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Abstract—A common tool to defend against Sybil attacks is
proof-of-work, whereby computational puzzles are used to limit
the number of Sybil participants. Unfortunately, current Sybil
defenses require significant computational effort to offset an at-
tack. In particular, good participants must spend computationally
at a rate that is proportional to the spending rate of an attacker.

In this paper, we present the first Sybil defense algorithm
which is asymmetric in the sense that good participants spend at
a rate that is asymptotically less than an attacker. In particular,
if T is the rate of the attacker’s spending, and J is the rate of
joining good participants, then our algorithm spends at a rate
of O(VTJ + J).

We provide empirical evidence that our algorithm can be
significantly more efficient than previous defenses under various
attack scenarios. Additionally, we prove a lower bound showing
that our algorithm’s spending rate is asymptotically optimal
among a large family of algorithms.

I. INTRODUCTION

The last decade has seen explosive growth in systems
that are permissionless in that participants are free to join
and leave at will. All such systems are open to the well-
known Sybil attack [21], in which an adversary uses a large
number of forged IDs to take control of the system. One of the
most popular tools for Sybil defense is proof-of-work (PoW),
whereby IDs must periodically solve computational puzzles,
in order to limit the number of forged IDs.

Unfortunately, current PoW-based Sybil defenses suffer
from a key weakness: the computational effort expended by
the good IDs in solving puzzles must at least equal the
computational effort of an attacker.

We present the first algorithm to address this problem. Our
algorithm is a Sybil defense that is asymmetric in the follow-
ing sense: the good IDs spend at a rate that is asymptotically
less than the attacker.

In particular, we present an algorithm, Geometric Mean
COMputation (GMCOM), that spends at a rate of O(v/T'J +
J), where T is the spending rate of the attacker, and J is
the join rate for good IDs. We also prove a lower bound
showing this rate is asymptotically optimal for a large family
of algorithms.

Why might an asymmetric result be useful? PoW requires
an energy expenditure, and this ultimately translates into a
monetary cost. This is true whether an adversary uses its
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own machines, for which energy costs are well-documented
(see [22], [60]), or offloads the effort by renting a botnet
(see [24]). Therefore, as our title implies, an asymmetric
defense may serve as a convincing deterrent against Sybil
attacks by inflicting a higher cost on the adversary than on
the good participants in the system.

A. Our Model and Problem

Our system consists of identifiers (IDs), and an adversary.
All good 1Ds follow our algorithm, and all bad IDs are
controlled by the adversary.

Puzzles. We assume a source of computational puzzles of
varying difficulty, whose solutions cannot be stolen or pre-
computed. This is a common assumption in PoW systems [6],
[42], [49]. For completeness, we now describe the standard
way in which this assumption is achieved.

All IDs have access to a hash function, h, about which we
make the random oracle assumption [10], [38]. Succinctly, this
assumption is that when first computed on an input, z, h(z)
is selected independently and uniformly at random from the
output domain, and that on subsequent computations of h(x)
the same output value is always returned. We assume that both
the input and output domains are the real numbers between 0
and 1. In practice, h may be a cryptographic hash function,
such as SHA-2 [53], with inputs and outputs of sufficiently
large bit lengths.

Solving a puzzle requires that an ID find an input = such
that h(x) is less than some threshold. The input found is the
puzzle solution. Decreasing this threshold value will increase
the difficulty, since one must compute the hash function on
more inputs to find an output that is sufficiently small.

We assume that each good ID can perform p hash-function
evaluations per round for ;. > 0, where a round is the amount
of time it takes to solve our easiest computational puzzle plus
the time to communicate the solution to the rest of the network
(see DIFFUSE described below). Additionally, we assume that
 is of some size polynomial in ng so that log u = O(log ng).
It is reasonable to assume large p since, in practice, the number
of evaluations that can be performed per second is on the order
of millions to low billions [12], [13], [32].

Our technical puzzle generation process follows that of [6].
For any integer p > 1, we define a p-hard puzzle to
consist of finding C'logp solutions using a threshold of



p(1 — &)p/(Clog ), where § > 0 is a small constant and
C is a sufficiently large constant depending on § and p.

Let X be a random variable (r.v.) giving the expected num-
ber of hash evaluations needed to compute C log i solutions.
Note that X is a negative binomial r.v. and so, the following
concentration bound holds (see, for example, Lemma 2.2
in [8]) for every 0 < € < 1:

Pr(|X — E(X)| > eB(X)) < 2¢~¢ (Closm)/(2(1+e)

Given the above, one can show that every good ID will solve
a p-hard puzzle with at most pu hash function evaluations,
and that the adversary must compute at least (1 — 20)pu
hash evaluations to solve every p-hard puzzle. This follows
from a union bound over O(n]) join and departure events
by IDs, where v is any fixed positive constant, and for C'
being a sufficiently large constant depending on 4, iz and +.
Note that for small §, the difference in computational cost is
negligible, and that p is also unnecessary in comparing costs.
Thus, for ease of exposition, we assume that each p-hard
puzzle requires computational cost p to solve.

Finally, we must be able to address an adversary who
attempts (1) to falsely claim puzzle solutions computed and
transmitted by good IDs, and (2) to pre-compute solutions to
puzzles. These details are deferred until Section II-B when we
describe our algorithm.

Adversary. A single adversary controls all bad IDs. This
pessimistically represents perfect collusion and coordination
by the bad IDs. Bad IDs may arbitrarily deviate from our
protocol, including sending incorrect or spurious messages.

The adversary controls an a-fraction of computational
power, where & > 0 is a small constant. Thus, in a single
round where all IDs are solving puzzles, the adversary can
solve an a-fraction of the puzzles. This assumption is standard
in past PoW literature [6], [26], [49], [62].1

Our algorithms employ public key cryptography, and so our
adversary is computationally bounded. Further, we assume the
adversary knows our algorithm, but does not know the private
random bits of any good ID.

