be highly optimized for the 
OpenAirInterface platform. 

 
Fig. 6. Example of a figure caption. (figure caption) 

C. Instructions Execution 
Instruction per cycle (IPC) is a fundamental performance 

metric indicating the average number of instructions executed 
for each clock cycle, which is used to measure instruction level 
parallelism. Fig. 7 shows IPC of each OpenAirInterface 
Module. We can see that most of Layer 1 Protocols (Physical 
Layer) have middle-level IPC values, greater than that of Layer 
2 Protocols (RRC, PDCP, RLC, MAC). The IPC of the Layer 2 
protocol workloads ranges from 0.32 to 1.34. PDCP protocol 

has the lowest IPC value among Layer 2 protocols workloads. 
The IPCs of the Layer 1 protocols have higher IPC values 
compared to Layer 1 protocols. For example, scrambling has a 
IPC rate with 3.25 and OFDM has a IPC rate with 3.31. The 
reason for this is that most of the Layer 1 protocols are 
computation-intensive, and hence have a higher IPC. While 
Layer 2 protocols are designed to allocate resources and 
elements for channels, thus they access memory more 
frequently compared to Layer 1 protocols. This leads to poor 
temporal locality, causing long-latency memory accesses for 
Layer 2 protocols, and hence it has lower IPCs. 

 
Fig. 7. IPC Rate for OAI Modules 

D. Front-End Behaviore 
The instruction-fetch stall will prevent core from making 

forward progress due to lack of instructions. Instruction cache 
(ICache) and Instruction Translation Look-aside Buffer (ITLB) 
are two fundamental components, which should be accessed 
when fetching instructions from memory. 

Figure 8 and Figure 9 present the Instruction cache misses 
(Icache misses) and the Instruction TLB overhead (ITLB 
overhead), respectively. Layer 2 protocol modules own higher 
Instruction cache misses than Layer 1 Physical protocol 
modules (Coding, Rate Matching, Scrambling, Modulation and 
OFDM procedure). RRC and MAC have large instruction 
footprints and suffer from severe L1 Instruction cache misses. 
Higher L1 instruction cache misses result in higher instruction 
fetch stalls, indicating less efficiency of the front-end. For most 
of the others benchmarks, the Layer 1 protocols modules 
instruction cache misses are small, especially the OFDM 
Procedure Module, whose instruction footprint is relatively 
rare. 

 
Fig. 8. Icache Misses for OAI modules 

 



 
Fig. 9. ITLB Overhead for OAI modules 

Consistent with the performance trend of instruction cache 
misses, Layer 2 protocols modules complete page walks 
caused by instruction TLB miss are more frequently than that 
of Coding, Rate Matching, Scrambling, Modulation and 
OFDM Procedures (Layer 1 Protocols). Page walks will cause 
a long latency instruction fetch stall, waiting for correct 
physical addresses so as to fetch instructions, and hence result 
in inefficiency of front end.  

Improving the L1 instruction cache and instruction TLB hit 
ratios can improve the performance of Layer 1 protocols 
modules, especially the RRC and MAC module. The third 
party libraries used by OpenAirInterface system may be the 
main reason which leads the inefficiency of instruction cache 
and TLB. Improvement is necessary to enhance the 
performance of OpenAirInterface in Icache and ITLB aspects. 

Figure 10 to Figure 12 lists the information for DSB 
switches, Front-End Bandwidth MITE and Front-End 
Bandwidth DSB, which are the main reasons cause the Front-
End Bound besides Icache misses and ITLB Overhead. 

 
Fig. 10. DSB Switches for OAI modules 

 
Fig. 11. Front-End Bandwidth MITE for OAI modules 

 
Fig. 12. Front-End Bandwidth DSB for OAI modules 

DSB Switches measure the penalty when control flows out 
of the region cached in the DSB, the front-end incurs a penalty 
as uOp issue switches from the DSB to the MITE. From the 
Figure 10, we can see that the DSB switches value for OAI 
modules is rare, indicating that the OpenAirInterface system 
can utilize DSB (Decoded Stream Buffer) quite well.   Front-
End Bandwidth MITE represents a fraction of cycles during 
which CPU was stalled due to the MITE fetch pipeline issues, 
such as inefficiencies in the instruction decoders. From Figure 
11, we can see that the Front-End Bandwidth MITE value are 
always below 0.1, except for the module MAC and PHY 
Procedure. Some optimization may be needed for these two 
modules. Front-End Bandwidth DSB represents a fraction of 
cycles during which CPU was likely limited due to DSB 
(decoded uop cache) fetch pipeline. From Figure 12, we can 
see that most of the OAI module performance well except the 
module Init. 

E. Back-end Memory Bound - Data Cache and Data TLB 
Behaviors 
The modern processors introduce a deep memory hierarchy 

to reduce the performance impacts of memory wall. A miss 
penalty of last-level cache can reach up to several hundred 
cycles in modern processor. Figure 13 and 14 shows the L1 
Bound and L2 Bound for OAI modules, we can see that for 
most of Layer 2 protocols workloads have lower Data cache 
misses than that of the Layer 1 protocols workloads. The L1 
and L2 cache statistic indicates Layer1 protocols workloads 
own better locality than the Layer 2 protocols workloads. 

 
Fig. 13. L1 Bound for OAI modules 

 



 
Fig. 14. L2 Bound for OAI modules 

From Figure 15, we can find that for both the Layer 1 
Protocols workloads and Layer 2 Protocols workloads have 
low L3 Bound value. We can conclude that for most of Layer 1 
Protocols and Layer 2 Protocols, modern processor’s LLC is 
large enough to cache most of data missed from L1 and L2 
cache. Figure 16 shows the completed page walks caused by 
Data TLB misses. For most of the OpenAirInterface workloads 
with the exception of PHY Procedure and USRP RF Module, 
the DTLB value is really very rare. The high value for PHY 
Procedure and USRP RF Module may be the reason which 
causes the OpenAirInterface System unstable occasionally. 

 
Fig. 15. L3 Bound for OAI modules 

 
Fig. 16. DTLB Store Overhead for OAI modules 

F. Back-end Core Bound – Port Utilization 
Backend Bound is mainly caused by the lack of hardware 

resources (e.g. divider unit) or port utilization because of The 
instruction dependencies and execution unit overload. In this 
section, we only present Port Utilization for OpenAirInterface 
system because the divider bound value is nearly 0 for each 
OAI Module. From Fig. 17, we find that most of the OAI 
modules suffer from Port Utilization Bound, indicating that the 
Port Utilization need to be optimized for each OAI module. 

 
Fig. 17. Port Utilization for OAI modules 

VI. THE SUMMARY OF RAN NFV NETWORK SLICING 
BENCH  

Radio Access Network Network Function Virtualization 
and Network Slicing attract great attention from both academia 
and industry recently. Since Benchmarks, as the foundation of 
quantitative design approach, are used to evaluate the systems 
and new features, we provide the 5G RAN NFV Network 
Slicing Bench in this paper. 

According to our workload characterization work, the RAN 
modules in the same Layer shared inherent characteristics 
while owns different properties with other RAN protocol 
modules. Besides, we show up bottlenecks in several OAI 
protocol modules, which need to be optimized in the future 
work.  
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