Deterministic Sub-Wallet

for Cryptocurrencies

Hossein Rezaeighaleh
Department of Computer Science
University of Central Florida
Orlando, USA
rezaei@knights.ucf.edu

Abstract— A big challenge in cryptocurrency is securing the
user’s keys from potential hackers because if the blockchain
network confirms a transaction, nobody can rollback that. One
solution to protect users is splitting the money between super-
wallet and sub-wallet. The user stores a large amount of money on
the super-wallet and refills the sub-wallet when she needs while
she uses the sub-wallet for her daily purchases. In this paper, we
propose a new mechanism to create sub-wallet that we call
deterministic sub-wallet. In this mechanism, the seed of sub-wallet
keys is derived from super-wallet seed, and therefore super-wallet
can build many sub-wallet addresses and refill them in a single
blockchain transaction. Compared to existing approaches, our
mechanism is less expensive, real-time, more secure against
MITM attack and easier for backup and recovery. We implement
a proof-of-concept on a hardware wallet and evaluate its
performance. Also, we analyze the attacks and defenses in our
mechanism to demonstrate that our proposed method has a higher
level of security than the classic super-wallet sub-wallet model.

Keywords—blockchain, cryptocurrency, hardware wallet, smart
card, Bitcoin.

I. INTRODUCTION

Blockchain technology and cryptocurrencies become
increasingly accessible and usable in various areas from
purchasing a coffee to transferring vehicles ownership. At the
same time, the crypto coins become more attractive and valuable
for hackers to steal, as we read the news of hackers stealing a
large amount of money from blockchain users. A major security
issue in all cryptocurrencies, including Bitcoin and Litecoin, is
the safety of a user’s private key. Blockchains usually use
elliptic-curve asymmetric cryptography to control the
ownership of coins or accounts. In other words, to transfer a coin
from a user to another, the sender signs a transaction with her
private key, and the blockchain verifies the signature of the
transaction with the sender’s public key. If the network accepts
and confirms this, nobody can roll back the transaction (unlike
the traditional bank transfer). Thus, if a hacker empties the user
account and transfers all her money to his account, she has no
way to reverse the transaction and recover her loss.
Unfortunately, many people have experienced this disaster.

Cliff C. Zou
Department of Computer Science
University of Central Florida
Orlando, USA
czou@cs.ucf.edu

A user’s private key(s) has full control of the user’s money,
and because there is no central authority, she should stand on
her own feet and keep her private key(s) safe by herself, which
is one of the most critical challenges in cryptocurrencies [1], [7].
Users usually employ crypto wallets to generate and store their
private key(s) and sign transactions. Crypto wallets have many
forms from online wallets to mobile and cold wallets, but the
most secure one is hardware wallet equipped with a specific
secure element in the form of a USB stick, Bluetooth device or
smartcard.

Even though the hardware wallet is secure, it is risky that a
user puts all of her money on a device and uses it day-to-day to
purchase. A smart and simple solution is proposed in [1] that
called super-wallet/sub-wallet model. The super-wallet is like a
saving account that stores a large amount of money and only
refills the same owner sub-wallet infrequently when needed.
The sub-wallet is like a checking account role that stores a small
amount of money used by the user for daily expenses. Therefore,
if the user’s sub-wallet is lost or hacked, she does not lose a
significant amount of money.

In the classic model [1], every time a user wants to refill her
sub-wallet, she needs to send coins from her super-wallet
address to her sub-wallet address. This mechanism is very
straightforward but has significant drawbacks. First, each time
that the user refills her sub-wallet, her super-wallet creates a
transaction and publishes to the blockchain network. Thus, for
each such transaction, she must pay the miner fee. Also, she
should wait for confirmation, and refilling sub-wallet takes time.
Also, refilling the sub-wallet is risky because a hacker could
perform Man-In-The-Middle attack to replace the user’s sub-
wallet address by his poison address to receive coins from the
super-wallet. Furthermore, the user must maintain the backup of
both super-wallet and sub-wallet.

