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Abstract—In this work, we provide a comprehensive analysis

of stability properties and delay gains that wireless multicasting

capabilities, as opposed to more traditional unicast transmissions,

can provide for content distribution in mobile networks. In

particular, we propose a model and characterize the average

queue-length (and hence average delay) performance of unicast-

ing and various multicasting strategies for serving a dynamic user

population at the wireless edge. First, we show that optimized

static randomized multicasting (we call it ‘blind multicasting’)

leads to stable-everywhere operation irrespective of the network

loading factor (given by the ratio of the demand rate to the

service rate) and the content popularity distribution. In contrast,

traditional unicasting suffers from unstable operation when the

loading factor approaches one, although it outperforms blind

multicasting at small loading factor levels. This motivates us

to study ‘work-conserving multicast’ policies next that always

outperform unicasting while still offering stable-everywhere op-

eration. Then, in the worst-case of uniformly-distributed content

popularity, we explicitly characterize the scaling of the average

queue-length (and hence delay) under a first-come-first-serve

multicast strategy as a function of the database size and the

loading factor. Consequently, this work provides the fundamental

limits, as well as the guidelines, for the design and performance

analysis of efficient multicasting strategies for wireless content

distribution.

Index Terms—Wireless Content Distribution, Multicast, Delay

Gains, Information-Centric Networking.

I. INTRODUCTION

The recent advances in the development of capable smart
wireless devices and mobile internet services have resulted in
groundbreaking levels of data traffic over cellular networks.
This excessive data demand is depleting the limited spectrum
resources of wireless transmissions, especially the wireless
connection between the base stations and the end-users. Con-
sequently, wireless resources are becoming scarce due to the
tremendous development of throughput-hungry applications
including video streaming and online gaming. Thus, more
sophisticated resource management strategies are needed in
order to effectively meet the growing demand.

This work was supported by the NSF grants: CCSS-EARS-1444026, CNS-
NeTS-1514260, CNS-NeTS-1717045, CMMI-SMOR-1562065, CNS-ICN-
WEN-1719371, and CNS-SpecEES-1824337; the DTRA grants: HDTRA1-
15-1-0003; HDTRA1-18-1-0050.

To tackle this problem, several techniques have already
been proposed such as WiFi offloading, proactive caching, and
wireless multicasting. WiFi offloading is a straight-forward
approach to address the unprecedented explosion of data
traffic. This approach is based on offloading some of the
traffic to WiFi networks (e.g., [1]). Different approaches to
implement WiFi offloading and to improve the performance of
WiFi offloading have been investigated in [2]. In the aforemen-
tioned approaches, scheduling of wireless demand is applied
reactively so that data requests are initiated beforehand, and
the service provider utilizes the delay tolerance from end-users
to schedule them efficiently. Thus, cost reduction comes at
the expense of disturbed user activity patterns as the service
is postponed to off-peak times, or the next available WiFi
connection. Another possible solution to address the problem
is to cache popular contents on the user’s site (e.g., [3]).
Cache system can help reduce the total response time of users’
requests. Cached data can be shared by users at the same
site. It also enables reduced peak-to-average traffic ratio for
the original data management system [4]. By knowing the
popularity of contents, caching efficiency can be improved
by pre-downloading popular contents during off-peak times
and serving predictable peak-hour demands, which is referred
to as proactive caching (see [5]). However, because of the
limited capacity of caching storage, this technique has also its
limitations.
In this work, we consider another natural alternative strat-

egy to alleviate the growing traffic load of wireless content
distribution, namely, multicasting whereby content of common
interest is transmitted to multiple users at once. As an example
to illustrate the benefits of multicasting, consider a football
stadium full of people watching the game and after a goal,
many of them may request (at different times) the related
footage to watch it at their smart device, giving the opportunity
to broadcast content of common interest to multiple users with
small delay. Even though multicasting is widely acknowledged
to be a promising approach in such scenarios, its potential
gains have not fully been investigated or realized. Unicasting
is the predominant policy that is widely used in wireless
content distribution [6]. Transition from IP based networks
to information-centric networks (see [7]) encourages us to



rigorously investigate the multicasting gain in such networks.
In particular, we focus on the distribution of data content

to dynamic users over wireless channels, whereby the wireless
network can simultaneously serve all the requests awaiting the
same data content at the time. We aim to reveal the stability
conditions and the delay gains that multicasting can offer
over its unicast counterpart. Our contributions, along with the
organization of the paper, are as follows.
• In Section II, we present a tractable content distribution
model for serving dynamically arriving demand over wire-
less broadcast channels.

• In Section III-A, for a database of n items with an arbi-
trary popularity distribution, we develop the optimal static-
randomized multicasting strategy (called blind multicasting)
that minimizes the aggregate average number of requests in
the system. While unicast transmissions can only stabilize
the system when the loading factor ⇢ (given by the ratio of
the demand rate to the service rate) is less than 1, we show
in Theorem 1 (proved in Section IV-A) that under our blind
multicasting, the system is always stable for all ⇢ � 0.

