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Abstract—We consider the problem of scheduling in wireless
networks with the aim of maintaining up-to-date and synchronized
(also called, aligned) information at the receiver across multiple
flows. This is in contrast to the more conventional approach of
scheduling for optimizing long-term performance metrics such
as throughput, fairness, or average delay. Maintaining the age
of information at a low and roughly equal level is particularly
important for distributed cyber-physical systems, in which the ef-
fectiveness of the control decisions depends critically on the fresh-
ness and synchrony of information from multiple sources/sensors.
In this work, we first expose the weakness of several popular
MaxWeight scheduling solutions that utilize queue-length, delay,
and age information as their weights. Then, we develop a novel
age-based scheduler that combines age with the interarrival times
of incoming packets in its decisions, which yields significant gains
in the information freshness at the receiver. We characterize the
performance of our strategy through a heavy-traffic analysis that
establishes upper and lower bounds on the freshness of system
information.

I. INTRODUCTION

Wireless networks are expected to form the communica-
tion backbone of many future cyber-physical systems that are
expected to support diverse applications such as autonomous
driving in vehicular networks, monitoring and response in
sensor networks, efficient supply and demand management
in smart power grids, etc. As such, wireless networks are
no longer merely a medium of high-rate information transfer
that are detached from the content of the information, but an
integral part of a distributed controller-actuator system whose
performance is highly dependent on the timeliness and accuracy
of the information that guides the system operation.

Over the last few decades, wireless resource allocation
research has been increasingly more effective in maximizing
long-term performance metrics such as throughput, utility, reli-
ability, and average delay (see [2]–[7] and references therein).
These advances have benefited from an ever-expanding frame-
work of adaptive controller design that utilize measures such as
actual/virtual queue-length (e.g., [8]–[14]), Head-of-Line (HoL)
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delay (e.g., [15]–[20]), drop-rates (e.g., [21], [22]), time-since-
last-service (e.g., [23], [24]) information in order to guide a
variety of decisions including rate control, scheduling, and
routing.

Separate from these developments, relatively recently there
has been an interest in maintaining fresh information of a flow
at the receiving end of a communication link (e.g., [25]–[30]
and references therein). This is important in applications, where
the freshness of the system state information is critical to the
control decisions. Most of these prior works (e.g., [25]–[28])
have focused on the analysis and/or control of the status updates
from a single source or multiple sources to a single server, i.e.,
maintaining up-to-date ‘status of the source(s)’ at the receiver.

In this paper, we consider a different concept of freshness
that is measured by the ‘age of received packet’ from each
source. Such a measure is motivated by applications where
it is important to maintain equally delayed information from
multiple sources at the receiver, such as network monitoring
and distributed sensing. In these applications, it is important
that the information flow from different sources are roughly
synchronized for accurate tracking (in monitoring applications)
and stable control (in distributed sensing and control applica-
tions). Further, we consider the problem of scheduling for fresh
information in a general network of wirelessly inter-connected
servers that receive randomly arriving stream of updates. This
setting calls for a different set of models as well as analysis and
design tools than those employed in the aforementioned works.
The more recent work [29] considers the problem of scheduling
for fresh information in wireless networks, and presents a set
of interesting structural results concerning the tractability and
intractability of the optimal scheduling solution. It also provides
a so-called steepest-age-descent algorithm that is numerically
investigated. In our work, we take a different approach based
on the drift-minimization methodology, and conduct a heavy-
traffic analysis of its performance in terms of the freshness
metric. We mainly focus on heavily-loaded conditions, since,
for some applications, achieving minimal freshness in lightly-
loaded conditions may be easier or less critical than in heavily-
loaded conditions. We believe that our complementary works
collectively help expand our understanding and management of
networks for the new metric of information freshness.

With this vision, we first provide a measure of information
freshness for multi-source wireless networks based on a virtual
queueing model. Then, we present a comparative investiga-
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tion of three well-known scheduling strategies – namely, two
MaxWeight Schedulers that use queue-lengths and HoL delays
as their weights, and a round-robin scheduler – to reveal that
each of these three choices can result in deficient scheduling
choices for the new freshness metric.

Based on these observations, we develop a new age-based
scheduler that combines age information with interarrival times
in order to determine the weights assigned to different flows. To
characterize the performance of our proposed scheduler, we also
perform its heavy-traffic analysis that yields lower and upper
bounds on the heavy-traffic performance of our proposed policy.
Heavy-traffic analysis has been an effective methodology for
analyzing the performance of scheduling policies (e.g., see [31]
and references therein). While the results are obtained under
heavy-traffic conditions, the scheduler possess desirable fresh-
ness characteristics even in lightly-loaded conditions, thereby
making it a good choice for maintaining up-to-date information
of flows at the receiving end.

The key message that we learn from this work is the
value of interarrival times in maintaining fresh and equally-
delayed information updates of continuous flows. This insight is
expected to be useful in designing the communication backbone
of future cyber-physical systems whose operation is critically
dependent on the freshness of information.

II. SYSTEM MODEL

We consider a network graph G = (N,L) with the set
N of nodes and the set L of wireless links. Due to wireless
interference, at each time t, a subset of links S(t) ∈ L can be
scheduled at the same time. The subsets of links that satisfy the
interference constraints are said to be a feasible schedule. Let
S denote the set of all feasible schedules. We assume that all
the arrivals and transmissions occur in a time slotted manner:
the i-th packet at link l arrives at tl,i ∈ N and is served at
t′l,i ∈ N, where N denotes the set of non-negative integers. The
arrival and the service complete at the end of the time slot.

Let Al(t) denote the number of packet arrivals in time slot t.
For simplicity, we assume that there can be at most one arrival
in a time slot, i.e., Al(t) ∈ {0, 1}. At each link l, packets
arrive following an i.i.d. Bernoulli process with mean rate λl.
Let λ denote its vector. Also let Xl,i denote the interarrival time
between the i-th packet and the (i+ 1)-th packet at link l, i.e.,
Xl,i := tl,i+1 − tl,i. We assume that {Xl,i} is predetermined,
though it is unknown to the scheduler until the arrivals occur.
We assume that one packet can be transmitted during a time
slot. The number of served packets in time slot t is denoted
by Sl(t) ∈ {0, 1}, in particular, Sl(t) = 1 if l ∈ S(t) and
Sl(t) = 0 if l /∈ S(t). We slightly abuse our notation and use
interchangeably the set S(t) of scheduled links and the vector
{Sl(t)}. Let Ql(t) denote the queue length at link l at the
beginning of time t, which evolves as Ql(t + 1) = (Ql(t) −
Sl(t))

+ + Al(t), where (·)+ := max{0, ·}. All the queues are
served in a first-come-first-served manner. Let Nl(t) denote the
index of Head-of-Line (HoL) packet at the queue of link l at
the beginning of time t, i.e.,

Nl(t) := min{i | t′l,i ≥ t}, (1)
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Fig. 1. Example of deterministic packet arrivals.

which is well-defined when Ql(t) > 0.
We define the age of link l as the difference between the

current time and the time when the HoL packet of link l is
generated. The age is set to 0 if the queue is empty. As such,
age is a measure of how outdated the data is at the transmitting
end1 of the link is. We assume that only the links with non-zero
queue can be scheduled. Similar to [20], the age Ul(t) of link l
can be considered as a virtual queue that evolves as, for t ∈ N,

Ul(t+ 1) =

{
Ul(t) + 1{Ql(t)+Al(t)>0}, if l /∈ S(t),(
Ul(t) + 1−Xl,Nl(t)

)+
, if l ∈ S(t),

(2)

where 1{·} denotes the indication function. The first equation
implies that the age increases by 1 when the packet is not
served, and the second equation implies that the age decreases
by the amount of interarrival time when the packet is served. We
note that our definition of the age is slightly different from [25].
Assuming Ql(0) = 0 and Ul(0) = 0, the age equals 0 when
the queue is empty under our definition, and it accounts for the
oldness of the information waiting at the HoL of the link.

We say that the system is stable if the time-averaged mean
ages of all the links remain finite. Let Λ denote the set of arrival
rates such that for any λ ∈ Λ (strictly inside), there exists
a scheduling policy that can stabilize the system. Note that
from the Little’s law, the stability region of age is equivalent
to the stability region of the queue lengths, and any schedulers
that keep all the queue lengths finite (e.g., Queue-length based
MaxWeight [8]) stabilizes the system in terms of age and
achieves Λ.