To resolve these challenges in the super-wallet/sub-wallet
solution, in this paper, we propose a new model that we call
deterministic sub-wallet. In this model, the sub-wallet seed is
derived from super-wallet seed, and this process executes inside
super-wallet. Therefore, super-wallet derives sub-wallet
addresses and transfer coins to many of them in only one

blockchain transaction. After that, the user refills her sub-wallet
by transporting a seed from super-wallet to sub-wallet instead of
creating a blockchain transaction. Consequently, this model can
refill multiple sub-wallet addresses with just one mining fee and
one-time waiting for confirmation. It is secure because super-
wallet does not need to get sub-wallet addresses from the
external environment and it prevents a MITM attack. Also, there
is no need to back up sub-wallet. For proof-of-concept, we
implement a prototype of deterministic sub-wallet in a hardware
wallet with security element and evaluate its performance. In
summary, our contributions in this paper are:

e Designing a new super-wallet/sub-wallet model which
reduces sub-wallet refilling cost and time, enhances the
security, and removes the necessity for sub-wallet
backup

e Implementing prototype in a hardware wallet as a proof-
of-concept

In section II, we overview related works including
Hierarchical Deterministic wallet and classic super-wallet sub-
wallet model. In section III we explain our new proposed
deterministic sub-wallet model and Section IV is about our
prototype implementation in a hardware wallet, and we evaluate
its performance in section V. Next, we define our security
assumptions and threat model and do a security analysis of the
algorithm and its implementation in section VI. Finally, in
section VII, we finish the paper with a conclusion.

II. RELATED WORKS

A. Hierarchical Deterministic Wallet

Bitcoin, Ethereum, Litecoin, and almost all popular
cryptocurrencies use elliptic-curve cryptography (ECC) to sign
and verify transactions. They usually use secp256kl domain
parameters with ECC 256-bit [3]. Therefore, the user has a pair
of private key and public key and uses her private key to sign
the transaction and transfer coins to another user’s public key.
The sender must know the receiver’s public key to perform a
transaction, and all users publish their public key in a specific
format called address. Therefore, a user keeps her private key
secret and publishes her address to other users in the network
that causes privacy concerns because everyone that has access
to the Internet can discover the user’s addresses and track her
transactions.

Thus, anonymity is a challenge in cryptocurrencies because
everyone can watch the address of everyone, and all transaction
history is on the blockchain network. So, a hacker may know all
of a user’s purchases and transfers, and the user does not have
privacy. To tackle this problem, the user should change her
address in each transaction. This address is called ‘change
address’, which means that she generates a new private key and
public key each time to receive coins from others or receive
remaining coins of her spending transaction. Thus, nobody can
track her just by watching her transaction history, and this is the
best practice in blockchain networks now [4]. However, If the
user generates a random private key in each transaction, she
should maintain a lot of private keys that are hard to manage.
Deterministic wallets are invented to solve this problem and use
a predictable algorithm to generate new private keys, and

because it can be hierarchical, they are called Hierarchical
Deterministic (HD) wallets [5]. In HD wallet, the user has a tree
of private keys which any node can be derived from its parent
using Child Key Derivation (CKD) algorithm. The root of this
tree is a private key which is called ‘master private key’ and
derived from an entropy called ‘master seed’. In other words,
anyone who has the master seed can derive all subordinate
private keys. Consequently, the user needs to keep one seed
value safe and generates a lot of pseudo-random addresses
which provide anonymity.

HD wallet uses a path to address each key in the key tree that
is a sequence of a letter and a few numbers. The first element in
a path is letter ‘m’ that denotes master seed and subsequent
numbers are the input indexes for child key derivation algorithm
in the corresponding round [5]. In addition to HD wallet base
algorithms, the cryptocurrency community proposed a
complementary standard to define a universal path format for all
coins (Bitcoin, Ethereum, Litecoin, and other coins) in various
HD wallets [6]. The format of this addressing is as follows:

path = m/purpose’/coin’/account’/change/address_index (1)

There is also another proposal [8] which defines a
conversion algorithm to convert a list of memorable words
(mnemonics) to seed for HD wallets. The user must write these
generated words (12 to 24 words) on a piece of paper and keep
it safe. She can recover whole her key tree on a new wallet using
these words. Crypto wallet usually uses this process to back up
the master seed.

Therefore, there is a large universal tree that covers all keys
of all coins for a user wallet and each key in the tree has a unique
path, but ehese mechanisms are silent about the super-wallet
sub-wallet model, and there is not any link between two wallet
seeds. In our proposed mechanism, we use the HD wallet
structure and add a link between the master seed of super-wallet
and the master seed of sub-wallet that we called sub-seed.