• Moving beyond stability for the worst-case uniform popu-
larity distribution, in Section III-B we expand the policies
to the more efficient class of work conserving multicasting
policies in order to improve the delay gains. In Theorem
2, we explicitly characterize the scaling delay gains of the
First-Come-First-Serve work-conserving multicasting strat-
egy as a function of the loading factor ⇢ and the database
size n. The proof of Theorem 2, presented in Section IV-B,
may be of independent-value as it utilizes a novel approach
for dealing with the nontraditional abruptly-changing (as
opposed to the traditional incremental) nature of queueing
dynamics under multicasting transmissions.

• In Section V, we provide numerical simulations to validate
the analytical results and compare the performance to other
service strategies such as Max-Weight-based multicasting.
Finally, we conclude in Section VI.

II. SYSTEM MODEL

We consider a wireless network comprising a content
provider that serves a population of users through a wireless
base station (BS) deployed at the network edge. In a con-
tinuous time fashion, the users1 dynamically send requests
targeting content from a set of n data items with certain
popularity distribution offered by the content provider. The
wireless BS enqueues the incoming requests in n distinct
queues, one queue per data item, in order to serve them.
Demand Generation: The population of users covered by
the BS are assumed to generate data requests according to a
Poisson process with rate �. That is, for Atot(t), t � 0 being
the aggregated number of generated requests by time t, then
Atot(t) is a Poisson random variable with mean �t.
The incoming requests at any point in time are split in-

dependently over the n data items based on their respective

1Note that the number of users that generate demand is unbounded, as in
the infinite-population setting of classical Aloha networks.

popularity. We capture the popularity of a data item k by the
probability of that item k being intended by a request given
a request is already generated. We denote such probability by
↵k, k = 1, · · · , n, where

Pn
k=1 ↵k = 1. Thus, the aggregate

request generation process {Atot(t)}t is the superposition of n
independent Poisson processes Atot(t) :=

Pn
k=1 Ak(t), where

Ak(t), t � 0 is the request arrival process for item k which is
Poisson with rate ↵k�. We consider the vector ↵ := (↵k)nk=1
as the popularity profile of the system.
Service Dynamics: The base station serves requests one at a
time. The service time of an individual request is considered
to follow an exponential distribution with mean 1/µ and
the service times are assumed independent and identically
distributed over time and requests. While, in practice, service
times may exhibit heavily-tailed distributions due to data item
length and retransmissions over the wireless medium, we adopt
the exponential distribution to allow tractable characterization
of the multicasting gains and contrast it with the well-known
unicast results that are already derived for exponentially dis-
tributed service times.
The n queues maintained at the BS hold the requests

awaiting service with queue k has all the pending requests for
item k. We consider these queues to be of infinite length, hence
we are not concerned with outage events due to lost requests.
Instead, we care about the average delay these requests incur
as our metric of interest. Since the set of items requested by
users in a typical content distribution network is very large,
considering that n ! 1 is an reasonable assumption.
We denote the number of requests in queue k at time t by

Qk(t), k = 1, · · · , n. We define the service completion of a
request from queue k as an ON-OFF process Bk(t) where
Bk(t) = 1 if a request from queue k has completed service at
time t, otherwise Bk(t) = 0. We can thus define the service
completion of any request from any queue as the ON-OFF
process Btot(t) :=

Pn
k=1 Bk(t).
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Fig. 1: Queuing system model
Fig. 1 shows the model for our queueing system. Requests

are generated at a rate of � and based on the item being
requested, each request is placed in a queue dedicated for
that item. Then requests are served at the BS with a rate of
µ > 0. In this paper, we are interested in the comparative and
comprehensive study of unicast (as the baseline that is widely



adopted by today’s wireless technologies) and multicast modes
of service that are described next.
Unicast and Multicast Operation: Through unicast opera-
tion, the BS has to individually serve the requests in each
queue, one request at a time. Thus, when an a request is served
from any queue, the length of such queue is decremented by
one. Let QU

k (t) be the number of requests in queue k at time t
under the unicast operation, then for dt being an infinitesimal
increment in time, then2

Q
U
k (t+ dt) = [QU

k (t)�Bk(t)]
+ +Ak(t+ dt)�Ak(t),

where [x]+ = max{0, x}.
In the multicast operation, the BS relies on the broadcast

nature of the wireless medium to send the requested data
simultaneously to all the requesting users, consuming the same
amount of resources required by a single unicast transmission.
Thus, if QM

k (t) is the number of requests in Queue k under
the multicast operation, then

Q
M
k (t+ dt) = (QM

k (t))(1�Bk(t)) +Ak(t+ dt)�Ak(t),

that is, as shown in Fig. 1, the service of a single request
from queue k collectively serves all of the requests in queue
k yielding an empty queue after each service. This is the key
difference between multicast and unicast dynamics.
Performance Metric: We use the time-average expected
number of requests in the system as our performance met-
ric to quantify the gains of multicasting. At any time t,
the number of requests in the system under Unicast and
Multicast operations are Q

U
tot(t) and Q

M
tot(t), respectively,

where Q
o
tot(t) :=

Pn
k=1 Q

o
k(t), o 2 {U,M}.

For any queue-length process Qk(t), we use the notation
Qk to indicate its time-average expected value, that is,

Qk := lim
T!1

1

T

Z T

0
E[Q(t)]dt.

Accordingly, the time-average of the expected total number of
requests in the system under unicast and multicast operation
is denoted by Q

U
tot, Q

M
tot, respectively.

