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Abstract—We consider the problem of scheduling in wireless
networks with the aim of maintaining up-to-date and synchronized
(also called, aligned) information at the receiver across multiple
flows. This is in contrast to the more conventional approach of
scheduling for optimizing long-term performance metrics such
as throughput, fairness, or average delay. Maintaining the age
of information at a low and roughly equal level is particularly
important for distributed cyber-physical systems, in which the ef-
fectiveness of the control decisions depends critically on the fresh-
ness and synchrony of information from multiple sources/sensors.
In this work, we first expose the weakness of several popular
MaxWeight scheduling solutions that utilize queue-length, delay,
and age information as their weights. Then, we develop a novel
age-based scheduler that combines age with the interarrival times
of incoming packets in its decisions, which yields significant gains
in the information freshness at the receiver. We characterize the
performance of our strategy through a heavy-traffic analysis that
establishes upper and lower bounds on the freshness of system
information.

I. INTRODUCTION

Wireless networks are expected to form the communica-
tion backbone of many future cyber-physical systems that are
expected to support diverse applications such as autonomous
driving in vehicular networks, monitoring and response in
sensor networks, efficient supply and demand management
in smart power grids, etc. As such, wireless networks are
no longer merely a medium of high-rate information transfer
that are detached from the content of the information, but an
integral part of a distributed controller-actuator system whose
performance is highly dependent on the timeliness and accuracy
of the information that guides the system operation.

Over the last few decades, wireless resource allocation
research has been increasingly more effective in maximizing
long-term performance metrics such as throughput, utility, reli-
ability, and average delay (see [2]-[7] and references therein).
These advances have benefited from an ever-expanding frame-
work of adaptive controller design that utilize measures such as
actual/virtual queue-length (e.g., [8]-[14]), Head-of-Line (HoL)
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delay (e.g., [15]-[20]), drop-rates (e.g., [21], [22]), time-since-
last-service (e.g., [23], [24]) information in order to guide a
variety of decisions including rate control, scheduling, and
routing.

Separate from these developments, relatively recently there
has been an interest in maintaining fresh information of a flow
at the receiving end of a communication link (e.g., [25]-[30]
and references therein). This is important in applications, where
the freshness of the system state information is critical to the
control decisions. Most of these prior works (e.g., [25]-[28])
have focused on the analysis and/or control of the status updates
from a single source or multiple sources to a single server, i.e.,
maintaining up-to-date ‘status of the source(s)’ at the receiver.

In this paper, we consider a different concept of freshness
that is measured by the ‘age of received packet’ from each
source. Such a measure is motivated by applications where
it is important to maintain equally delayed information from
multiple sources at the receiver, such as network monitoring
and distributed sensing. In these applications, it is important
that the information flow from different sources are roughly
synchronized for accurate tracking (in monitoring applications)
and stable control (in distributed sensing and control applica-
tions). Further, we consider the problem of scheduling for fresh
information in a general network of wirelessly inter-connected
servers that receive randomly arriving stream of updates. This
setting calls for a different set of models as well as analysis and
design tools than those employed in the aforementioned works.
The more recent work [29] considers the problem of scheduling
for fresh information in wireless networks, and presents a set
of interesting structural results concerning the tractability and
intractability of the optimal scheduling solution. It also provides
a so-called steepest-age-descent algorithm that is numerically
investigated. In our work, we take a different approach based
on the drift-minimization methodology, and conduct a heavy-
traffic analysis of its performance in terms of the freshness
metric. We mainly focus on heavily-loaded conditions, since,
for some applications, achieving minimal freshness in lightly-
loaded conditions may be easier or less critical than in heavily-
loaded conditions. We believe that our complementary works
collectively help expand our understanding and management of
networks for the new metric of information freshness.

With this vision, we first provide a measure of information
freshness for multi-source wireless networks based on a virtual
queueing model. Then, we present a comparative investiga-



tion of three well-known scheduling strategies — namely, two
MaxWeight Schedulers that use queue-lengths and HoL delays
as their weights, and a round-robin scheduler — to reveal that
each of these three choices can result in deficient scheduling
choices for the new freshness metric.

Based on these observations, we develop a new age-based
scheduler that combines age information with interarrival times
in order to determine the weights assigned to different flows. To
characterize the performance of our proposed scheduler, we also
perform its heavy-traffic analysis that yields lower and upper
bounds on the heavy-traffic performance of our proposed policy.
Heavy-traffic analysis has been an effective methodology for
analyzing the performance of scheduling policies (e.g., see [31]
and references therein). While the results are obtained under
heavy-traffic conditions, the scheduler possess desirable fresh-
ness characteristics even in lightly-loaded conditions, thereby
making it a good choice for maintaining up-to-date information
of flows at the receiving end.

The key message that we learn from this work is the
value of interarrival times in maintaining fresh and equally-
delayed information updates of continuous flows. This insight is
expected to be useful in designing the communication backbone
of future cyber-physical systems whose operation is critically
dependent on the freshness of information.

II. SYSTEM MODEL

We consider a network graph G = (N, L) with the set
N of nodes and the set L of wireless links. Due to wireless
interference, at each time t, a subset of links S(¢) € L can be
scheduled at the same time. The subsets of links that satisfy the
interference constraints are said to be a feasible schedule. Let
S denote the set of all feasible schedules. We assume that all
the arrivals and transmissions occur in a time slotted manner:
the i-th packet at link [ arrives at ¢;; € N and is served at
t;.; € N, where N denotes the set of non-negative integers. The
arrival and the service complete at the end of the time slot.

Let A;(t) denote the number of packet arrivals in time slot ¢.
For simplicity, we assume that there can be at most one arrival
in a time slot, i.e., A;(t) € {0,1}. At each link [, packets
arrive following an i.i.d. Bernoulli process with mean rate \;.
Let X denote its vector. Also let X ; denote the interarrival time
between the i-th packet and the (i + 1)-th packet at link [, i.e.,
X :=tii+1 — t1;. We assume that {X;;} is predetermined,
though it is unknown to the scheduler until the arrivals occur.
We assume that one packet can be transmitted during a time
slot. The number of served packets in time slot ¢ is denoted
by S;(t) € {0,1}, in particular, S;(t) = 1 if [ € S(¢) and
Si(t) =0 if I ¢ S(t). We slightly abuse our notation and use
interchangeably the set S(¢) of scheduled links and the vector
{Si(t)}. Let Q;(t) denote the queue length at link ! at the
beginning of time ¢, which evolves as @Q;(t + 1) = (Q;(t) —
Si(t))" + Ai(t), where (-)" := max{0,-}. All the queues are
served in a first-come-first-served manner. Let N;(¢) denote the
index of Head-of-Line (HoL) packet at the queue of link [ at
the beginning of time ¢, i.e.,

Ni(t) == min{i | t;; > t}, (1)

Fig. 1.

