
A Flexible Distributed Optimization Framework for
Service of Concurrent Tasks in Processing

Networks
Zai Shi1 and Atilla Eryilmaz1

1The Ohio State University, Columbus, OH 43210, USA
1Email:{shi.960, eryilmaz.2}@osu.edu

Abstract—Distributed optimization has important applications
in the practical implementation of machine learning and signal
processing setup by providing means to allow interconnected net-
work of processors to work towards the optimization of a global
objective with intermittent communication. Existing works on
distributed optimization predominantly assume all the processors
storing related data to perform updates for the optimization task
in each iteration. However, such optimization processes are typi-
cally executed at shared computing/data centers along with other
concurrent tasks. Therefore, it is necessary to develop efficient
distributed optimization methods that possess the flexibility to
share the computing resources with other ongoing tasks. In this
work, we propose a new first-order framework that allows for this
flexibility through a probabilistic computing resource allocation
strategy while guaranteeing the satisfactory performance of dis-
tributed optimization. Our results, both analytical and numerical,
show that by controlling a flexibility parameter, our suite of
algorithms (designed for various scenarios) can achieve the lower
computation and communication costs of distributed optimization
than their inflexible counterparts. This framework also enables
the fair sharing of the common resources with other concurrent
tasks being processed by the processing network.

I. INTRODUCTION

Distributed optimization concerns the minimization of the
average 1

n

∑n
i=1 fi(x) of functions fi, each of which is only

accessible by a unique processor in a network. Processors
work with their own functions and communicate with their
neighbors to find the optimum of the above global objective.
This setup has found many applications in machine learning
and signal processing fields. For example, when faced with a
big dataset, we often divide it to several small datasets and
process them in different servers connected by a network, such
as MapReduce scheme [3]. If the problem is empirical risk
minimization [2] for supervised learning, then fi represents the
loss function of the local dataset in Server i and each processor
needs to determine the parameter of the prediction function
that minimizes the average loss over the entire dataset. This
process can be formulated as distributed optimization. Another
example is decentralized estimation. In a wireless sensor
network, each sensor has a measurement of the parameter
that we are interested in. Each measurement contains noise

This paper is funded primarily by the NSF grant CMMI-SMOR-1562065,
and in part by: the NSF grants: CCSS-EARS-1444026, CNS-NeTS-1514260,
CNS-NeTS-1717045, CNS-ICN-WEN-1719371, and CNS-SpecEES-1824337;
and the DTRA grants: HDTRA1-15-1-0003; HDTRA1-18-1-0050.

from the environment and the sensor itself. How to estimate the
parameter based on all the measurements is also a distributed
optimization problem.

One of the pioneering works on distributed optimization was
Tsitsiklis et al.’s work [22]. Since then, several types of methods
have been proposed in this area, such as distributed subgradient
descent (DSD) [8], [14], distributed dual averaging [4], [21],
Alternating Direction Method of Multipliers (ADMM) [9],
[18], Nesterov’s method [15], [17] and second-order algorithm
[10], [23], with different performances and restrictions. Among
these types, DSD is the most important algorithm because
it is easily implemented in a distributed way (ADMM needs
sequential variable updates and second order methods need
costly distributed Hessian calculation), and the basis of many
further developed algorithms. For example, by adding history
gradient information to DSD, the methods in [13] and [16] can
achieve a linear convergence rate for the sum of strongly convex
and smooth functions with a constant stepsize. Nesterov’s
method can also be considered as a variant of the gradient
method. So in this paper, we will focus on gradient-based
algorithms.

Meanwhile, we notice that prior works predominantly
consider the scenario of simultaneous updates of all network
processors for single distributed optimization task. However,
in real processing networks, multiple tasks must typically be
performed simultaneously by the same computing resources.
Consequently, the computing resources must necessarily be
shared amongst concurrent tasks including distributed optimiza-
tion for satisfactory performance, which is largely overlooked
in prior works.

