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a b s t r a c t

Spatial–temporal data arise frequently in biomedical, environmental, political and social
science studies. Capturing dynamic changes of time-varying correlation structure is sci-
entifically important in spatio-temporal data analysis. We approximate the time-varying
empirical estimator of the spatial correlation matrix by groups of selected basis matrices
representing substructures of the correlationmatrix. After projecting the correlation struc-
turematrix onto a space spanned by basismatrices, we also incorporate varying-coefficient
model selection and estimation for signals associated with relevant basis matrices. The
unique feature of the proposed method is that signals at local regions corresponding with
time can be identified through the proposed penalized objective function. Theoretically,
we showmodel selection consistency and the oracle property in detecting local signals for
the varying-coefficient estimators. The proposed method is illustrated through simulation
studies and brain fMRI data.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Modeling covariance structure is important for detecting associations among genes, spatial locations, social networks and
brain connectivities. Developing sound spatio-temporalmodeling and estimation is critical for capturing dynamic changes of
associations. However, it is difficult to build a model for correlation structure for incorporating dynamic association changes
that is flexible enough to capture time-varying structures, yet not burdened by high-dimensional parameter estimation. In
addition,modeling spatial and temporal variations simultaneously tends to bemore challenging thanmodeling each of them
separately. Further, it is theoretically and computationally challenging to provide statistical inference for detecting dynamic
changes in correlation structure.

This paper is motivated by fMRI data arising from research on children’s attention deficit hyperactivity disorder (ADHD).
We are interested in identifying associations and changes of associations over time among responses of brain activities from
different regions in the brain. In particular, correlation structures corresponding to the regions of interest (ROIs) in the brain
can change over time, although the process may be stationary, or nearly stationary. To extract the underlying signal changes
of association over time, we propose a time-varying correlation structure model where dynamic changes of associations are
modeled as a varying-coefficient model.
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The related literature on local signal detection includes the fused LASSO in Tibshirani et al. [32], and the adaptive
bandwidth selection approach in Miller and Hall [24] under the framework of local polynomial regression. However, as
the dimension of variables increases, the aforementioned methods have computational limitations and are not effective
for detecting local patterns. In addition, a functional linear regression model is proposed by James et al. [13] and Zhou
et al. [42] to detect zero sub-regions. In contrast to functional data and kernel approaches, we propose a group penalized
spline approach for spatio-temporal models which is able to detect dynamic changes of spatial correlations over time. The
employed spline approach also has computational advantages compared to kernel approaches.

In the earlier development of spatial–temporal data analysis, most of the literature assumes that the correlation structure
is fully or partially symmetric and separable, which simplifies the structure of themodel. These include [6,7,17,18,27,29,30].
Recent developments on covariance estimation for spatial–temporal data also incorporate nonstationary covariance models
through differential operators in environmental and disease surveillance data applications [14,19], and a generic approach
to building asymmetric spatial covariance structures as in Li and Zhang [20]. In these approaches, the spatial correlation
within each subject and time-varying temporal correlation information are utilized in order to makemore precise statistical
inference. A common feature of these approaches is that they are likelihood-basedmethods. However, a prior assumption on
the parametric distribution might not be valid in practice. In contrast, the proposed method does not have such a restriction
as it is based on the estimating equation approach [21,26] which does not require a likelihood function.

One important feature of our method is that it allows local-signal detection and coefficient estimation simultaneously
for spatio-temporal data. Specifically, our approach is built on a time-varying linear representation of the inverse of the
correlation matrix, projected on the span of groups of matrices basis. By introducing a group-wise penalty on varying-
coefficient models, we can identify local time regions where the dynamic changes of associations occur. We show that the
equivalent oracle property holds for our approach in the sense that the estimated non-zero coefficients of the basic matrices
for correlation matrices can be selected consistently. The simulation studies and real data application in fMRI also confirm
our theoretical findings.

The rest of the paper is organized as follows. In Section 2, the proposed method for estimating the dynamic changes of
correlation structure for spatial–temporal data is presented. Section 3 establishes the asymptotic properties for the proposed
estimator. Implementation strategies are illustrated in Section 4. In Section 5,we illustrate simulation studies to demonstrate
the performance of the proposed method. An fMRI data set for ADHD patients is analyzed in Section 6. Finally, we provide
discussion in Section 7 and proofs in the Appendix.

2. Methodology

In this section, we illustrate the method development for detecting dynamic changes using time-varying correlation
matrixmodels for spatio-temporal data. Specifically, we transform the problemof estimating local features of the correlation
structure by projecting the inverse of the correlation matrix onto the linear space spanned by groups of basis matrices and
implementing piece-wise group penalization in the framework of generalized estimating equations (GEE). Through the non-
parametric spline model for the coefficients of these basis matrices, the proposed model can capture dynamic changes of
the correlation structure over time.

2.1. Background

For spatio-temporal data, we consider n subjects measured rn times in the temporal dimension. At time tij, we observe an
mi × 1 response vector yi(tij) and a p×mi matrix xi(tij) of covariates for the ith subject, where i ∈ {1, . . . , n}, j ∈ {1, . . . , rn},
and mi indicates the number of locations or regions of interest (ROIs). To simplify notation, we assume the data is balanced
with mi = m, and subjects are measured at the same sequence of time points with {tij = tj : j ∈ {1, . . . , rn}}. Write yi(tij)
and xi(tij) as yij and xij, respectively.

Let µij = E(yij|xij) = (µ(x⊤

ij,1β), . . . , µ(x⊤

ij,mβ))⊤ represent the marginal mean model, where µ is a known inverse link
function, xij,l is the p-dimensional covariate observed at ℓth ROI for ith subject at time tj and β is a p-dimensional parameter
vector. We generalize quasi-likelihood equations [34] for estimating the mean parameter β under the framework of spatio-
temporal data by solving

n∑
i=1

rn∑
j=1

µ̇⊤

ij Σ
−1
ij (yij − µij) = 0,

where µ̇ij = ∂µij/∂β and Σij = cov(yij). Liang and Zeger [21] developed the generalized estimating equation (GEE) method
assuming the covariance of the response vector Σij = A1/2

ij R(tj)A
1/2
ij , where Aij is a diagonal matrix with the marginal

variances of yij as the diagonal elements and R as a working correlation matrix. In practice, the GEE approach is robust
in the sense that no specification of the full likelihood function is required.

However, a prior knowledge of the working correlation matrix is typically unavailable in practice, and the misspecified
correlation can influence the efficiency ofmean estimation. To achieve amore efficient estimation, Qu et al. [26] proposed the
quadratic inference function (QIF), assuming that R−1 can be approximated by a linear combination of basis matrices. Zhou
and Qu [40] modified the linear representation by grouping basis matrices into Im,M1, . . . ,MD, where Im is the identity
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matrix and M1, . . . ,MD are subgroups of symmetric basis matrices, corresponding to different patterns of correlation
structures. Examples of basismatrices are included in Section 4.1. In practice, different types of basismatrices are considered
so that the combinations of these basis matrices are rich enough to approximate the inverse correlation matrix.

The rationale behind approximating the inverse of a correlation matrix by a linear combination of basis matrices is that
any inverse correlationmatrix can bemodeled as a linear combination of a number of known basismatriceswith either 0 or 1
as components. In the worst case, without knowing any correlation structure, the number of the basis matrices is equivalent
to the unknown number of parameters involved in the inverse correlation matrix. In particular, Qu et al. [26] showed that
common correlationmatrices (e.g., exchangeable, AR1, or block correlationmatrix) can be represented using a small number
of basismatrices. This type of linear combination can also be useful in representingmixtures of several correlation structures
[40].

In the analysis of spatio-temporal data, it is natural to assume that the correlation structure can change over time. This
providesmoremeaningful interpretation in analyzing environmental or social networks, or fMRI data.Wepropose a varying-
coefficient model to capture the dynamic changes of the correlation structure over time

R−1(t) ≈ α0(t)M0 + · · · + αD(t)MD, (1)

whereM0 = Im withm being the number of regions of interest. Then for d ∈ {0, . . . ,D},Md = (Md1, . . . ,MdKd ) consists of a
group of basis matrices with different correlation structures. The number of basis matrices Kd can be different for different
groups, where K0 = 1. In (1), let αd(t) = (αd1(t), . . . , αdKd (t)) represent a group of unknown coefficient functions associated
with these basis matrices. In (1),

αd(t)Md =

Kd∑
k=1

αdk(t)Mdk

represents linear combinations of basis matrices for each subgroup. Although the linear combination of basis matrices is not
always positive definite, the asymptotic consistency property in Section 3 ensures that the estimated correlation matrix is
positive definite with high probability when the sample size is sufficiently large, which is also confirmed in our simulation
studies.