We finally define the loading factor ⇢ := �
µ as a key

parameter shaping the traffic intensity of the system. We then
investigate the system’s performance with the number of data
items n in different regimes of ⇢. We begin with the unicast
operation as it constitutes our baseline model. From the well
known results of an M/M/1 queue [8], we have

Q
U
tot =

⇢

1� ⇢
, ⇢ 2 [0, 1), (1)

which clearly shows that the system can be stabilized by
unicasting only for ⇢ < 1. We can also observe that Q

U
tot

depends neither on the number of data items n, nor on
the individual popularity of data items, since the service of
requests is carried out on an individual request basis. In the
following sections, we investigate the behavior of Q

M
tot and

compare it to that of its unicast counterpart.
2We note that the main results of this work will remain essentially the same

if we use: QU
k (t+ dt) = [QU

k (t)�Bk(t) +Ak(t+ dt)�Ak(t)]+.
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Fig. 2: Markov chain diagram of queue k under blind multicast
operation.

III. STABILITY AND DELAY GAIN RESULTS OF BLIND AND
WORK-CONSERVING MULTICAST POLICIES

This section presents the main results of this paper and
highlights the significant multicasting gains, with their detailed
proofs postponed to Section IV. We first show the endless
stability operation furnished by simple multicasting strate-
gies (cf. Theorem 1). Then, we explore further multicasting
gains under a first-come-first-serve work-conserving operation
(cf. Theorem 2). We conclude this section with a discussion
of key insights from these results.

A. Endless Stability of Blind Multicast

We begin by considering a simple static multicasting strat-
egy which we label blind multicast. This strategy is suitable
for scenarios whereby the individual requests are not known by
the BS, and multicasting decisions are made blindly based on
the statistical popularity information. As such, it is convenient
in conditions where it is not feasible to receive feedback from
the individual users.
Definition 1 (Blind Multicast): Define the indicator

�
M,B
k (t) 2 {0, 1} to capture the service decision of queue

k at time t such that �M,B
k (t) = 1 if the queue k is assigned

the service resources at time t, otherwise �
M,B
k (t) = 0,

k = 1, · · · , n. Then, blind multicast strategy is a randomized
strategy through which the BS randomly assigns the service
resources to n queues such that

�k := lim
T!1

1

T

Z T

0
�
M,B
k (t)dt, k = 1, · · · , n,

for (�k)nk=1 is a vector of non-negative weights to be deter-
mined.
We can note from the definition that the allocation of the

service resources to queues is independent of the queue length,
hence the naming blind. A blind multicasting strategy thus
assigns the service to queue k for a fraction �k of the time
irrespective of its instantaneous state.
The whole system under blind multicast can be split into n

independent and parallel queues with queue k having an arrival
rate of ↵k� and service rate �kµ with state evolution as shown
in Fig. 2. Each state represents the number of requests in the
queue k. We have the following result for such multicasting.
Theorem 1 (Endless Stability of Delay-Optimizing Blind

Multicast): Let Q
M,B
tot be the time-average expected number

of all requests in the queues under blind multicasting. Then,



the average delay-minimizing choice of the design parameters
(�k)k is given by

�
?
k =

p
↵kPn

l=1

p
↵i

, k = 1, · · · , n. (2)

Accordingly, the time-average expected number of requests
under this delay-optimal blind multicast strategy is given by

Q
M,B
tot = ⇢

 
nX

i=1

p
↵i

!2

, (3)

which can be written as Q
M,B
tot = ⇢||↵|| 1

2
.

Note that, even in the worst-case of uniform popularities, we
have Q

M,B
tot = ⇢ n under the optimal blind multicast.

B. Delay Gains of Work-Conserving Multicast

More multicast gains can be reaped under smarter policies
that schedule services based on the instantaneous state of the
queues. In particular, we consider work-conserving policies
that utilize the BS resources for some pending request(s)
unless all the queues are empty. However, due to the analytical
complexity under a general popularity distribution ↵, we study
the worst case scenario of uniformly distributed popularities
that serve as a fundamental lower bound on the performance of
a multicasting system besides allowing tractable closed form
expressions for the behavior of the average expected number
of requests in the system.
Definition 2 (work-conserving Multicast): Define the indi-

cator �M,W
k (t) 2 {0, 1} to capture the service of queue k at

time t such that �
M,W
k (t) = 1 if the queue k is assigned

the service resources at time t, otherwise �
M,W
k (t) = 0,

k = 1, · · · , n. Also, let QM,W
k (t) be the number of requests in

queue k at time t under work-conserving multicasting. Then, a
work-conserving multicast strategy is a strategy through which
�
M,W
k (t) = 0 if QM,W

k (t) = 0, and
P

k Q
M,W
k (t) > 0 implies

that �M,W
k⇤ (t) = 1 for some k

⇤ such that QM,W
k⇤ (t) > 0.