This motivates us in this work to propose a set of flexible
distributed subgradient algorithms that allow processors to work
on multiple ongoing tasks simultaneously by probabilistically
switching between them. Our contributions along with the
organization of our paper can be summarized as follows:

• We introduce a randomization parameter into the dis-
tributed optimization framework that allows sharing of
resources amongst concurrent tasks being processed by
the network. This mechanism provides the necessary
flexibility without disturbing the distributed nature of the
optimization. The details will be presented in Section II

• We analyze the performance of our randomized distributed
optimization framework for various classes of functions.
Our investigations show that for various classes of func-
tions, the convergence and convergence rate characteristics
of the traditional DSD [14] are maintained while parallel
processing ability can be achieved with lower computation
costs in our framework. The discussion will be presented
in Section III.

• Moreover, we develop a variant of our basic algorithm
to further reduce the communication cost of our basic
algorithm in situations where communication costs are
non-negligible with respect to computation costs. This
variant, called PUSD with less communication, will be
introduced in Section IV.

• Through the experiments of two types of regression
problems in Section V, the efficiency and the fairness of
our algorithms are clearly demonstrated when compared
with some traditional and newly-proposed schemes.

As an interesting related work, Nedić [11] proposes a
distributed subgradient method whereby only one processor is
randomly chosen to broadcast its information to its neighbors.
While this work includes asynchronous update of processors,
it sill lacks the flexibility of choosing how much computing
resource will be put on distributed optimization. In contrast,
our algorithm overcomes this disadvantage by employing a
probabilistic computation strategy that is flexible enough to
accommodate all degrees of updates between the extremes of
the vanishingly rare and the full simultaneous updates. We also
provide convergence rates of our algorithms for several classes
of functions, which are not presented in [11].

Notation. Throughout the rest of the paper, n is the number
of processors in the network. In the algorithms, xki , u

k
i , y

k
i , z

k
i

are the values of Processor i in iteration k and akij is the weight
which processor i puts on the value sent from Processor j.
∂f(x) refers to the set of subgradients of the function f at x
and ∇f(x) is the gradient of f at x. || � ||p denotes the lp-norm
for vectors. If A is a matrix, then Aij refers to the (i, j)th
entry of A. AT is defined as the transpose of A. πχ{�} is the
projection operator defined as

πχ{x} = arg min
y∈X
||y − x||22

Other notations are defined once mentioned in the paper.

II. MODEL AND BASIC ALGORITHM

We consider the following optimization problem processed
by a network consisting of n processors:

min
x∈χ

f(x) =
1

n

n∑
i=1

fi(x) (1)

where fi(x) is convex over χ for all i, χ ⊆ Rd is a convex set.
The network is represented by a static connected undirected
graph G = (V, E). Processor i can only have access to its own
local function fi and compute its (sub)gradients. Meanwhile,
Processor i can communicate its values with its neighbors,
the set of which is denoted as N(i). We assume that the

computation cost of computing a subgradient is 1 and the
communication cost of one link between two processors is τ ,
which can be larger or smaller than 1.

In Section I, we already mentioned the application of
distributed optimization. Here we take one example to explain
why we are interested in solving (1) within our model. In
supervised learning setup, we consider the situation where
the training dataset is stored separately in several servers
interconnected by a network. If each server wants to solve the
empirical risk minimization problem based on its stored training
dataset, then we can write fi(θ) = l(h(xi; θ), yi) where h(�)
is the prediction function such as a linear model [6], l(�) is the
loss function such as l2 norm loss [6], (xi, yi) is the training
dataset stored in Server i and θ is the global variable that the
servers try to optimize. The detailed setup will be shown in
Section V.

We assume that (1) has an nonempty optimality set S and
denote x∗ ∈ S. Meanwhile, we give the following assumptions
about fi(x), some of which may be used in the next section.
Note that these assumptions are standard in optimization
literature [1].

Assumption 1. fi(x) has bounded subgradients for any i
and x ∈ χ, i.e., ||gi||2 ≤ C for some constant C, where
gi ∈ ∂fi(x).