Example of deterministic packet arrivals.

which is well-defined when Q;(t) > 0.

We define the age of link [ as the difference between the
current time and the time when the HoL packet of link [ is
generated. The age is set to 0 if the queue is empty. As such,
age is a measure of how outdated the data is at the transmitting
end' of the link is. We assume that only the links with non-zero
queue can be scheduled. Similar to [20], the age U;(¢) of link [
can be considered as a virtual queue that evolves as, for t € N,

U(t)+1 if [ ¢ S(t
v+ 1) = { VO FH@orawsg, if1ESE),
(Uit) +1 = Xy ) ifLeS(),

where 1.y denotes the indication function. The first equation
implies that the age increases by 1 when the packet is not
served, and the second equation implies that the age decreases
by the amount of interarrival time when the packet is served. We
note that our definition of the age is slightly different from [25].
Assuming Q;(0) = 0 and U;(0) = 0, the age equals 0 when
the queue is empty under our definition, and it accounts for the
oldness of the information waiting at the HoL of the link.

We say that the system is stable if the time-averaged mean
ages of all the links remain finite. Let A denote the set of arrival
rates such that for any A € A (strictly inside), there exists
a scheduling policy that can stabilize the system. Note that
from the Little’s law, the stability region of age is equivalent
to the stability region of the queue lengths, and any schedulers
that keep all the queue lengths finite (e.g., Queue-length based
MaxWeight [8]) stabilizes the system in terms of age and
achieves A.

2

III. MOTIVATION

In this section, we expose the deficiency of a round-
robin scheduler as well as commonly used throughput-optimal
MaxWeight schedulers that utilize queue-lengths and delays to
make the scheduling decisions. In particular, we design flows
with particular arrival patterns, and show that these popular
schedulers are unable to keep system information freshness
equally low. This will motivate us in the next section to
develop and analyze a new age-based scheduler that is aimed
at optimizing freshness of information.

Let us consider a simple network with three flows. Three
flows A, B,C have deterministic packet arrivals of different
patterns, and share a server that can serve one packet from
one flow at a time. In this example, we assume that all packets
arrive at the beginning of the time slot, and in each flow, packets
are served in the first-come-first-serve manner. At time 1, all

'Our definition is differerent from that in [25], where the age is defined as
a measure at the receiver. Despite the slight difference, their values are very
similar as shown in Fig. 11.



the three flows have a packet arrival, which is available for
transmission from time 2. Flow A has additional arrival at time
3. The pattern repeats as shown in Fig. 1, where the k-th packet
from flow Z is marked as Zk.

Suppose that there is no service until time slot 4 and we start
transmitting the packets from time slot 5. First, we transmit
the packets following the largest queue-length first policy. At
the beginning of time 5, we have the queue length vector of
Q = {Qa,QB,Qc} = {2,1,1}, and thus serve Al during
the time slot. At the end of time 5, one packet arrives at each
link. At time 6, we have Q = {2,2,2}, and break the tie by
transmitting the oldest packet first, i.e., Bl (or C1). At time
7, we have Q = {3,1,2}, and transmit A2. At time 8, we
have Q = {2,1,2}, and transmit C1. At time 9, we have Q =
{2,1,1} and transmit a packet from flow A. It can be easily
observed that the service repeats in the order of {4, B, A, C'}.

Second, we consider another scheduling following the oldest
packet first policy. At the beginning of time 5, we have the
flow age vector of U = {U4,Up,Uc} = {4,4,4}. We break
the tie in the order of {A,B,C}, and transmit Al. At time 6, we
have U = {4,5,5} and transmit B1. At time 7, we have U =
{5,2,6} and transmit C1. At time 8, we have U = {6, 3, 3}
and transmit A2. At time 9, we have U = {4, 4,4} and transmit
a packet from flow A. It can be easily observed that the service
repeats in the order of {A, B,C, A}.

Finally, we consider the scheduler that serves the packet with
the largest age-weighted age drop. Let us consider the ages
(t—t1,n,(t),t —ti,N,(1)+1) of two packets at the head of queue.
For example, at time 5, flow A has (4,3) for the age of two
HoL packets, i.e., for (Al, A2), and flows B and C have (4,0).
The scheduler chooses the packet that leads to the largest age-
weighted age drop, i.e., the HoL packet of the flow with the
largest (t — ¢y n, (1)) - (ti, v, ()41 — i, Ny (1)) (break the tie in the
order of {A,B,C}), and thus, we will schedule B1 at time 5.
At time 6, the age of all the packets remained in the queues
increases by one, and we have {(5,4), (1,0), (5,1)}, where we
set the age of not-yet-arrived packet to 0. The scheduler will
transmit C1. At time 7, we have {(6,5), (2,0), (2,0)} and serve
Al. At time 8, we have {(6,3), (3,0),(3,0) and serve A2. At
time 9, we have {(4,3), (4,0), (4,0)} and serve a packet from
flow B. It can be easily observed that the service repeats in the
order of {B,C, A, A}.

Under each scheduling policy, the packet delay of
{A1,A2,B1,C1} can be calculated as in Table I. We first note
that the total delay sums are equal for all the policies. In
fact, it will be the same for all work-conserving schedulers.
Then, we observe that they have different per-flow delays.
Under the largest-queue-first policy, we have {4.5,5,7} for
flows A, B, C, respectively. Under the oldest-packet-first policy,
we have {5, 5,6}, and under the largest-age-weighted-drop-first
policy, we have {6,4,5}.

The result raises an interesting question about the fairness of
packet delays, in particular when the flows have different arrival
rates. Considering the oldest-packet-first policy and the largest-
age-weighted-drop-first policy, they have similar per-flow delay
performances, but they do have different preference, which

TABLE 1
DELAY OF EACH PACKET (] , — t;,;) IN TIME SLOTS.

largest- oldest- largest-age-
queue-first | packet-first | weighted-drop-first
(A1,A2) 4.5) (4,6) (6,6)
Bl 5 5 4
Cl 7 6 5

will be clarified later in Section V. Prioritizing the packets (or
information) of the same age with their flow’s interarrival time
can motivate the sources to decrease their transmission rate to
achieve better delay performance. To this end, it is interesting
to investigate how the ages related to the per-flow delay
performance. Extending the largest-queue-first and the oldest-
packet-first schemes, we introduce the well-known scheduling
policies, and investigate their behaviors under symmetric and
asymmetric traffic.