B. Classic Super-Wallet and Sub-Wallet Model

The idea of super-wallet and sub-wallet is proposed in [1]
that is separating the main account that conveys a large amount
of money from spending account that is used for the daily
transactions. The main account corresponds to super-wallet
while spending account corresponds to sub-wallet. It mimics
personal saving account and checking account in traditional
banking. A user uses her spending account on a sub-wallet for
day-to-day expenses such as a purchase from online stores, pay
bills or buy a coffee. On the other hand, she uses her saving
account on a super-wallet just for receiving like a deposit of
salary and refill her spending account on the sub-wallet.
Therefore, she uses her super-wallet rarely, for example, one or
two times per month, and uses her sub-wallet several times per
day.

The classic solution to build super-wallet and sub-wallet
proposed in [1] is straightforward. The user should have two
regular wallets. She designates one wallet as super-wallet and
stores all of her money on that. Then, each time that she wants
to refill her sub-wallet (second wallet), she retrieves a receiving
address from the sub-wallet and sends coins from the super-
wallet to this address. In this mechanism, the user creates a

transaction in the super-wallet each time she wants to refill her
sub-wallet. This process requires the user to pay miner fee and
wait a period for confirmations. Because usually, her terminal
(laptop or smartphone) is vulnerable to malware attacks, it is
possible that a hacker replaces her sub-wallet address by his
poison address to receive coins from the super-wallet. Also, the
user should back up both super-wallet and sub-wallet similar to
all regular wallets. In the next section, we address these issues
with our proposed model.

ITII. PROPOSED DETERMINISTIC SUB-WALLET

In contrast to classic super-wallet sub-wallet model with
independent key trees, in our new mechanism, deterministic
sub-wallet, we derive sub-wallet seeds from super-wallet master
seed. Therefore, we can construct all sub-wallet key trees in
super-wallet. Also, we use one super-wallet blockchain
transaction to refill several sub-wallet addresses, and when the
user wants to refill her sub-wallet, she needs to import one seed
to her sub-wallet.

Compared to the classic super-wallet/sub-wallet model, the
advantages of our proposed deterministic sub-wallet are:

e Deterministic sub-wallet is cheaper because it refills
multiple sub-wallet addresses with only one blockchain
transaction, while classic model requires a blockchain
transaction in each refill.

e Refilling sub-wallet is real-time in deterministic sub-
wallet because it is only transporting a seed from super-
wallet to sub-wallet without any transaction with
blockchain network.

e The classic model is vulnerable to Man-In-The-Middle
attack for poison key injection similar to other regular
wallets, but deterministic sub-wallet is not because the
sub-wallet addresses are generated inside super-wallet
with no need to outside of the wallet.

e The user must back up both super-wallet and sub-wallet
seeds in classic model, but in deterministic sub-wallet,
there is no need to back up sub-wallet seed because it is
derived from super-wallet seed and only one back up of
super-wallet seed is enough.

The abstract process of deterministic sub-wallet is as
follows. The super-wallet generates a pool of sub-wallet
addresses and constructs a large transaction which transfer coins
from one (or many) super-wallet addresses to generated sub-
wallet addresses. Then, the super-wallet signs and publishes the
transaction. After that, each time that the user wants to refill her
sub-wallet, she exports a sub-wallet seed from the super-wallet
and imports that to the sub-wallet securely. In our previous
paper which is in submission, we proposed a secure
cryptographic mechanism to transport (export and import) a
seed between wallets using Elliptic-Curve Diffie-Hellman. We
explain the details of the process in the following sections.

A. Sub-Wallet Seed Derivation

Both super-wallet and sub-wallet should be HD wallet to
support the anonymity and privacy of the user. In our model,
one sub-wallet can have only one seed at a time, but the super-
wallet derives a new seed each time to generate a new sub-wallet

address. So, to implement deterministic sub-wallet, we propose
a simple function to derive multiple sub-wallet seeds (subSeed)
from a super-wallet master seed (masterSeed). This function is
as follows.

subSeed = HMAC-SHAS512(key="Sub-wallet xxxx”,
data=masterSeed) (2)

In this function, we use a procedure similar to master key
generation function in [5] with some modifications. The core
function is an HMAC-SHAS512 with master seed as input data
and “Sub-wallet xxxx” string as input key. The “xxxx” is the
index of sub-wallet starting from 0 which is a four-digit
hexadecimal number. For example, the input key for sub-wallet
number 1 will be “Sub-wallet 0001”. The output of this function
is a 512-bit deterministic pseudo-random value which can be
used as a regular seed to construct an HD wallet key tree on the
sub-wallet.