We can note from the work-conserving operation that the
allocation of the service resources to queues depends on
the state of the queue. In this subsection, we consider the
well-known First-Come-First-Serve (FCFS) work-conserving
policy to characterize an upper bound on the average expected
number of requests in the system. FCFS operates by serving
the queue that contains the oldest unserved request first.
We choose the FCFS for its time-based ordering of service
which enables us to analytically derive our fundamental bound
on the system’s performance. As such, it possesses fairness
characteristics within the class of work-conserving policies.
We have the following result.
Theorem 2 (Scaling Delay Gains of Work-Conserving FCFS

Multicast): Let Q
M,F
tot be the time-average expected number of

all requests for the FCFS work-conserving multicast strategy

under the worst-case of uniform popularities, i.e., ↵k = 1/n
for all k. Then, we have

Q
M,F
tot ̇

8
>><

>>:

1
2

⇣
⇢2�1

⇢

⌘
n, ⇢ > 1,

q
2
⇡n, ⇢ = 1,

min( ⇢
1�⇢ ,

1
2⇢

3(1� ⇢)2n), ⇢ < 1,

(4)

where a(n)̇b(n) means that lim
n!1

a(n)

b(n)
 1.

Note that the bound on Q
M,F
tot is directly related to the

average delay experienced by the users via Little’s law.

C. Discussion of Relevant Insights from the Results

Theorems 1 and 2 reveal the potential for content multicas-
ting to extend the stable operation of the network significantly
beyond that of unicasting. In the following remarks, we
highlight some insights about those theorems.
Remark 1: Under unicast operation, when ⇢ " 1, we see

from (1) that the average number of requests grows unbound-
edly, i.e., Q

U
tot ! 1 signifying the instability of unicast as the

traffic intensity becomes higher. Theorem 1, on the other hand,
shows that blind multicasting guarantees a finite total average
of the number of requests for any popularity distribution ↵
and ⇢ � 0 as can be seen in (3). Hence, blind multicasting
promises endless stability operation for any distribution of
content popularity and for any number of content items.
Remark 2: Uniform and degenerate distributions of popu-

larity are, respectively, the Q
M,B
tot maximizing and minimizing

distributions. This can be seen by optimizing (3) for the
maximum and minimum values over ↵, where the maximum
value for Q

M,B
tot is ⇢ n and the minimum value is ⇢.

Intuitively, uniformly distributed popularities maximize the
average number of distinct data items being requested in
the system irrespective of the multicasting scheduling policy.
Hence, more requests on average require individual service
than under any popularity distribution. The degenerate distri-
bution, on the other hand, implies that all of the incoming
traffic is targeting the same data item. Hence, multicasting
operation will reap the highest gains.
Note that, using (3), we can also find the delay performance

of the optimal blind multicast strategy under more common
popularity distributions, such as the Zipf distribution. In partic-
ular: a Zipf distribution with parameter � = 2, the total queue-
length Q

M,B
tot under blind multicast scales as O(⇢ (log(n))2);

while Zipf distribution with parameter � 2 (0, 2), it scales as
O(⇢ nmin{2��,1}). We omit the details of these results due to
limited space.
Remark 3: Note that the result of (1) is obtained assuming

work-conserving unicast operation. For stable operation, i.e.,
⇢ < 1, we see that Q

U
tot is independent of the number of

content items n irrespective of their popularity distribution.
This is not the case under blind multicast operation for the
same range of ⇢ < 1 where Q

M,B
tot is determined by both n

and ↵. In fact, for large values of n, and several distributions,



e.g., Zipf with �  2, we have Q
U
tot  Q

M,B
tot . Thus, unicast

outperforms blind multicast for ⇢ < 1 in this case.
Remark 4: Assume uniform distribution of popularities and

⇢ > 1. As n ! 1, the average expected number of requests
per queue under multicast operation satisfies

lim
n!1

Q
M,o
tot

n

(
 1

2 (
⇢2�1

⇢ ), o = F,

= ⇢, o = B.

That is, FCFS work-conserving multicasting attains at most
an expected value of 1

2 (
⇢2�1

⇢ ) requests per queue while blind
multicasting attains ⇢. Thus, FCFS experiences at most half
the delay of blind multicasting for ⇢ > 1.
Remark 5: Our analysis reveals important practical insights

that, while work-conserving multicast always outperforms
unicast and blind-multicast: (i) unicast strategy can be suffi-
ciently satisfactory under lightly-loaded conditions, i.e., when
⇢ << 1; and (ii) blind-multicast strategy tends to suffer a
delay performance loss within a factor of 2 under over-loaded
conditions, i.e., when ⇢ >> 1. The gains of work-conserving
multicasting is highest in the regime (that is explicitly charac-
terized by our analysis in terms of ⇢ and n) where the loading
factor is neither too small, nor too large.

IV. PROOFS OF THE STABILITY AND
DELAY GAIN RESULTS

In this section, we provide the full proofs of the main results
discussed in the previous section. The proof of Theorem 1
(in Section IV-A) is based on decomposing the system into
parallel queues to optimize the delay. However, the proof of
Theorem 2 (in Section IV-B) requires a much more sophis-
ticated strategy due to the coupling between the queues and
their nontraditional dynamics.

A. Endless Stability of Blind Multicast (Theorem 1)

We start by obtaining the expected queue-length under the
blind multicast operation with a general (�k)k choice.