The varying-coefficient model is flexible and powerful for modeling the dynamic changes of regression coefficients and
has been extensively studied; see [3,8,12,25,35,37] and references therein. The coefficient functions in (1) capture the
dynamic change of correlation structure over time. To estimate the unknown coefficient functions, our method applies
polynomial splines to approximate them. Specifically, the spline approach approximates each nonparametric coefficient
function through a linear combination of the spline bases which behave like pseudo-design variables [28]. The success of the
polynomial spline relies on its good approximation power for smooth functions. Suppose the coefficient functions in (1) can
be approximated, for all k ∈ {1, . . . , Kd} and d ∈ {0, . . . ,D}, by

αdk(t) ≈ gdk(t) =

Jn∑
h=1

γdk,hBh(t) = B⊤(t)γdk,

where B(t) = (B1(t), . . . , BJn (t))⊤ with {Bh(t) : h ∈ {1, . . . , Jn}} being the B-spline basis and γdk = (γdk,1, . . . , γdk,Jn )
⊤. We

use polynomial splines of degree pvc and Nn interior knots vn =
{
v1, . . . , vNn

}
, and therefore the dimension of the spline

space is denoted as Jn = Nn + pvc + 1. Then the inverse of the correlation matrix can be approximated by

R−1(t) ≈

D∑
d=0

Kd∑
k=1

gdk(t)Md,k =

D∑
d=0

Kd∑
k=1

B⊤(t)γdkMd,k. (2)

We propose to use the spline approximation since it often provides good approximation of smooth functions. More
importantly, it is computationally faster and more efficient compared to the kernel-type method. However, the quality
of spline approximation depends on the selection of knot sequence vn. In this paper, we have used either equally spaced
knots or a set of knots equally spaced in percentile ranks for the sake of simplicity. Although it works reasonably well in our
numerical examples, in practice one can select the knot sequence more adaptively using data driven methods such as the
BIC provided in Section 4.3.

2.2. Local feature selection

The coefficient functions associated with the relevant basis matrices in (2) are time-dependent and could be non-zero
only for part of the time regions, and it is important to understand such dynamic change of these coefficient functions in
different time regions. For example, in the fMRI study, associations among ROIs of the brain are likely to be active only for
certain time regions, but not through the entire experiment. Capturing the dynamic changes of the correlation structure is
equivalent to performing variable selection to detect local features instead of a global feature of the coefficient functions.

Intuitively, an efficient correlation matrix estimator should be close to the empirical correlation matrix. We propose to
minimize the discrepancy in the framework of estimating equations, i.e., the difference between estimating equations using
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the basis matrices representation of R−1 and the empirical inverse correlation matrix. Specifically, for the ith subject at time
tj, the discrepancy between the two sets of estimating equations with a consistent estimate β̃ and an empirical estimate R̃
is defined as

Sij = µ̇⊤

ij (̃β)A
−1/2
ij

{
R̃−1(tj) −

D∑
d=0

Kd∑
k=1

B⊤(tj)γdkMdk

}
A−1/2
ij {yij − µij (̃β)}.

Here the empirical correlation matrix R̃(tj) is calculated from the residuals yij − µij (̃β). We assume that individuals are
observed at the same sequence of time points. Therefore the empirical correlation matrix at each time point is estimated
using n residual vectors. Our method can also be used when individuals are measured at irregular and possibly subject-
specific time points. Then the empirical correlation matrix is estimated using only those subjects that have measurements
at these time points. However, our asymptotic theory in Section 3 requires that the number of observations at each distinct
time are of the same order. Consequently, we define

Uij = µ̇⊤

ij (̃β)A
−1/2
ij R̃−1(tj)A

−1/2
ij {yij − µij (̃β)}, i ∈ {1, . . . , n}, j ∈ {1, . . . , rn},

Vij,dk = µ̇⊤

ij (̃β)A
−1/2
ij MdkA

−1/2
ij {yij − µij (̃β)}, d ∈ {0, . . . ,D}, k ∈ {1, . . . , Kd}.

To achieve local sparsity for coefficients of selected basis matrices, we propose a piecewise penalized loss function

n∑
i=1

rn∑
j=1

Uij −

D∑
d=0

Kd∑
k=1

B⊤(tj)γdkVij,dk


2

+ nrn
D∑

d=1

Nn+1∑
q=1

pλn (∥θdq∥), (3)

where ∥ · ∥ denotes the vector ℓ2-norm and pλn is a penalty function with tuning parameter λn. Due to local properties of the
B-spline basis, the Kd × (pvc +1) vector θdq = (γd1,q, . . . , γd1,q+pvc , . . . , γdKd,q, . . . , γdKd,q+pvc ) determines the spline functions
{gd1, . . . , gdKd} on interval (vq−1, vq). Here vq is the qth interior knot in the B-spline approximation. For d ∈ {1, . . . ,D},
the spline functions {gdk(t) : k ∈ {1, . . . , Kd}} for group d are all zero on (vq−1, vq) if and only if all the elements in θdq
are shrunk to zero simultaneously. Therefore we penalize the coefficients associated with each local interval (vq−1, vq) in a
group-wise fashion. Let γ̃ = {̃γdk : k ∈ {1, . . . , Kd}, d ∈ {0, . . . ,D}} be a minimizer of the objective function (3). Then the
resulting coefficient estimator with local sparsity is defined as α̃dk(t) = B⊤(t )̃γdk. The estimated coefficient functions can
be completely zero on some local time intervals, thus the estimated correlation structure can be different at different time
intervals. Therefore, the proposed method can be used to capture time-varying correlation structure for spatio-temporal
data.

The loss function in (3) is capable to detect local non-zero-signal regions in the varying-coefficient model, rather than for
the entire region. However, the proposed penalized loss function includes overlapping parameters across different group-
penalty functions, and therefore imposes computational challenges and theoretical derivations. In addition, there are many
choices of penalty function including the LASSO [31], adaptive LASSO [43], SCAD [4] or MCP [39]. Here we consider the
non-convex SCAD penalty, which is defined by its first derivative

p′

λn
(∥θdq∥) = λn

{
1(∥θdq∥ ≤ λn) +

(anλn − ∥θdq∥)+
(an − 1)λn

1(∥θdq∥ > λn)
}

.

The SCAD penalty has been widely used because of its desirable properties such as unbiasedness, sparsity and continuity.

3. Asymptotic property

In this section, we investigate the rate of convergence for the varying-coefficient estimator α̃dk(t) by minimizing (3).
Theorem1 establishes the consistency of the proposed estimator, and Theorem2 shows that,with probability approaching to
1 , the proposed estimator can be correctly identified as zero in the non-signal time regions.We assume that the observations
from different individuals are independent of each other. For each i ∈ {1, . . . , n}, observations (Yi1,Xi1), . . . , (Yirn ,Xirn ) from
the ith individual are viewed as a realization from a random process {Y (t) ,X (t) : t ∈ I} at discrete times t1, . . . , trn , where
Y (t) is a vector of length m and contains measurements at m locations for time t . In the following, we assume that the
number of locationsm is fixed, while rn, the number of measurements over time, is allowed to increase with the sample size
n. In addition, we require the following conditions to establish the asymptotic theory.

(C1) Let ΣY (t) = cov{Y (t) |X (t)} be the conditional variance matrix of Y (t) given X (t) . We assume that the eigenvalues
of ΣY (t) are bounded away from zero and infinity uniformly for t ∈ I . In addition, we assume that supt∈IE ∥Y (t)∥c <

∞, for some sufficiently large c > 0.
(C2) The observation times t1, . . . , trn are independent with density fT (t) on I , and fT (t) is absolutely continuous and

bounded away from zero and infinity uniformly over t ∈ I .
(C3) There exists a positive constant c such that supt∈I ∥X (t)∥ ≤ c.
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(C4) There exist functions {αdk (t) : d ∈ {0, . . . ,D}, k ∈ {1, . . . , Kd}} and basis matrices {Mdk : d ∈ {0, . . . ,D}, k ∈

{1, . . . , Kd}} such that, for all t ∈ I ,

R−1 (t) =

D∑
d=0

Kd∑
k=1

αdk (t)Md,k.

(C5) For each d ∈ {0, . . . ,D} and k ∈ {1, . . . , Kd}, the coefficient function αdk(t) is (pvc + 1)st continuously differentiable
on I .