The solution that finds the schedule with the maximum
queue-weighted sum, denoted by Q-MW, has been well-known
to be throughput-optimal. At each time slot, it has the schedule
S?(t) as

S%(t) = argmax ) Qu(t) - Sy,

D ®
Another well-known throughput-optimal solution is the max-
imum HoL delay weighted sum, denoted by D-MW [18]. At
each time slot, it has the schedule S”(t) as

SP(t) = arég‘lsaxz Ui(t) - 5. (4)
leL
Also, the round-robin scheduler (RR) is a well-known alterna-
tive. Through simulations under simple scenarios, we demon-
strate the age performance of these three scheduling choices.

We consider a symmetric scenario with two links. Each
link has an on-off channel and turns on with probability 0.9,
independently across times and links. Each link has a flow with
the same mean packet arrival rate? 0.45, but their interarrival
times are different. For one flow (regular flow), packets arrive
with a fixed interarrival time, and for the other flow (bursty
flow), packets arrive in a burst: 10 packets within 0.1 slot time.
Note that all packets in a burst have similar generation times,
and thus, the HoL delay of the link will keep increasing until
all the packets in the burst are served out.

Fig. 2 shows the ages of the two flows (i.e. the HoL delay
of the two links) under RR, Q-MW, and D-MW scheduling
schemes, respectively. Under RR, the regular flow achieves
good age performance while the bursty flow suffers from large
ages. This is because the last packet of a burst has to wait for
long time under RR. (Each age drop of the bursty flow indicates
that the last packet of a burst is served out.) Under Q-MW, we
can observe the age of the regular flow increases from when a
packet burst of the bursty flow arrives. It is because the larger
queue will be served first under Q-MW. Upon the arrival of

2The arrival rates are within the stability region, since the total arrival rate
0.9 is less than the channel opportunity rate 1 — 0.12 = 0.99.
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Fig. 2. Ages of two flows with the same arrival rate Aregular = Abursty- One flow has regular traffic (black) while the other has bursty traffic (red).
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a burst, the bursty flow will be served first, and then when
the queue lengths of the two flows are the same, they will be
served in turn. The priority given to the bursty flow makes its
age smaller than that of RR. Under D-MW, the bursty flow has
a priority if its burst arrive earlier than the HoL packet of the
regular flow, which delays the packets of the regular flow and
causes it to have as high ages as the bursty flow.

Similar results are observed when the bursty flow has a
higher arrival rate than that of the regular traffic as shown
in Fig. 3, where we set Aregular = Abursty/3 = 0.2. However,
when the bursty flow has a lower arrival rate, where we set
Aregular = 3Abursty = 0.6, we can observe that Q-MW suffers
from large ages, as shown in Fig. 4.

TABLE II
TOTAL AVERAGE AGE

| RR | Q-MW | D-MW

Aregular = Nbursty 12.08 | 12.11 9.33
Aregular = Abursty/3 | 7.64 | 8.27 7.20
Mregular = SMbursty | 0.4 | 8.49 5.65

For each scenario, the total average age ~>.._, >, Uy(7)
is as shown in Table II. It clarifies that Q-MW has the largest
average age. An interesting result is that when the bursty flow
has a lower arrival rate, the ages under Q-MW are larger than
the ages under RR for both the flows: 5.74 (Q-MW) vs. 4.50
(RR) for the bursty flow, and 2.74 (Q-MW) vs. 2.04 (RR) for
the regular flow. This implies that Q-MW is not even a Pareto-
optimal solution to minimizing the ages and we may be able

to lower ages for all the flows.

IV. AGE-BASED MAXWEIGHT SCHEDULING

In this section, we develop new policies that utilize a
combination of age and interarrival time realizations/statistics
in order to maintain fresh information at the receiver, instead
of queue-lengths and delays. We apply a modified drift-based
heavy-traffic analysis [31] to derive the heavy-traffic perfor-
mance of our new policy in terms of the desired metric.

A. Algorithm Design and Stability Analysis
We consider the following scheduling policy:

Ui(t)
)\l Sla

A-MW: S4(t) = argmax
ses

®)
leL

denoted by Age-based MaxWeight scheduling policy (A-MW).
Note that the evolution (2) of the age can be rewritten as

07 if Ul(t) =0 and Al(t) = O,

1, if Uy(t) = 0 and A;(t) > 0,

(U(t) +1 = Xi Ny - Sl(t))+ , otherwise.
(6)

Combined it with (5), we observe that A-MW makes decisions
up to time ¢ independent of the interarrival time of the current
head-of-line packet to its subsequent packet. This will facilitate
our analysis by allowing E[X; n,1) |Ui(t) > 0] = /\% We
can remove the projection operation (-)* by introducing a
random variable Z;(t). With some 0 < Z;(t) < Xj y,(y) that
is accordingly chosen as a function of U;(t) and X N (1)» the
last equation becomes U (t) + 1 — (X n,p) — Zi(t)) - Si(t).

U(t+1) =



We consider the Markov Chain described by states
{U(t)}+>0, and define a Lyapunov function V(t) :=

25, Ui(t)?. Letting AV (t) denote the drift of the Lyapunov
function, we have
AV(t) = 3 X, B[U(t+1)° = Ui(1)* | U(t) = U]
=3 2= EIUI(t +1)?[U]
+3 X0 ElUI(E+ 1) = Ui(1)*|U].

Since U;(t+1) <1 when Uj(t) =0, and Uj(t +1) =
1= (XN —
upper bounded by
AV (t) < 3L @)
5 20 B [(1= (Xine — Zi(1) - Si(1)*[U] - (8)
+ 521050 B [201(1 = (Xy vy — Zi(1)) - Si(#))]U] .(9)
Note that from 0 < Zj(t) < Xjp,), we should have
I Xinve — Zi(t)] < 2X) n,4). Also, since the interarrival

time X; n,(+) is independent of Ul() and Sl() under A-
MW, there is a constant Cy := 1 >°,(1 + /\l +4- 2 )") >

%Zl:UDO E[l +4X; N, + 4X1,N, y[U] that is no smaller
than (8). Further, in the last term (9), we have

Ui(t) +
Z,(t)) - S;(t) when U, (¢) > 0, the drift can be

Siviso B U1 = (X ) — Zi(1)) - Si(t))| U]
<m0 BlU(L = Xy nyy - Si(1)) | U] (10)
+ Xm0 B vy | UL

where the inequality comes from the fact that Z;(t) < X; n, (1)
when U, (t) < Xl,Nl(t)’ and Z;(t) = 0 when U, (t) > XLNZ(t)-
Since the independence of X; y, () and U;(t) implies that the
conditional second moment E[Xl2 v | Ol = 2;;}‘, we can
obtain that

AV(t) < ZlU >0

where Cy := LIy Ci + Zl Ag .