Lemma 1: Let QM,B
k (t) be the number of requests in queue

k under blind multicast operation, then

lim
T!1

1

T

Z T

0
E[QM,B

k (t)]dt = ⇢
↵k

�k
. (5)

Proof. For a queue with input rate ↵k� and service rate �kµ

using the multicast operation, when a new request arrives,
number of requests increases by one but when there is a service
available for queue k, because of the multicast nature, after
serving the total number of requests in queue k becomes 0.
Markov chain for queue k is shown in Fig. 2. The average
number of requests in the system is given by:

lim
T!1

1

T

Z T

0
E[QM,B

k (t)]dt =
1X

m=0

mpm. (6)

Which pm is the probability of having m requests in queue k.
Using the markov chain and by induction we have:

pm =
µ�k

�↵k + µ�k

✓
�↵k

�↵k + µ�k

◆m

.

Substituting pm in equation 6 and using the definition of
loading factor ⇢ = �

µ , we have:

lim
T!1

1

T

Z T

0
E[QM,B

k (t)]dt =
↵k�

�kµ
= ⇢

↵k

�k
.

We thus have Q
M,B
tot = ⇢

Pn
k=1

↵k
�k

. Noting the convexity
of this expression with respect to (�k)k, we use the KKT
optimality conditions to find that the choice of �

?
k in (2)

minimizes Q
M,B
tot subject to the constraints that �k � 0,

8k, and
Pn

k=1 �k = 1. Finally, the direct substitution of
�
?
k =

p
↵kPn

l=1

p
↵i

in (5) completes the proof of Theorem 1.

B. Delay Gains of Work-Conserving Multicast (Theorem 2)

Traditional queuing dynamics, under which requests are
served one by one, have been investigated in various works
(see [9] for a survey). However, in our multicasting scenario,
due to the service of all pending demands at once, previous
well-known techniques such as Lyapunov-drift [10] or fluid-
limit [11] analysis techniques do not apply. In order to analyze
and prove the results of multicasting systems, we take a
different approach based on the number of active queues

defined next.
Definition 3 (Active Queue): We define an active queue as

a nonempty queue, i.e., a queue that has at least one request
in it. Formally, queue k is active at time t, if QM,W

k (t) > 0.
Utilizing the statistics of active queues, we derive a novel

upper bound for the average number of requests in the system.
Each proof is broken down into pieces in order to facilitate
the understanding. Some of the results in these proofs may be
of independent-interest, especially in the case of Theorem 2.
Let N(t) be the Markov process giving the number of active

queues at time t under any given work-conserving multicast
strategy. The evolution of this process is shown in Fig. 3.
We are interested in limit of N(t)

d���!
t!1

N̄(⇢, n), which is
characterized next and studied subsequently3.
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Fig. 3: Markov chain for active queues N(t) under any work-
conserving multicast

Lemma 2: Let ⇡k = P (N̄(⇢, n) = k) be the probability
of having k active queues under work-conserving multicast
operation, then

⇡k = ⇡0

k�1Y

m=0

(1� m

n
)⇢, (7)

3Such a steady state behavior holds since N(t), t � 0 follows a finite state
ergodic Markov chain.



where ⇡0 =
⇣Pn

k=0

Qk�1
m=0(1�

m
n )⇢

⌘�1
.

Proof. Global balance equations of Fig. 3 yields

⇡k =(
�

µ
)k.1.(1� 1

n
)(1� 2

n
)...(1� k � 1

n
)⇡0

⇡0(
�

µ
)k

k�1Y

m=0

(1� m

n
) = ⇡0

k�1Y

m=0

((1� m

n
)(
�

µ
)).

Replacing �
µ with loading factor ⇢ gives (7). Then, setting the

sum of probabilities to 1 gives the result for ⇡0.
We introduce a new parameter si(⇢, n) as:

si(⇢, n) :=
nX

k=1

k
i
k�1Y

m=0

(1� m

n
)⇢, (8)

which we use in deriving the moments of N̄(⇢, n). In the
light of si(⇢, n), we can rewrite the ⇡0 as ⇡0 = 1

1+s0(⇢,n)
.

We also make the following connection between si(⇢, n) and
si�1(⇢, n).

Lemma 3: For si(⇢, n) defined in (8),

si(⇢, n) =n(1� 1/⇢)si�1(⇢, n)

+
n

⇢

iX

m=2

(�1)m
✓

i� 1

m� 1

◆
si�m(⇢, n) + n�(i� 1)

(9)

such that i 2 {1, 2, ...}.
Proof. We prove this by induction.

si(⇢, n)� n(1� 1/⇢)si�1(⇢, n)

+
n

⇢

i�1X

q=1

(�1)q
✓
i� 1

q

◆
si�1�q(⇢, n)

=
nX

k=1

"
k
i � n(1� 1/⇢)ki�1

+
n

⇢

i�1X

q=1

✓
i� 1

q

◆
(�1)qki�1�q

#
k�1Y

m=0

(1� m

n
)⇢.

(10)

We have n terms on the right hand side of (10), by induction
we can show that sum of p last terms is equal to:

n

⇢
(n� p)i�1

n�pY

m=0

(1� m

n
)⇢.

Since we have n total terms, putting p = n gives n
⇢ (n �

n)i�1
⇢ = n�(i� 1).

Lemma 4: The first and second moments of the number of
active queues, N̄(⇢, n), are given by:

E[N̄(⇢, n)] = n(1� 1

⇢
)

s0(⇢, n)

1 + s0(⇢, n)
+

n

1 + s0(⇢, n)
, (11)

E[N̄(⇢, n)2] = (n2(1� 1

⇢
)2 +

n

⇢
)

s0(⇢, n)

1 + s0(⇢, n)
. (12)

Proof.