(C6) For d ∈ {1, . . . ,D}, let Ed ⊂ I be the null region such thatαd(t) =
(
αd1(t), . . . ,αdKd (t)

)
= 0 for all t ∈ Ed andαd(t) ̸= 0

if t ∈ (Ed)∁. If Ed ̸= ∅, we assume that Ed = [ed1, ed2] is a closed interval. Let α̇dk(t) be the first order derivative of
αdk(t). We assume there exists a constant c such that |α̇dk(t)| ≥ c for any t ∈ [ed1 − ε, ed1] ∪ [ed2, ed2 + ε] and a small
constant ε > 0.

(C7) The number of knots Nn → ∞ and the tuning parameters an, λn → 0 as n → ∞. In addition,

Nn

nrn
+

Nn

n
→ 0,

ln(nrn)
nrnNnλ2

n
→ 0, λnN2

n → ∞,
N3/2

n anλ2
n

ρn
→ 0,

anλnNn

nrn
→ 0,

where ρn =
√
Nn/n + 1/

√
Nn.

(C8) For the empirical inverse correlation matrix, we assume the eigenvalues of
√
n {̃R−1(t)−R−1(t)} are bounded for any

t ∈ [0, 1] with probability approaching 1.

Conditions (C1)–(C3) are commonly used in B-spline approaches to ensure consistency for the spline estimation of the
varying-coefficient model. Similar conditions are also assumed in Huang et al. [11,12]. Condition (C5) provides the degree
of smoothness on the time-varying coefficients α(·), and Condition (C6) is needed to separate time regions between zero
coefficients and nonzero coefficients. Condition (C7) assumes the convergence rates associated with the number of knots
and the tuning parameters. Condition (C4) assumes that the inverse of the true correlation matrix can be well-represented
by a linear combination of basis matrices.

We focus on cases where the inverse of the true correlation matrix can be well-represented by a set of basis matrices,
since we are particularly interested in approximating the inverse of the true correlation matrix by basis matrices with easy-
to-interpret structures. However, this assumption could be unreasonable when the inverse of the correlation cannot be
well-approximated by a finite number of basis matrices, in particular in the scenario when m → ∞. Therefore Condition
(C8) also controls the consistency of the empirical estimator of the correlation matrix. As a special case of Theorem 1 in Lam
and Fan [16], condition (C8) is satisfied when the distribution satisfies the sub-Gaussian tail conditions.

The following theorems state the asymptotic properties of the proposed penalized spline estimator of the varying
coefficient functions and the oracle estimator, where the oracle estimator γ̃ (o)

= {γ̃
(o)
d : d ∈ {0, . . . ,D}} is constructed

by assuming all zero coefficients in {γdk,h : d ∈ {0, . . . ,D}, k ∈ {1, . . . , Kd}, h ∈ {1, . . . , Jn}} as known to be zero and
estimating the rest of the non-zero coefficients by minimizing

n∑
i=1

rn∑
j=1

Uij −

D∑
d=0

Kd∑
k=1

∑
h∈Jdk

Vij,dkBh(tj)γdk,h


2

, (4)

where Jdk denotes the set of non-zero coefficients in γdk. The resulting oracle estimator of the coefficient functions αdk(t) is
denoted by α̃

(o)
dk (t).

Theorem 1. Under conditions (C1)–(C8), for any d ∈ {0, . . . ,D}, k ∈ {1, . . . , Kd}, the oracle estimators α̃
(o)
dk (t) satisfy

sup
t∈I

|̃α
(o)
dk (t) − αdk(t)| = Op

(√
Nn/n + 1/Nn

)
.

Theorem 2. Under conditions (C1)–(C8), for any d ∈ {0, . . . ,D}, k ∈ {1, . . . , Kd}, there exists a local minimizer α̃dk(t) of (3)
satisfying ∥α̃dk(t) − αdk(t)∥2 = Op(

√
Nn/n + 1/Nn), where ∥·∥2 is defined in Eq. (6) in the Appendix. Let Êd = {t ∈ I, α̃d(t) = 0}

be the corresponding null region of α̃d(t), then Pr(Êd \ Ed) → 0 as n → ∞.

In Theorem 1, we establish the asymptotic convergence rate for the oracle estimator. In addition, Theorem 2 states the
existence and the convergence rate of the proposed penalized varying-coefficient estimator, and provides the asymptotic
theory ofmodel selection consistency for identifying null regions. Specifically, the proposedmethod ensures that null regions
can be identified correctly with high probability when the sample size is sufficiently large.

4. Implementation

4.1. Examples of basis matrices

The selection of basis matrices plays a critical role in the proposed method. In this section, we provide two examples of
candidate basismatrices for illustration. The first example uses a linear combination of some common correlation structures,



226 X. Zheng et al. / Journal of Multivariate Analysis 168 (2018) 221–239

such as first-order auto-regressive (AR(1)) and exchangeable (EX) correlation. These correlation structures are useful to
extract prior information from the empirical correlation structure which resembles these common structures. The detailed
construction of these basis matrices is provided in the next section on simulation studies. The second example is motivated
by Hu et al. [10], which employs the spectral representation of the inverse correlation matrix, viz.

R−1(t) ≈ α0(t)Im +

D∑
d=1

αd(t)ed(t)e⊤

d (t),

where ed(t) is the dth eigenvector associated with the dth largest eigenvalue of the sample correlation matrix at time t .
Consequently, only the first few eigenvector-formed basis matrices ede⊤

d are utilized to avoid parameter redundancy.
In practice, the correlation structure can be as simple as one of the examples above, but can also be a combination of

the pre-determined basis matrices and eigenvector basis matrices. In addition, we can incorporate block-wise correlation
structures, which decomposes the correlation matrix by several block matrices. Nevertheless, most of these strategies are
determined by the information of the sample correlation matrix. We will illustrate these strategies for selecting basis
matrices in the following simulation and real data examples.

4.2. An algorithm

Let {̂γdk : d ∈ {0, . . . ,D}, k ∈ {1, . . . , Kd}} be the unpenalized estimator which minimizes the sum of squares in (3)
without the penalty term. To numerically solve the penalized objective function in (3), we have used the unpenalized
estimator as an initial value whenever the least squares estimation is feasible.

Let θ̂dq be the corresponding spline coefficients on interval (vq−1, vq) as defined in (3) . If the estimated θ̂dq is close to
zero with ∥̂θdq∥ < ε for a small number ε, then we set θ̂dq as zeros in the next step. In the following, we describe a quadratic
approximation to solve (3) for the non-zero coefficients. A quadratic approximation [4] of pλn at non-zero θ∗

dq in (3) is defined
as

pλn (∥θdq∥) ≈ pλn (∥θ
∗

dq∥) +
1
2
p′

λn
(∥θ∗

dq∥) ∥θ
∗

dq∥
−1

{θ⊤

dqθdq − (θ∗

dq)
⊤θ∗

dq},

where p′ is the first derivative of the penalty function. Then the loss function (3) can be approximated (up to a constant) by

n∑
i=1

rn∑
j=1

Uij −

D∑
d=0

Kd∑
k=1

Vij,dkB⊤γdk


2

+
nrn
2

D∑
d=0

Nn+1∑
q=1

cdq θ⊤

dqθdq,

where cdq = p′

λn
(∥θdq∥)∥θdq∥

−1. Consequently, the nonzero components of γdk can be updated by minimizing the above
quadratic function. We denote

Cdq =

q∑
k=j−pvc

cdq, Cd = (Cd1, . . . , CdJn )
⊤, C = (C⊤

1 , . . . , C⊤

D )
⊤,

where cdk = 0 for k < 1 or k > Nn+1. Let γ̂k+1 be the solution at the (k+1)st iteration.We update the non-zero components
in γ̂

k+1 by

γ̂
k+1

= {(V∗,k
s )⊤V∗,k

s + nrndiag(Cs)}−1(V∗,k
s )⊤Uk

s ,

where V∗,k
s contains the columns of V∗,k

n corresponding to the nonzero components of γ̂k, and Cs andUk
s are similarly defined,

while V∗,k
n and Uk

n are defined in the Appendix, but evaluated at γ̂
k.

The proposed algorithm consists of two steps. In the first step, we select basismatrices byminimizing the Euclidean norm
of the discrepancy between two sets of estimating equations using the empirical inverse correlation matrix and the linear
representation of basis matrices with a grouped SCAD penalty. In the second step, we employ a local-feature selector (3) to
detect zero-subregion coefficients in the varying-coefficient model to refine the local correlation structure estimation.

The two-step strategy can be simply merged into one step if the number of parameters is not large, which minimizes the
loss function (3) directly based on the entire space spanned by all candidate basis matrices. This strategy leads to significant
drawbacks compared with the two-step method. The major drawbacks are that the correlation structure is not clearly
represented through specific basis matrices, which leads to significant computational burden. In general, the proposed two-
step approach is computationally more feasible, and effective for capturing the dynamic change of the correlation structure.