Communication. Communication among good IDs occurs
through a broadcast primitive, DIFFUSE, which enables a good
ID to send a message to all IDs. As in past work, we assume
that the time to diffuse a message is small in comparison with
the time to solve a puzzle. Such a primitive is a standard
assumption in PoW schemes [11], [25], [26]. Our adversary
can read messages diffused by good IDs before sending its
own, and can also send messages directly to any ID. All IDs
are assumed to be synchronized, and time is discretized into
rounds as defined above.

Joins and Departures. The system is dynamic with IDs
joining and departing over time, and so system membership
may change from round to round.

Rounds are grouped into epochs. Informally, an epoch
corresponds to an amount of time over which a significant

IWe use o = 1/14 in our analysis (see Lemma 6); however, this fraction
can likely be increased, and this is left as an area of future work.

fraction of the system membership (good and bad IDs) has
changed. Succinctly, if the set of IDs at the start of an epoch
is A, and the current set of IDs is B, then an epoch ends when
|A® B| > |A|/3, where A® B =(AUB)— (AN B) is the
symmetric difference.

Let £; denote the duration of epoch i. Let J; be the join
rate of good IDs in epoch i; that is, the number of good
IDs that join in epoch i divided by ¢;.We make the following
assumptions about the good IDs which are used to prove the
asymmetric property of GMCOM in Sections III-B and III-C:

o Al. For any epoch, the departure rate of good IDs is within
a factor of (1= ) of the join rate of good IDs.

e A2, For 1 Z 1, J¢_1/2 S Jz S 2J1'_1.

e A3. Forany i > 1, ¢; < 2|S;_1|/J;, where S;_1 is the set
of all IDs in the system at the beginning of epoch «.

e A4. Let C' > 0 be some fixed constant. Then, in any epoch,
for any integer x > 1, at most C'x good IDs join by time
x/J; in the epoch.

We assume that the probability that a departing good ID
is in the committee equals the fraction of total good IDs that
are in the committee. Additionally, we assume that in a single
round, an O(1/logng)-fraction of good IDs depart. Finally,
the minimum number of good IDs in the system at any point
is assumed to be at least some value ng. These assumptions
are used in Section III-A to prove the invariants defined below.

Invariant Goals. We seek to maintain the following two
invariants.

Population Invariant: The fraction of bad IDs in the system
is always bounded away from 1/2.

Committee Invariant: There is a committee that is known
to all IDs; has size O(logng); and contains less than a 1/2
fraction of bad IDs.

Why are these invariants useful? The population invariant
bounds the amount of system resources consumed by bad IDs.

The committee invariant allows for a scalable solution to
the Byzantine consensus problem [41] (see Section I-A for
details). This allows a committee to agree on and execute
operations in the system despite the presence of bad IDs.

B. Our Results

In our algorithm, an iferation consists of an epoch, plus
a purge test and the selection of a new committee, both of
which occur after the epoch; we describe the purge test and
committee selection later in Section II-B.

Fix a subset of iterations Z, and let L be the total length of
time of those iterations. The adversarial spending rate, T, is
the cost to the adversary for solving puzzles whose solutions
are used in any iteration of Z divided by L. The good ID
Jjoin rate, Jr, is the number of good IDs that join over the
iterations in Z divided by L. Finally, the algorithmic spending
rate is the total cost to the good IDs for solving puzzles whose
solutions are used in any iteration of Z divided by L.

We now state our result for our algorithm GMCoM.



Theorem 1. GMCOM has the following properties for a
number of ID joins and departures that is polynomial in ny,
with error probability that is polynomially small in ny.

(1) The population and committee invariants are maintained.

(2) For any subset of iterations I not containing iteration 1,
the algorithmic spending rate is O(\/Tr Jz + J1).

Our lower bound is as follows. We define a purge-based
algorithm to be any algorithm where (1) IDs pay a cost of
(1) to join; and (2) after a constant fraction of the population
changes, all IDs must pay €2(1) to remain in the system (else
they are purged). Then we prove:

Theorem 2. For any purge-based algorithm, there is an
adversarial strategy ensuring the following for any iteration.
The algorithmic spending rate is Q(\/T J + J), where J is
the good ID join rate and T is the algorithmic spending rate,
over the iteration.

C. Model Discussion

We note that A1-A4 admit a highly-dynamic system, since
the number of good IDs that join or depart in any single round
may be nearly linear in the system size at the beginning of the
epoch; additionally, there are no constraints on the behavior of
bad IDs. Also, there is nothing special about the constants used
in A1-A4; they can be modified at the expense of increasing
the hidden constants in our asymptotic resource costs.

With regard to ng and the guarantees made in in Theorem 1,
we note that, in practice, there are distributed systems for
which ng is sizable. For example, measurements of the Main-
line DHT find a minimum size of over 14 million IDs [64],
and data collection on the Bitcoin network indicates a network
of more than 5,000 IDs over the past two years [14].

Finally, in the event that multiple IDs enter the system near-
simultaneously, such that their ordering cannot be determined,
these joins are assumed to be serialized and agreed upon by
the committee via Byzantine consensus.

D. Related Work

The Sybil Attack. Our work applies to the Sybil attack [21].
In addition to our recent work [31], there is large body of
literature on defenses (see surveys [7], [20], [34], [46], [51]).
Critically, none of these prior defenses are asymmetric.

PoW is a natural tool for combatting Sybil attacks since
computing power costs money, whether obtained via Amazon
AWS [4] or a botnet rental [5].

Beyond PoW, several other approaches have been proposed.
In a wireless setting, Sybil attacks can be mitigated via
radio-resource testing which relies on the inability of the
adversary to listen to many communication channels simul-
taneously [27], [28], [48], [51]. However, this approach may
fail if the adversary can monitor all of the channels.

Several results leverage social networks to yield Sybil
resistance (see the survey [65]). However, social-network
information may not be available in some settings. Another
approach is the use of network measurements to verify the
uniqueness of IDs [9], [19], [58], [63], but these techniques

rely on accurate measurements of latency, signal strength,
or round-trip times, and this may not always be possible.
Containment strategies for overlays are examined in [18], [57],
but the extent to which good participants are protected from
the malicious actions of Sybil IDs is limited.