E[N̄(⇢, n))] = ⇡0

nX

k=1

k

k�1Y

m=0

(1� m

n
)⇢ =

s1(⇢, n)

1 + s0(⇢, n)
.

From Lemma 3, writing s1(⇢, n) as a function of s0(⇢, n)
gives Equation 11. Similarly,

E[N̄(⇢, n)2] = ⇡0

nX

k=1

k
2

k�1Y

m=0

(1� m

n
)⇢ =

s2(⇢, n)

1 + s0(⇢, n)
.

Writing s2(⇢, n) in terms of s0(⇢, n) gives the result in
Equation (12).

Lemma 5: For ⇢ = 1, s0(⇢, n) asymptotically achieves

s0(1, n)
.
=

r
⇡

2
n, (13)

where a(n)
.
= b(n) means lim

n!1

a(n)

b(n)
= 1.

Proof. For ⇢ = 1, s0(1, n) =
Pn

k=1

Qk�1
m=0(1�

m
n ). Rewriting

and changing the variable j = n� k gives:

s0(1, n) =
n!

nn

n�1X

j=0

n
j

j!

Now by using the fact that
Pn�1

j=0
xj

j! = e
x �(n,x)

�(n) , such that
�(n, x) =

R1
x t

n�1
e
�t
dt and �(n) = �(n, 0) [12], we can

rewrite s0(1, n) as:

s0(1, n) =
n!

nn
e
n�(n, n)

�(n)
. (14)

Since from [13], lim
n!1

�(n, n)

�(n)
=

1

2
, and utilizing the asymp-

totic behavior of Stirling’s approximation, we obtain

s0(1, n)
.
=

p
2⇡n(

n

e
)n

1

2
e
n =

r
⇡

2
n.

Lemma 6: Let f(⇢, n) = s0(⇢,n)
1+s0(⇢,n)

, then:

lim
n!1

f(⇢, n) =

⇢
⇢, ⇢ < 1,
1, ⇢ > 1,

(15)

Proof. First we show that for ⇢ < 1, limn!1 f(⇢, n) = ⇢.

s0(⇢, n) =
nX

k=1

k�1Y

m=0

(1� m

n
)⇢ =

nX

k=1

⇢
k

k�1Y

m=0

(1� m

n
)


nX

k=1

⇢
k =

⇢

1� ⇢
(1� ⇢

n)

(16)

On the other hand we have:

s0(⇢, n) >
p
nX

k=1

⇢
k

k�1Y

m=0

(1� m

n
)

>
p
nX

k=1

⇢
k(1� k � 1

n
)k >

p
nX

k=1

⇢
k(1�

p
n� 1

n
)k

> ⇢(1�
p
n�1
n )

1� ⇢(1�
p
n�1
n )

⇥ (1� ⇢

p
n(1�

p
n� 1

n
)
p
n).

(17)



From (16) and (17), and letting n ! 1, we have:
⇢

1� ⇢
 lim

n!1
s0(⇢, n) 

⇢

1� ⇢

This proves the fact that lim
n!1

s0(⇢, n) =
⇢

1� ⇢
. By using the

definition of f(⇢, n), we have that lim
n!1

f(⇢, n) = ⇢.
In order to prove the lim

n!1
f(⇢, n) = 1 for ⇢ > 1, we show

that for any ⇢ > 1, s0(⇢, n) grows exponentially in n.

s0(⇢, n) =
nX

k=1

k�1Y

m=0

(1� m

n
)⇢ =

nX

k=1

⇢
k

k�1Y

m=0

(1� m

n
)

=
n!

(n⇢ )
n

nX

k=1

(n⇢ )
n�k

(n� k)!
=

n!

(n⇢ )
n

n�1X

j=0

(n⇢ )
j

j!

(18)

Now by the fact that
Pn�1

j=0
(n

⇢ )
j

j! = e
n
⇢
�(n,n⇢ )

�(n) , we can rewrite
s0(⇢, n) as

s0(⇢, n) =
n!

(n⇢ )
n
e

n
⇢

�(n, n
⇢ )

�(n)
.

For ⇢ > 1, we have �(n, n
⇢ ) > �(n, n), which implies:

lim
n!1

�(n, n
⇢ )

�(n)
> lim

n!1

�(n, n)

�(n)
=

1

2
,

and applying Stirling’s Inequality n! �
p
2⇡n(ne )

n yields

s0(⇢, n) �
r

⇡n

2
(
⇢

e
)ne

n
⇢ =

r
⇡n

2
e
n( 1

⇢+log ⇢�1)
.