4.3. Tuning parameters selection

To implement the proposed method, we need to choose the knots to control the smoothness of the spline-estimated
curve and λn to determine the complexity of the selected model. Choice of these tuning parameters has a crucial effect on
the performance of the proposed group-penalized varying-coefficient model. For simplicity, we use equally spaced knots,
and choose the number of interior knots Nn to be the integer part of (nmrn)1/(2pvc+3), where pvc is the degree of polynomial
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spline. One can also select the number of interior knots Nn using a data-driven procedure, such as the BIC described below.
Here we only focus on the selection of λn in the penalty function for computation simplicity. Similar strategies have been
applied by Huang et al. [12], He et al. [9] and Xue and Qu [37].

We use the Bayesian Information Criteria (BIC) procedure to select λn, and fix an = 3.7 as suggested by Fan and Li [4].
Following Qu and Li [25], we denote the estimator of the coefficients γ as γ̂λn . Let

Ûij(λn) =

D∑
d=0

Kd∑
k=1

Vij,dkB⊤γ̂dk(λn)

and zn be the total number of nonzero components in γ̂λn . Then we choose λ̂n that minimizes the BIC value

λ̂n = argminλnBIC(λn) = argminλn

⎡⎣ln

⎡⎣ 1
nrn

n∑
i=1

rn∑
j=1

{
Uij − Ûij(λn)

}2⎤⎦+
ln(nrn)zn

nrn

⎤⎦ .

5. Simulation

In this sectionwe conduct simulation studies to illustrate the performance of the proposed local-feature selectionmethod.
When generating correlated spatio-temporal data, we allow spatial correlation structure to vary over time with different
magnitudes of correlation for both continuous and binary responses. The performance of the proposedmethod under various
settings of cluster (and subject) size is investigated and compared with the penalized varying-coefficient model without
incorporating local features proposed in Xue and Qu [37]. In addition, we also simulate unbalanced clustered data with
some missing observations to confirm that the proposed method can still perform well for unbalanced data. In the last
simulation study, we examine the proposed method when the basis matrices are intentionally misspecified.

5.1. Study 1: normal responses

We generate spatio-temporal data from a regression model with a normally distributed error term by setting, for all
i ∈ {1, . . . , 100} and j ∈ {1, . . . , 34},

yij = β0 + β1xij,1 + β2xij,2 + β3xij,3 + εij,

where the observation times t1, . . . , t34 are uniformwithin the interval [0, 1]; yij is the response vector with measurements
taken at m = 25 or 75 spatial locations for the ith subject at time tj; β = (β0, β1, β2, β3) = (2, 1, 1, 1); the covariates
{xij,k; k ∈ {1, 2, 3}} are m × 1 vectors with elements generated independently from the standard Normal distribution; and
εij is them × 1 error term following a multivariate normal distribution N [0,R(tj)].

The spatial correlation matrix R(tj) is assumed to have a diagonal structure of the form such that R(tj) = diag{R1(tj), . . . ,
R5(tj)}, where each diagonal block R1(tj), . . . ,R5(tj) is of dimension 5 × 5 or 15 × 15 corresponding to cluster size m = 25
or 75 respectively. Furthermore, the first and second blocks, R1(tj) and R2(tj), have AR(1) and exchangeable (EX) correlation
structure, respectively. The remaining three blocks have an independent structure with {Rk(tj) : k ∈ {3, 4, 5}} being identity
matrices. In the following, we allow the magnitude of correlation in both R1(t) and R2(t) to be time-varying.

We specify eleven basis matrices of the block-diagonal matrices with sub-block size of 5 whenm = 25, or sub-block size
of 15whenm = 75. For example, whenm = 25, the first group {M0, . . . ,M4} contains the identity matrixM0 = I25 (25×25
identity matrix) and four matrices with I5 (5 × 5 identity matrix) on the first to the fourth diagonal blocks respectively, and
zero entries elsewhere. The second group {M5,M6} contains twomatrices to represent the AR(1) structure for the first block
and zero for the rest of the blocks, where M5 has 1s on the sub-diagonal in the first block and 0’s elsewhere, and M6 has 1s
on two corner components of the diagonal in the first block and 0s elsewhere. The third group includes only one matrixM7
for the first block and 0s elsewhere, corresponding to the exchangeable correlation structure for the first block with 1s on
the off-diagonal and 0s elsewhere. The fourth and fifth groups ({M8,M9} and {M10}) are defined similarly as the second and
third groups respectively, but defined for the second block instead.

To generate time-varying correlation structure, we notice that R−1(tj) = diag{R−1
1 (tj), . . . ,R−1

5 (tj)}, which can be exactly
presented as linear combinations of basis matrices in the first, second and fifth groups defined above. In particular, the
coefficients of basis matrices in the second and fifth groups are of the form such that

α5(t) =

{
(−4t2 + 4t − 1)ρAR if t > 0.5,
0 if t < 0.5, α10(t) =

{
(−4t2 + 4t − 1)ρEX if t < 0.5,
0 if t > 0.5, (5)

where larger values of ρAR and ρEX are associated with higher correlations in the corresponding block. We generate weak,
medium and strong levels of correlation with parameters (ρAR, ρEX) = (0.50, 0.25), (1.50, 0.70), or (2, 1), which correspond
to maximum correlations of 0.4, 0.6 and 0.8, respectively. In this example, the true correlation structure is different at
time intervals (0, 0.5) and (0.5, 1). Specifically, the first half-time region is of AR(1) correlation structure in the first block
and independent correlation structure in the other blocks, and the magnitude of correlation monotonically decreases
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Fig. 1. The global and local estimators for α5 . The blue line is the global penalized estimator without incorporating local features. The black line indicates
an individual parameter penalization after global penalization. The red line is the proposed estimator which penalizes by groups of parameters after global
penalization. The green dotted line is the true value of α5 .

Table 1
The percentages of correct-identification (C), over-identification (O) and under-identification (U) for varying-coefficients for normal responses with sample
size n = 100 in Study 1.

Cluster no. Scenario α5 α10

C O U C O U

Local
(II)Weak 0.848 0.119 0.033 0.855 0.083 0.062
(III)Medium 0.778 0.215 0.007 0.826 0.159 0.016
(IV)Strong 0.764 0.234 0.002 0.823 0.173 0.004

m = 25 Global
(II)Weak 0.500 0.000 0.000 0.502 0.001 0.497
(III)Medium 0.511 0.029 0.460 0.541 0.454 0.005
(IV)Strong 0.513 0.486 0.001 0.532 0.465 0.003

Local
(II)Weak 0.745 0.218 0.037 0.865 0.023 0.112
(III)Medium 0.733 0.258 0.009 0.882 0.052 0.066
(IV)Strong 0.697 0.301 0.002 0.905 0.078 0.017

m = 75 Global
(II)Weak 0.500 0.000 0.500 0.504 0.016 0.480
(III)Medium 0.500 0.000 0.500 0.593 0.286 0.121
(IV)Strong 0.504 0.491 0.005 0.585 0.401 0.014

to zero when time increases from 0 to 0.5. In the second half-region, the correlation structure in the second block is
exchangeable with monotonically increasing correlation as time increases, while the other blocks all have independent
correlation structure.

We apply the proposed method to identify dynamic spatial correlation structures over time. Specifically, we select four
knots equally spaced in the interval [0, 1] and adopt the quadratic spline. Note that the non-parametric spline model with a
higher degree of polynomial function can intensify the degree of overlapping parameters in the group penalty function, and
might be more computationally time-consuming. The simulations are repeated 200 times for each set-up.

We first compare the proposed local-feature selection method to the existing global model selection method proposed
in Xue and Qu [37] for varying coefficient models. Without incorporating local features, the global method shrinks the
coefficient functions to be completely zero in the entire time region, which is equivalent to implementing only Step 1 in
the proposed algorithm. Fig. 1 plots the estimates of α5(t) using these two methods. It shows that the proposed local-
feature selection method estimates the coefficient function reasonably well. In particular, the estimated zero sub-region
using the local-feature selection method almost coincides with the true zero sub-region. In contrast, the global method
without incorporating local features performs poorly in identifying the zero region, which is consistent with the results
reported in Table 1. In addition, another possible approach for local-feature selection is to penalize the spline coefficients for
each individual basis matrix separately in (3). The resulting estimator is plotted as the black dotted line in Fig. 1. It indicates
that after the first-step selection of basis matrices, penalizing the associated coefficients individually is less efficient for
capturing the exact local signal compared to the proposed group penalization of coefficients corresponding to the group
basis matrices method.
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Table 2
The percentages of correct-identification (C), over-identification (O) and under-identification (U) local feature selection method for binary responses with
cluster size m = 25 in Study 2.