B. Sub-Wallet Refilling

To refill one or many addresses (many sub-seeds) of the sub-
wallet, we use a specific blockchain transaction created and
signed by the super-wallet. The refilling algorithm gets inputs #,
i and v that described in TABLE 1. This algorithm runs on the
super-wallet and generates n sub-seeds starting from index i
using sub-wallet seed generation function. Next, it derives the
sub-wallet private keys and their addresses with a predefined
fixed path illustrated in Fig. 1. This path is fixed for all sub-
seeds and we use only the first address of each sub-seed. In this
path, ‘change’ is 1 because the result address will be used to
transfer coin from super-wallet to sub-wallet that is an internal
use.

The super-wallet generates » addresses from n sub-seeds and
creates a transaction that transfers v/ coin to each address. We
divide the input fund for all addresses equally. Fig. 1 shows the
pseudo-code of the sub-wallet refilling algorithm and TABLE I.
describes the acronyms of the pseudo-code.

refillSubWallet (n, i, v){
for j=i to i+n {

s; = deriveSubSeed(masterSeed, j)
ky = deriveKey(seed=sj,
path="m/44'/coin’/0'/1/0")
) a; = privateKeyToAddress (k;)

tx = signTX(v/n => a; : j=i to i+n)
sendTransaction(tx)

}

Fig. 1. Sub-wallet refilling pseudo-code

TABLE L SUB-WALLET REFILLING PSEUDO-CODE ACRONYMS
Acronym Meaning
n number of sub-wallet addresses
i index of the first sub-wallet address
A sum of funds to refill
Si Sub-seed of sub-wallet index j
kj Private key of sub-wallet index j

Acronym Meaning
aj Address of sub-wallet index j
tx Blockchain transaction

To clarify this algorithm, we discuss a simplified example of
the sub-wallet refilling procedure illustrated in Fig. 2. Assume
that the super-wallet address (Super-walletagdress1) has 30 Bitcoin
at first. The sub-wallet refilling algorithm creates a transaction
with 5 sub-wallet addresses (n=5) starting from sub-wallet index
1 (i=1), and the total fund is 2 Bitcoin (v=2). After confirmation
by blockchain network, the super-wallet address has 28 Bitcoin
and each sub-wallet address (Sub-walletaggressi to Sub-
walletagdresss) has 0.4 Bitcoin.

Blockchain State
before refilling

y

Super-wallet,y4ress1 + 30 btc

Blockchain State
after refilling

b

Super-wallet

Sub-wallet
refilling
Transaction
(n=5, i=1, v=2btc)

address1 - 28 btc

Sub-wallet,y4ress1 + 0.4 btc
1 0.4 btc
address3 - 04 btc
Sub-wallet, g essq - 0-4 btc

Sub-wallet,yqress2

Sub-wallet

Sub-wallet, g esss - 0.4 btc

Fig. 2. The simplified example of sub-wallet refilling in the blockchain. The
left side demonstrates the blockchain state before publishing the sub-
wallet refilling transaction, and the right side shows the state after that.

In the real world and also our prototype implementation
some details are different. For example, to provide anonymity,
a change address is used that means the address of super-wallet
to receive remaining coins in the left side is different from input
super-wallet address in the right side. Furthermore, the sum of
the fund before publishing and after publishing the refilling
transaction are not equal because of the mining fee. Also, the
first super-wallet address could be replaced by multiple super-
wallet addresses to provide enough fund to refill the sub-wallet
addresses.

C. Sub-Wallet Seed Transporting

We need an algorithm to transport a sub-wallet seed (sub-
seed) from super-wallet to sub-wallet securely. To do that, we
employ a modified version of the seed transport algorithm that
we proposed in our previous paper which is in submission. This
seed transport algorithm is based on Elliptic-Curve Diffie-
Hellman key (ECDH) agreement [2]. To guarantee secure
transfer, the wallet, which is preferred to be a hardware wallet,
should have a screen to display a verification code (key check
value) to the user, and a physical button to get her confirmation.