III. MOTIVATION

In this section, we expose the deficiency of a round-
robin scheduler as well as commonly used throughput-optimal
MaxWeight schedulers that utilize queue-lengths and delays to
make the scheduling decisions. In particular, we design flows
with particular arrival patterns, and show that these popular
schedulers are unable to keep system information freshness
equally low. This will motivate us in the next section to
develop and analyze a new age-based scheduler that is aimed
at optimizing freshness of information.

Let us consider a simple network with three flows. Three
flows A,B,C have deterministic packet arrivals of different
patterns, and share a server that can serve one packet from
one flow at a time. In this example, we assume that all packets
arrive at the beginning of the time slot, and in each flow, packets
are served in the first-come-first-serve manner. At time 1, all

1Our definition is differerent from that in [25], where the age is defined as
a measure at the receiver. Despite the slight difference, their values are very
similar as shown in Fig. 11.
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the three flows have a packet arrival, which is available for
transmission from time 2. Flow A has additional arrival at time
3. The pattern repeats as shown in Fig. 1, where the k-th packet
from flow Z is marked as Zk.

Suppose that there is no service until time slot 4 and we start
transmitting the packets from time slot 5. First, we transmit
the packets following the largest queue-length first policy. At
the beginning of time 5, we have the queue length vector of
Q = {QA, QB , QC} = {2, 1, 1}, and thus serve A1 during
the time slot. At the end of time 5, one packet arrives at each
link. At time 6, we have Q = {2, 2, 2}, and break the tie by
transmitting the oldest packet first, i.e., B1 (or C1). At time
7, we have Q = {3, 1, 2}, and transmit A2. At time 8, we
have Q = {2, 1, 2}, and transmit C1. At time 9, we have Q =
{2, 1, 1} and transmit a packet from flow A. It can be easily
observed that the service repeats in the order of {A,B,A,C}.

Second, we consider another scheduling following the oldest
packet first policy. At the beginning of time 5, we have the
flow age vector of U = {UA, UB , UC} = {4, 4, 4}. We break
the tie in the order of {A,B,C}, and transmit A1. At time 6, we
have U = {4, 5, 5} and transmit B1. At time 7, we have U =
{5, 2, 6} and transmit C1. At time 8, we have U = {6, 3, 3}
and transmit A2. At time 9, we have U = {4, 4, 4} and transmit
a packet from flow A. It can be easily observed that the service
repeats in the order of {A,B,C,A}.

Finally, we consider the scheduler that serves the packet with
the largest age-weighted age drop. Let us consider the ages
(t− tl,Nl(t), t− tl,Nl(t)+1) of two packets at the head of queue.
For example, at time 5, flow A has (4, 3) for the age of two
HoL packets, i.e., for (A1, A2), and flows B and C have (4, 0).
The scheduler chooses the packet that leads to the largest age-
weighted age drop, i.e., the HoL packet of the flow with the
largest (t− tl,Nl(t)) · (tl,Nl(t)+1 − tl,Nl(t)) (break the tie in the
order of {A,B,C}), and thus, we will schedule B1 at time 5.
At time 6, the age of all the packets remained in the queues
increases by one, and we have {(5, 4), (1, 0), (5, 1)}, where we
set the age of not-yet-arrived packet to 0. The scheduler will
transmit C1. At time 7, we have {(6, 5), (2, 0), (2, 0)} and serve
A1. At time 8, we have {(6, 3), (3, 0), (3, 0) and serve A2. At
time 9, we have {(4, 3), (4, 0), (4, 0)} and serve a packet from
flow B. It can be easily observed that the service repeats in the
order of {B,C,A,A}.

Under each scheduling policy, the packet delay of
{A1,A2,B1,C1} can be calculated as in Table I. We first note
that the total delay sums are equal for all the policies. In
fact, it will be the same for all work-conserving schedulers.
Then, we observe that they have different per-flow delays.
Under the largest-queue-first policy, we have {4.5, 5, 7} for
flows A,B,C, respectively. Under the oldest-packet-first policy,
we have {5, 5, 6}, and under the largest-age-weighted-drop-first
policy, we have {6, 4, 5}.

The result raises an interesting question about the fairness of
packet delays, in particular when the flows have different arrival
rates. Considering the oldest-packet-first policy and the largest-
age-weighted-drop-first policy, they have similar per-flow delay
performances, but they do have different preference, which

TABLE I
DELAY OF EACH PACKET (t′l,i − tl,i) IN TIME SLOTS.

largest- oldest- largest-age-
queue-first packet-first weighted-drop-first

(A1,A2) (4,5) (4,6) (6,6)
B1 5 5 4
C1 7 6 5

will be clarified later in Section V. Prioritizing the packets (or
information) of the same age with their flow’s interarrival time
can motivate the sources to decrease their transmission rate to
achieve better delay performance. To this end, it is interesting
to investigate how the ages related to the per-flow delay
performance. Extending the largest-queue-first and the oldest-
packet-first schemes, we introduce the well-known scheduling
policies, and investigate their behaviors under symmetric and
asymmetric traffic.

The solution that finds the schedule with the maximum
queue-weighted sum, denoted by Q-MW, has been well-known
to be throughput-optimal. At each time slot, it has the schedule
SQ(t) as

SQ(t) = argmax
S∈S

∑
l∈L

Ql(t) · Sl, (3)

Another well-known throughput-optimal solution is the max-
imum HoL delay weighted sum, denoted by D-MW [18]. At
each time slot, it has the schedule SD(t) as

SD(t) = argmax
S∈S

∑
l∈L

Ul(t) · Sl. (4)

Also, the round-robin scheduler (RR) is a well-known alterna-
tive. Through simulations under simple scenarios, we demon-
strate the age performance of these three scheduling choices.

We consider a symmetric scenario with two links. Each
link has an on-off channel and turns on with probability 0.9,
independently across times and links. Each link has a flow with
the same mean packet arrival rate2 0.45, but their interarrival
times are different. For one flow (regular flow), packets arrive
with a fixed interarrival time, and for the other flow (bursty
flow), packets arrive in a burst: 10 packets within 0.1 slot time.
Note that all packets in a burst have similar generation times,
and thus, the HoL delay of the link will keep increasing until
all the packets in the burst are served out.

Fig. 2 shows the ages of the two flows (i.e. the HoL delay
of the two links) under RR, Q-MW, and D-MW scheduling
schemes, respectively. Under RR, the regular flow achieves
good age performance while the bursty flow suffers from large
ages. This is because the last packet of a burst has to wait for
long time under RR. (Each age drop of the bursty flow indicates
that the last packet of a burst is served out.) Under Q-MW, we
can observe the age of the regular flow increases from when a
packet burst of the bursty flow arrives. It is because the larger
queue will be served first under Q-MW. Upon the arrival of

2The arrival rates are within the stability region, since the total arrival rate
0.9 is less than the channel opportunity rate 1− 0.12 = 0.99.
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Fig. 2. Ages of two flows with the same arrival rate λregular = λbursty. One flow has regular traffic (black) while the other has bursty traffic (red).
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Fig. 3. Ages of two flows with different arrival rates. λregular = λbursty/3.
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Fig. 4. Ages of two flows with different arrival rates. λregular = 3λbursty.

a burst, the bursty flow will be served first, and then when
the queue lengths of the two flows are the same, they will be
served in turn. The priority given to the bursty flow makes its
age smaller than that of RR. Under D-MW, the bursty flow has
a priority if its burst arrive earlier than the HoL packet of the
regular flow, which delays the packets of the regular flow and
causes it to have as high ages as the bursty flow.

Similar results are observed when the bursty flow has a
higher arrival rate than that of the regular traffic as shown
in Fig. 3, where we set λregular = λbursty/3 = 0.2. However,
when the bursty flow has a lower arrival rate, where we set
λregular = 3λbursty = 0.6, we can observe that Q-MW suffers
from large ages, as shown in Fig. 4.

TABLE II
TOTAL AVERAGE AGE

RR Q-MW D-MW
λregular = λbursty 12.08 12.11 9.33
λregular = λbursty/3 7.64 8.27 7.20
λregular = 3λbursty 6.54 8.49 5.65

For each scenario, the total average age 1
T

∑T
τ=1

∑
l Ul(τ)

is as shown in Table II. It clarifies that Q-MW has the largest
average age. An interesting result is that when the bursty flow
has a lower arrival rate, the ages under Q-MW are larger than
the ages under RR for both the flows: 5.74 (Q-MW) vs. 4.50
(RR) for the bursty flow, and 2.74 (Q-MW) vs. 2.04 (RR) for
the regular flow. This implies that Q-MW is not even a Pareto-
optimal solution to minimizing the ages and we may be able

to lower ages for all the flows.