PoW and Alternatives. As a choice for PoW, puzzles have the
useful property that verifying a solution is easier than solving
the puzzle itself. This places the burden of proof on devices
who wish to participate in a protocol rather than on a verifier.
In contrast, bandwidth-oriented schemes, such as [62], require
verification that a sufficient number of packets are received
before any service is provided to an ID; this requires effort by
the verifier that is proportional to the number of packets.

A recent alternative to PoW is proof-of-stake (PoS) where
security relies on the adversary holding a minority stake in an
abstract finite resource [2]. When making a group decision,
PoS weights each participant’s vote using its share of the
resource; for example, the amount of cryptocurrency held by
the participant. A well-known example is ALGORAND [26],
which employs PoS to form a committee. A hybrid approach
using both PoW and PoS has been proposed in the Ethereum
system [3]. We note that PoS can only be used in systems
where the “stake” of each participant is globally known. Thus,
PoS is typically used only in cryptocurrency applications.

There has been a significant amount of related work on
consensus [39], [54], [55] and scalable blockchains [29], [33],
[44], [66]. When the number of bad participants is assumed
to be a bounded minority, several adversarial fault-tolerant
systems exist (see the survey [61]).

Byzantine Consensus. The Byzantine consensus problem [41]
is described as follows. Each good ID has an initial input and
the goal is for (1) all good IDs to decide on the same input;
and (2) this input to equal the input of at least one good ID.
Byzantine consensus enables participants in a distributed
network to reach agreement on a decision, even in the presence
of a malicious minority. Thus, it is a fundamental building
block for many cryptocurrencies [15], [23], [26], [30]; trust-
worthy computing [16], [17], [40], [59]; P2P systems [52]; and
databases [47], [56]. Establishing Byzantine consensus via a
committee is a common approach (see [26], [37], [43]).

II. OUR ALGORITHM

In this section, we describe our algorithm, GMCoOM, whose
pseudocode is provided in Figure 1.

A. Preliminaries

GENID. To initialize our system, we make use of an algorithm
created by Andrychowicz and Dziembowski [6], which we
call GENID. This algorithm, used in Step 1 of our algorithm,
creates an initial set of IDs, no more than an «-fraction of
which are bad. GENID also selects a committee of logarithmic
size that has a majority of good IDs. Finally, GENID has
significant, but polynomial, computational cost; thus we use it
only once during the lifetime of our system.

The Committee. Our algorithm maintains a committee of size
O(logng) with a majority of good IDs. In such a committee



GMCom

Key Variables

i: iteration number
S;: set of IDs at end of iteration ¢
S... current set of IDs

J;: estimate of good join rate in epoch ¢
Initialization:
Jo < OQ.

1+ 1.

For each iteration i:

2. When |S,, ®Si_1| > |Sl_1|/3 do:
Perform Purge:

the next iteration.

Update Variables:

(e) i i+ 1.

J.: current number of join events in epoch ¢ divided by current time elapsed in epoch <.

So « set of IDs returned by initial call to GENID. The initial committee is also selected by GENID.

The committee maintains all variables above and makes all decisions using Byzantine Consensus.

1. Each joining ID solves an entrance puzzle of difficulty max { [ S/ ji,ﬂ, 1} and diffuses the solution.

(a) The committee generates and diffuses a random string r to be used in puzzles for this purge and entrance for

(b) S; < set of IDs returning difficulty 1 puzzle solutions within 1 round.
(c) The committee selects a new committee of size ©(logng) from S; and sends out this information via DIFFUSE.

d) J; — (|Si—1 ® Si| — a(|Si—1| + |Si])) /(duration of epoch ).

Fig. 1: Pseudocode for GMCoM.

the algorithm in [36] can perform Byzantine consensus in O(1)
expected and O(logng) worst case rounds. The committee
uses Byzantine consensus to maintain values for key variables,
decide when an epoch ends, generate and issue random seeds
for puzzles, and create a new committee.

B. Overview of GMCoM

We describe our algorithm while referring to our pseu-
docode in Figure 1. We then elaborate on specific aspects of
our algorithm in Sections II-C, II-E, and II-D.

The execution of GMCOM is broken into iterations, each
of which corresponds to running Steps 1 and 2 of the for-loop
in the algorithm.

Step 1 of an iteration lasts for an epoch as defined in
Section I. In particular, for any epoch i« > 1, denote the set
of IDs (good and bad) at the start of epoch i (equivalently,
the end of iteration ¢ — 1) by S;_1, and denote the current
set of IDs (good or bad) by S.,. Step 1 (epoch i) ends when
Ser ® Si—1| > [Si—11/3.

In Step 1, each joining ID must solve a puzzle of difficulty

max { [Jm/ji_l],l , where J, is the current join rate de-
fined as the current number of join events in epoch 7 divided by
current time elapsed in epoch ¢, and J;_q is the estimate of the
join rate for good IDs in the previous epoch (note Jo + 00).
We provide intuition for this cost in Section II-C.

The committee tracks ID joins and departures in order to
calculate the symmetric difference. Tracking of departures can

be done by having each ID issue a “heartbeat” message to the
committee periodically to let them know the ID is still present
in the system.

Step 2 starts when |S,, ® S;—1| > |Si—1]/3. A purge
test is then initiated by the committee as follows. All IDs
are immediately issued a 1-hard puzzle via DIFFUSE (Step
2(a)). Included in this communication from the committee is
a random string r which must be incorporated into the puzzle
solution. This randomness prevents a pre-computation attack
by the adversary; see Section II-E for more details.

In Step 2(b), each ID must respond with a valid solution
within 1 round, or else be removed from the system; the
committee removes unresponsive or late IDs from its whitelist,
which is maintained via Byzantine consensus amongst the
committee members.