In ECDH, each party has its key pair, but both parties
compute a shared secret with its private key and the other party’s
public key. Also, an additional SHA-256 computation of EDCH
result value is recommended [2]. In our algorithm, we use the
computed secret as an AES 256-bit encryption key to encrypt
the sub-seed. Fig. 3 illustrates the steps of the mechanism and
describes its acronyms. The goal of this algorithm is
transporting a secure copy of a sub-seed from the super-wallet
to the sub-wallet. For security, we assume both wallets are
general hardware crypto wallets and have a screen, (at least) one
physical button and is protected with a passcode. Also, we
assume the transport channel is an untrusted terminal like a
computer, laptop or smartphone that may be compromised by a
hacker.

TABLE II. SUB-WALLET SEED TRANSPORT ALGORITHM ACRONYMS
Acronym Meaning
tkPriy Elliptic-Curve Transport Private key of entity X
txPuby Elliptic-Curve Transport Public key of entity X
b58 Base-58
kevyx Key Check Value for Wallet X
ECDH Elliptic-Curve Diffie-Hellman key agreement algorithm
tk Transport Key (Symmentric)
encSubSeed Encrypted Sub-seed

Super-Wallet
.

Untrusted Terminal

smartphone, etc.) \

Sub-Wallet

(computer,

(tkPrigyp.wattetr tkPUD b waner) := EC256GenKeyPair
kev, := b58(RIPEMD160(SHA256(tkPuby,p aiier)))
Display (kcv,)

Wm7HQZEJTRPauve64

tkPubg,b wallet UYXRrS3cak?

@@= subSeed |
1
i
STEP1 < .
]
1
1
1
L P
kv, := bS8(RIPEMD160(SHA256(tkPub, p, waier)))
Display (kcv,)
Wm7HQZEJTRPauv64
UYXRrS3cak?7
Error User confirms
STEP2 < (kev; == kevy)
(tkPrigyper-waltets tkPUDG,per. waliet) = EC256GenKeyPair
tk := SHA256(ECDH(tkPrigyperwaers tkPUDL b walter))
encSubSeed := AES256Enc(tk, subSeed)

encSubSeed, tkPub,ger-watet

1
1
1
STEP 3 :
1
1

tk := SHA256(ECDH(tkPrisp waiietr thPUb,yper watiet))
subSeed := AES256Dec(tk, encSubSeed)

P

Fig. 3. Secure sub-seed transport algorithm to transport a sub-seed from super-wallet to sub-wallet through an untrusted terminal. (The gray boxes illustrate
information that is displayed on hardware wallets’ screens for user verification. The values shown on the two wallets should be identical.)

IV. PROTOTYPE IMPLEMENTATION

The most secure crypto wallet is a hardware wallet equipped
with a secure element, screen, and at least one physical button.
Although all wallets can use our new mechanism to create
super-wallet and sub-wallet, we choose hardware wallet for
prototype implementation since it is more secure and realistic.
We use a smart card that has a screen and button. As [9] and [12]
argued, a traditional smart card is not secure for digital signature
(applicable to crypto wallet) because it uses a terminal (e.g.,
computer, smartphone) for interaction with the user and a hacker
may install a malware on the terminal and modify data before
signing by the smart card.

Fortunately, now there are some smart cards in the market
that use e-paper technology as an on-card display. This
technology enables the smart card to directly show information
to the user without relying on the external terminal. Also,
capacitive and mechanical buttons are available in modern smart
cards too. Thus, we use a smart card with a display and buttons
to implement our mechanism. This smart card also supports
near-field communication (NFC). Fig. 4 demonstrates the image
of such a smart card.

Logo for NFC Antenna
E-Paper
Display
Programmable
IC Chip
Buttons

Fig. 4. New smart card with an e-paper display, physical buttons, and a
programmable IC chip

To develop a card application to run on a smart card, we
employ Java Card technology [13] which is a limited version of
Java Runtime Environment with fewer features. We write and
compile our program in Java, convert it to a Card Application
(CAP) and load it to the programmable IC chip on the smart
card. We implement our code with Java Card (JC) 3.0.1 API,
and it can run on any JC compatible smart card, and only the
display API is card-specific. JC 3.0.1 supports ECC 256-bit key
generation and signing, SHA-256 digest algorithm, AES 256-
bit encryption/decryption, and Elliptic-Curve Diffie-Hellman
(ECDH) key agreement but does not include secp256k1 domain
parameters that we need in cryptocurrency.