Sample size Scenario α5 α10

C O U C O U

Balanced
(II)Weak 0.824 0.169 0.007 0.816 0.125 0.059
(III)Medium 0.819 0.176 0.005 0.812 0.146 0.042
(IV)Strong 0.795 0.203 0.002 0.806 0.158 0.036

n = 100 Unbalanced, 15% missing
(II)Weak 0.792 0.121 0.027 0.718 0.113 0.169
(III)Medium 0.754 0.241 0.005 0.783 0.168 0.049
(IV)Strong 0.747 0.250 0.003 0.783 0.185 0.032

Balanced
(II)Weak 0.897 0.070 0.033 0.734 0.034 0.232
(III)Medium 0.866 0.127 0.007 0.884 0.076 0.040
(IV)Strong 0.854 0.144 0.002 0.875 0.106 0.019

n = 200 Unbalanced, 35% missing
(II)Weak 0.701 0.293 0.006 0.732 0.203 0.065
(III)Medium 0.702 0.294 0.005 0.713 0.243 0.044
(IV)Strong 0.702 0.296 0.002 0.706 0.273 0.021

The percentages of correct-identification (C), over-identification (O) and under-identification (U) for signal regions of
the coefficient functions are presented in Table 1. We compare the proposed method (local) with the existing penalized
varying-coefficient model selection without incorporating local features (global). If the absolute value of the coefficient
estimator is less than 0.01 for the selected zero region or is greater than 0.05 for the non-zero region, then we count them
as correct identification. Here over-identification (O) is defined as true zero coefficients estimated as non-zero signals, and
under-identification (U) is defined as true non-zero coefficients estimated as zeros. We observe that our approach performs
consistently well since the percentages of correct-identification (C) are mostly above 70% in all scenarios. In addition, the
over-identification percentage increases when the signal is stronger. This is because the sharp increase of the correlation
signal in the interval immediately after t = 0.5 imposes a great challenge to local feature detection. A possible solution to
obtain more accurate local estimation around the change point is to add additional knots. Table 1 also indicates that the
proposed method performs well when cluster size m = 75, even though the large cluster size adds difficulty in capturing
the time-varying signal.

In addition, the varying-coefficient model incorporating local features performs better in detecting local features than
the global selection method, as shown in Table 1. For example, the percentage of correct-identification ranges between 75%
to 90% when m = 25 for the proposed local-feature approach, in contrast to only 50% correct-identification for the global
varying-coefficient model approach in weak, medium and strong scenarios. The improvement of correct-identification is
more than 50% through utilizing the local-feature penalty.

5.2. Study 2: Binary responses with unbalanced data

In this study, we consider a binary response for spatio-temporal data. The binary response is generated from the logistic
regression model defined, for all i ∈ {1, . . . , n} and j ∈ {1, . . . , 34}, by

logit(µij) = β0 + x⊤

ij,1β1 + x⊤

ij,2β2 + x⊤

ij,3β3,

where µij = E(yij|xij) and yij is the binary response vector measured at 25 locations for the ith subject at time tj, the
covariates xij = {xij,k : k ∈ {1, 2, 3}} with each covariate being a 1 × 25 vector with elements independently generated
from N (0, 0.01), and the regression coefficients β = (1, 0.05, 0.05, 0.05). The R package mvtBinaryEP is used to generate
the binary response vector yij using the above logistics regression model with the same time-varying correlation structures
as the ones for the normal case. The same pre-specified basis matrices are also used in the estimation procedure.

The proposed method can be implemented to accommodate an unbalanced spatio-temporal data, where the missing
mechanism is completely random. The estimation procedure can adopt the idea of the transformationmatrix to each cluster;
see more details in Zhou and Qu [40]. We conduct numerical studies to illustrate the feasibility of the proposed method
to handle unbalanced spatio-temporal data. The unbalanced data are generated by randomly deleting observations from a
balanced spatio-temporal data. For each balanced data set, 30% (when n = 100) or 70% (when n = 200) of the entire clusters
ofm = 25 measurements are randomly selected. For these selected clusters, 50% of the observations within each cluster are
deleted completely at random. Consequently, 15% of the observations aremissingwhen n = 100 and 35% of the observations
are missing when n = 200, respectively.

The percentages of correct-identification (C), over-identification (O) and under-identification (U) for signal regions of
coefficient functions are presented in Table 2, which indicates that the proposedmethod detects the signal region effectively
for both balanced and unbalanced binary responses. When we increase the sample size to n = 200, the proposed method
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Table 3
The percentages of correct-identification (C), over-identification (O)
and under-identification (U) local feature selection method for complex
correlation structure with cluster size m = 25 in Study 3.

Coefficient Weak Strong

C O U C O U

n = 100
α5 0.764 0.229 0.007 0.760 0.233 0.007
α10 0.845 0.137 0.018 0.836 0.145 0.019
α11 0.762 0.071 0.166 0.861 0.095 0.044

n = 200
α5 0.836 0.155 0.009 0.832 0.158 0.009
α10 0.910 0.071 0.019 0.909 0.072 0.020
α11 0.861 0.025 0.114 0.932 0.036 0.032

Table 4
The loss of estimated correlation matrix R̂ and empirical correlation matrix
R̃, ∥R̂ − R∥F and ∥̃R − R∥F in Frobenius norm in Study 3.

Sample size Weak Strong

Loss sd Loss sd

R̂ (local)
100 0.290 0.549 0.288 0.414
200 0.075 0.044 0.090 0.071

R̃ (empirical)
100 6.029 0.087 6.018 0.088
200 3.009 0.045 3.003 0.045

performs better than when n = 100, which supports the consistency of local feature selection when the sample size is
sufficiently large. Since a substantial part of the observations are missing for the unbalanced data sets, the proposedmethod
performs slight less effectively for the unbalanced data compared to the fully observed cases for n = 100 and 200. However,
Table 2 indicates that the proposed method is still quite effective with correct-identification above 70%, even when 50% of
the observations among 70% of the clusters are missing for n = 200.

5.3. Study 3: complex correlation structure

In this study,we evaluate the performance of the proposedmethodwhen the basismatrices aremisspecified.Wegenerate
data from the same regression model as the one in Study 1 for the normal case, but with different correlation structures.
Specifically, wemodel the correlation structure at time t as R(t) = R1(t)+R2(t), where R1(t) is a 25× 25matrix of the same
block diagonal structure as defined in study 1, and R2(t) is a 25 × 25 matrix with ρoff (t) in entries (i, i + 5) and (i + 5, i) for
i ∈ {1, . . . , 5}, and 0 elsewhere.We consider R1(t) to be at weak or strong levels of correlationwith (ρAR, ρEX) = (0.50, 0.25)
or (2, 1) in Eq. (5). The coefficient ρoff (t) is zero on interval [0, 0.5] and linearly increases from 0 to 0.25 in the weak-signal
scenario, or from 0 to 0.5 in the strong-signal scenario, on time interval (0.5, 1). The matrix R2(t) is designed under the
constraint of positive-definite correlationmatrix. Herewe addonemore basismatrixM11 (associatedwithα11) to the original
pool of basis matrices, with 1s in the entries (i, i + 5) and (i + 5, i) for i ∈ {1, . . . , 5}, and 0 elsewhere. This leads to the
case where basis matrices could be misspecified, since the off-diagonal R2(t) affects the structure of R−1(t), and the inverse
correlation matrix could be unstructured.

In Table 3, we provide the percentages of correct-identification (C), over-identification (O) and under-identification (U)
to illustrate the performance of local-feature model selection for the unstructured inverse correlation setting. The proposed
approach performs well on feature selection for all of α5, α10 and α11. Even when the true correlation matrix cannot be
exactly captured by a linear combination of the selected basis matrices, the local features of the coefficients associated with
the basis matrices are consistently detected when the sample size increases.

Since the inverse of a hybrid correlation matrix does not have a specific structure, and the misspecification of basis
matrices occurs in this study, we measure the difference between the estimated R̂ and the true R through the loss of

1
34m

34∑
i=1

∥R̂(t) − R(t)∥F

in Table 4, where ∥R∥F is the Frobenius norm defined by the square root of the trace of the squared matrix. For n = 100
and 200, Table 4 shows that the proposed correlation matrix estimators have less bias than the empirical estimators. The
losses based on the empirical correlationmatrix estimators are significantly larger than the losses based on the local-feature
estimators.
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Fig. 2. Heat maps of the associations of 116 regions of interest at the 1st, 4th, 7th and 10th time points.