The current committee then selects ©(log ng) IDs uniformly
at random from S; (Step 2(c)). This selection is done via
a committee election protocol, for example [35], [36]. The
committee uses DIFFUSE to inform S; that the selected IDs
are the new committee for iteration ¢ + 1. All messages
from committee members are verified via public key digital
signatures.

In Step 2(d) the current committee calculates jz =
(|ISi—1 ® Si| — a(|Si—1]| + |Si])) /¥¢:, and gives this to the new
committee. Intuitively, this is an estimate of the good ID join
rate during epoch 7; more discussion is given in Section II-D.

Finally, in Step 2(e), iteration ¢ ends.



C. Intuition for Why GMCOM is Asymmetric

We now give intuition for our entrance-cost function. In the
absence of an attack, the entrance cost should be small. In this
case, J,, is always at most a constant factor greater than ji_l,
since the good ID join rate changes by at most a constant factor
from epoch to epoch (Assumption A2), and these join events
are roughly evenly-distributed over the epoch (Assumption
A4). Consequently, each good ID will spend O(1) to join.

In contrast, when there is a large attack, the entrance-cost
function imposes a larger cost on the adversary. Consider the
case where a batch of many bad IDs is rapidly injected into
the system. This drives up the entrance cost since J, grows
quickly, while Ji_1 remains fixed over the current epoch.

Imagine that the adversary injects IDs at a rate of (J;_1)"
for some k > 1. Then the entrance cost is (J;_1)¥~1. Thus,
the spending rate for the adversary is the entrance cost times
the adversarial join rate, which is 7 = (J;_1)?*~!. Since the
good ID join rate in epoch i is just ©(.J;_1) (by Assumption
A2), the cost rate for the good IDs is approximately (.J;_1)*,
which equals ©(v/T.J), where J = J;_;.

These two extreme cases provide intuition for the asym-
metric cost guaranteed by GMCoM. Interpolating between
these cases, showing that ji is a good estimate for J;_1, and
incorporating multiple epochs and purge costs, is the subject
of our analysis in Section III.

D. A Note on Estimating the Join Rate of Good IDs, J;

To calculate the entrance cost in epoch i, GMCOM requires
knowledge of the good ID join rate from the previous epoch,
Ji—1. However, since good IDs cannot be discerned from bad
IDs upon entering the system, the adversary may inject bad
IDs in an attempt to obscure the true join rate of good IDs.

Our analysis in the beginning of Section III-B addresses this
challenge. In order to obtain a robust estimate ji—l of J;_1,
we leverage the fact that the adversary can provide solutions
for at most an a-fraction of the puzzles issued during a purge.

E. How Puzzles Are Used

Although all puzzles are constructed in the same manner,
they are used in two distinct ways by our algorithm. First,
when a new ID wishes to join the system, it must provide a
solution for an entrance puzzle.

The solution to the puzzle is K,||s||T, where K, is the
public key of v, s is a nonce selected by v in order to solve
the puzzle, and T is the timestamp of when the puzzle solution
was generated. The value of 7 in the solution to an entrance
puzzle must be within some small margin of the current time
which, in practice, would primarily depend on network latency.

Note that, for a bad ID, a solution may have been precom-
puted by the adversary by using a future timestamp. This is not
a problem since the purpose of this puzzle is only to force the
adversary to incur a computational cost at some point, and to
deter the adversary from reusing puzzle solutions. Importantly,
the entrance puzzle is not used to preserve our invariants.

The second type of puzzle is a purge puzzle, which limits
the fraction of bad IDs in the system, and has cost 1. An

TABLE I: A summary of our notation.

Used in Model and Algorithm
Symbol Description

« Fraction of total computational power that the adversary
controls.

no Lower bound on number of good IDs in the system at any
time.

Jeur Current number of join events in this epoch divided by
current time elapsed in this epoch.

l; Length of epoch <.

Ji (Number of good IDs joining in epoch ¢) / ¢;.

Si Set of all IDs in the system at the end of iteration <.
Equivalently, the set at the beginning of epoch ¢ + 1.

Ji (18i-1 ® Sil — a(ISi—1| +15:i])) /4.

Seur Set of all IDs in the system at current time.

Used in Proofs
Symbol Description

G; Number of good IDs in the system at the end of iteration 3.

B; Number of bad IDs in the system at the end of iteration .

gy Number of good IDs that arrive in iteration 1.

b¢ Number of bad IDs that arrive in iteration 4.

nd g; + by

gf Number of good IDs that depart in iteration 4.

b‘j Number of bad IDs that depart in iteration <.

nf gg + bf.

T: Total computational cost to the adversary in iteration .

announcement is periodically made by the committee that all
IDs already in the system should solve a purge puzzle. When
this occurs, a random string r of ©(logng) bits is generated
by the committee and included as part of the announcement.
The string r must be appended to the inputs for all requested
solutions in this round; that is, the input is K,||s||r. The
string r ensures that the adversary cannot engage in a pre-
computation attack — where it solves puzzles and stores the
solutions far in advance of launching an attack — by keeping
the puzzles unpredictable. For ease of exposition, we omit
further discussion of this issue and consider the use of this
random string as implicit whenever a purge puzzle is issued.

While the same r is used in the puzzle construction for all
IDs, we emphasize that a different puzzle is assigned to each
ID since the public key used in the construction is unique.

Using the public key in the puzzle construction prevents
puzzle solutions from being stolen. That is, ID K, cannot lay
claim to a solution found by ID K,, since the solution is tied
to the public key K.

Can a message m, from ID K, be spoofed? No, since ID
K, signs m,, with its private key to get sign,, and then sends
(my||sign,||K,) via DIFFUSE. Any other ID can use K, to
check that the message was signed by the ID K, and thus be
assured that ID K, is the sender. Note that, although we make
use of public key cryptography, we do not need a public-key
infrastructure.

III. UPPER BOUNDS

In this section, we begin by showing the correctness of
GMCowm, followed by proving our estimation J;_; to be



“close” to J;_1, and then finally, we prove Theorem 1.
Throughout the section, we let log be the natural log function.