Assumption 2. fi(x) is L-smooth for any i and x ∈ χ, i.e.,
||∇fi(x)−∇fi(y)||2 ≤ L||x− y||2, where x, y ∈ χ.

Assumption 3. fi(x) is µ-strongly convex for any i and x ∈ χ,
i.e., fi(y) ≥ fi(x)+gTi (y−x)+ µ

2 ||y−x||
2
2, where gi ∈ ∂fi(x)

and x, y ∈ χ.

The goal of distributed optimization is to make the value
xki of each processor converge to the optimal solution of
(1) using limited communication with neighbors. Previous
methods predominantly focus on solving this problem where
each processor updates its value concurrently in each iteration.
One of the questions we address in this work is whether it is
possible to make a subset of the processors update the values
in each iteration while still guaranteeing the convergence of
the algorithm. Such a partial update may potentially reduce
the computation cost of the network supposing each processor
is doing multi-tasks. When an processor is not involved in the
process of solving (1) in this iteration, it can spare its resource
in other tasks, such as measurement, data preprocessing or
other distributed optimization problems.

Inspired by the above motivation and the stochastic gradient
descent (SGD) [2], we propose Partially Updated Subradient
Descent (PUSD) shown in Algorithm 1, which can be imple-
mented distributedly in each processor. This algorithm can
be divided into two operations. Steps 6 and 7 refer to the
communication operation, where each processor communicates
with its neighbors to average the information from its own and
the neighbors. Steps 8 to 14 refer to the computation operation,
where a subset of processors compute the subgradients and
run the subgradient descent to approach the optimal solution
of (1). The other processors just maintain their original values

Algorithm 1 Partially Updated Subgradient Descent (PUSD)
for Processor i

1: Input: number of iterations K, probability to run subgra-
dient descent p, stepsizes for K iterations {ηk}Kk=1.

2: Output: Option I: xKi ; Option II: vKi :=
∑K

k=1 ηkx
k
i∑K

k=1 ηk
;

Option III: zKi := 2
K(K+1)

∑K
k=1 kx

k
i

3: Initialize x0
i ∈ χ.

4: Set u0
i ← x0

i .
5: for k = 1 to K do
6: Send uk−1

i to the neighbor processors and receive
{uk−1

j }j∈N(i) from all the neighbor processors.
7: Set xki ← akiiu

k−1
i +

∑
j∈N(i) a

k
iju

k−1
j for some akii ∈

[0, 1], akij ∈ [0, 1].
8: Generate a random number r in [0, 1].
9: if r < p then

10: Compute a subgradient gki of fi(xki).
11: Set uki ← πχ{xki − ηkgki }.
12: else
13: Set uki ← xki and process other tasks.
14: end if
15: end for

and process different tasks. Using this algorithm, we can
process several tasks concurrently in this network with different
emphasis on distributed optimization adjusted by p in Algorithm
1. The traditional DSD [14] corresponds to our algorithm when
p = 1. In this way, PUSD can be regarded as a generalization of
the traditional DSD by providing the flexible parallel processing
ability.

Meanwhile, there exists some hard-partitioning schemes,
such as assigning a partition of processors to a certain
task, which also allows for parallel processing. But we
should mention that the distributed optimization framework
is especially important under many circumstances whereby
different processors have access to chunks of data that may
be private or infeasible to share with other processors in the
network. The example of wireless sensor networks mentioned
in Section I is such a case where each measurement is related
to its location and not easy to be shared. The aim of the
probabilistic switching is to make the gradient computed in
each step a good estimation of the full gradient of the global
function, which is essential for the convergence results shown
in the next section. Hard-partitioning schemes over network
processors may be difficult to realize this end, especially under
the above-mentioned circumstances. Other alternatives such
as time division multiplexing can be regarded as specific
implementations of sequential processing, which has been
compared with our methods in Section V.

In the next section, we will show how the probabilistic
switching impacts convergence results of distributed optimiza-
tion problems.