Furthermore, to calculate kcv, we use the SHA-256 hash
algorithm to digest the public key, RIPEMD-160 hash algorithm
to shorten the digest length and base-58 encoding to make it
more readable for users. These algorithms are all supported and
available on existing hardware wallets, but smart cards usually
do not provide them. To resolve this issue, we utilize some codes

in the Ledger Unplugged Java Card wallet GitHub
repository [11] with a few minor changes to add these required

algorithms. We have published our source code on GitHub as
well [14].

As we mentioned, the smart card has limited resources, and
our test card has only 2.5-kilobyte memory. Thus, we have
implemented our code efficiently to use minimum memory. A
well-known technique that we used is sharing memory. We
define just two big arrays to allocate all available memory in one
place and then pass them to all functions that require them. Also,
we avoid very nested function callings and any recursive
function because calling function requires stack allocation
which consumes memory. In this type of programming inside a
secure element (IC card) you should be very stingy and use each
byte carefully. Because the refilling transaction is large for a
smart card, we have to limit the number of sub-wallet addresses
that the wallet can refill in one transaction. In our
implementation, we limit it to 16 sub-wallet addresses which are
enough in significant cases.

In our prototype, we developed our code for Bitcoin, but our
proposed mechanism applies to other similar altcoins too such
as Litecoin. Fig. 5 demonstrates the whole process from the
user’s perspective.

[Super-Wal let]

STEPO .<

STEP1 -<

STEP 2
<

STEP 3 .<

Fig. 5. The whole process of sub-wallet refilling and sub-seed transporting
from the user’s perspective. Step 0 is for refilling sub-wallet addresses
and Step 1 to step 3 are for secure sub-seed transport from super-wallet
to sub-wallet.

V. PERFORMANCE EVALUATION

In our performance test, we use a contactless (NFC) smart
card reader connected to a laptop with a USB cord. We run each
test case 10 times and use our evaluation program [15] to
measure the period of sending and receiving packets.

We compare classic sub-wallet and deterministic sub-wallet
in two scenarios. First, we assume that the user has several sub-
wallets and wants to refill some of them simultaneously. In this
scenario, the classic model creates one transaction per sub-
wallet, but deterministic model creates one transaction for
multiple sub-wallets. The performance result to execute this
process on the test smart card (sample hardware wallet) is
illustrated in Fig. 6.

6000

5000

4000 -
3000 — 1
I | |
| | | |
2000 Il | ‘
| 1 3 |
| | 1
1000 | | | ‘ ;
| ‘ | !
[| Il I |

0 i | -
1 2 3 4 5 6 7 8 9 10

Number of sub-wallets

Time (ms)

m Classic sub-wallet Deterministic sub-wallet

Fig. 6. Smart card execution time to refill multiple sub-wallets simultaneously

For one, two and three sub-wallets the classic model is a
little bit better because it is similar to regular wallets and get all
input addresses from outside of the hardware wallet. On the
other hand, the super-wallet on deterministic model derives sub-
wallet seeds and addresses internally that takes more time, but
for four sub-wallets and more it has better performance because
of fixed overhead time to sign a transaction in the classic model.

In the second scenario, we assume that the user has only one
sub-wallet and wants to refill it repeatedly. For example, she
refills her sub-wallet one time per month in a year. In this
scenario, she may refill her sub-wallet for 1, 2, 3 to 12 months.
In the classic model, she should create a blockchain transaction
each time, but on the deterministic model, she can refill her sub-
wallet for multiple months in one blockchain transaction.

To compare the classic and the deterministic model in this
scenario, we use the current metrics of the Bitcoin network [16].
For the time of writing this paper, TABLE III. shows the Bitcoin
network metrics. In these calculations, we assume that the
average transaction size is 250 bytes. Also, our mechanism to
make deterministic sub-wallet adds 34 bytes per sub-wallet
address except first one.