Note that for any arrival by strictly inside A, there is a
stationary scheduler that schedules S°(¢) independent of the
system state and satisfies that, for small € > 0,

E[U(1 = Xy Ny - Si(t)) | U+ Co, (11)

E[SP(t)] > N\ +¢, forall L. (12)
Then the drift bound of (11) can be written as
AV (t) < ZZU>0U1~ El—X; N - SP(t) | U]
50 (13)
+ 250 Ul ElXi Ny - (S () = Si(#)) | Ul + Coa.
From (12) and the 1ndependence of {Xj n,(+)}» we obtain
U B[l = Xinw - S0 | U] < =50 (4

Now we can show the stability of A-MW as follows.
Lemma 1: Age-based MaxWeight (A-MW) scheduling pol-
icy achieves the stability region A.
Proof: Under A-MW, the second term of (13) becomes

SU-E [ Xy nw - (SP () = S (1) | U]
— B[S g sfm -2 g st U] <o,

due to the independence of {X; y,(;)}. Combining (13), (14),

and (15), we have

AV () < =Xy S+ Co, (16)
which implies that A-MW has a negative Lyapunov drift for
sufficiently large ages and thus achieves A. ]

A weakness of A-MW is that it requires the information
of arrival rate A, which may be unknown a priori. For more
practical use, we may replace the arrival rate with measured
value as

Ui(t)
mA-MW: S™(t) = argmax - - S, 17
Ses ; Au(t) 17
where A (t) := ET 0 Ai(T).
Another alternatlve is to minimize (11) by choosing
IA-MW: S!(t) = argmaxz Ul(t) - Xin, ) - St (18)

leL

This immediately extends MaxWeight to take into account
the product of Instantaneous interarrival time and Age® (thus
denoted by IA-MW). However, the variation of the interarrival
process often causes significant delaying of HoL packets, which
makes it less attractive. We will see this later in Section V.

In the following, we focus on the performance charac-
terization of A-MW due to mathematical tractability. Since
Ai(t) = X as t — oo, we claim that the performance of A-
MW and mA-MW is close to each other, which will be verified
through simulations in Section V.

B. Performance Analysis: Heavy-Traffic Bounds

In this section, we address the performance of A-MW in
terms of direction of state space collapse and age bounds, which
will complement the stability results in Section IV-A. Further,
we investigate asymptotic performance bounds of a simplified
system with backlogged queues, since, as the arrivals get closer
to the bound of the stability region, the performance gap
between the original system and the simplified system would
be negligible as in [31]. Our results will provide the insight into
the optimal performance and a new research direction toward
information freshness and synchrony.

Recall that the stability region of age is equivalent to the
(throughput) capacity region, which is bounded by K hyper-
planes [31]. Let F*) denote the k-th face of A, and let ¢(*)
denote the normal vector of F(*) with ||c(*)|| = 1. Then there
is a constant b(*) such that

(c® vy =™ for all r ¢ F¥. (19)

We define A(k) A= {2 507 |A € A} All vector multiplications

and divisions are componentw1se We consider A%) € relative

interior of F(*), and obtain )\( 7 A by scaling each element A; of

Ain A with )\( ) as shown in Fig. 5. Due to the componentw1se
division, we have point-to-point mapping between A and )\(k) A,
and the linearity is preserved. Hence, a face in A is mapped
to a face in s A. Let G(*) denote the face in {7 A that

3We refer to [25] for intuitive explanation about the relationship between
the interarrival times and the ages.
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corresponds to face F*) in A. We define d*) := c(®) . \(¥),
and given € > 0, we choose an arrival vector A such that

1 [
NI T oW PN

(20)

for all [ with non-zero )\l(k) and dl(k). We have )\l(e) < )\l(k),Vl.
Proposition 1 (State Space Collapse): Under the assump-
tion of heavy traffic loads and independent interarrival times,
the state space of the ages collapses under A-MW, to direction
d®) as e — 0.
To prove this, we basically follow the line of the analysis
in [31]. However, the proof is not straightforward since the age
processes do not evolve as the queue length processes: they
increase by 1 at each time slot, and decrease by the interarrival
time. We scale the whole state space by A% and show that
the mapping of the age to the hyperplane characterized by d(¥)
approaches 0 as ¢ — 0. Using the new arrival vector (20) with
the corresponding d(*) are the key elements to the proof. They
allow the scaling of the stability region even with the product
form of interarrival time X; y,(;) and scheduling decision S;(t).
We refer the readers to Appendix A for the detailed proof.
We now investigate asymptotic performance of a simplified
system with backlogged queues, under which the age evolves
as Uyt +1) = U(t) + 1 — Xy n,(¢) - Si(t). From the results
in Appendix A and Lemma 1 of [31], we can show that
{U(t)}+ converges in distribution to a random variable U with
all bounded moments. For a vector U(e), which is the age
under A-MW with (9, we define its parallel and perpendicular
components with respect to d*) as follows:

(k) . d®_ 50y d®
U™ = (g U)oy

Ut = ul - Ut

Then, we have the following performance bounds, whose proofs
can be found in Appendix B and C, respectively.

Proposition 2 (An Upper Bound): As ¢ — 0, A-MW
achieves that

2y

. — 1 (k)
tim e B[I[Ty ] < 3 - (o) (@)2),

(22)
where oX denotes the variance vector of the interarrival times.
The following proposition shows that the performance bound
under A-MW may not be tight.

Proposition 3 (A Lower Bound): For the class of scheduling
policies that do not take into consideration the instantaneous
interarrival times (i.e., interarrival-time-agnostic schedulers),
the age performance is bounded by

tim [T ] > S{(@H)2, (0¥)2- AP, @3)

For the upper bound, we define V| (U, k) := ||U‘(|E’k)\|2 and
note that its drift E[AV) (U, k)] is zero from the age stability
under A-MW. Starting from the zero drift, we carefully derive
the equations in terms of E[||U‘(|E7k)H] when € — 0, which
results in the upper bound. Technical difficulties mainly come
from the product form of the processes X -S and the non-linear
relationship between A and A*). For the lower bound, we
consider a single-queue server with constant arrival (d(*), 1)
and departure maxgea (d*), X - S), which outperforms A-MW
in terms of age. The product form of the processes X - S again
becomes the technical difficulty. We restrict our attention to the
class of interarrival-time-agnostic schedulers, and show that the
departure process of the single-queue server that achieves AR
is an optimal solution, which leads to (23).

Note that since the state space of the age collapses under
A-MW, it might be possible to control the collapse direction
toward {1,1,...,1} by multiplying a constant weight in (5),
which will make the received data packets synchronous at
the receiver side. How one can precisely control the collapse
direction without a priori knowledge about the arrivals remains
an interesting open question.