Setting g(⇢) := 1
⇢ + log ⇢ � 1, since g(1) = 1 and g

0(⇢) > 0
for ⇢ > 1, s0(⇢, n) grows exponentially in n for ⇢ > 1.
After having introduced a number of crucial lemmas, we

proceed to our investigation of the number of requests in the
system under work-conserving multicasting. To that end, we
focus on the FCFS strategy.
Let QM,F

k (t) be the number of requests in queue k at time
t under FCFS work-conserving multicasting and Q

M,F
tot (t) :=Pn

k=1 Q
M,F
k (t) be the aggregate number of requests in all

queues at time t. The following lemma characterizes an upper
bound for the average total number of requests in the system
under FCFS multicast operation.
Lemma 7: Let

Q
M,F
tot := lim

T!1

1

T

Z T

0
E[QM,F (t)]dt,

be the time-average expected number of aggregate requests in
the system operating under FCFS multicasting, then

Q
M,F
tot  n

⇢
2nE[N̄(⇢, n)2] + (1 + ⇢

n )E[N̄(⇢, n)] + ⇢
n + 1

E[N̄(⇢, n)] + n
⇢ + 1

.

(19)
Proof. Since the request arrivals and services are statistically
indistinguishable across the n queues, we have under steady
state operation that E[QM,F

k (t)] = E[QM,F
l (t)], 8k, l. Thus,

it suffices to study E[QM,F
k (t)] and then obtain Q

M,F
tot =

nQ
M,F
k , where

Q
M,F
k := lim

T!1

1

T

Z T

0
E[QM,F

k (t)]dt.

Let t0 = 0 and ti be the time instant at which queue k has
completed service for the i

th time. So at time instants {ti}i,
we will have:

Q
M,F
k (ti) = 0, and Q

M,F
k (ti � ✏) > 0, i = 0, 1, · · · ,

for some 0 < ✏ < ti� ti�1. Let Xi be the time it takes queue
k to become active for the (i + 1)th time since it has been
last served (emptied) at time ti. So Q

M,F
k (ti +Xi) = 1 and

Q
M,F
k (ti + Xi � s) = 0, 8s 2 (0, ti]. Since the popularity

distribution is uniform, Xi follows exponential distribution
with mean n

� . Let Nk(t) be the number of active queues in
the system, given that queue k has just become active at time
t. We should note that Nk(t) includes queue k itself. That
is, Nk(t) � 1. Let ⌧i denote the duration queue k must wait
while being active in order to be fully serviced for the (i+1)th

time. So ti+1 = ti +Xi + ⌧i. We define Ti := Xi + ⌧i. Given
Nk(t) = v, ⌧i =

Pv
j=1 Yj , where Yj is the service time of

an active queue which has an exponential distribution with
mean 1

µ . We are now interested in the time-average value of

expected number of requests in queue k, Q
M,F
k , where

Q
M,F
k = lim

T!1

1

T

Z T

0
E[QM,F

k (t)]dt,

Let KT = max {i � 0|ti  T}, which is the number of times
that queue k has received service by time T . We have:
Z T

0
E[QM,F

k (t)]dt =
Kt�1X

i=0

Z ti+1

ti

E[QM,F
k (t)]dt

+

Z T

tKT

E[QM,F
k (t)] 

KTX

i=0

Mk[i],

where Mk[i] =
R ti+1
ti

E[QF
k (t)]dt and {Mk[i]}i is an identi-

cally distributed sequence of random variables. Then:

1

T

Z T

0
E[QM,F

k (t)]dt  1

T

KTX

i=0

Mk[i] 
KT

T

1

KT

KTX

i=0

Mk[i],

We note that KT ! 1 and KT
T ! 1

E[Ti]
as T ! 1, both

with probability 1. We thus have

lim
T!1

1

T

Z T

0
E[QM,F

k (t)]dt  1

E[Ti]
E[Mk[i]],

For E[Mk[i]], we have:

E[Mk[i]] = E[
Z ti+1

ti

E[QF
k (t)]dt] =

EXi,⌧i


⌧ +

Z ti+x+⌧

ti+x

Z ti+x+⌧

ti+x
E[Ak(t)]dldt|xi = x, ⌧i = ⌧

�

= EXi,⌧i


⌧ +

�

2n
⌧
2

�
=

E[Nk(t)]

µ
+

�

2nµ2
E[Nk(t)

2],



where Ak(t) is the arrival process to queue k at time t. We
thus obtain

lim
T!1

1

T

Z T

0
E[QM,F

k (t)]dt 
E[Nk(t)]

µ + �
2nµ2E[Nk(t)2]

n
� + E[Nk(t)]

µ

.

Since Nk(t) is the number of active queue in the system
when queue k turns active at time t, we have E[Nk(t)] 
E[N̄(⇢, n)]+1. Substituting in the previous inequality, we get

Q
M,F
k 

E[N̄(⇢,n)]
µ + 1

µ + �(E[N̄(⇢,n)2]+2E[N̄(⇢,n)]+1)
2nµ2

n
� + E[N̄(⇢,n)]

µ + 1
µ

.

By multiplying with n and substituting �
µ with loading factor

⇢, we will have the result.
Lemma 8: For f(⇢, n) defined in Lemma 6,

Q
M,F
tot 

n( ⇢
2�1
2⇢ f(⇢, n) + 1� f(⇢, n)) + (⇢+ 1� f(⇢,n)

2 ) + ⇢
n

(1 + 1�f(⇢,n)
⇢ ) + 1

n

.

(20)
Proof. From Lemmas 4 and 6, we can write

E[N̄(⇢, n)] = n (1� f(⇢, n)/⇢) ,

E[N̄(⇢, n)2] =
�
n
2(1� 1/⇢)2 + n/⇢

�
f(⇢, n).