A. Maintaining the Population and Committee Invariants

We first prove that the population invariant always holds.
For any iteration i, we let B; and G; respectively denote the
number of bad and good IDs in the system at the end of epoch
i, and let N; = B; + G;.

Lemma 3. For all i > 0, B; < N;/3.

Proof. For i = 0, by the use of GENID for initializing the
system (recall Section II-A), By < (3/10)Np. For ¢ > 0,
since o < 1/14, the number of 1-hard puzzles the adversary
can solve during the purge at the end of iteration 7 is less than
G;/2. Thus, for all i > 0, we have B; < G;/2. Adding B;/2
to both sides of this inequality yields (3/2)B; < N;/2, from
which, B; < N,/3. O

Let ny, g, by denote the total, good, and bad IDs that
arrive over iteration i. Similarly, let n¢, g, b¢ denote the
total, good, and bad IDs that depart over iteration ¢. We can

now prove the population invariant.
Lemma 4. The fraction of bad IDs is always less than 1/2.

Proof. Fix some iteration ¢ > 0. By Step 2 of our algorithm,
we always have that |S;_1 ® S| < [S;—1|/3 where |S;,_1| =
N;_1. Therefore, we have b] + gf < N;_1/3. We are interested
in the maximum value of the ratio of bad IDs to total IDs at
any point during the iteration. Thus, we pessimistically assume
all additions of bad IDs and removals of good IDs come first.
We are then interested in the maximum value of the ratio:
Bi_1+ b
Ni_1 +b§ — gfl )

By Lemma 3, B;_; < N;_1/3. Thus, we want to find the
maximum of % subject to the constraint that b$ +
g¢ < N;_1/3. This ratio is maximized when the constraint
achieves equality, that is when g¢ = N;_;/3 — b¢. Plugging
this back into the ratio, we get

N;_1/3+b¢
N;_1 + b2 — g¢

N;_ be
Nio /345 =1/2
2N;_1/3 + 2b¢

Finally, we note that this argument is valid even though S,
may include bad IDs that have departed without notifying the
committee (recall this is possible as stated in Section I-A).
Intuitively, this is not a problem since such departures can
only lower the fraction of bad IDs in the system; formally, the
critical equation in the above argument is b¢ + g < N;_1/3,
and this does not depend on b. O

Next, we prove that GMCOM preserves the committee
invariant for a number of iterations that is polynomial in ng,
say ng for any fixed positive constant =.

To simplify our presentation, our claims are proved to hold
with probability at least 1 — O(1/nJ™?), where O hides a
poly(log ng) factor. Of course, we wish the claims of Theo-
rem 1 to hold with probability at least 1 — 1/ ngH such that
a union bound over n] joins and departures yields a w.h.p.

guarantee. By providing this “slack” of an Q(1/ng)-factor in
each of the guarantees of this section, we demonstrate this
is feasible while avoiding an analysis cluttered with specific
settings for the constants used in our arguments.

Lemma 5. Over a polynomial number of join and departure
events, there is always an honest majority in the committee
with probability 1 — O(1/ny).

Proof. For iteration ¢ = 0, the committee invariant holds by
the use of GENID to initialize the system (recall Section II-A;
for details, see Lemma 6 of [6]).

Fix an iteration ¢ > 0. Recall that a new committee is
elected by the existing committee by selecting clog|S;| IDs
independently and uniformly at random from the set .S;, for a
sufficiently large constant ¢ > 0 which we define concretely
later on in this proof. Let X be a random variable which
denotes the number of good IDs elected to the new committee
in iteration ¢. Then:

|G
1S4

where the last inequality follows from the fact that the
computational power with the adversary is at most «. Next,
we bound the number of good IDs in the committee using
Chernoff Bounds [45]:

EXg] =

clog|Si| = (1—a)clog|Si| (D)

Pr(Xg < (1-=96)(1—a)clog|S;|)
< exp{—(s (1 —a)clogSi}

2
= 0 (na(’H—l))

where the first step holds for any constant 0 < § < 1, the
second step follows from Equation 1, and the last step holds
for all ¢ > % ('Y;l). For § = 1/100, we can bound the number
of good IDs in the committee to be at least 9/10clog |.S;| with
probability 1 —O(n, (7+1)). In other words, a new committee
has a majority of good IDs.

What about the number of good IDs in the committee over
the iteration? Let Y, be a random variable which denotes the
number of good IDs that depart from the committee when the
number of departures of good IDs from the system is less than
|Si—1|/3. Since the probability that a departing good ID is in
the committee equals the fraction of total good IDs that are
in the committee (recall Section I-A), we obtain:

|Si| [ clog|S] c
< _— = —1 i 2
S 3 5] 3 og | Sy 2

Next, we upper bound the number of departures of good IDs
from the committee using Chernoff Bounds [45]:

. 12
Pr <Yg>(1+5')61°g3“%> exp{59010g|5i|}
- 0 (ng('erl))

where the first step holds for any constant 0 < ¢’ < 1 and the

last step holds for all ¢ > g(g;’l).

E[Y]

IN




Letting 6’ = 1/5, the following result holds: with probabil-
ity 1 —O(ng (7+1)), the minimum number of good IDs in the
committee is greater than (9/10)clog |S;| — (4/10)clog | S;| at
any point during the epoch in iteration ¢ > 0.

The formation of a new committee and generation of a
random string can be performed w.h.p. by the existing com-
mittee using the Byzantine consensus algorithm in [36]. Given
that no more than €’/ logng good IDs depart per round, for a
sufficiently small constant ¢’ > 0, and that the probability that
a departing good ID is in the committee equals the fraction of
total good IDs that are in the committee (recall Section I-A),
then w.h.p. the committee maintains a majority of good IDs
for any iteration ¢ > 0.