IV. AGE-BASED MAXWEIGHT SCHEDULING

In this section, we develop new policies that utilize a
combination of age and interarrival time realizations/statistics
in order to maintain fresh information at the receiver, instead
of queue-lengths and delays. We apply a modified drift-based
heavy-traffic analysis [31] to derive the heavy-traffic perfor-
mance of our new policy in terms of the desired metric.

A. Algorithm Design and Stability Analysis

We consider the following scheduling policy:

A-MW: SA(t) = argmax
S∈S

∑
l∈L

Ul(t)

λl
· Sl, (5)

denoted by Age-based MaxWeight scheduling policy (A-MW).
Note that the evolution (2) of the age can be rewritten as

Ul(t+ 1) =


0, if Ul(t) = 0 and Al(t) = 0,
1, if Ul(t) = 0 and Al(t) > 0,(
Ul(t) + 1−Xl,Nl(t) · Sl(t)

)+
, otherwise.

(6)

Combined it with (5), we observe that A-MW makes decisions
up to time t independent of the interarrival time of the current
head-of-line packet to its subsequent packet. This will facilitate
our analysis by allowing E[Xl,Nl(t) |Ul(t) > 0] = 1

λl
. We

can remove the projection operation (·)+ by introducing a
random variable Zl(t). With some 0 ≤ Zl(t) ≤ Xl,Nl(t) that
is accordingly chosen as a function of Ul(t) and Xl,Nl(t), the
last equation becomes Ul(t) + 1− (Xl,Nl(t) − Zl(t)) · Sl(t).
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We consider the Markov Chain described by states
{U(t)}t≥0, and define a Lyapunov function V (t) :=
1
2

∑
l Ul(t)

2. Letting ∆V (t) denote the drift of the Lyapunov
function, we have

∆V (t) := 1
2

∑
lE[Ul(t+ 1)2 − Ul(t)2 | U(t) = U]

= 1
2

∑
l:Ul=0E[Ul(t+ 1)2|U]

+ 1
2

∑
l:Ul>0E[Ul(t+ 1)2 − Ul(t)2|U].

Since Ul(t+ 1) ≤ 1 when Ul(t) = 0, and Ul(t+ 1) = Ul(t) +
1− (Xl,Nl(t) − Zl(t)) · Sl(t) when Ul(t) > 0, the drift can be
upper bounded by

∆V (t) ≤ 1
2 |L| (7)

+ 1
2

∑
l:Ul>0E

[
(1− (Xl,Nl(t) − Zl(t)) · Sl(t))2|U

]
(8)

+ 1
2

∑
l:Ul>0E

[
2Ul(1− (Xl,Nl(t) − Zl(t)) · Sl(t))|U

]
. (9)

Note that from 0 ≤ Zl(t) ≤ Xl,Nl(t), we should have
|Xl,Nl(t) − Zl(t)| ≤ 2Xl,Nl(t). Also, since the interarrival
time Xl,Nl(t) is independent of Ul(t) and Sl(t) under A-
MW, there is a constant C1 := 1

2

∑
l(1 + 4

λl
+ 4 · 2−λl

λ2
l

) ≥
1
2

∑
l:Ul>0E[1 + 4Xl,Nl(t) + 4X2

l,Nl(t)
|U] that is no smaller

than (8). Further, in the last term (9), we have∑
l:Ul>0E

[
Ul(1− (Xl,Nl(t) − Zl(t)) · Sl(t))|U

]
≤
∑
l:Ul>0E[Ul(1−Xl,Nl(t) · Sl(t)) | U]

+
∑
l:Ul>0E[X2

l,Nl(t)
| U],

(10)

where the inequality comes from the fact that Zl(t) ≤ Xl,Nl(t)

when Ul(t) < Xl,Nl(t), and Zl(t) = 0 when Ul(t) ≥ Xl,Nl(t).
Since the independence of Xl,Nl(t) and Ul(t) implies that the
conditional second moment E[X2

l,Nl(t)
| U] = 2−λl

λ2
l

, we can
obtain that

∆V (t) ≤
∑
l:Ul>0E[Ul(1−Xl,Nl(t) · Sl(t)) | U] +C2, (11)

where C2 := |L|
2 + C1 +

∑
l

2−λl
λ2
l

.
Note that for any arrival λ strictly inside Λ, there is a

stationary scheduler that schedules SS(t) independent of the
system state and satisfies that, for small ε > 0,

E[SSl (t)] ≥ λl + ε, for all l. (12)

Then the drift bound of (11) can be written as

∆V (t) ≤
∑
l:Ul>0 Ul · E[1−Xl,Nl(t) · SSl (t) | U]

+
∑
l:Ul>0 Ul · E[Xl,Nl(t) · (SSl (t)− Sl(t)) | U] + C2.

(13)

From (12) and the independence of {Xl,Nl(t)}, we obtain

Ul · E
[
1−Xl,Nl(t) · SSl (t) | U

]
≤ − ε

λl
Ul. (14)

Now we can show the stability of A-MW as follows.
Lemma 1: Age-based MaxWeight (A-MW) scheduling pol-

icy achieves the stability region Λ.
Proof: Under A-MW, the second term of (13) becomes∑
lUl · E

[
Xl,Nl(t) · (S

S
l (t)− SAl (t)) | U

]
= E

[∑
l
Ul
λl
· SSl (t)−

∑
l
Ul
λl
· SAl (t)

∣∣U] ≤ 0,
(15)

due to the independence of {Xl,Nl(t)}. Combining (13), (14),

and (15), we have

∆V (t) ≤ −ε
∑
l∈L

Ul
λl

+ C2, (16)

which implies that A-MW has a negative Lyapunov drift for
sufficiently large ages and thus achieves Λ.

A weakness of A-MW is that it requires the information
of arrival rate λ, which may be unknown a priori. For more
practical use, we may replace the arrival rate with measured
value as

mA-MW: Sm(t) = argmax
S∈S

∑
l∈L

Ul(t)

λ̂l(t)
· Sl, (17)

where λ̂l(t) := 1
t

∑t−1
τ=0Al(τ).

Another alternative is to minimize (11) by choosing

IA-MW: SI(t) = argmax
S∈S

∑
l∈L

Ul(t) ·Xl,Nl(t) · Sl. (18)

This immediately extends MaxWeight to take into account
the product of Instantaneous interarrival time and Age3 (thus
denoted by IA-MW). However, the variation of the interarrival
process often causes significant delaying of HoL packets, which
makes it less attractive. We will see this later in Section V.

In the following, we focus on the performance charac-
terization of A-MW due to mathematical tractability. Since
λ̂l(t) → λ as t → ∞, we claim that the performance of A-
MW and mA-MW is close to each other, which will be verified
through simulations in Section V.

B. Performance Analysis: Heavy-Traffic Bounds

In this section, we address the performance of A-MW in
terms of direction of state space collapse and age bounds, which
will complement the stability results in Section IV-A. Further,
we investigate asymptotic performance bounds of a simplified
system with backlogged queues, since, as the arrivals get closer
to the bound of the stability region, the performance gap
between the original system and the simplified system would
be negligible as in [31]. Our results will provide the insight into
the optimal performance and a new research direction toward
information freshness and synchrony.

Recall that the stability region of age is equivalent to the
(throughput) capacity region, which is bounded by K hyper-
planes [31]. Let F (k) denote the k-th face of Λ, and let c(k)

denote the normal vector of F (k) with ‖c(k)‖ = 1. Then there
is a constant b(k) such that

〈c(k), r〉 = b(k) for all r ∈ F (k). (19)

We define 1
λ(k) Λ := { λ

λ(k) |λ ∈ Λ}. All vector multiplications
and divisions are componentwise. We consider λ(k) ∈ relative
interior of F (k), and obtain 1

λ(k) Λ by scaling each element λl of
λ in Λ with λ(k)

l as shown in Fig. 5. Due to the componentwise
division, we have point-to-point mapping between Λ and 1

λ(k) Λ,
and the linearity is preserved. Hence, a face in Λ is mapped
to a face in 1

λ(k) Λ. Let G(k) denote the face in 1
λ(k) Λ that

3We refer to [25] for intuitive explanation about the relationship between
the interarrival times and the ages.
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the componentwise division, the linearity is preserved. In the scaled stability
region, we omit superscript (ε) or (ε, k) for the age vectors.

corresponds to face F (k) in Λ. We define d(k) := c(k) · λ(k),
and given ε > 0, we choose an arrival vector λ(ε) such that

1

λ
(ε)
l

=
1

λ
(k)
l

+ ε · ‖d
(k)‖
d

(k)
l

, (20)

for all l with non-zero λ(k)
l and d(k)

l . We have λ(ε)
l ≤ λ

(k)
l , ∀l.