III. CONVERGENCE RESULTS FOR PUSD

First we give some definitions prepared for an assumption
related to the communication operation of PUSD. Define
A(k) ∈ Rn×n as the weight matrix in iteration k whose (i, j)th
entry is akij . Obviously akij 6= 0 only when edge (i, j) ∈ E
or j = i. Supposing {A(k)}k=1,2,... are independent and
identically distributed (i.i.d), we can define Ā , E[A(k)] for
all k > 0. With the edge set induced by the positive elements
of Ā, i.e.,

Ē = {(j, i)|Āij > 0}, (2)

we define Ḡ = (V, Ē) as the mean connectivity graph, where
V is the vertex set of the original network.

Now we give the following the assumption about A(k):

Assumption 4. (a) {A(k)}k=1,2,... are i.i.d.;
(b) There exists some constant γ ∈ (0, 1) such that A(k)ii ≥ γ
with probability 1 for all i and minj,i∈Ē

Āij

2 ≥ γ;
(c) The mean connectivity graph is strongly-connected;
(d) A(k) is doubly stochastic with probability 1 for all k > 0,
i.e.,

∑
i a
k
ij =

∑
j a

k
ij = 1 for any i and j.

Remark 1. A simple weight matrix satisfying Assumption 4
is called the lazy Metropolis update [12], which is defined as
follows:

akij =


1

2 max {di,dj} if j ∈ N(i)

1−
∑
j∈N(i)

1
2 max {di,dj} if j = i

0 otherwise

(3)

for all k > 0, where di is the degree of Processor i. In this
case A(k) is deterministic. The mean connectivity graph is
strongly-connected if and only if the underlying graph of the
network is strongly-connected. Using this matrix requires each
processor to broadcast its degree to its neighbors along with
its value.

Now we will give three theorems related to the convergence
results of PUSD. Due to the space constraint, their proofs
will be presented in the form of outlines. The details can be
found at [19]. Here we define two values used in the theorems:
B = (3 + 2

γ2(n−1)) exp {−γ
4(n−1)

2 } and θ = exp {−γ
4(n−1)

4(n−1) },
where γ is defined in Assumption 4.

Theorem 1. If Assumption 1 and Assumption 4 are satisfied,
then for Algorithm 1 with output Option II we have:
(a) when ηk = η = 1√

K
1 is fixed, where K is a constant,

E[f(vKi)− f(x∗)]

≤ 1√
K

(
||y0 − x∗||22

2p
+

2(1− p+ np+ 1
2n)C2

n
+

8npBC2

1− θ
)

(4)

1We can choose ηk = α√
K

for any α > 0. Here we use 1√
K

for the ease
of discussion

for any i, where y0 = 1
n

∑n
i=1 x

0
i ;

(b) when
∑∞
k=1 ηk =∞ and

∑∞
k=1 η

2
k <∞,

lim
K→∞

E[f(vKi)− f(x∗)] = 0 (5)

for any i.

Proof outline. 1. Write one step of Algorithm 1 in a compact
form:

yk+1 = yk +
1

n

∑
i∈Ik

(∆k
i − ηkgki) (6)

where yk+1 = 1
n

∑n
i=1 x

k+1
i , vki = xki − ηkg

k
i , ∆k

i =
πχ{vki } − vki and Ik is the set of processors computing
(sub)gradients in iteration k.
2. Expand EIk [||yk+1−x∗||22|{xki }ni=1] by plugging (6) and get
the following upper bound using the definition of subgradients,
the triangle inequality, the Cauchy-Schwartz inequality, As-
sumption 1 and the projection theorem (vki − πχ{vki })T (x∗ −
πχ{vki }) ≤ 0 [1]:

EIk [||yk+1 − x∗||22|{xki }ni=1] ≤ ||yk − x∗||22 +
4η2
kp(1− p)C2

n

+ 4η2
k(p2 +

1

2
p)C2 + 8pηkCDk − 2pηk(f(xkj)− f(x∗))