Finally, by a union bound over ng iterations, the committee
invariant is maintained over n iterations with probability 1 —
O(1/ng), which implies the claim. O

B. Bounds on Estimation of Good ID Join Rate
Lemma 6. For any iteration i > 1, J; /12 < J; < 3J;.

Proof. Fix an iteration ¢ > 1. Note that jz equals:

|Si—1 ® Si| — a(|Si—1| + |Si) |Gi—1 ® G
éi o E'L’
3J:4;
<
<
< 3J;

Where the second step holds since |G;—1 ® G;| is no more
than the number of join and leave events by good IDs in
iteration ¢, which is at most ¢; times the rate of good joins
plus the rate of good departures; and by Assumption Al, the
sum of these two rates is at most 3.J;.

Next, we show the lower bound. Observe that:

1Si—1 @ Si| — a(|Si—1] + |Si])

g = -
> |Si_1|/3_a1|28i_1| — oS
o 1Siaal/3 = afSica| = a(4/3)[Si-]
> 7
> (1/3 = (7/3)a)[Si—1| 3)

¢;
Where the second step holds by the condition that triggers
a purge test. In the third step |S;| < (4/3)|S;—1] holds by the
bound on |S; ® S;_1].
Also, by Assumption A3:

Ji < M “4)
£
Substituting |Se—‘1| from Eq. 4 into Eq 3, we have:
Ji = (13- (7/3)a)(Ji/2) = Ji/12
where the last inequality holds for o < ﬁ. O

s i < Jis1 <6

Lemma 7. For any iteration i > 2, 54

Proof. Fix an iteration ¢ > 2. For the upper bound, observe:

Ji—1 <3Ji—1
< 6J;

by Lemma 6
by Assumption A2 in Section I-A.

Similarly, we can obtain the lower bound:
z Ji—1

Ji_1 > 1 by Lemma 6
J; . . .
> 21 by Assumption A2 in Section I-A
which completes the proof. O

C. Cost Analysis

Let 77; denote the computational cost to the adversary
incurred during iteration %.

We divide epoch : of iteration ¢ into sub-epochs. Sub-epoch
J > 1 begins when (j —1)/J; time has elapsed in epoch i and
ends when j/J; time has elapsed. 77 is the computational
cost paid by the adversary from the beginning of epoch ¢ until
the end of sub-epoch j of epoch i.

Let b) be the number of bad IDs that have joined from the
beginning of epoch ¢ until the end of sub-epoch j of epoch «.
Finally, let b; be the number of bad IDs that join in epoch <.

Lemma 8. For any sub-epoch j > 1 in any epoch © > 2,
bl <\[125 7.

Proof. The j™ sub-epoch ends at time t; = j/J;. So the
entrance cost for the £" bad ID joining in sub-epoch j is at

least:
max{li/tj,l}z ~k > k
Ji—1 Jiat; — 6t

where the second inequality follows by Lemma 7. Thus:

k
> —
=67

b7

.

. : 9)2
i 0J J
Solving for bg in this inequality completes the proof. O

We use the following fact in the proofs of Lemma 10 and
Theorem 1.

Fact 9. Suppose that w and v are x-dimensional vec-
tors in Euclidean space. For all x > 1, Zle,/ujvj <

V(5w) (55m)

Proof. Using the Cauchy-Schwarz inequality, we have:

n n
<2 uw ]| Dw
j=1 j=1

Taking the square-root of both sides, we get:

2

j=1

x
> VT <

j=1

x x
> | | v
j=1 j=1



which completes the argument. O

Lemma 10. For any iteration © > 2, the total entrance cost
paid by the good IDs is O (\/ Tidi b; + J; &).

Proof. Fix an iteration ¢ > 2 and let 7 > 1. Let the j™ sub-
epoch end at time ¢; = j/J;. By Assumption A4, the entrance
cost paid by a good ID in sub-epoch j is at most:

Ji—1

1+ <m+0j) [(Jicitj)
1424 <m+cj’> J(ity1)
1+24C <\/12]7+j> /(G —=1)

where the second line follows from Lemma 8, the third line
follows from Lemma 7, and the fourth line follows since
ti1 = (j - 1)/J;.

Summing over all sub-epochs in epoch ¢, and using As-
sumption A4, the total entrance cost paid by the good IDs is

at most:
ZC (1+24C (W+J) /(jl)>

=1
Ji l;

IN

IN

IN

-0 (\/7;J1- 0+ Ji€i>

. Jil;
since 3 5L

77 /j = O(VTJ; €;) follows by Fact 9. [
Sic1] <8V12T; Ji i+

Lemma 11. For any iteration i > 2,

Proof. Recall that the number of bad IDs that remain in the
system at the end of iteration ¢ — 1 is at most «|S;_1| and that
the number of bad IDs that enter in iteration 7 is b;. Therefore,
the number of join and leave events in iteration ¢ due to bad
IDs is at most 2b; + «|S;_1].

The departure rate of good IDs is at most (3/2)J; by
Assumption A1, so the number of good IDs that join or depart
in iteration ¢ is at most (5/2)J;¢; . Thus, the total join and
leave events in iteration 4 is at most 2b; +«|S;—1|+(5/2)J; 4;.

By Step 2 of GMCoM, |S;—1 ® S;| = |Si—1|/3. Thus:

|Si,1|/3 < 2b; + OZ|SZ;1| + (5/2)Ji l;.
Note that j* = J; ¢; is the last sub-epoch of epoch i. Hence
by Lemma 8, b; = b = +/12.J;¢;7T;. Solving for |S;_1|:
2bi +(5/2)Ji b
1/3—«a
< 4(2b; + (5/2)Ji 4;)

<812 J;4; T; + 10J; ¢;

where the second line follows from « < 1/14. O

|Si—1]| <

Lemma 12. For any iteration i > 2, the total purge compu-
tational cost to good IDs is O(\/T; J; Ui + J; £;).

Proof. We know that the number of good IDs that solve the
purge puzzle is at most |S;|. Thus, the total purge computa-
tional cost to good IDs in iteration ¢ is at most:

|Si

A

4
=|Si—
< 5lSi-al

< (4/3)(8v/127; J; £; + 10J; ¢;)
< 11\/127; J; 4; + 14T, ¢;
where the first step follows since |S;—1 ® S;| = |Si—1|/3,
and the second step follows by Lemma 11. O
D. Proof of Theorem 1
Finally, we are ready to prove Theorem 1.