Proposition 1 (State Space Collapse): Under the assump-
tion of heavy traffic loads and independent interarrival times,
the state space of the ages collapses under A-MW, to direction
d(k), as ε→ 0.
To prove this, we basically follow the line of the analysis
in [31]. However, the proof is not straightforward since the age
processes do not evolve as the queue length processes: they
increase by 1 at each time slot, and decrease by the interarrival
time. We scale the whole state space by λ(k), and show that
the mapping of the age to the hyperplane characterized by d(k)

approaches 0 as ε→ 0. Using the new arrival vector (20) with
the corresponding d(k) are the key elements to the proof. They
allow the scaling of the stability region even with the product
form of interarrival time Xl,Nl(t) and scheduling decision Sl(t).
We refer the readers to Appendix A for the detailed proof.

We now investigate asymptotic performance of a simplified
system with backlogged queues, under which the age evolves
as Ul(t + 1) = Ul(t) + 1 − Xl,Nl(t) · Sl(t). From the results
in Appendix A and Lemma 1 of [31], we can show that
{U(t)}t converges in distribution to a random variable U with
all bounded moments. For a vector U(ε), which is the age
under A-MW with λ(ε), we define its parallel and perpendicular
components with respect to d(k) as follows:

U
(ε,k)
‖ := 〈 d(k)

‖d(k)‖ ,U
(ε)〉 d(k)

‖d(k)‖ ,

U
(ε,k)
⊥ := U(ε) −U

(ε,k)
‖ .

(21)

Then, we have the following performance bounds, whose proofs
can be found in Appendix B and C, respectively.

Proposition 2 (An Upper Bound): As ε → 0, A-MW
achieves that

lim
ε→0

εE[‖U‖‖] ≤
1

2
· 〈( d(k)

‖d(k)‖ )
2, (σX)2〉, (22)

where σX denotes the variance vector of the interarrival times.
The following proposition shows that the performance bound
under A-MW may not be tight.

Proposition 3 (A Lower Bound): For the class of scheduling
policies that do not take into consideration the instantaneous
interarrival times (i.e., interarrival-time-agnostic schedulers),
the age performance is bounded by

lim
ε→0

εE[‖U‖‖] ≥
1

2
〈(d(k))2, (σX)2 · (λ(k))2〉. (23)

For the upper bound, we define V‖(U, k) := ‖U(ε,k)
‖ ‖2 and

note that its drift E[∆V‖(U, k)] is zero from the age stability
under A-MW. Starting from the zero drift, we carefully derive
the equations in terms of E[‖U(ε,k)

‖ ‖] when ε → 0, which
results in the upper bound. Technical difficulties mainly come
from the product form of the processes X ·S and the non-linear
relationship between λ(ε) and λ(k). For the lower bound, we
consider a single-queue server with constant arrival 〈d(k),1〉
and departure maxS∈Λ〈d(k),X · S〉, which outperforms A-MW
in terms of age. The product form of the processes X ·S again
becomes the technical difficulty. We restrict our attention to the
class of interarrival-time-agnostic schedulers, and show that the
departure process of the single-queue server that achieves λ(k)

is an optimal solution, which leads to (23).
Note that since the state space of the age collapses under

A-MW, it might be possible to control the collapse direction
toward {1, 1, . . . , 1} by multiplying a constant weight in (5),
which will make the received data packets synchronous at
the receiver side. How one can precisely control the collapse
direction without a priori knowledge about the arrivals remains
an interesting open question.

V. NUMERICAL RESULTS

In this section, we evaluate the performance of A-MW. We
first present the behavior of A-MW with two flows (one bursty
and one regular traffic), and then compare the performance
of A-MW with those of RR, Q-MW, and D-MW. Finally, we
observe the state space collapse of the ages under A-MW.

Under the same scenarios as in Section III, we can observe
the age performance of A-MW under equal and unequal packet
arrivals as in Fig. 6. See Figs. 3 and 4 for comparison with RR,
Q-MW, and D-MW. The age performance of A-MW is similar
to that of D-MW, which can be also observed by the total
average ages: 9.73 when λregular = λbursty, 6.86 when λregular =
λbursty/3, and 5.65 when λregular = 3λbursty.

Next, we further evaluate the performance of A-MW in terms
of queue lengths, packet delays, and normalized age. Besides
RR, Q-MW, and D-MW, we also consider IA-MW of (18) that
takes into account instantaneous interarrival times, and mA-
MW of (17). We consider a simple network scenario with one
base station and 4 users (flows) as shown in Fig. 7. The base
station has 4 downlinks, where each link is dedicated to a
flow. Packets for each flow arrive at the base station, stored
in separate per-flow queues, and served through the links. At
a given time slot, the channel of each link is either on or off
with probability 0.5, and the scheduler of the base station can
choose one link with on channel. Once a link is chosen, it
can serve one packet during the time slot. Packets for each
flow arrive following a Poisson process with mean arrival rate
λ = ρ · {0.5, 0.25, 0.125, 0.125}, where load ρ is the scaling
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Fig. 6. Ages of two flows with different arrival rates under A-MW.
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Fig. 7. Network topology with 4 flows.

factor of the arrival rate vector. We simulate the system for
106 time slots under different traffic loads. We use 10 different
random seeds, and in each simulation run, we measure moving
average of total queue lengths

∑
lQl(t), total packet delays

1∑
lNl(t)

∑
l,i(t
′
l,i − tl,i), and total normalized ages

∑
l
Ul(t)
λl

.
Fig. 8 show, in log scale, the measured values after the

simulations end, and each point represents an average over the
10 simulation runs. Given our setting, ρ = 1− (0.5)4 = 0.9375
is the boundary of Λ. First, we can observe that under RR and
IA-MW, the queue lengths, the packet delays, and the ages start
soaring before the load increases close enough to the boundary,
which implies that they may not achieve the stability region. For
IA-MW, the variance of interarrival times seems to often cause
excessive delay for the packets with short interarrival times,
which degrades the performance. Second, the performance
of A-MW and mA-MW are very similar. By replacing the
arrival rate λl with our measurement 1

t

∑t
τ=0Al(τ), we can

implement the scheduling policy without the rate information
of the flows. Third, in the queue lengths and the packet delays,
Q-MW and D-MW outperform A-MW and mA-MW, but the
differences reduce as the load approaches the boundary. In
contrast, A-MW and mA-MW outperform Q-MW and D-MW
in the normalized ages, and there are substantial differences
remain at the boundary and even the beyond. This shows that
A-MW and mA-MW achieve higher age performance at no
significant cost of queue length and delay.

Fig. 9 provides the per-flow performance when ρ = 0.935,
which is more than 99.7% of the capacity. It clarifies the
differences of Q-MW, D-MW, and A-MW in the per-flow delay
performance. Flows are numbered in the decreasing order of
the arrival rate. In comparison of the queue lengths shown
in Fig. 9(a), Q-MW achieves almost equal queue length (as
denoted by the dotted line) over all the flows. In packet delays,
D-MW achieves equal per-packet delays over the flows in
Fig. 9(b). Finally, Fig. 9(c) shows that A-MW and mA-MW
achieve equal normalized age over the flows (as denoted by
the dotted line). Considering the Little’s law that associates the
queue lengths (that Q-MW schedules with as in (3)) and the
packet delays (that D-MW schedules with as in (4)) by the

arrival rate as 1
λl

, one may expect that the performances under
Q-MW and D-MW are also related by the arrival rate as shown
in the results4: The queue lengths of the flows are equal under
Q-MW while they are proportional to λl under D-MW, and the
packet delays of the flows are equal under D-MW while they are
proportional to 1

λl
under Q-MW. A similar relationship that can

be expected between D-MW (4) and A-MW (5) is supported
by our results. We emphasize that the property of A-MW that
gives a priority to the flow with a small arrival rate is desirable.
A traffic source can decrease its transmission rate to achieve
better delay performance, which will improve the overall delay
performance by decreasing the traffic load.