TABLE IIL BITCOIN NETWORK METRICS
Time for Fee per
Inserted block confirmation Fee per byte transaction
Next block 10 min 23 satoshi/byte 5750 satoshi
3 blocks 30 min 22 satoshi/byte 5500 satoshi

6 blocks 60 min 10 satoshi/byte 2500 satoshi

We compare the classic model with the deterministic model
with these metrics for time and fee. To simplify the comparison,
we only consider the worse cases. At first, to compare fee, we
use the best fee that is 2500 satoshi per transaction with 60 min
to confirm. In this situation, the classic model consumes less fee
to refill sub-wallet. Fig. 7 demonstrates the consuming fee for
both models. For the classic model, the cost is the number of
sub-wallet times transaction fee, but on the deterministic model,
the cost is not very different for 1 to 12 refills and increase a
small amount for additional 34 bytes per sub-wallet.

35000
30000
25000

20000

15000
10000
5000 I |
bbb
1 2 3 4 5 6 7 8 s 10 11 12

Number of Refills

Satosh

m Classic sub-wallet m Deterministic sub-wallet

Fig. 7. Fee to refill one sub-wallet multiple times

The results for the time are similar. Fig. 8 shows the time
results. In this comparison, we use the best network
confirmation time (10 min) which cost more, but it is the best
option for the classic model. Because the user should wait for
network confirmation for each refill, it takes much time. On the
other hand, because the deterministic wallet does all of that in
one transaction, the time is not related to the number of refills.

|! ‘I
11 12
A. Assumptions and Threat Model

The goals for our mechanism are secure refilling sub-wallet
addresses and secure transporting a sub-seed from super-wallet

140

120

o I IE IE I! |ﬂ |I |! |! |! |I
1 2 3 4 9 6 7 8 9 1

0

Time (minutes)
=
D =] o
o o o

N
o

N
o

Number of Refills
m Classic sub-wallet Deterministic sub-wallet

Fig. 8. Time to refill one sub-wallet multiple times

VI. SECURITY ANALYSIS

to sub-wallet. The threat model is as follows. We have the
following assumptions on hardware wallet, terminal, and user:

e The terminal, such as a computer, laptop or smartphone
is untrusted and could be compromised by a hacker,
e.g., by installing malware.

e The hardware wallet has a secure element, a display and
at least one physical button similar to Ledger Nano S
and CoolWallet [10], as illustrated in Fig. 3.

e The hardware wallet is protected by a passcode (PIN-
Code) to access private keys to prevent unauthorized
access to the wallet.

e The master seed is generated securely on the main
wallet, and nobody has a copy of that.

e The user follows the instructions and checks kev on
both wallets” displays during the seed transfer
procedure.

B. Less Super-Wallet Signings

Our proposed mechanism only needs one super-wallet
transaction signing to refill multiple sub-wallet addresses. It
decreases required permission signing and provides better
security than the classic model. In other words, the user’s big
fund is less accessible to potential hackers.

C. Capturing Sub-Wallet Seed

A hacker may sniff the communication and steal the sub-
wallet seed in two situations. First, the sniffing attack could
happen when the user creates the sub-wallet refilling transaction
on super-wallet. To defend against this sniffing attack, we
implement the entire procedures of sub-seed creation, private
key derivation and address conversion on the super-wallet (e.g.,
via the onboard IC chip on a smart card). Thus, the terminal
passes the sub-wallet index to the super-wallet, and there is no
secret information to sniff.

Second, the hacker may try to sniff the terminal when the
user transports a sub-wallet seed from the super-wallet to the
sub-wallet. The sub-seed is encrypted with AES-256 bit to avoid
this attack, and there is no plaintext secret to steal.

D. MITM: Replacing Sub-Wallet Address

The hacker may want to make a Man-In-The-Middle
(MITM) attack to modify the receiver address in the transaction
before sending the inputs to the wallet. In this way, he can
replace the legitimate receiver address by his address to steal the
user’s coins. The classic model is vulnerable to this attack
because the sub-wallet key tree is independent, and the super-
wallet needs to get the sub-wallet address from the input. In
contrast, our proposed mechanism avoids this attack by deriving
the sub-wallet seeds from the super-wallet master seed and
generating the sub-wallet private keys and addresses on the
super-wallet. Therefore, there is no need to get the sub-wallet
addresses from inputs and the hacker has no chance to replace
them in the terminal.