(7)

where Dk = maxi∈{1,2,...,n} ||yk − xki ||2.
3. Take expectations over all the previous values and bound
EDk using the similar method in Lemma 7 of [8]. With the
bound EDk ≤ np

∑k
r=1 ηr−1CBθ

k−r where η0 = 1, we have

E[||yk+1 − x∗||22] ≤ E||yk − x∗||22 +
4η2
kp(1− p)C2

n

+ 4η2
k(p2 +

1

2
p)C2 + 8np2ηkC

2
k∑
r=1

ηr−1Bθ
k−r

− 2pηkE[f(xkj)− f(x∗)] (8)

4. Telescope from k = 1 to K, and rearrange the terms
to get the upper bound of E[

∑K
k=1 ηk(f(xk

j)−f(x∗))∑K
k=1 ηk

]. Use the
assumptions of ηk and the convexity of f to obtain the final
results for case (a) and (b) respectively. �

Remark 2. The last term of equation (4) are called consensus
error because it is brought by the processor disagreement after
K iterations. We can see that it is determined by the weight
matrix and the topology of the network via B and θ.

In Theorem 1, if we let the right side of (4) equal to ε and
solve K from the equation, then we can get the the maximum
iterations to achieve ε-suboptimality, which is written as (we
allow K to be non-integer for simplicity):

K =
1

ε2
(
||y0 − x∗||22

2p
+

2(1− p+ np+ 1
2
n)C2

n
+

8npBC2

1− θ)2

On average, np processors are computing the gradients in each
iteration. Define the network computation cost of distributed
optimization as the sum of the computation cost brought by
the processors which compute the subgradients in the network.

Then the expected network computation cost to achieve ε-
suboptimality is

Ecomp(ε)

≤ np

ε2
(
1

2p
||y0 − x∗||22 +

2(1− p+ np+ 1
2
n)C2

n
+

8npBC2

1− θ)2

(9)

where p ∈ (0, 1]. Since the traditional DSD corresponds to our
algorithm with p = 1, then its expected network computation
cost is

Ecomp(ε) ≤ n

ε2
(
1

2
||y0 − x∗||22 + 3C2 +

8nBC2

1− θ
)2 (10)

which can be also obtained following the proof line in [8]. Now
we fix B and θ by using the same weight matrix for different
p. Then from (9) and (10) we know that when C is large, our
algorithm can be better than the traditional DSD in terms of the
expected network computation cost of distributed optimization
for some p. If we know the relation between the computation
cost of concurrent tasks and the number of their operating
processors, we can further optimize the whole computation
cost by minimizing the cost function with an appropriate p.

Theorem 2. If Assumption 1 ,3 and 4 are satisfied, then for
Algorithm 1 with output Option III and the diminishing stepsize
ηk = 2

µp(k+1) ,

E[f(zKi)− f(x∗)]

≤ 1

K + 1
(
8(1− p+ np+ 1

2n)C2

nµp
+

16nBC2

(1− θ)µ
+

8npBC2

K(1− θ)
)

(11)
K→∞−→ 0

Proof outline. Step 1, 2 and 3 are similar to the proof of
Theorem 1 except taking strong convexity into consideration
by using the property in Assumption 3. Then the bound in (8)
changes to

E(f(xkj)− f(x∗)) ≤ 1

2pηk
(1− pµηk)E||yk − x∗||22

− 1

2pηk
E||yk+1 − x∗||22 +

2ηk((1− p) + np+ 1
2n)C2

n

+ 4npBC2
k∑
r=1

ηr−1θ
k−r

4. Multiply both sides by k and telescope from k = 1 to K.
Use ηk = 2

µp(k+1) to let some of the terms cancel each other

and bound the term
∑K
k=1 k

∑k
r=1 ηr−1θ

k−r. Then we have

K∑
k=1

kE(f(xkj)− f(x∗)) ≤ −µK(K + 1)