V. NUMERICAL RESULTS

In this section, we evaluate the performance of A-MW. We
first present the behavior of A-MW with two flows (one bursty
and one regular traffic), and then compare the performance
of A-MW with those of RR, Q-MW, and D-MW. Finally, we
observe the state space collapse of the ages under A-MW.

Under the same scenarios as in Section III, we can observe
the age performance of A-MW under equal and unequal packet
arrivals as in Fig. 6. See Figs. 3 and 4 for comparison with RR,
Q-MW, and D-MW. The age performance of A-MW is similar
to that of D-MW, which can be also observed by the total
average ages: 9.73 when Aregutar = Apursty, 6.86 When Areguiar =
Abursty /3, and 5.65 when Areguiar = 3 Abursty-

Next, we further evaluate the performance of A-MW in terms
of queue lengths, packet delays, and normalized age. Besides
RR, Q-MW, and D-MW, we also consider IA-MW of (18) that
takes into account instantaneous interarrival times, and mA-
MW of (17). We consider a simple network scenario with one
base station and 4 users (flows) as shown in Fig. 7. The base
station has 4 downlinks, where each link is dedicated to a
flow. Packets for each flow arrive at the base station, stored
in separate per-flow queues, and served through the links. At
a given time slot, the channel of each link is either on or off
with probability 0.5, and the scheduler of the base station can
choose one link with on channel. Once a link is chosen, it
can serve one packet during the time slot. Packets for each
flow arrive following a Poisson process with mean arrival rate
A = p-{0.5,0.25,0.125,0.125}, where load p is the scaling
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Fig. 7. Network topology with 4 flows.

factor of the arrival rate vector. We simulate the system for
10 time slots under different traffic loads. We use 10 different
random seeds, and in each simulation run, we measure moving
average of total queue lengths >, Q;(t), total packet delays
m >14(t,; —t1,4), and total normalized ages ), Ul)\—(lt)

Fig. 8 show, in log scale, the measured values after the
simulations end, and each point represents an average over the
10 simulation runs. Given our setting, p = 1 —(0.5)* = 0.9375
is the boundary of A. First, we can observe that under RR and
IA-MW, the queue lengths, the packet delays, and the ages start
soaring before the load increases close enough to the boundary,
which implies that they may not achieve the stability region. For
TA-MW, the variance of interarrival times seems to often cause
excessive delay for the packets with short interarrival times,
which degrades the performance. Second, the performance
of A-MW and mA-MW are very similar. By replacing the
arrival rate \; with our measurement X ZT 0 Ai(7), we can
implement the scheduling policy Wlthout the rate information
of the flows. Third, in the queue lengths and the packet delays,
Q-MW and D-MW outperform A-MW and mA-MW, but the
differences reduce as the load approaches the boundary. In
contrast, A-MW and mA-MW outperform Q-MW and D-MW
in the normalized ages, and there are substantial differences
remain at the boundary and even the beyond. This shows that
A-MW and mA-MW achieve higher age performance at no
significant cost of queue length and delay.

Fig. 9 provides the per-flow performance when p = 0.935,
which is more than 99.7% of the capacity. It clarifies the
differences of Q-MW, D-MW, and A-MW in the per-flow delay
performance. Flows are numbered in the decreasing order of
the arrival rate. In comparison of the queue lengths shown
in Fig. 9(a), Q-MW achieves almost equal queue length (as
denoted by the dotted line) over all the flows. In packet delays,
D-MW achieves equal per-packet delays over the flows in
Fig. 9(b). Finally, Fig. 9(c) shows that A-MW and mA-MW
achieve equal normalized age over the flows (as denoted by
the dotted line). Considering the Little’s law that associates the
queue lengths (that Q-MW schedules with as in (3)) and the
packet delays (that D-MW schedules with as in (4)) by the

arrival rate as %l one may expect that the performances under
Q-MW and D-MW are also related by the arrival rate as shown
in the results*: The queue lengths of the flows are equal under
Q-MW while they are proportional to A; under D-MW, and the
packet delays of the flows are equal under D-MW while they are
proportional to )\% under Q-MW. A similar relationship that can
be expected between D-MW (4) and A-MW (5) is supported
by our results. We emphasize that the property of A-MW that
gives a priority to the flow with a small arrival rate is desirable.
A traffic source can decrease its transmission rate to achieve
better delay performance, which will improve the overall delay
performance by decreasing the traffic load.

Finally, we investigate the state space collapse. We consider a
network with two users. The network settings are the same, ex-
cept that the channel is on with probability 1 and 0.5 for user 1
and user 2, respectively, and the link for user 2 can serve up to 2
packets if it is scheduled. For the non-unit service rate, we have
modified Q-MW (3) as S9(t) = argmaxges > ;e Qu(t)-Si-ri,
where r; denote the service rate of link [. The other policies
of D-MVW, TA-MVW, A-MW, and mA-MW are also modified
accordingly. In this scenario, the stability region is as shown in
Fig. 10(a). Consider A = p-{0.5,0.25}. Then, the slope is the
face and we have the normal vector ¢(¥) = \1[

d®) = . X = %= -{1,0.25}. Note that the arrival rate is
on the boundary of A when p = 1.6. Fig. 10(b) demonstrates
that as p increases, the perpendicular element |[U_|| of the
age keeps increasing under RR, Q-MW, D-MW, and TA-MW.
In contrast, A-MW achieves a finite |U_||, which verifies
the state space collapse to direction d*) under A-MW. mA-
MW has slowly increasing ||U_ || due to some measurement
errors, but it has much smaller ||U || than RR, Q-MW, and
D-MW. Fig. 10(c) directly shows the evolution of the ages
for the flows {Uy(t),Uz2(t)} when p = 1.59. Since D-MW
tries to have Uy (t) = 2U(t), where the doubling is due to
the high link rate, it has the ages to the direction of {2,1}.
Q-MW tries to have Q1 (t) = 2Q2(t), hence, through Little’s
law, achieves E[D, (t)] = E[34Y] = E[2Q2<t>] E[Ds(t)],
i.e., has direction {1,1}. A- MW and mA-MW tries to have
Ui(t) -2 = 2Us(t) - 4, and thus the ages evolve along direction
{4,1}.

While we have shown that A-MW and mA-MW achieve
good performance and desirable properties of state-space col-
lapse under heavy traffic loads, the schemes can be considered
as a weighted version of D-MW, and needs a long-term

4We note that the packet delays are a per-packet average while the queue
lengths and the ages are a time average. However, our statement will hold
under Poisson arrival processes due to PASTA.
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averaging of interarrival times, which may make the scheme
less responsive to traffic changes. To this end, a time-weighted
moving average of the interarrival times could be helpful.
Taking into consideration the low performance of IA-MW (i.e.,
without averaging interarrival times), finding a good factor of
time-averaging would be an interesting open problem.