Proof. Population and Committee Invariants. Follows from
Lemma 4 and Lemma 5.

Spending Rate. Let 7 be any subset of all the iterations during
the lifetime of the system. By Lemmas 10 and 12, the total
computational cost paid by good IDs in all iterations in Z is:

ZO(\/W-FJMZ):O ZEZJZ'&-FZ%&
\ iez ez ieT

i€z

Which follows from Fact 9 setting u; = T; and v; = J;¢; for
1 € Z. To calculate the average computational cost per round,
we divide by ), ¢; to obtain:

0 V2iex Ti 2ier Jili + Xier Jili
Ziez ¢;

o({(B=7) (3t o
= 0(VTrJz+Jr)

The last step follows since over all iterations in
Z, we have Tz = (X,cz7Ti)/ (Xiezti) and Jr =
(Ziez Jigi) / (ZiGI gi)' .

IV. LOWER BOUNDS

diez Jili
ZiEI ¢

In this section, we provide a lower bound that applies to
the class of algorithms which have the following attributes:
« B1. Each new ID must pay an entrance fee in order to
join the system and this is defined by a cost function f,
which takes as input a join rate.

« B2. The algorithm executes over iterations, but we con-
sider more general iterations that are delineated when
the condition |S; ® S| > ¢|S;| holds, for any positive
§ < 1/2 (recall, GMCOM uses 6 = 1/3).

« B3. At the end of each iteration, each ID must pay (1)
to remain in the system.

We emphasize that B1 captures any cost function where
the change in join cost during an iteration varies only with
the join rate during that iteration. GMCOM’s cost function
has this property, since .J;_; is fixed throughout iteration 1.



With regard to B2 and B3, recall that we wish to preserve the
population invariant (i.e., a majority of good IDs). It is hard
to imagine an algorithm that preserves this invariant without
a computational test being imposed on all IDs.

A. Lower-Bound Analysis
Restating in terms of the conditions above, we have:

Theorem 2. Suppose our algorithm satisfies conditions Bl-
B3, then there exists an adversarial strategy that forces G =
Q(\/T—J + J), where J is the good ID join rate, and T is the
algorithmic spending rate, both taken over the iteration.

Proof. Fix an iteration ¢. Let n be the number of IDs in the
system at the start of iteration ¢. Let p be any adversarial
join rate during this iteration. We show that the adversary can
always force the good nodes’ spending rate to be Q(v/T .J),
where T' is the spending rate of the adversary in iteration ¢,
and J is the join rate of good IDs in iteration ¢. The adversarial
strategy is for bad IDs to join uniformly at a rate of p during
the iteration, and then depart right before the purge.

We first calculate the algorithmic spending rate due to purge
puzzle costs in iteration ¢. We use the fact that the purge begins
when the system sees a d-factor symmetric difference, for § <
1/2, and that the average rate of joins in iteration 7 is ©(p+.J).
Hence, by Attribute B2, the length of iteration i is:

L = On/(p+J))

By Attribute B3, each good ID pays a purge cost of Q(1) at
the end of each iteration. Hence the average spending rate due
to purge costs in iteration 4 is 2(n/¢;) which is:

*(ova)

We now have two cases:

Case 1: f(p + J) > p/J. The overall rate of joins and
departures of IDs is p+J during this iteration. The adversarial
join rate is p , so we have:

T =

Q(J +p) 5)

pf(p+J).
Rearranging we get:

flo+J) =
Since f(p+ J) > p/J, we have:

p < Jflp+J)
= JT/p by Equation 6.

T/p. (6)

On solving the above for p, we get:
p<VTJ. (7)

By definition, the good ID join rate is J. Thus, the spending
rate for the algorithm due to entrance costs is Q(J f(p+ J)).
Adding in the spending rate for purge costs of Q(J + p) from
Equation 5, we get that the average cost to the algorithm is:

G = QUJflp+J)+(J+p))
QIT/p+(J +p))

- Q(\/T_J+J)

by Equation 6
by Equation 7

Case 2: f(p+ J) < p/J. In this case, we have:
T < pflp+Jd)<p?)d
Rearranging, we get:

vTJ ()

By Equation 5, we have that the algorithmic spending rate due
to purge costs is Q(J + p). Thus:

p =

G = Qp+J)
= o(VTJT+J)
where the last line follows from Equation 8. O

V. EXPERIMENTS

We simulate GMCOM to evaluate its performance with
respect to the computational cost from solving puzzles. Given
this goal, we do not model Byzantine consensus or committee
formation. In all of our experiments, we assume a computa-
tional cost of k for solving a puzzle of difficulty k.

In Section V-B, we validate the asymptotic behavior of
the asymmetric spending rate. In Section V-A, we compare
GMCoM with two PoW-based Sybil defenses.

Our simulation code [1] is written in MATLAB and was
executed on a Mac machine with High Sierra (version 10.13.6)
using a 1.7 GHz Intel Core i5 processor and 4 GB of 1333
MHz DDR3 RAM.

A. Validating Asymptotics

We simulate GMCOM to validate that it exhibits the asym-
metric spending rate O(v/T J+.J), where T is the adversary’s
computational cost for solving puzzles divided by the duration
of an attack, and J is the average join rate of good IDs over
the duration of the experiment. The system is initialized with
10,000 good IDs, and J is set to 2 IDs per second. The number
of good IDs remains fixed throughout the simulation; thus 2
good IDs depart every second. We denote the average cost to
the good IDs by G.

We assume o = 1/14, and T ranges over [2,2'%°], where
for each value of T, the system is simulated for 10,000
seconds. The adversary solves entrance puzzles to add bad
IDs to the system. We pessimistically ignore the cost paid by
the adversary for solving purge puzzles.