4
E||yK+1 − x∗||22

+
4K(1− p+ np+ 1

2n)C2

nµp
+

8(K − 1)nBC2

(1− θ)µ
+

4npBC2

1− θ

5. Multiplying both sides by 2
K(K+1) and using the convexity

of f gives the final result. �

From Theorem 2, we can see that our algorithm has a
convergence rate of O(1/K), which matches the order of the
convergence rate of centralized stochastic gradient descent
[2]. When K is large, the last term of (11) can be neglected.
Then using the same procedure of deriving (9), we can write
the bound of the expected network computation cost to reach
ε-suboptimality as

Ecomp(ε)

≤ np

ε
(
8(1− p+ np+ 1

2n)C2

nµp
+

16nBC2

(1− θ)µ
)− np (12)

in this case. Again, when C is large, the expected network
computation cost of distributed optimization for PUSD can be
lower than the traditional DSD by controlling p.

Theorem 3. If Assumption 1, 2, 3 and 4 are satisfied, then
for Algorithm 1 with output Option I and the fixed stepsize
ηk = η ∈ (L−µpµL ,

1
pµ),

E[f(xK+1
i)− f(x∗)] ≤ (

L

µ
− pLη)K(f(y0)− f(x∗)−R)

+R+
npηBC2

1− θ
+ npC2BθK−1

(13)

K→∞−→ R+
npηBC2

1− θ
(14)

for any i, where y0 = 1
n

∑n
i=1 x

0
i , and

R =

2η2L(p(1−p)+np2+ 1
2np)C

2

n + 3np2LBC2(η2+η)
1−θ

1− L
µ + pLη

.

Proof outline. Since f is µ-strongly convex, L-smooth, and
∇f(x∗) = 0, we have [1]

1

2
µ||y − x∗||22 ≤ f(y)− f(x∗) ≤ 1

2
L||y − x∗||22

Then the bound in (8) can be improved to

E[f(yk+1)− f(x∗)] ≤ (
L

µ
− pLηk)E(f(yk)− f(x∗))

+
2η2
kL(p(1− p) + np2 + 1

2np)C
2

n

+ 3np2LBC2ηk

k∑
r=1

ηr−1θ
k−r

When ηk = η is fixed, we have

E[f(yk+1)− f(x∗)]−R ≤ (
L

µ
− pLη)(E[f(yk)− f(x∗)]−R)

≤ (
L

µ
− pLη)k(f(y0)− f(x∗)−R)

where R is defined in Theorem 3. If η ∈ (L−µpµL ,
1
pµ), then

(Lµ − pLη) ∈ (0, 1). By incorporating the consensus error, we
have

E[f(xk+1
i)− f(x∗)] ≤ (

L

µ
− pLη)k(f(y0)− f(x∗)−R)

+R+
npηBC2

1− θ
+ npC2Bθk−1

k→∞−→ R+
npηBC2

1− θ
�

From Theorem 3, we can see that a part of the optimality
gap decreases in a linear rate. When this part dominates the
whole optimality gap, the algorithm “seems” to have a linear
convergence rate, which can be observed in Section V-B.

IV. PUSD WITH LESS COMMUNICATION

For the purpose of simplicity, the fixed weight matrix like
(3) is often used in distributed optimization methods, where
all the processors are involved in the communication operation.
However, this may not be efficient when the communication
cost is very large. This situation may arise in the example
of wireless sensor networks when some channels are in deep
fading [20]. Assumption 4 allows us to choose some suitable
weight matrix to reduce the communication cost by not utilizing
all the links, but we need additional communication protocols
to realize such a weight matrix. In our distributed optimization
framework, this aim can be reached directly by taking advantage
of the randomness brought by p in PUSD. The modified
algorithm, called PUSD with less communication, is shown in
Algorithm 2.