6. FMRI data analysis

In this section we implement our method to an attention deficit hyperactivity disorder (ADHD) data set. ADHD is one
of the psychiatric disorders commonly found in children and adolescents with characteristics of being easily distracted,
impulsive, and restless. The fMRI datameasured in the resting state of 79 patients fromADHD-200 test samples are collected
from Oregon Health and Science University (OHSU) data. Among them, 42 patients are typically-developing controls, 30 are
ADHD combined, 5 are ADHD inattentive and 2 are ADHD hyperactive.We removed one subject due tomissing observations,
and consequently the total number of subjects is 78. The fMRI data is measured from 116 regions of interest (ROIs) of the
brain over 74 time points, which are processed by the automated anatomical labeling (AAL) software package and digital
atlas designed for the human brain.

For the fMRI studies, statistical challenges [22] such as dealing with massive data, balancing computational feasibility
with model efficiency and explaining brain connectivity are still under-developed. Specifically, there has been an increasing
demand for understanding the brain, especially for modeling and quantifying the interaction among different ROIs of the
brain. Grinband et al. [5] pointed out that modeling temporal variability of the fMRI data can increase the statistical
power and capture an important source of information on the relationship between brain activity and psychophysical
performance. Cribben et al. [1] utilized a data-driven technique of graphical LASSO, detected temporal change points in
functional connectivity, and estimated graphical relationships among ROIs under the assumption of a conditional normal
distribution. Recent literature focusing on the spatio-temporal correlationmodeling of the brain fMRI data also includes, but
is not limited to, Lindquist [23] and Kang et al. [15].

Here we identify the dynamic temporal correlation change by the proposed local penalized varying-coefficient method.
Fig. 2 illustrates the associations and connectivity of 116 ROIs at four time points (the 1st, 4th, 7th and 10th time points)
using heat maps of empirical correlation matrices. Note that the red color indicates stronger associations and the blue color
indicates no associations among different regions of interest.We are able to identify some patterns of associations for several
blocks of the regions of interest, where the associations show dynamic change over time.
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We fit a regression model with time-varying spatial correlation within a subject by setting, for each i ∈ {1, . . . , 78} and
j ∈ {1, . . . , 74},

yij = β0 + β1xij,1 + · · · + β5xij,5 + εij,

where yij and xij,k for k ∈ {1, . . . , 5} are the response and covariates observed from the ith subject at time tij. Specifically,
yij is a response vector of length 116 measured at these ROIs, and the covariates include gender, age, diagnosis (DX), and
whether patients are in the category of inattentive or impulsive. All the covariates are observed at the subject level and do
not vary with time and ROIs. The focus of our analysis is to utilize the proposed local-feature selection method to construct
a time-varying approximation for the spatial correlation structure.

From the heat maps in Fig. 2, we observe that the correlation matrices are not sparse, and a standard correlation model
might not be able to capture the high variability of brain function. For better illustration, in Fig. 3, we plot the inverse
correlation matrices at 9 time points selected from the original 74 time points representing the whole period of scanning,
specifically at the 8th, 11th, 14th, 20 th, 23rd, 28th, 56th, 72nd and 74th time points. We also choose a sub-region of 23 RoIs,
including 6, 5, 4 and 8 RoIs from the frontal, occipital, parietal and vermis regions of the brain, respectively. The connectivity
information can be imputed from the heat map of the empirical estimator of the inverse correlation matrices in Fig. 3.
Apparently, we observe that the signals along the diagonal blocks of the matrix are generally stronger than the off-diagonal
signals. In fact, most of the strong signals can be divided into several blocks on the diagonal, corresponding to those basis
matrices of certain blocks.

As a result, we split 23 RoIs into 4 blocks with sizes 6, 5, 4 and 8 respectively. These consist of 14 basis matrices
{M0, . . . ,M13}, including 4 basis matrices of identity and AR(1) structure for each block, 4 eigenvector-based-blockmatrices
and 2 eigenvector-based matrices for the entire matrix. The second basis matrix for the AR(1) structure (with 1s on the two
corner components) does not play an important role for estimation, and therefore is omitted here. We choose 2 equally
spaced knots and adopt the cubic spline method. As a result, the total number of parameters (γ ) involved is 14 × 6 = 84.
We select the tuning parameter as 0.142 for the SCAD penalty.

We plot the heat map constructed from the proposed estimator of the inverse correlationmatrices in Fig. 4. The heat map
indicates that there are several block structures including diagonal and off-diagonal blocks for the inverse correlationmatrix,
while the empirical inverse correlation matrix estimator only shows a higher correlation along the diagonal blocks. The
findings of the proposed estimator are consistent with that of the real experiment. That is, the variation of brain connectivity
function at the beginning and ending stages is relatively stronger than during the middle stage in the experiment. This
phenomenon ismore obviouswith the proposedmethod than the empirical estimator. In addition,we notice that thewithin-
block dynamic change of correlation structure is not always in accordance with the entire regions of interest’ correlation
structure. Specifically, the associations among the 5 RoIs in the occipital area are more intense during the most time of the
experiment, and the time-dependent within-block signals from the frontal (the first block) and parietal (the third block)
regions also display strong connections, while the off-diagonal spatial connections are relatively weak in the middle period
of the experiment. In summary, the proposed local feature selection method can effectively detect signal and non-signal
regions of dynamic correlation structure using a relatively small number of basis matrices.

7. Discussion

The time-varying correlation structure model is flexible and powerful for identifying time-dependent associations for
spatio-temporal data. In this paper, we develop a local penalized varying-coefficient model to effectively quantify and
detect dynamic changes from the spatial correlation structure. One distinct feature of the proposed approach is that
we are able to incorporate local features of a nonparametric function, and provide local-signal detection and estimation
simultaneously for spatio-temporal data. Our simulation studies and data application to fMRI data indicate that the penalized
nonparametric varying-coefficient model for the inverse of correlation matrix can capture dynamic changes of associations
within several groups of regions of interest and identify time intervals when the dynamic changes of spatial associations
occur simultaneously.

To produce local sparse coefficient estimators, our proposed method approximates the coefficient functions using spline
functions and penalizes the ℓ2 norm of spline coefficients associated with each subinterval spanned by the knot sequences.
As pointed out by a referee, other types of penalization may also be considered, including direct Tikhonov penalization of
the higher-order derivatives of the covariance functions. In addition, the proposed group penalization process involving
overlapping parameters is solved by the quadratic approximation algorithm. However, it is also critical to develop more
computationally efficient algorithms to model spatio-temporal data when the number of spatial locations increases, since
high-dimensional matrix operations are computationally costly. Furthermore, theoretical derivation for local feature model
selection of the correlation structure is quite challenging when the cluster size diverges [33]. These topics are worth further
investigation in future research.
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Fig. 3. Heat maps of 23 × 23 empirical estimator of time-varying inverse correlation matrices at nine selected time points.

Appendix

A.1. Notation and lemmas

Let Cpvc be the space of pvc times continuously differentiable functions on [0, 1], and Gn be the spline approximation
space of order pvc with interior knots vn =

{
v1, . . . , vNn

}
. We denote any positive constants by the same notations of c and

C (with c < C) without distinction in each case.
Let M be the model space as a collection of DJ = K0 + · · · + KD vectors of functions

M = {α(t) = {αdk(t), d ∈ {0, . . . ,D}, k ∈ {1, . . . , Kd} : αdk(t) ∈ Cpvc+1
}},
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Fig. 4. Heat maps of 23 × 23 proposed estimator of time-varying inverse correlation matrices at nine selected time points.

and let the approximation space be defined similarly as

Mn = {g(t) = {gdk(t), d ∈ {0, . . . ,D}, k ∈ {1, . . . , Kd} : gdk(t) ∈ Gn}}.