E. MITM: Replacing Change Address

The hacker may modify change address and replace it by his
address. As we discussed, in HD wallet, change address is an

address that remaining money of a transaction will return to that.
In our case, when the user refills his sub-wallet addresses and
pays the fee, the blockchain network returns remaining coins to
the change address provided in the refilling transaction. If the
hacker could replace this address, he steals all remaining fund
from the super-wallet. To avoid that, in our implementation, we
create the change address inside the super-wallet based on the
master seed, and the terminal passes the key path of change
address instead of change address itself. The key path is not
subject to MITM because if the hacker modifies the key path,
he cannot insert his address.

F. MITM: Replacing Transport Public Key

Another possible MITM attack is that the attacker relays the
messages between the supper-wallet and the sub-wallet and tries
to replace the sub-wallet public key by his poison public key to
convince the super-wallet to encrypt the sub-seed using the
poison key. Then, the attacker computes the transport key using
the super-wallet public key and his private key and decrypts the
encrypted sub-seed.

To defend against this attack, we have used a key check
value (kcv) in the sub-wallet seed transport algorithm. Both
wallets compute their kcv of the sub-wallet public key and
display that in their screens. The user must confirm the equality
of them by pressing a physical button on the super-wallet. If a
hacker imports his poison public key to the super-wallet, the
user will be able to detect such an attack by comparing the two
displayed wallets’ kcv values and hence reject this MITM
attack.

VII. CONCLUSION

In this paper, we proposed a new mechanism to create super-
wallet and sub-wallet. It derives sub-wallet seed from super-
wallet master seed, and we called it deterministic sub-wallet. We
implemented this new mechanism on a hardware wallet as a
proof-of-concept, and its performance was better than the
classic super-wallet and sub-wallet creation mechanism. Also,
our security analysis illustrates that this mechanism is more
secure than the classic one.

ACKNOWLEDGEMENT

This work is supported by the National Science Foundation
under grant DGE-1723587, and the grant from US Army PEO
STRI.

REFERENCES

[1] S. Barber, X. Boyen, E. Shi, and E. Uzun, “Bitter to better - how to make
Bitcoin a better currency”, in Proceedings of The 16th Financial
Cryptography and Data Security, 2012.

[2] “SEC I: Elliptic Curve Cryptography”, Version 2.0, Standard for efficient
cryptography group, 2009.

[3] “SEC 2: Recommended Elliptic Curve Domain Parameters”, Version 2.0,
Standard for efficient cryptography group, 2010.

[4] A. Narayanan, J. Bonneau, E. W. Felten, A. Miller, and S. Goldfeder,
Bitcoin and Cryptocurrency Technologies: A Comprehensive
Introduction, Princeton University Press, 2016.

[5] “Hierarchical Deterministic Wallets”, Bitcoin Improvement Proposal 32
(BIP-0032), 2012.

[6] “Multi-Account Hierarchy for Deterministic
Improvement Proposal 44 (BIP-0044), 2014.

[7]1 S. Meiklejohn, “Top Ten Obstacles along Distributed Ledgers Path to
Adoption”, IEEE Security & Privacy, vol. 16, issu. 4, pp. 13-19, 2018.

[8] “Mnemonic code for generating deterministic
Improvement Proposal 39 (BIP-0039), 2013.

[91 H. Rezaeighaleh, R. Laurens, C. C. Zou, “Secure smart card signing with
time-based digital signature”, in Proceedings of the 2018 International
Conference on Computing, Networking and Communications, pp. 182-
187, 2018.

[10] “Hardware wallet”, Bitcoin wiki, 2018 [Online]. Available:
https://en.bitcoin.it/wiki/Hardware wallet [Accessed Oct. 8, 2018].

[11] Ledger Unplugged [Online]. Available:
https://github.com/LedgerHQ/ledger-javacard

Wallets”, Bitcoin

keys”, Bitcoin

[12] B. Schneier, and A. Shostack, “Breaking up is hard to do: modeling
security threats for smart cards”, USENIX Workshop on Smart Card
Technology, USENIX Press, 1999, pp. 175-185.

[13] “Java Card Runtime Environment (JCRE) Specification,” 3rd Edition,
2011.

[14] blackCardApplet [Online]. Available:
https://github.com/hosseinpro/blackCard Applet

[15] smartcardPage [Online]. Available:
https://github.com/hosseinpro/smartcardPage

[16] Bitcoin Fees [Online]. Available: https://bitcoinfees.info