We also note that our definition of age is slightly different
from the conventional one in the literature. While we define
it as the information age of the HoL packet, it can be also
defined as the information age at the receiver (denoted by
age-at-receiver), i.e., current time minus creation time of the
recently received information [25]. To clarify the differences,
we conduct simulations with identical settings as in Fig. 10(c).
The results under Q-MQ and A-MQ are shown in Fig. 11. We
omit the results of D-MW and mA-MW for simplicity. The
two metrics have a strong linear relation, which implies that

(b) ||U_L || with different loads

AgedfLink1

(c) Ages of each flow (load p = 1.59)

space collapse.

our (HoL) age is a good representative of age-at-receiver under
heavy loads. Accordingly, our algorithm promises to yield low
age levels at the receiver as well as synchrony characteristics
under heavily loaded conditions. We note that the two age
metrics may differ under light loads, since, when the queue
is empty, age-at-receiver increases while (HoL) age does not.
As such, the issue of information freshness at the receiver under
light loads demands further work in future research.

VI. A GENERALIZATION AND DISCUSSION

The results of Fig. 9 reveal a new perspective on the varying
fairness characteristics of the class of Age-Based Schedulers.
Namely, we observe that: D-MW provides a min-max-like
fairness (i.e., equal packet delays), while A-MW provides a
proportional-like fairness (i.e., equal normalized ages). This
has motivated us to expand our design to a broader class of
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age-based schedulers that can accommodate these as special
cases. To elaborate, for a single-hop network, we consider the
minimization of the following convex function of mean delays:

> (@),

leL

min {24)
where a > 0 and Z; denotes mean packet delay for link [. Note
that we can achieve the delay sum minimization when a =0,
and the quadratic delay sum minimization when a = 1.

The solution to the problem will schedule link I* with

I* = argmax  I(t) - (Z:(£))%,
137
where 7;(t) represents the time-derivative of the mean age

at time ¢, which is roughly measured through the current
packet delay (i.e., age) U;(t). By setting ideal long-term delay

proportional to its interarrival time, i.e., T;(t) = Ai: we have
Ui(t

I* ~ ar ‘9. (25)
leL A

In this case, when o = 0, we schedule the link with the

maximum age or packet delay (i.e., D-MW), and when o =1,
we schedule the link with the maximum normalized age (i.e., A-
MW). In this generalized formulation, as a — oo, we provide
a higher priority to the flow with the lowest traffic rate (ie.,
with the largest interarrival time).

For this new parametric scheduler (25), we have conducted
simulations under the same settings as in Fig. 9. Fig. 12 shows

the fairness result with djfferent values of « in the form of
the Jain’s index % , where y; denotes the achieved
packet delay of link [ normalized by the interarrival time. As
expected, we observe that the resources are allocated in a fair
manner (i.e., the index equals 1) with & = 1 (i.e., under A-
MW) and in an unfair manner (i.e., the index is close to 0.25)
with large a > 6.

These numerical results reveal that the age minimization is
coupled with the minimization of the quadratic function of
mean packet delays. This makes sense once we note that age
involves the time-integration of the HoL packet delay, which,
in turn, is a quadratic function of the packet delay. On the other
hand, it is not very clear yet whether we can find a good utility
function in the quadratic form of HoL packet delay that leads
to the minimization of the age sum, which is an interesting
open problem.

VII. CONCLUDING REMARKS

In this work, we address the scheduling problem in wireless
networks with a focus on the information freshness and the
delay alignment, which are of great importance to the sys-
tems where the effectiveness of the control decisions depends
critically on the delay and synchronism of the system state
information. We start with inefficiency of conventional ap-
proaches in maintaining fresh information updates of multiple
continuous flows, and show the critical value of both age
and interarrival times. We develop new schedulers, with and
without the knowledge of arrival rates, that account for both
age information and interarrival times of incoming packets, and
characterize its performance under heavy-traffic condition. To
elaborate, we show that it achieves the state space collapse in
a properly scaled coordination system, and provide its upper
and lower performance bounds. Although the analytical results
are obtained under heavy-traffic conditions, we observe through
numerical results that the scheduler achieves desirable freshness
performance even in lightly-loaded conditions. In addition,
the scheduler has good long-term performance in throughput
and average delay, while also maintaining equally-up-to-dated
information from multiple sources.

There are many interesting open problems. It is of interest
to analytically characterize the freshness performance of our
schemes under lightly-loaded conditions, which requires the
development and use of fundamentally different methods than
those employed in this work. We have shown that A-MW
achieves the stability region, but it requires the knowledge of
the mean arrival rate. It is interesting to study whether mA-
MW can also achieve the stability region. The tightness of
the performance bounds is of great interest. Also, it might be
possible to control the direction of the state space collapse
by adding a constant weight to each link. We would like to
develop an adaptive scheme that can automatically adjust the
weights to induce the collapse as intended, which can provide
the information synchrony.
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APPENDIX

A. State space collapse

Recall that G*) denote the face in ﬁ/\ that corresponds
to face F(*) after the componentwise mapping of A. Let H(¥)
denote the hyperplane that characterizes %A and includes
face G®). From d® = c¢® . A® we have (d®),q) =
b*) | for all q € G, since for any q € G*), we can find
r € F*) such that r = q - A®) due to the mapping, and then

(@M, q) = (- A® 2/AM) = (P x) =), (26)

where the last equality from (19). This means that d*) is

normal® to G*) (while ||d®)|| # 1.)
Let 1= {1,1,...,1}. From A®) € F®) we have 1 € (¥,
Further, from ||c(®)|| = 1, we have
(dM.1) = (™ A0) = p®), 27)
<d(k), A(E)/A(k)> pk) _ . Hd(k)H (1, /\(6)>, (28)
1@ < fe® - AR = 1IAP)L 29

where the arrival vector A9 is specified in (20). From our
selection A9, we always have )\Z(E) < A;k) for all {. Let U(e)(t)
denote the ages under A,

For a vector U(©)(t), we define its parallel and perpendicular
components with respect to d(®) as follows:

ek ) . o)
U|(\ )(t) = <\|§<k>”’U( )( )> ngrﬂ,

(€,k) (e) (€,k) (30)
U () =10 —ufP).

In the sequel, we omit scripts ¢ and € for simplicity, and denote
U©(t), U(6 ) (4), Uﬁf’k) (t) by U,U‘(lk),U(k), respectively.
Let us cons1der the following three Lyapunov functions.