Finally, we investigate the state space collapse. We consider a
network with two users. The network settings are the same, ex-
cept that the channel is on with probability 1 and 0.5 for user 1
and user 2, respectively, and the link for user 2 can serve up to 2
packets if it is scheduled. For the non-unit service rate, we have
modified Q-MW (3) as SQ(t) = argmaxS∈S

∑
l∈LQl(t)·Sl·rl,

where rl denote the service rate of link l. The other policies
of D-MW, IA-MW, A-MW, and mA-MW are also modified
accordingly. In this scenario, the stability region is as shown in
Fig. 10(a). Consider λ = ρ · {0.5, 0.25}. Then, the slope is the
face and we have the normal vector c(k) = 1√

5
{2, 1}, and thus

d(k) = c(k) · λ = ρ√
5
· {1, 0.25}. Note that the arrival rate is

on the boundary of Λ when ρ = 1.6. Fig. 10(b) demonstrates
that as ρ increases, the perpendicular element ‖U⊥‖ of the
age keeps increasing under RR, Q-MW, D-MW, and IA-MW.
In contrast, A-MW achieves a finite ‖U⊥‖, which verifies
the state space collapse to direction d(k) under A-MW. mA-
MW has slowly increasing ‖U⊥‖ due to some measurement
errors, but it has much smaller ‖U⊥‖ than RR, Q-MW, and
D-MW. Fig. 10(c) directly shows the evolution of the ages
for the flows {U1(t), U2(t)} when ρ = 1.59. Since D-MW
tries to have U1(t) = 2U2(t), where the doubling is due to
the high link rate, it has the ages to the direction of {2, 1}.
Q-MW tries to have Q1(t) = 2Q2(t), hence, through Little’s
law, achieves E[D1(t)] = E[Q1(t)

0.5ρ ] = E[ 2Q2(t)
0.5ρ ] = E[D2(t)],

i.e., has direction {1, 1}. A-MW and mA-MW tries to have
U1(t) · 2 = 2U2(t) · 4, and thus the ages evolve along direction
{4, 1}.

While we have shown that A-MW and mA-MW achieve
good performance and desirable properties of state-space col-
lapse under heavy traffic loads, the schemes can be considered
as a weighted version of D-MW, and needs a long-term

4We note that the packet delays are a per-packet average while the queue
lengths and the ages are a time average. However, our statement will hold
under Poisson arrival processes due to PASTA.

7



0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.1

1

10

100

1000

10000

100000

Q
ue

ue
 le

ng
th

 (p
ac

ke
ts

)

Load

 RR
 Q-MW
 D-MW
 IA-MW
 A-MW
 mA-MW

(a) Queue lengths

0.0 0.2 0.4 0.6 0.8 1.0 1.2
1

10

100

1000

10000

100000

P
ac

ke
t d

el
ay

 (t
im

e 
sl

ot
s)

Load

 RR
 Q-MW
 D-MW
 IA-MW
 A-MW
 mA-MW

(b) Packet delays

0.0 0.2 0.4 0.6 0.8 1.0 1.2
10

100

1000

10000

100000

1000000

1E7

1E8

N
or

m
al

iz
ed

 a
ge

Load

 RR
 Q-MW
 D-MW
 IA-MW
 A-MW
 mA-MW

(c) Normalized ages

Fig. 8. Performance with different traffic loads.
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Fig. 9. Per-flow performance when load ρ = 0.935.
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Fig. 10. State space collapse.

averaging of interarrival times, which may make the scheme
less responsive to traffic changes. To this end, a time-weighted
moving average of the interarrival times could be helpful.
Taking into consideration the low performance of IA-MW (i.e.,
without averaging interarrival times), finding a good factor of
time-averaging would be an interesting open problem.

We also note that our definition of age is slightly different
from the conventional one in the literature. While we define
it as the information age of the HoL packet, it can be also
defined as the information age at the receiver (denoted by
age-at-receiver), i.e., current time minus creation time of the
recently received information [25]. To clarify the differences,
we conduct simulations with identical settings as in Fig. 10(c).
The results under Q-MQ and A-MQ are shown in Fig. 11. We
omit the results of D-MW and mA-MW for simplicity. The
two metrics have a strong linear relation, which implies that

our (HoL) age is a good representative of age-at-receiver under
heavy loads. Accordingly, our algorithm promises to yield low
age levels at the receiver as well as synchrony characteristics
under heavily loaded conditions. We note that the two age
metrics may differ under light loads, since, when the queue
is empty, age-at-receiver increases while (HoL) age does not.
As such, the issue of information freshness at the receiver under
light loads demands further work in future research.

VI. A GENERALIZATION AND DISCUSSION

The results of Fig. 9 reveal a new perspective on the varying
fairness characteristics of the class of Age-Based Schedulers.
Namely, we observe that: D-MW provides a min-max-like
fairness (i.e., equal packet delays), while A-MW provides a
proportional-like fairness (i.e., equal normalized ages). This
has motivated us to expand our design to a broader class of
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a g e- b as e d s c h e d ul ers t h at c a n a c c o m m o d at e t h es e as s p e ci al
c as es. T o el a b or at e, f or a si n gl e- h o p n et w or k, w e c o nsi d er t h e
mi ni mi z ati o n of t h e f oll o wi n g c o n v e x f u n cti o n of m e a n d el a ys:

mi n
l∈ L

( x̄ l (t))
α + 1 , ( 2 4)

w h er e α ≥ 0 a n d x̄ l d e n ot es m e a n p a c k et d el a y f or li n k l. N ot e
t h at w e c a n a c hi e v e t h e d el a y s u m mi ni mi z ati o n w h e n α = 0 ,
a n d t h e q u a dr ati c d el a y s u m mi ni mi z ati o n w h e n α = 1 .

T h e s ol uti o n t o t h e pr o bl e m will s c h e d ul e li n k l∗ wit h

l∗ = ar g m a x
l∈ L

˙̄x l (t) · ( x̄ l (t))
α ,

w h er e ˙̄x l (t) r e pr es e nts t h e ti m e- d eri v ati v e of t h e m e a n a g e
at ti m e t, w hi c h is r o u g hl y m e as ur e d t hr o u g h t h e c urr e nt
p a c k et d el a y (i. e., a g e) U l (t). B y s etti n g i d e al l o n g-t er m d el a y
pr o p orti o n al t o its i nt er arri v al ti m e, i. e., x̄ l (t) = 1

λ l
, w e h a v e

l∗ ≈ ar g m a x
l∈ L

U l (t)

λ α
l

. ( 2 5)

I n t his c as e, w h e n α = 0 , w e s c h e d ul e t h e li n k wit h t h e
m a xi m u m a g e or p a c k et d el a y (i. e., D- M W), a n d w h e n α = 1 ,
w e s c h e d ul e t h e li n k wit h t h e m a xi m u m n or m ali z e d a g e (i. e., A-
M W). I n t his g e n er ali z e d f or m ul ati o n, as α → ∞ , w e pr o vi d e
a hi g h er pri orit y t o t h e fl o w wit h t h e l o w est tr af fi c r at e (i. e.,
wit h t h e l ar g est i nt er arri v al ti m e).

F or t his n e w p ar a m etri c s c h e d ul er ( 2 5), w e h a v e c o n d u ct e d
si m ul ati o ns u n d er t h e s a m e s etti n gs as i n Fi g. 9. Fi g. 1 2 s h o ws

t h e f air n ess r es ult wit h diff er e nt v al u es of α i n t h e f or m of
t h e J ai n’s i n d e x

( l y l )
2

|L |· l y 2
l

, w h er e y l d e n ot es t h e a c hi e v e d

p a c k et d el a y of li n k l n or m ali z e d b y t h e i nt er arri v al ti m e. As
e x p e ct e d, w e o bs er v e t h at t h e r es o ur c es ar e all o c at e d i n a f air
m a n n er (i. e., t h e i n d e x e q u als 1 ) wit h α = 1 (i. e., u n d er A-
M W) a n d i n a n u nf air m a n n er (i. e., t h e i n d e x is cl os e t o 0 .2 5 )
wit h l ar g e α ≥ 6 .