By direct substitution in (19) we have the result.
Corollary 1: For large enough n, the upper bound of (20)

can be approximated as

Q
M,F
tot ̇ n

1
2
⇢2�1

⇢ f(⇢, n) + 1� f(⇢, n)

1 + 1�f(⇢,n)
⇢

. (21)

At this point, by substituting from Lemmas 5 and 6, in
Corollary 1, we conclude the proof of Theorem 2.

V. NUMERICAL RESULTS

The analytical results obtained in this paper are validated
through numerical simulations in this section. Each of the
following simulation results is an average behavior over 106
iterations. We first validate the main analytical results under
uniform popularity, and then provide more numerical results
for non-uniform popularity distributions (such as commonly
used Zipf distribution). Moreover, we compare the perfor-
mance of FCFS work-conserving policy to a heuristic Max-

Weight work-conserving multicast policy that is expected to
yield favorable delay-minimization merits.

A. Validation of Main Results under Uniform Popularities

In Fig. 4, we provide a numerical evaluation of Q
U
tot

and Q
M,B
tot under different content popularity distributions for

n = 1000. For degenerate distribution of content popularity,
Q

M,B
tot is equal to ⇢ which is the minimum that blind multicast

can achieve for given n and ⇢. On the other hand, uniform
distribution of content popularity gives the maximum value
of Q

M,B
tot which equals n⇢. It is obvious from the figure that

as ⇢ approaches 1, unicast system becomes unstable, while
blind multicasting operation guarantees a finite total average
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Fig. 4: Comparison between unicast and blind multicast for
n = 1000 items.

number of requests upper bounded by n ⇢ for any popularity
distribution ↵ and ⇢ � 0 as can be seen in Fig. 4. We can also
observe from Fig. 4 that unicast outperforms blind multicast
under the considered instances of Zipf distributed popularity
which is consistent with the insights of Remark 3.
Fig. 5 shows the average number of requests as a function

of number of queues in a system with uniform distributions of
content popularity under different values of loading factor ⇢
and scheduling policies. We can see that for different levels of
the loading factor ⇢, the FCFS multicast policy performs very
close to the heuristic Max-Weight that serves a queue with
the largest number of requests at the time of service, both of
which outperform blind multicasting by a large margin. Also,
we can see that our upper-bound is very accurate for different
levels of loading factor ⇢.

B. Performance Comparison against Max-Weight multicast

for Uniform and Non-uniform Popularities

In this section, we aim to investigate the performance
of our blind and work-conserving multicast strategies under
non-uniform popularities and compare their performance to
a heuristic Max-Weight multicast policy. Fig. 6 shows the
total average number of requests in the system for different
policies under the uniform popularity distribution. As it can
be seen in this figure, the upper bound we derived for FCFS
is very tight. Moreover, performance of FCFS is very close
to that of Max-Weight. According to Fig. 6, for small loading
factor ⇢, unicast performance is very close to work-conserving
multicast performance and it is much better than the blind
multicast performance. For ⇢ close to 1, when the unicast
becomes unstable, work-conserving multicast become substan-
tially efficient compared to both unicast and blind multicast.
For ⇢ >> 1, work-conserving multicast still outperforms blind
multicast by a factor of 2 as it has been noted in Remark 4.
Fig. 7 shows the total average number of requests in the

system for different policies under Zipf popularity distribution
with parameter � = 1.2. As it can be seen from the figure,
performance of FCFS is very close to Max-Weight and our
upper bound which we derived for FCFS in Theorem 2 under
uniform popularity distribution, is also reasonable for non-
uniform popularity distributions like Zipf.
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(a) ⇢ = 5.
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(b) ⇢ = 1.

2 4 6 8 10
Number of queues (n)

0

1

2

3

4

5

Av
er

ag
e 

nu
m

be
r o

f r
eq

ue
st

s

Max-Weight
FCFS
Upper bound
Blind multicast

(c) ⇢ = 1/2.

Fig. 5: Average number of requests in the system over n for different loading factors ⇢.
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Fig. 6: Number of requests in the system for different policies
under uniform popularity distribution and n=1000.
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Fig. 7: Number of requests in the system for different policies
under Zipf(1.2) popularity distribution and n=1000.

VI. CONCLUSION

In this work, we provided a comprehensive analysis of mul-
ticast gains for wireless content distribution networks serving
a dynamic population of users that aim to access a content
database with a given popularity distribution. In particular,
we characterized the delay performance of two classes of
multicasting strategies, namely, ‘blind’ multicasting whereby
the pending requests are unknown to the transmitter, and
‘work-conserving’ multicasting whereby the pending requests
are known. Our results establish that both types of multicasting
yields endless stability, in that an unbounded traffic load can
be supported by them by exploiting the multicast advantage
of wireless communication. This is in contrast to the bounded

stability of unicast mode of transmission whereby requests are
fulfilled individually. Moreover, we show that work-conserving
multicast based on a first-come-first-serve principle can yield
further delay gains over its blind counterpart that are explicitly
characterized in our analysis as a function of the traffic load
and the database size. In addition to the explicit characteriza-
tion of delay performance of these proposed multicast strate-
gies, our work also revealed key insights on the conditions
under which blind and work-conserving multicast solutions
can yield most benefit.
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