V(U) = U2, Vi(U, k) = U, and Vj(U,k) :=
||U ||2 Given )\(k) e F®) (relatively inside) and & > 0,
we deﬁne

B = {r||1- Foll <dand s e HWY (3D

Since A is relatively inside 7, A®) /A®) = 1 is relatively
inside G(¥), and thus there exists a small 6¢*) > 0 such that

SFor any qi1,q2 € G(*) we can find some r; and rp such that
= qi - and T2 = qz - A*). Then d®) q; —q2) =
(c(’“> }\(k> e /AP —py /ARy = (¢(®) ry — o). From the construction

of Q , r1 and ro are two points on F(k) and we have (c(k>, ry — I‘2> =0,
since c(k) is normal to F(*),



ﬁBéfg) lies strictly inside G(*). The following lemma implies

the state space collapse as € — 0.

Lemma 2:

E[AVL(U, B)[U] < =6 +e[[dW]|- || 5

I+ (32)

d (k) |U(1‘)H

Lemma 2 implies the existence of constants {Nﬁk)} such that

[HU €k)|| ] < N for sufficiently small ¢ and each r =
1,2,... in our system. (See [32] or Lemma 1 of [31].)

Proof: We start from the following equation shown in [31].

E[AVL(U, k)[U]
L A A (33)
< B | gy - (AV(U) - AV (U, ) [U
We consider each drift F[AV(U)[U] and E[AV)(U)|U] one
by one. Let X := {X; n,+)} and Z := {Z;(t)}.
For the former, from (11), we have,
E[AV(U)|U] < 2E[(U,1 - X -8 |U+2C,. (34

Due to the independence of X, the first term can be written as
2E[(U,1 - X -S4 |U] = 2(U,1 — E[S4|U]/A)

=2(U,1 — E[S*|U]/A®) —
(a)

2¢- |d®) | - (U, B[s?|U]/a®)

<2 min (U, 1—r/A®) —2¢.a®| - (U, E[S4|U]/d®)
reB%)
s(k)
©9 min (US{C), 1—r/A%)
I‘GB( )

s(k)

—2¢-[|d® |- (U + UM, B[sU]/a®)
—25® UM - 26 |a®)|| - (U, B[sAU]/a®)

—2¢- [a®| - (U, E[sA[U]/a®),

©

C

(35)
where (a) comes from the scheduling of A-MW that maximizes
(U, E[SAU]/A), (b) holds since (1 —r/A*) e #*) and
it is perpendicular to U‘(lk), and (c) holds since the minimum

(k)
B
direction of U( ) . Further, the last two terms of the last equation

in (35) can be rewritten as

<UT>,E[SA|U1/d<’<>> =

will be obtained by choosing the point in to the opposite

TP - 1E[SA1U)/d®) | - cos by,

k k
(UY, B[8U]/d®) = U] - | E[8*]U]/dP)]| - cos b5,
where 6, = <(UY E[SAU)/A®) and 6, =
2(U”, B[SA[U)/a®).
For E[AV|(U)|U] of (33), since
k) (k) (k)
1071 = (1§ O 5wt = masr @@, 0), (36)
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we have
EAV)(U)|U] = B[ U+ 1)|2 - [P @) [U)
E[(d®, U+1—(X-12Z)-84)?
—(d®,U)? |U > 0]
e - (d®,0) - (@®),1 - B[SA[U]/A©).
From (20) and (36), we have
(@®, Uy - (d®, 1 - E[$*[U]/A)
= 4@ U - ((@®,1 - B[su]/A¢
—e- [ - a®, Bs}/a®))

> —c- W) U] - | B[S [U]/d®)]| - cos b,

Y

1
[EEE

| \/

)

where 03 := /(d®), E[S4|U]/d*®)). The inequality holds
since (d®),1) = b® and (A®, E[SA|U]/AP) < p®) for
any feasible schedules.
Note that 65 A(Ul(‘k),E[SA\U]/d(’“)) equals to
/(d® | E[S4|U]/d®)) = 5. Thus, we can obtain that
E[AV(U)|U]
> —2¢- [dW] - U] - | E[s*|U)/d®
—2¢-[dW| - (U}, E[s|U)/a).
From (33), (34), (35), and (37), we can obtain
E[AVL(U)[U]

| - cosba (37)

k)
< gomy (209109

k
—2¢-[|dV |- [UP] - | B[S*[U)/d®)]| - cos b
—2¢-[|d®| - (U, E[$4|U]/dP) + 20,
+2¢- |49 (U}, E[SA\U1/d<k>>)
—60) 4 e la®]| - ||

d(k) || —+ ‘|[J(k)|

where the last inequality comes from the fact that | cos 6| <
1, and that 0 < E[S/[U] < 1 for all I, which implies
IE[SA10]/dM | < |l 565 - u

Hence, we obtain that E[AV, (U)|U] < 0, with sufficiently
small € and sufficiently large ||UT)H, which implies that the
state space collapses to the direction of d*) as e — 0.

B. An upper bound

From the results in Appendix A and Lemma 1 of [31],
{U(t)}; converges in distribution to a random variable U
with all bounded moments, i.e., E[|U||"] < oo for each
r=1,2,---.Let S*(U) denote a random variable for given U
that represents the scheduling vector chosen by A-MW, where
the randomness comes from the interarrival times.

From the stability result of Lemma 1 and the fact that
[0l < [[T]]%, we have E[AV}(U, k)] = 0 under heavy
traffic, in which case we assume that U;(¢ + 1) = Uj(t) + 1 —
Xi,n(t) - Si(t) for all I. This results in the following lemma.

Lemma 3: For any positive vector d®), in steady state, we



have
2E((d™, T)(d™,84(T)/A - 1)]

= E[(d®™ 1 -X.84(T0))%. &9

Proof: From the drift of the V) (U, k),

E[AV)(U, k)] = (B2, T)@®,1 - 84/x0)]

Hd(“l\

+E[(d®,1-X-84)7))

due to the independence of X. From E[AV|(U, k)] = 0, the
result follows. u
We now focus on the both sides of (39).
For a bound on E[(d® TU)(d®, SA(U)/A — 1)), we

first note that the geometry of the capacity region A has a finite
number of faces. Then, for each face G *) of A(lk) A, there exists

6*) € (0,7/2] such that

(k)
(d® 84Uy /APy = p®) | for all U with HIHJI%H H > cos F)
(40)
where S4(U) is the schedule chosen by the A-MW scheduler
for given U. Then, we obtain that, from (1,S4(U)) = 1 and
(20),
E[<d(k),U><d(k S4(T)/A —1)]
=2B[|dW| - [Ty - (™, $(T)/A)]
—_2EMNd® - 1T - (d® .1
(1A% [T - (@, 1) "