T h es e n u m eri c al r es ults r e v e al t h at t h e a g e mi ni mi z ati o n is
c o u pl e d wit h t h e mi ni mi z ati o n of t h e q u a dr ati c f u n cti o n of
m e a n p a c k et d el a ys. T his m a k es s e ns e o n c e w e n ot e t h at a g e
i n v ol v es t h e ti m e-i nt e gr ati o n of t h e H o L p a c k et d el a y, w hi c h,
i n t ur n, is a q u a dr ati c f u n cti o n of t h e p a c k et d el a y. O n t h e ot h er
h a n d, it is n ot v er y cl e ar y et w h et h er w e c a n fi n d a g o o d utilit y
f u n cti o n i n t h e q u a dr ati c f or m of H o L p a c k et d el a y t h at l e a ds
t o t h e mi ni mi z ati o n of t h e a g e s u m, w hi c h is a n i nt er esti n g
o p e n pr o bl e m.

VII. C O N C L U D I N G R E M A R K S

I n t his w or k, w e a d dr ess t h e s c h e d uli n g pr o bl e m i n wir el ess
n et w or ks wit h a f o c us o n t h e i nf or m ati o n fr es h n ess a n d t h e
d el a y ali g n m e nt, w hi c h ar e of gr e at i m p ort a n c e t o t h e s ys-
t e ms w h er e t h e eff e cti v e n ess of t h e c o ntr ol d e cisi o ns d e p e n ds
criti c all y o n t h e d el a y a n d s y n c hr o nis m of t h e s yst e m st at e
i nf or m ati o n. We st art wit h i n ef fi ci e n c y of c o n v e nti o n al a p-
pr o a c h es i n m ai nt ai ni n g fr es h i nf or m ati o n u p d at es of m ulti pl e
c o nti n u o us fl o ws, a n d s h o w t h e criti c al v al u e of b ot h a g e
a n d i nt er arri v al ti m es. We d e v el o p n e w s c h e d ul ers, wit h a n d
wit h o ut t h e k n o wl e d g e of arri v al r at es, t h at a c c o u nt f or b ot h
a g e i nf or m ati o n a n d i nt er arri v al ti m es of i n c o mi n g p a c k ets, a n d
c h ar a ct eri z e its p erf or m a n c e u n d er h e a v y-tr af fi c c o n diti o n. T o
el a b or at e, w e s h o w t h at it a c hi e v es t h e st at e s p a c e c oll a ps e i n
a pr o p erl y s c al e d c o or di n ati o n s yst e m, a n d pr o vi d e its u p p er
a n d l o w er p erf or m a n c e b o u n ds. Alt h o u g h t h e a n al yti c al r es ults
ar e o bt ai n e d u n d er h e a v y-tr af fi c c o n diti o ns, w e o bs er v e t hr o u g h
n u m eri c al r es ults t h at t h e s c h e d ul er a c hi e v es d esir a bl e fr es h n ess
p erf or m a n c e e v e n i n li g htl y-l o a d e d c o n diti o ns. I n a d diti o n,
t h e s c h e d ul er h as g o o d l o n g-t er m p erf or m a n c e i n t hr o u g h p ut
a n d a v er a g e d el a y, w hil e als o m ai nt ai ni n g e q u all y- u p-t o- d at e d
i nf or m ati o n fr o m m ulti pl e s o ur c es.

T h er e ar e m a n y i nt er esti n g o p e n pr o bl e ms. It is of i nt er est
t o a n al yti c all y c h ar a ct eri z e t h e fr es h n ess p erf or m a n c e of o ur
s c h e m es u n d er li g htl y-l o a d e d c o n diti o ns, w hi c h r e q uir es t h e
d e v el o p m e nt a n d us e of f u n d a m e nt all y diff er e nt m et h o ds t h a n
t h os e e m pl o y e d i n t his w or k. We h a v e s h o w n t h at A- M W
a c hi e v es t h e st a bilit y r e gi o n, b ut it r e q uir es t h e k n o wl e d g e of
t h e m e a n arri v al r at e. It is i nt er esti n g t o st u d y w h et h er m A-
M W c a n als o a c hi e v e t h e st a bilit y r e gi o n. T h e ti g ht n ess of
t h e p erf or m a n c e b o u n ds is of gr e at i nt er est. Als o, it mi g ht b e
p ossi bl e t o c o ntr ol t h e dir e cti o n of t h e st at e s p a c e c oll a ps e
b y a d di n g a c o nst a nt w ei g ht t o e a c h li n k. We w o ul d li k e t o
d e v el o p a n a d a pti v e s c h e m e t h at c a n a ut o m ati c all y a dj ust t h e
w ei g hts t o i n d u c e t h e c oll a ps e as i nt e n d e d, w hi c h c a n pr o vi d e
t h e i nf or m ati o n s y n c hr o n y.
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APPENDIX

A. State space collapse

Recall that G(k) denote the face in 1
λ(k) Λ that corresponds

to face F (k) after the componentwise mapping of Λ. Let H(k)

denote the hyperplane that characterizes 1
λ(k) Λ and includes

face G(k). From d(k) = c(k) · λ(k), we have 〈d(k),q〉 =
b(k), for all q ∈ G(k), since for any q ∈ G(k), we can find
r ∈ F (k) such that r = q · λ(k) due to the mapping, and then

〈d(k),q〉 = 〈c(k) · λ(k), r/λ(k)〉 = 〈c(k), r〉 = b(k), (26)

where the last equality from (19). This means that d(k) is
normal5 to G(k) (while ‖d(k)‖ 6= 1.)

Let 1 = {1, 1, . . . , 1}. From λ(k) ∈ F (k), we have 1 ∈ G(k).
Further, from ‖c(k)‖ = 1, we have

〈d(k),1〉 = 〈c(k),λ(k)〉 = b(k), (27)

〈d(k),λ(ε)/λ(k)〉 = b(k) − ε · ‖d(k)‖ · 〈1,λ(ε)〉, (28)

‖d(k)‖ ≤ ‖c(k)‖ · ‖λ(k)‖ = ‖λ(k)‖. (29)

where the arrival vector λ(ε) is specified in (20). From our
selection λ(ε), we always have λ(ε)

l ≤ λ
(k)
l for all l. Let U(ε)(t)

denote the ages under λ(ε).
For a vector U(ε)(t), we define its parallel and perpendicular

components with respect to d(k) as follows:

U
(ε,k)
‖ (t) := 〈 d(k)

‖d(k)‖ ,U
(ε)(t)〉 d(k)

‖d(k)‖ ,

U
(ε,k)
⊥ (t) := U(ε) −U

(ε,k)
‖ (t).

(30)

In the sequel, we omit scripts t and ε for simplicity, and denote
U(ε)(t),U

(ε,k)
‖ (t),U

(ε,k)
⊥ (t) by U,U

(k)
‖ ,U

(k)
⊥ , respectively.

Let us consider the following three Lyapunov functions.
V (U) := ‖U‖2, V⊥(U, k) := ‖U(k)

⊥ ‖, and V‖(U, k) :=

‖U(k)
‖ ‖

2. Given λ(k) ∈ F (k) (relatively inside) and δ > 0,
we define

B
(k)
δ := {r | ‖1− r

λ(k) ‖ ≤ δ and r
λ(k) ∈ H(k)}. (31)

Since λ(k) is relatively inside F (k), λ(k)/λ(k) = 1 is relatively
inside G(k), and thus there exists a small δ(k) > 0 such that

5For any q1,q2 ∈ G(k), we can find some r1 and r2 such that
r1 = q1 · λ(k) and r2 = q2 · λ(k). Then 〈d(k),q1 − q2〉 =
〈c(k) · λ(k), r1/λ

(k) − r2/λ
(k)〉 = 〈c(k), r1 − r2〉. From the construction

of G(k), r1 and r2 are two points on F(k) and we have 〈c(k), r1 − r2〉 = 0,
since c(k) is normal to F(k).
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1
λ(k)B

(k)

δ(k)
lies strictly inside G(k). The following lemma implies

the state space collapse as ε→ 0.

Lemma 2:

E[∆V⊥(U, k)|U] ≤ −δ(k) +ε · ‖d(k)‖ ·‖ 1
d(k) ‖+ C2

‖U(k)
⊥ ‖

. (32)

Lemma 2 implies the existence of constants {N (k)
r } such that

E[‖U(ε,k)

⊥ ‖r] ≤ N
(k)
r for sufficiently small ε and each r =

1, 2, . . . in our system. (See [32] or Lemma 1 of [31].)

Proof: We start from the following equation shown in [31].