Let V∗

ij,dk = Vij,dkB⊤(tj) be a p × Jn matrix, V∗

ij,d = (V∗

ij,d1, . . . ,V
∗

ij,dKd
), V∗

ij = (V∗

ij,0, . . . ,V
∗

ij,D), and γd = (γ⊤

d1, . . . , γ
⊤

dKd
)⊤,

for d ∈ {0, . . . ,D}. Let Ui = (U⊤

i1, . . . ,U
⊤

irn )
⊤ and V∗

i = (V⊤

i1, . . . ,V
⊤

irn )
⊤ for i ∈ {1, . . . , n}. Then γn = (γ⊤

0 , . . . , γ⊤

D )
⊤ is a

JnDJ -dimensional vector, Un = (U⊤

1 , . . . ,U⊤
n )

⊤ is an nrnp -dimensional vector, and V∗
n = (V∗⊤

1 , . . . ,V∗⊤
n )⊤ is an nrnp × JnDJ

matrix. Then the corresponding loss function (3) is equivalent to

Un − V∗

nγn

2 + nrn
D∑

d=1

Nn+1∑
q=1

pλn (∥θdq∥).
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For any α ∈ M, define the theoretical and empirical norms on M as

∥α∥
2
2 = E{α⊤(T )α(T )} =

D∑
d=0

Kd∑
k=1

E{α2
dk(T )},

∥α∥
2
n =

1
nrn

n∑
i=1

rn∑
j=1

{α⊤(tj)α(tj)} =

D∑
d=0

Kd∑
k=1

⎧⎨⎩ 1
nrn

n∑
i=1

rn∑
j=1

α2
dk(tj)

⎫⎬⎭ , (6)

respectively. The following Lemmas 1 and 2 are obtained similarly as Lemma A.4 of Xue and Yang [38].

Lemma 1. Under conditions (C1)–(C5), for any g ∈ Mn, there exist constants 0 < c < C, such that c∥γn∥
2/Nn ≤ ∥g∥

2
2 ≤

C∥γn∥
2/Nn.

Lemma 2. Under conditions (C1)–(C5), for any g ∈ Mn, there exist constants 0 < c < C, such that, as n → ∞,
Pr(c∥g∥

2
2 ≤ ∥g∥

2
n ≤ C∥g∥

2
2) → 1.

Lemma 3. Under conditions (C1)–(C5), there exist constants 0 < c < C, such that for any vector of γn of length JnDJ , we have,
as n → ∞,

Pr{c∥γn∥
2/Nn ≤ γ⊤

n V
∗⊤

n V∗

nγn/(nrn) ≤ C∥γn∥
2/Nn} → 1.

Proof. For any γn of length JnDJ , we have

1
nrn

γ⊤

n V
∗⊤

n V∗

nγn =
1
nrn

n∑
i=1

rn∑
j=1

γ⊤

n V
∗⊤

ij V∗

ijγn =
1
nrn

n∑
i=1

rn∑
j=1

D∑
d=0

Kd∑
k=1

Jn∑
h=1

V⊤

ij,dkVij,dk{Bh(tj)γdk,h}
2.

Given conditions (C1) and (C3), there exist constants 0 < c1 ≤ C1, such that

c1
nrn

γ⊤

n B
⊤

n Bnγn ≤
1
nrn

γ⊤

n V
∗⊤

n V∗

nγn ≤
C1

nrn
γ⊤

n B
⊤

n Bnγn,

where Bn = (B⊤(t1), . . . ,B⊤(tr ))⊤ is an nrn × JnDJ matrix of B-spline basis and B(tj) = B⊤(tj) ⊗ 1Dj is a 1 × JnDJ vector. By
Lemma 6.2 of Zhou et al. [41], there exist constants 0 < c2 ≤ C2, such that

c2
Nn

∥γn∥
2

≤
1
nrn

γ⊤

n B
⊤

n Bnγn ≤
C2

Nn
∥γn∥

2,

with probability approaching 1 as n → ∞. The Lemma follows by taking C = C1C2 and c = c1c2.. □

Let G(o)
dk ⊂ Gn be the oracle spline approximation space containing spline functions with zero values on the null region Ed.

The following lemma can be proved by the approximation theory in de Boor [2].

Lemma 4. Under conditions (C1)–(C5), there exists a spline function g (o)
dk ∈ G(o)

dk , such that

sup
t∈(0,1)

|αdk(t) − g (o)
dk (t)| = O(N−1

n ).

Proof. The approximation theory in de Boor [2] entails that there exists a spline function gdk ∈ Gn such that

sup
t∈(0,1)

|αdk(t) − gdk(t)| = O{N−(pvc+1)
n },

where

gdk (t) =

Nn+pvc+1∑
h=1

γdk,hBh (t)

for a set of coefficients {γdk,h : h ∈ {1, . . . ,Nn + q + 1}}. For the null region Ed = [ed1, ed2], suppose ed1 falls in the
interval between the ℓd1th and (ℓd1 + 1)st knots, and ed2 falls in the interval between the ℓd2 th and (ℓd2 + 1)st knots. Let
Jd = {1, . . . , ℓd1 − 1, ℓd1 + pvc + 2, . . . , Jn}. Now let g∗

dk (t) =
∑

h∈Jd
γdk,hBh (t) . Let Ẽd = [ℓd1, ℓd2+1], Ad = Ẽd \ Ed. Then

g∗

ij ∈ G(o)
ij , and

sup
t∈Ed

|αdk (t) − g∗

dk (t)| = 0, sup
t∈̃E∁d

|αdk (t) − g∗

dk (t)| = O{N−(pvc+1)
n },
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and

sup
t∈Ad

⏐⏐αdk (t) − g∗

dk (t)
⏐⏐ ≤ sup

t∈Ad
|αdk − gdk| + sup

t∈Ad
|gdk − g∗

dk|

≤ 2 sup
t∈(0,1)

|αdk − gdk| + sup
t∈Ad

|αdk| = O{N−(pvc+1)
n + N−1

n } = O(N−1
n ).

Putting these three cases together, one has supt∈(0,1)|αdk(t) − g (o)
dk (t)| = O(N−1

n ). □

A.2. Proof of Theorem 1

To prove Theorem 1, we define γ̃∗ as a minimizer of (4), but with the true R−1(t), instead of R̃−1(t) in (4). Then, for
t ∈ [0, 1], let α̃∗

dk(t) = B⊤(t )̃γ∗

dk, for d ∈ {0, . . . ,D} and k ∈ {1, . . . , Kd}.
By Lemma 4, there exist spline functions g (o)

dk ∈ G(o)
dk , such that ∥αdk − g (o)

dk ∥∞ ≤ cN−1
n for a constant c. Let

Mdg
(o)
d =

Kd∑
k=1

g (o)
dk Mdk, Mdαd =

Kd∑
k=1

αdkMdk

and

Uij(g(o)) =

D∑
d=0

µ̇ijA
−1/2
ij Mdg

(o)
d A−1/2

ij (yij − µij), Uij (α) =

D∑
d=0

µ̇ijA
−1/2
ij MdαdA

−1/2
ij (yij − µij),

where i ∈ {1, . . . , n} and j ∈ {1, . . . , rn}. Define ϵIij = Uij (̃R−1)−Uij(R−1), ϵIIij = Uij(R−1)−Uij(g(o)). Let ϵIi = (ϵI,⊤i1 , . . . , ϵ
I,⊤
irn )⊤,

EI
= (ϵI,⊤1 , . . . , ϵI,⊤n )⊤, and define EII similarly. Then we have

α̃(o)(t) − α(t) = α̃(o)(t) − α̃∗(t) + α̃∗(t) − g (o)(t) + g (o)(t) − α(t)

= B⊤(t)(V∗⊤

n V∗

n)
−1V∗⊤

n EI
+ B⊤(t)(V∗⊤

n V∗

n)
−1V∗⊤

n EII
+ g (o)(t) − α(t)

= I(t) + II(t) + III(t).

For I(t), by Lemma 3 and the Cauchy–Schwarz inequality, we have

|I(t)| ≤

√
B⊤(t)(V∗⊤

n V∗
n)−1B(t)

√(
EI
)⊤V∗

n(V∗⊤
n V∗

n)−1V∗⊤
n EI ≤ c

Nn

nrn

√
B⊤(t)B(t)

√
(EI )⊤V∗

nV∗⊤
n EI .

Wenotice supt∈(0,1)

√
B⊤(t)B(t) ≤

√
DJ (pvc + 1) as the upper bound of B-spline bases is 1 and each B-spline base has support

on only pvc + 1 intervals. Together with conditions (C1), (C3), (C8), we have

√
(EI )⊤V∗

nV∗⊤
n EI =

√ D∑
d=0

Kd∑
k=1

Jn∑
h=1

⎧⎨⎩
n∑

i=1

rn∑
j=1

Bh
ij(yij − µij)⊤A

−1/2
ij Md,kA

−1/2
ij µ̇⊤

ij µ̇ijA
−1/2
ij (̃R−1 − R−1)A−1/2

ij (yij − µij)

⎫⎬⎭
2

≤ c

√
1
n

√ D∑
d=0

Kd∑
k=1

Jn∑
h=1

⎛⎝ n∑
i=1

rn∑
j=1

Bh
ij

⎞⎠2

= Op

(√
1
n

)
Op

(
nrn
√
Nn

)
= Op

(√
n
Nn

rn

)
.