=2B[|dW| - [Ty - (™, $4(T)/A®)]
+ 2Bl @] [Tyl - a®]
—2B[|a® |- 1Tyl - o™,
Combining the first term and the third term, we have
=28 [[d9]- [Ty |- (3® — (@®.$4(T)/A))]
= 2B [[a®)]- [T - cos(£T, T))

150,00 - (00 = (@9, 84(T)/AM) )]

from |U)|| = U] - cos(£U,Uy), and (40). Also, from
|U_L|| = |O] - sin(£U, Ty), it can be further written as
—2B [la¥)] - [Ty - (68 — (@), $4(T)/A) )|

= =28 [[dV] - [T L - cot(<T, Ty)

150,00 - (00 = (@9, 84(0)/AM))]

Z —2F |:||d(k)|| . Hﬁl_” : ﬂ{éﬁﬁ“>9(k)}
. (b(k) —(d®, 84T )/)\(k)>)} -cot oF)
> 28 [|a®|| - [T

. (b(k) —(a®, SA(ﬁ)/A(k')>)} - cot ),

where the first inequality holds due to the decreasing property
of cot in (0,7/2]. Note that from the concavity of the square

root, we have

_9F {Hﬁl-ll . (b(k) _ <d(k) SA(ﬁ)/)\(k)>)}

—2\/E[[TL]12)- Blo* (0)/AM))?]

Vv

— (A, 84

v

eNF)
2 [ AW (1,29 - (002 + (a0, 1/302)

where 7®) := min{b® — (A® s/A®)), for all s € S\F*®)},
the first inequality comes from the Holder’s inequality, and the
last inequality holds due to Lemma 2 and the following lemma.

Lemma 4: Given A®) and e, if the arrival rate A9 satisfies
(20), then we have

1f7r<’€><7 AP (1, AP, (42)
where 7(®) .= P{(d®) SA(T)/A®) = p(®}. It implies that
B[ (50 — (@, $4(@)/AM)) ]

—(1—7.E {(bm — (@9, 84(0)/A%))’
[ (d®,84(T)/AD) # 10|

Ay ((b(k))Q +((d®, 1/>\<k)>)2> ,

where the inequality holds from S7*(U) < 1 for all L.

SS® P IAP -

Proof: From the stability result of Lemma 1 and (28), we
have

E[(d®, 84 T)/AM)] > b8 — AP . (1, A%y,

which implies that
b(k)+E[<d(k) SA( )/)\ > ]l{<d(k)7sA(ﬁ)/)\(k)>¢b(k)}]
> 50— e AD - (1,A0).
Also, note that
E[(d™,84(T)/A%) - L@ 54(T) Ak b))
< (b(k) - V(k)) ’ E[]l{(d(k>,sA(ﬁ)/A(k)>¢b<k)}]
= (b — 4"y . (1 — 7R,

Combining the two inequalities, we obtain (42). ]

Hence, from (41), we obtain that

2E[(d®,T) (@M, 84(T)/A - 1)]

_ 43)
= 2¢- AW - E[T}|] + O(Ve).
We now consider a bound on the right side of (39):
E[@d",1-X-8%(U0))?
= E[(a®™,1 - A(i)/A(’”)Z]
+2E[(d®™,1 - s4(U)/A®) (44)

' <d<k>, AT)/AW - X - 84(T))]
+ E[(d® s4(U)/AP — X . s4(1))2).



For the first term, we have, from Lemma 4,
E[(d®,1 - 84(T)/A")?]
o 2
= B[(b®) — @), 84(T)/A")) ]

O(e).

For the second term, we have, from the independence of X and

(20,
2E[(d®) 1 —
=2E[(d® 1 - s4(U)/AP)
H(d®,84(T)/A" —84(T)/A)]
= —2E[(d®,1-8*(T)/A") - (1,¢-S4(T) - [aW)]
<0.
For the third term, we have

E[(dW,8*(T)/A" - X - 84(T))?

=5 |(Sd 570 (3 - X))

-E -Zl (dl(k) . SA(T) - (A;M - Xl)>2- +0(e)

- E -Zz (dl(k) . SAO) - (Al(l” - Xl>>2- + O(e) + O(€?)
= (@) - (SAT))? - (07 + O() + O()

< ((dW)2,(6%)%) + O(e) + O(%),

where the last inequality comes from S;*(U) < 1 for all [.
Then, (44) can be bounded as

E(d®,1 - X - $4(0))7] < (d®)2, (0¥)2) + O(e). (45)

From (39), (43), and (45), we have that
2¢ - [dM|1* - E[[T)[l] + O(Ve) < (d*)%, (a%)%) + O(e).

Taking € — 0, we can obtain that

d®

lim B0 < 5 - (gop)” (@) @0

1
2

C. A Lower bound

Let L denote the number of queues in the original system.
We consider a single-queue server, with bounded arrival «(t)
and bounded service 3(t) with a = E[a(1)], 02 = var(a(1)),
8 = E[B(1)], 0 = var(B(1)). The queue length ®(t) that
evolves as

O(t+1) = (®(t) +at) — (1) ™.

Following the same line of analysis in [31], we consider the
arrival a(t) and the service 8(t) with 8 — a = ¢y, and let
®(<0)(t) denote the associated queue length process. For any
€0 > 0, {®(0)(¢)} is a positive Harris recurrent Markov Chain,

and converges in distribution to a random variable 5(60) with

$40)/A®) - (dW,84(0)/A® — X - $4(0))]
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all bounded moments [33], satisfying

(€)
S 7
— 2¢

B

E[o()(1)] =3

47
where ¢(©) := 02 + 0%+ €0, and B is an upper bound on j(t).

Setting  af(t) (d®, 1) and Bl () =
maxgep (d®), X -8), we have ®0)(t) < (d® U(1)).
Now let us limit our interest to the set of the schedulers
that do not consider instantaneous interarrival times (i.e.,
interarrival-time-agnostic schedulers). In this case, S(¢) will
be independent of X(t¢), and it is sufficient to maximize
(A®, S/A@) = (d®) S/AF)) 4. [|d®)| . (d®),S/d®)) =
(d® s/A®Y 4 . [d®)|. Hence, g)(t) = AP is an
optimal solution with €y = € - [|[d*)|.

Under the assumption that the variance 0'[23(60) converges to

O’% as ¢g — 0, and from (47), we can obtain random variable
3 that satisfies
—(c0)y o 5 _ 1 K
liminf E[@ '] > -2 = —((d®™)2, (6%)2- (A")?).
60%0 2 2

(48)
It is a lower bound for the set of interarrival-time-agnostic
schedulers.