E[∆V⊥(U, k)|U]

≤ E
[

1

2‖U(k)
⊥ ‖
·
(
∆V (U)−∆V‖(U, k)

)
|U
]
.

(33)

We consider each drift E[∆V (U)|U] and E[∆V‖(U)|U] one
by one. Let X := {Xl,Nl(t)} and Z := {Zl(t)}.

For the former, from (11), we have,

E[∆V (U)|U] ≤ 2E[〈U,1−X · SA〉|U] + 2C2. (34)

Due to the independence of X, the first term can be written as

2E[〈U,1−X · SA〉|U] = 2〈U,1− E[SA|U]/λ(ε)〉
= 2〈U,1− E[SA|U]/λ(k)〉 − 2ε · ‖d(k)‖ · 〈U, E[SA|U]/d(k)〉
(a)

≤ 2 min
r∈B(k)

δ(k)

〈U,1− r/λ(k)〉 − 2ε · ‖d(k)‖ · 〈U, E[SA|U]/d(k)〉

(b)
= 2 min

r∈B(k)

δ(k)

〈U(k)
⊥ ,1− r/λ(k)〉

− 2ε · ‖d(k)‖ · 〈U(k)
⊥ + U

(k)
‖ , E[SA|U]/d(k)〉

(c)
= −2δ(k) · ‖U(k)

⊥ ‖ − 2ε · ‖d(k)‖ · 〈U(k)
⊥ , E[SA|U]/d(k)〉

− 2ε · ‖d(k)‖ · 〈U(k)
‖ , E[SA|U]/d(k)〉,

(35)

where (a) comes from the scheduling of A-MW that maximizes
〈U, E[SA|U]/λ(ε)〉, (b) holds since (1 − r/λ(k)) ∈ H(k) and
it is perpendicular to U

(k)
‖ , and (c) holds since the minimum

will be obtained by choosing the point in B(k)

δ(k)
to the opposite

direction of U(k)
⊥ . Further, the last two terms of the last equation

in (35) can be rewritten as

〈U(k)
⊥ , E[SA|U]/d(k)〉 = ‖U(k)

⊥ ‖ · ‖E[SA|U]/d(k)‖ · cos θ1,

〈U(k)
‖ , E[SA|U]/d(k)〉 = ‖U(k)

‖ ‖ · ‖E[SA|U]/d(k)‖ · cos θ2,

where θ1 := ∠(U
(k)
⊥ , E[SA|U]/d(k)) and θ2 :=

∠(U
(k)
‖ , E[SA|U]/d(k)).

For E[∆V‖(U)|U] of (33), since

‖U(k)
‖ ‖ = 〈 d(k)

‖d(k)‖ ,U〉
‖d(k)‖
‖d(k)‖ = 1

‖d(k)‖ 〈d
(k),U〉, (36)

we have

E[∆V‖(U)|U] = E[ ‖U(k)
‖ (t+ 1)‖2 − ‖U(k)

‖ (t)‖2 |U]

≥ 1
‖d(k)‖2E

[
〈d(k),U + 1− (X− Z) · SA〉2

−〈d(k),U〉2 |U > 0
]

≥ 2
‖d(k)‖2 · 〈d

(k),U〉 · 〈d(k),1− E[SA|U]/λ(ε)〉.

From (20) and (36), we have

〈d(k),U〉 · 〈d(k),1− E[SA|U]/λ(ε)〉

= ‖d(k)‖ · ‖U(k)
‖ ‖ ·

(
〈d(k),1− E[SA|U]/λ(k)〉

−ε · ‖d(k)‖ · 〈d(k), E[SA|U]/d(k)〉
)

≥ −ε · ‖d(k)‖3 · ‖U(k)
‖ ‖ · ‖E[SA|U]/d(k)‖ · cos θ3,

where θ3 := ∠(d(k), E[SA|U]/d(k)). The inequality holds
since 〈d(k),1〉 = b(k) and 〈d(k), E[SA|U]/λ(k)〉 ≤ b(k) for
any feasible schedules.

Note that θ2 = ∠(U
(k)
‖ , E[SA|U]/d(k)) equals to

∠(d(k), E[SA|U]/d(k)) = θ3. Thus, we can obtain that

E[∆V‖(U)|U]

≥ −2ε · ‖d(k)‖ · ‖U(k)
‖ ‖ · ‖E[SA|U]/d(k)‖ · cos θ2

= −2ε · ‖d(k)‖ · 〈U(k)
‖ , E[SA|U]/d(k)〉.

(37)

From (33), (34), (35), and (37), we can obtain

E[∆V⊥(U)|U]

≤ 1

2‖U(k)
⊥ ‖

(
−2δ(k) · ‖U(k)

⊥ ‖

− 2ε · ‖d(k)‖ · ‖U(k)
⊥ ‖ · ‖E[SA|U]/d(k)‖ · cos θ1

− 2ε · ‖d(k)‖ · 〈U(k)
‖ , E[SA|U]/d(k)〉+ 2C2

+2ε · ‖d(k)‖ · 〈U(k)
‖ , E[SA|U]/d(k)〉

)
≤ −δ(k) + ε · ‖d(k)‖ · ‖ 1

d(k) ‖+ C2

‖U(k)
⊥ ‖

,

(38)

where the last inequality comes from the fact that | cos θ1| ≤
1, and that 0 ≤ E[SAl |U] ≤ 1 for all l, which implies
‖E[SA|U]/d(k)‖ ≤ ‖ 1

d(k) ‖.
Hence, we obtain that E[∆V⊥(U)|U] < 0, with sufficiently

small ε and sufficiently large ‖U(k)
⊥ ‖, which implies that the

state space collapses to the direction of d(k) as ε→ 0.

B. An upper bound

From the results in Appendix A and Lemma 1 of [31],
{U(t)}t converges in distribution to a random variable U
with all bounded moments, i.e., E[‖U‖r] ≤ ∞ for each
r = 1, 2, · · · . Let SA(U) denote a random variable for given U
that represents the scheduling vector chosen by A-MW, where
the randomness comes from the interarrival times.

From the stability result of Lemma 1 and the fact that
‖U‖‖2 ≤ ‖U‖2, we have E[∆V‖(U, k)] = 0 under heavy
traffic, in which case we assume that Ul(t+ 1) = Ul(t) + 1−
Xl,Nl(t) · Sl(t) for all l. This results in the following lemma.

Lemma 3: For any positive vector d(k), in steady state, we
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have

2E[〈d(k),U〉〈d(k),SA(U)/λ(ε) − 1〉]
= E[〈d(k),1−X · SA(U)〉2].

(39)

Proof: From the drift of the V‖(U, k),

E[∆V‖(U, k)] = 1
‖d(k)‖2 ·

(
E[2〈d(k),U〉〈d(k),1− SA/λ(ε)〉]

+E[〈d(k),1−X · SA〉2]
)
,

due to the independence of X. From E[∆V‖(U, k)] = 0, the
result follows.

We now focus on the both sides of (39).

For a bound on E[〈d(k),U〉〈d(k),SA(U)/λ(ε) − 1〉]), we
first note that the geometry of the capacity region Λ has a finite
number of faces. Then, for each face G(k) of 1

λ(k) Λ, there exists
θ(k) ∈ (0, π/2] such that

〈d(k),SA(U)/λ(k)〉 = b(k), for all U with
‖U(k)

‖ ‖
‖U‖ ≥ cos θ(k),

(40)
where SA(U) is the schedule chosen by the A-MW scheduler
for given U. Then, we obtain that, from 〈1,SA(U)〉 = 1 and
(20),

2E[〈d(k),U〉〈d(k),SA(U)/λ(ε) − 1〉]
= 2E[‖d(k)‖ · ‖U‖‖ · 〈d(k),SA(U)/λ(ε)〉]
− 2E[‖d(k)‖ · ‖U‖‖ · 〈d(k),1〉]

= 2E[‖d(k)‖ · ‖U‖‖ · 〈d(k),SA(U)/λ(k)〉]
+ 2E[‖d(k)‖ · ‖U‖‖ · ε · ‖d(k)‖]
− 2E[‖d(k)‖ · ‖U‖‖ · b(k)].