Therefore

sup
t∈(0,1)

|I(t)| =
Nn

nrn
Op

(√
n
Nn

rn

)
= Op

(√
Nn

n

)
. (7)

Similarly, under the condition (C4), one has

sup
t∈(0,1)

|II(t)| =
Nn

nrn
Op

(
nrn
√
Nn

1
Nn

)
= Op

(
1/
√
Nn

)
. (8)

Further, since supt∈(0,1)|III(t)| = supt∈(0,1)|g
(o)
dk (t) − αdk(t)| ≤ c(N−1

n ), together with (7) and (8), we have

sup
t∈(0,1)

|̃α(o)(t) − α(t)| = sup
t∈(0,1)

|I(t) + II(t) + III(t)| = Op(
√
Nn/n + 1/

√
Nn),

which guarantees theuniformconvergence theoremof the oracle estimator for the spline coefficient functions byminimizing
(4), i.e.

sup
t∈(0,1)

|̃α
(o)
dk (t) − αdk(t)| = Op(

√
Nn/n + 1/Nn).

This completes the argument. □
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A.3. Proof of Theorem 2: Consistency of varying coefficient estimators

Let

ℓ(γ) = ∥Un − V∗

nγ∥
2, Pℓ(γ) = ℓ(γ) + nr

D∑
d=1

Nn+1∑
q=1

pλn (∥θdq∥), ℓdk,h(γ) =
∂ℓ(γ)
∂γdk,h

and ℓ̄dk,h(γ) = (ℓdk,h(γ), . . . , ℓdk,h+pvc (γ)). Let ρn =
√
Nn/n + 1/

√
Nn. For any γ satisfying ∥γ − γ̃ (o)

∥ = cρn
√
Nn with some

constant c > 0, one has

Pℓ(γ) − Pℓ(̃γ (o)) = ℓ(γ) − ℓ(̃γ (o)) + nrn
D∑

d=1

Nn+1∑
q=1

pλn (∥θdq∥) − nrn
D∑

d=1

Nn+1∑
q=1

pλn (∥̃θ
(o)
dq ∥)

= ∥Un − V∗

n (̃γ
(o)

+ u)∥2
− ∥Un − V∗

nγ̃
(o)

∥
2
+ nrn

D∑
d=1

Nn+1∑
q=1

{pλn (∥θdq∥) − pλn (∥̃θ
(o)
dq ∥)}

= I + II,

in which, by the arguments as in the proof of Theorem 2 in Xue [36], there exists a constant c > 0, such that I =

∥Un−V∗
n (̃γ

(o)
+u)∥2

−∥Un−V∗
nγ̃

(o)
∥
2

≥ cnrnρ2
n with probability approaching 1. For the second part, let sd0 = {j : ∥̃θ

(o)
dq ∥ = 0},

sd1 = {j : anλn < ∥̃θ
(o)
dq ∥, anλn < ∥θdq∥}, and sd2 = (sd0 ∪ sd1)∁. Then one has,

II ≥ nrn
D∑

d=1

∑
q∈sd2

{pλn (∥θdq∥) − pλn (∥̃θ
(o)
dq ∥)} ≈ nrnD (anλnNn) λn(∥θdq∥ − ∥̃θ

(o)
dq ∥) = Op(nrnN3/2

n anλ2
nρn) = op(nrnρ2

n ),

by assumption (C7). Therefore, for some constant c, one has

Pr{ inf
γ :∥γ−γ̃(o)∥=cρn

√
Nn

Pℓ(γ) ≥ Pℓ(̃γ (o))} → 1, as n → ∞.

Hence there exists a local minimizer γ̃ of the penalized objective function Pℓ(γ) in the local neighborhood {γ :

∥γ − γ̃ (o)
∥ ≤ cρn

√
Nn}. Together with Theorem 1, there exists a local minimizer α̃dk(t) of (3) satisfying ∥α̃dk − αdk∥2 =

Op(
√
Nn/n + 1/

√
Nn). □

A.4. Proof of Theorem 2: Consistency of null region identification

Note that for each null region Ed = [ed1, ed2] defined in (C6), there exist two knots, i.e. the ℓd1th and ℓd2th knots, such
that ed1 falls in the interval between the ℓd1th and (ℓd1 + 1)st knots, and ed2 falls in the interval between the ℓd2th and
(ℓd2 + 1)st knots. Let Jd = {1, . . . , ℓd1 − 1, ℓd2 + pvc + 2, . . . , Jn}. Then we have the following Lemma by Lemma 4 and
Markov’s inequality.

Lemma 5. Under conditions (C2)–(C5), for any d ∈ {0, . . . ,D} and k ∈ {1, . . . , Kd}, let

ℓ̃dk,h(γ) =

n∑
i=1

rn∑
j=1

Vij,kh(tj)Bh(tj)

⎧⎨⎩Uij(tj) −

D∑
k=0

Kd∑
d=0

∑
h∈Jd

Vij,kh(tj)Bh(tj)γdk,h

⎫⎬⎭ .

Let ℓ̄dk,q(γ) = (̃ℓdk,q(γ), . . . , ℓ̃dk,q+pvc (γ)) and ℓ̄d,q(γ) = (ℓ̄d1,q(γ), . . . , ℓ̄ddj,q(γ)). Then for any ηn satisfying

1
ηn

√
ln(nrn)
nrNn

→ 0 and ηnN2
n → ∞,

we have

Pr

{
max

d∈{1,...,D}, q∈J∁d

ℓ̄d,q (̃γ (o))
 ≥ nrnηn

}
→ 0.

Let γdk,Jdk = (γdk,h, h ∈ Jdk)⊤ and γdk,J∁dk
= (γdk,h, h ∈ J∁dk)

⊤.

Let γ̃ = {̃γdk : d ∈ {0, . . . ,D}, k ∈ {1, . . . , Kd}} such that, for each γ̃dk with γ̃dk,J∁dk
= 0, and γ̃dk,Jdk solving

∂Pℓ(γ)/∂γdk,h = 0, for h ∈ Jdk. By the Karush–Kuhn–Tucker (KKT) condition, γ̃ is the minimizer of (3) with the SCAD
penalty if and only if⎧⎨⎩

∂Pℓ(̃γ)
∂γdk,h

= 0 if ∥̃θdq∥ ̸= 0,

∥ℓ̄d (̃γ)∥ ≤ nrnλn if ∥̃θdq∥ = 0,
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where ℓ̄d (̃γ) = (ℓ̄d1,q (̃γ), . . . , ℓ̄ddj,q (̃γ)) and ℓ̄dk,q (̃γ) = (ℓdk,q (̃γ), . . . , ℓdk,q+pvc (̃γ)). By its definition, the first condition in the
KKT is satisfied by γ̃ . One only needs to show that ∥ℓ̄dk (̃γ)∥2 ≤ λn, if ∥̃γq

d∥ = 0.
Let A = ∪d,kJ∁dk and γ̃A = (̃γdk,h, h ∈ A). Define γ̃A∁ , γ̃

(o)
A and γ̃

(o)
A∁

similarly. Then note that γ̃A∁ = γ̃
(o)
A∁

= 0, and

γ̃
(o)
A =

{(
V∗

n,A

)⊤V∗

n,A

}−1 {(
V∗

n,A

)⊤Un,R

}
, γ̃A =

{(
V∗

n,A

)⊤V∗

n,A

}−1 {(
V∗

n,A

)⊤Un,R + Wn

}
,

whereWn is a diagonal matrix withWn = diag{p′

λn
(∥̃θdq∥)̃θdq/∥̃θdq∥}. Note that

∥Wn∥2 =

∑
d,q:∥̃θdq∦=0

p′

λn
(∥̃θdq∥) ≤ c (anλnNn) λn.

By Lemma 3 and condition (C7), there exists a constant c > 0 such that

∥l̄(̃γ) − l̄(̃γ (o))∥2 = ∥(V∗

n)
⊤V∗

n (̃γ − γ̃ (o))∥2 = ∥(V∗

n,A)
⊤V∗

n,A (̃γA − γ̃
(o)
A )∥2 = ∥Wn∥2 ≤ canλ2

nNn = o(nrnλn).

Then Lemma 5 and condition (C7) entail that

Pr

{
max

d,k,h∈J∁dk

∥ℓ̄dk,h (̃γ)∥2 ≥ nrnλn

}
→ 0.

Therefore, γ̃ satisfies the KKT condition with probability approaching to 1. Consequently, the solution to (3) with the SCAD
penalty is asymptotically equivalent to the oracle estimator. Then Theorem 2 follows from the triangle inequality and
condition (C7). □
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