Figure 2 illustrates our first results. The blue line depicts the
average computational cost to good IDs per second obtained by
executing GMCOM when the adversary spends 1" per second.
The green and red line are the plots when G =T and G =
VT.

Note that the z-axis and y-axis are both log scaled. Initially,
the blue line increases slowly due to 1" not being substantially
larger than J, and hidden constants. However, as T' grows, we
observe behavior very close to G = +/T, which validates the
asymptotic behavior of the asymmetric cost.
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Fig. 2: Average cost for GMCOM vs. average cost to adversary.

B. Comparison with Existing PoW-Based Sybil Defenses

We implement and evaluate two contemporary PoW-based
algorithms, CcoM [31] and SYBILCONTROL [42].

Overview of CcoM. This algorithm is a precursor to GM-
CoM, where the entrance puzzle always has a computational
cost of 1. Apart from this, CCOM is identical to GMCoM.

Overview of SYBILCONTROL. Under this algorithm, each ID
must solve a puzzle to join the system. Additionally, each ID
periodically tests its neighbors with a puzzle, removing from
its list of neighbors those IDs that fail to provide a solution
within a time limit; these tests are not coordinated between
IDs. An ID may be a neighbor to more than one ID and
so receive multiple puzzles; these are combined into a single
puzzle whose solution satisfies all the received puzzles.

1) The Bitcoin Network: We simulate CCOM, SYBILCON-
TROL, and GMCOM on a real-world dataset for the Bitcoin
network [50] consisting of roughly 7 days of join/departure-
event timestamps (data obtained by personal correspondence
with Till Neudecker [50]). The computational cost is examined
under Scenario I when there are no bad IDs (i.e., no attack),
and Scenario II when bad IDs are present (i.e., an attack).

In Scenario I, all events in the dataset are treated as good
IDs joining/departing. Figure 3 depicts the cumulative compu-
tational cost to the good IDs for the algorithms. Importantly,
in comparison to SYBILCONTROL, the cumulative cost to the
good IDs under GMCoOM and CcoM is less by roughly 4
orders of magnitude after 13 hours of simulation time, and
this gap continues to widen with time; note the logarithmic
y-axis. This result demonstrates that GMCoM and CCOM —
which perform identically when there is no attack — is more
efficient than SYBILCONTROL when there are no bad IDs.

In Scenario II, joins/departures occur as in Scenario I, but
the following attack also occurs. From time ¢/6 to /3 seconds,
where t = 604,970 (= 7 days spanned by the dataset), every
20 seconds, the adversary adds a number of bad IDs that is
a 1/3-fraction of the current system size. This forces a purge
test every 20 seconds in CcoM and GMCoOM, while an ID
issues a puzzle every 5 seconds in SYBILCONTROL.

Figure 4(a) depicts the cumulative cost to the good IDs
for Scenario II. The overall cost of SYBILCONTROL is much
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Fig. 3: Cumulative cost for algorithms in Scenario .

higher than that of CcoM and GMCoOM before the attack.
When the attack commences, the cumulative cost to SYBIL-
CONTROL becomes comparable to that of the other two algo-
rithms, but then quickly surpasses them, and continues to grow
after the attack ends. We observe that the computational costs
to good IDs for CcoM and GMCOM are always comparable.

Finally, Figure 4(b) illustrates the ratio of algorithmic cost
to that of the adversary for Scenario II. Notably, GMCOM has
a cost ratio that is roughly 3 orders of magnitude smaller than
either SYBILCONTROL or CCOM. This can be attributed to the
asymmetric cost that benefits good IDs under GMCoOM, but
which is not guaranteed by either CCOM or SYBILCONTROL.

2) Peer-to-Peer Networks: We compare the performance of
SYBILCONTROL, CcoM and GMCOM on three different peer-
to-peer (P2P) networks: BitTorrent, Skype and Bitcoin.

Our BitTorrent experiments employ data from two BitTor-
rent servers: Debian and Flatout. The Weibull distribution
is used to model session time, with shape parameter values
0.38 and 0.59, and scale parameter values 42.2 and 41.0 for
Debian and FlatOut, respectively. In our Skype experiments,
we assume a Weibull distribution for the session time of
supernodes, with a median session time of 5.5 hours, and
a shape parameter of 0.64. For our Bitcoin experiments, we
generate the session time for 10,000 good IDs by randomly
sampling from the real-world data obtained from [50].

For each value of T € {2°,2!,...,2%6} at each step in
the simulation, the adversary adds the maximum number of
bad IDs that its budget allows. Our plots are generated from
Monte-Carlo simulations, where each value is averaged over
20 separate simulations.

Figures 4(c) - (f) illustrate the cost to good IDs as the
budget of the adversary per second varies. We note that at
the largest value of T = 26, a purge occurs once per
second in GMCoM, and an ID tests its neighbors every 5
seconds in SYBILCONTROL. Even with this high purge rate,
the asymmetric property of GMCoOM allows it to outperform
SYBILCONTROL (and CCOM); note the logarithmic y-axis.

VI. CONCLUSION AND FUTURE WORK

We have presented an asymmetric Sybil defense using
PoW. We have provided empirical evidence that our algorithm
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Fig. 4: Bitcoin experiments: (a) cumulative computational cost and (b) ratio of algorithmic cost to adversarial cost for Scenario
II. Average computational cost to good IDs per second vs. adversarial computational cost per second for the following peer-
to-peer networks: (c) BitTorrent Debian, (d) BitTorrent Flatout, (e) Skype, and (f) Bitcoin.

is as efficient as state-of-the-art PoW-based Sybil defenses
in all cases, and is significantly more efficient under massive
attacks. Finally, we have proved a lower bound showing that
our algorithm’s computational cost is asymptotically optimal
among a large class of Sybil-defense algorithms.

Many open problems remain including the following. Can
we extend our results to create an asymmetric algorithm
for maintaining a secure blockchain? Might the techniques
used here be adaptable for use in mitigating other security
challenges such as denial-of-service attacks?
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