(41)

Combining the first term and the third term, we have

− 2E
[
‖d(k)‖ · ‖U‖‖ ·

(
b(k) − 〈d(k),SA(U)/λ(k)〉

)]
= −2E

[
‖d(k)‖ · ‖U‖ · cos(∠U,U‖)

·1{∠U,U‖>θ(k)} ·
(
b(k) − 〈d(k),SA(U)/λ(k)〉

)]
from ‖U‖‖ = ‖U‖ · cos(∠U,U‖), and (40). Also, from
‖U⊥‖ = ‖U‖ · sin(∠U,U‖), it can be further written as

−2E
[
‖d(k)‖ · ‖U‖‖ ·

(
b(k) − 〈d(k),SA(U)/λ(k)〉

)]
= −2E

[
‖d(k)‖ · ‖U⊥‖ · cot(∠U,U‖)

·1{∠U,U‖>θ(k)} ·
(
b(k) − 〈d(k),SA(U)/λ(k)〉

)]
≥ −2E

[
‖d(k)‖ · ‖U⊥‖ · 1{∠U,U‖>θ(k)}

·
(
b(k) − 〈d(k),SA(U)/λ(k)〉

)]
· cot θ(k)

≥ −2E
[
‖d(k)‖ · ‖U⊥‖

·
(
b(k) − 〈d(k),SA(U)/λ(k)〉

)]
· cot θ(k),

where the first inequality holds due to the decreasing property
of cot in (0, π/2]. Note that from the concavity of the square

root, we have

− 2E
[
‖U⊥‖ ·

(
b(k) − 〈d(k),SA(U)/λ(k)〉

)]
≥ −2

√
E[‖U⊥‖2] · E[(b(k) − 〈d(k),SA(U)/λ(k)〉)2]

≥ −2

√
εN

(k)
2

γ(k) · ‖λ(k)‖ · 〈1,λ(k)〉 ·
(

(b(k))2 + 〈d(k),1/λ(k)〉2
)

where γ(k) := min{b(k)−〈d(k), s/λ(k)〉, for all s ∈ S\F (k)},
the first inequality comes from the Hölder’s inequality, and the
last inequality holds due to Lemma 2 and the following lemma.

Lemma 4: Given λ(k) and ε, if the arrival rate λ(ε) satisfies
(20), then we have

1− π(k) ≤ ε

γ(k)
· ‖λ(k)‖ · 〈1,λ(k)〉, (42)

where π(k) := P{〈d(k),SA(U)/λ(k)〉 = b(k)}. It implies that

E[
(
b(k) − 〈d(k),SA(U)/λ(k)〉

)2

]

= (1− πk) · E
[(
b(k) − 〈d(k),SA(U)/λ(k)〉

)2

| 〈d(k),SA(U)/λ(k)〉 6= b(k)
]

≤ ε

γ(k)
· ‖λ(k)‖ · 〈1,λ(k)〉 ·

(
(b(k))2 + (〈d(k),1/λ(k)〉)2

)
.

where the inequality holds from SAl (U) ≤ 1 for all l.

Proof: From the stability result of Lemma 1 and (28), we
have

E[〈d(k),SA(U)/λ(k)〉] ≥ b(k) − ε‖λ(k)‖ · 〈1,λ(k)〉,

which implies that

π(k) · b(k)+E[〈d(k),SA(U)/λ(k)〉 · 1{〈d(k),SA(U)/λ(k)〉6=b(k)}]

≥ b(k) − ε‖λ(k)‖ · 〈1,λ(k)〉.

Also, note that

E[〈d(k),SA(U)/λ(k)〉 · 1{〈d(k),SA(U)/λ(k)〉6=b(k)}]

≤ (b(k) − γ(k)) · E[1{〈d(k),SA(U)/λ(k)〉6=b(k)}]

= (b(k) − γ(k)) · (1− π(k)).

Combining the two inequalities, we obtain (42).

Hence, from (41), we obtain that

2E[〈d(k),U〉〈d(k),SA(U)/λ(ε) − 1〉]
= 2ε · ‖d(k)‖2 · E[‖U‖‖] +O(

√
ε).

(43)

We now consider a bound on the right side of (39):

E[〈d(k),1−X · SA(U)〉2]

= E[〈d(k),1− SA(U)/λ(k)〉2]

+ 2E[〈d(k),1− SA(U)/λ(k)〉
· 〈d(k),SA(U)/λ(k) −X · SA(U)〉]

+ E[〈d(k),SA(U)/λ(k) −X · SA(U)〉2].

(44)
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For the first term, we have, from Lemma 4,

E[〈d(k),1− SA(U)/λ(k)〉2]

= E[
(
b(k) − 〈d(k),SA(U)/λ(k)〉

)2

] = O(ε).

For the second term, we have, from the independence of X and
(20),

2E[〈d(k),1− SA(U)/λ(k)〉 · 〈d(k),SA(U)/λ(k) −X · SA(U)〉]
= 2E[〈d(k),1− SA(U)/λ(k)〉

· 〈d(k),SA(U)/λ(k) − SA(U)/λ(ε)〉]
= −2E[〈d(k),1− SA(U)/λ(k)〉 · 〈1, ε · SA(U) · ‖d(k)‖〉]
≤ 0.

For the third term, we have

E[〈d(k),SA(U)/λ(k) −X · SA(U)〉2]

= E

[(∑
l d

(k)
l · SAl (U) ·

(
1

λ
(k)
l

−Xl

))2
]

= E

[∑
l

(
d

(k)
l · SAl (U) ·

(
1

λ
(k)
l

−Xl

))2
]

+O(ε2)

= E

[∑
l

(
d

(k)
l · SAl (U) ·

(
1

λ
(ε)
l

−Xl

))2
]

+O(ε) +O(ε2)

=
∑
l(d

(k)
l )2 · (SAl (U))2 · (σXl )2 +O(ε) +O(ε2)

≤ 〈(d(k))2, (σX)2〉+O(ε) +O(ε2),

where the last inequality comes from SAl (U) ≤ 1 for all l.
Then, (44) can be bounded as

E[〈d(k),1−X · SA(U)〉2] ≤ 〈(d(k))2, (σX)2〉+O(ε). (45)

From (39), (43), and (45), we have that

2ε · ‖d(k)‖2 · E[‖U‖‖] +O(
√
ε) ≤ 〈(d(k))2, (σX)2〉+O(ε).

Taking ε→ 0, we can obtain that

lim
ε→0

εE[‖U‖‖] ≤
1

2
· 〈( d(k)

‖d(k)‖
)2, (σX)2〉. (46)

C. A Lower bound

Let L denote the number of queues in the original system.
We consider a single-queue server, with bounded arrival α(t)
and bounded service β(t) with α = E[α(1)], σ2

α = var(α(1)),
β = E[β(1)], σ2

β = var(β(1)). The queue length Φ(t) that
evolves as

Φ(t+ 1) = (Φ(t) + α(t)− β(t))+.

Following the same line of analysis in [31], we consider the
arrival α(t) and the service β(t) with β − α = ε0, and let
Φ(ε0)(t) denote the associated queue length process. For any
ε0 > 0, {Φ(ε0)(t)} is a positive Harris recurrent Markov Chain,
and converges in distribution to a random variable Φ

(ε0)
with

all bounded moments [33], satisfying

E[Φ(ε0)(t)] ≥ ζ(ε)

2ε0
− B

2
, (47)

where ζ(ε) := σ2
α +σ2

β + ε0, and B is an upper bound on β(t).
Setting α(t) = 〈d(k),1〉 and β(ε0)(t) =

maxS∈Λ〈d(k),X · S〉, we have Φ(ε0)(t) ≤ 〈d(k),U(t)〉.
Now let us limit our interest to the set of the schedulers
that do not consider instantaneous interarrival times (i.e.,
interarrival-time-agnostic schedulers). In this case, S(t) will
be independent of X(t), and it is sufficient to maximize
〈d(k),S/λ(ε)〉 = 〈d(k),S/λ(k)〉+ ε · ‖d(k)‖ · 〈d(k),S/d(k)〉 =
〈d(k),S/λ(k)〉 + ε · ‖d(k)‖. Hence, β(ε0)(t) = λ(k) is an
optimal solution with ε0 = ε · ‖d(k)‖.

Under the assumption that the variance σ2
β(ε0) converges to

σ2
β as ε0 → 0 , and from (47), we can obtain random variable

Φ
(ε0)

that satisfies

lim inf
ε0→0

ε0E[Φ
(ε0)

] ≥
σ2
β

2
=

1

2
〈(d(k))2, (σX)2 · (λ(k))2〉.

(48)
It is a lower bound for the set of interarrival-time-agnostic
schedulers.
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