Here we call the processors which compute their subgradients
the active processors and the others the inactive processors.
Note that the inactive processors are actually processing other
tasks and their inactivity is only with respect to the distributed
optimization being performed. Define N ′(i) as the set of active
neighbors for the inactive processors. In this algorithm, the
communication only occurs between the active processors and
their neighbors. For example, suppose Algorithm 2 is running
in a network shown in Figure 1. If Processor 3 and Processor 5
choose to run the subgradient descent in this iteration, then the
communication will happen in the links represented by bold
lines in Figure 1. A time window can be set for the inactive
processors to guarantee the receipt of messages from all the
active neighbors.

If A(k) is doubly stochastic with probability 1 for all k
and the network is strongly connected, it is easy to check that
Assumption 4 is satisfied for Algorithm 2. Compared with
Algorithm 1, we exchange the order of the communication
operation and the computation operation. In this way we can
guarantee the same convergence results in Section III using
the same line of argument, which is explained in the proof of
the following theorem.

Theorem 4. For Algorithm 2, Theorem 1, 2 and 3 still hold
with their respective assumptions.

1

6

4
3

5

2

𝑓1(𝑥)

𝑓2(𝑥)

𝑓3(𝑥)

𝑓6(𝑥)

𝑓5(𝑥)

𝑓4(𝑥)

Fig. 1. The communication operation of Algorithm 2 in a network consisting
of 6 processors in one iteration. The colored processors are active ones in
this iteration and the bold lines are the links involved in the communication
operation.

Proof. The proof of this theorem is similar to Theorem 1, 2
and 3. We focus on the explanation of the reason why we
should exchange the order of the communication operation and
the computation operation.
1. Write one step of Algorithm 2 in a compact form:

yk+1 = yk +
1

n

∑
i∈Ik+1

(∆k
i − ηkgki) (15)

where yk+1 = 1
n

∑n
i=1 x

k+1
i , vki = xki−ηkgki , ∆k

i = πχ{vki }−
vki and Ik+1 is the set of processors computing gradients in
iteration k + 1.
2. The main difference is in this step. Here we will take
expectations to Ik+1 conditioned on {xki }ni=1 and then follow
the same proof line to get the same convergence results. If the
order of communication operation and computation operation is
not exchanged in Algorithm 2, Ik is coupled with {xki }ni=1 and
then we cannot obtain the bound of EIk [||yk+1−x∗||22|{xki }ni=1]
in (7) without the independence condition.
The remaining steps are the same with Theorem 1, 2 and 3.

As less processors are involved in the communication
operation, the consensus process across the networks in
Algorithm 2 may be slower than Algorithm 1. For example, in
Algorithm 2 we can use a similar weight matrix to (3):

akij =


1

2 max {dki ,dkj }
if j ∈ Nk(i)

1−
∑
j∈Nk(i)

1
2 max {dki ,dkj }

if j = i

0 otherwise

(16)

where Nk(i), dki , dkj are defined with regard to Gk = (Vk, Ek).
Here Vk is the vertex set of the active processors and their
neighbors in iteration k, and Ek is the edge set of the edges
between the active processors and their neighbors. Using this
matrix, the convergence rate of Algorithm 2 may be slower
than Algorithm 1 because γ in Assumption 4 may decrease,
leading to the increase of B and θ in the convergence results.
Therefore for specific graphs and weight matrices, there should
be a communication-computation cost tradeoff in Algorithm 2.
But in empirical experiments, the tradeoff may be not obvious
since the theoretical results are in terms of bounds. In the

Algorithm 2 Partially Updated Subgradient Descent (PUSD)
with Less Communication for Processor i

1: Input: number of iterations K, probability to run subgra-
dient descent p, stepsizes for K iterations {ηk}Kk=1

2: Output: Option I: xKi ; Option II: vKi :=
∑K

k=1 ηkx
k
i∑K

k=1 ηk
;

Option III: zKi := 2
K(K+1)

∑K
k=1 kx

k
i

3: Initialize x0
i ∈ χ.

4: for k = 1 to K do
5: Generate a random number r in [0, 1].
6: if r < p then
7: Compute a subgradient gk−1

i of fi(xk−1
i).

8: Set uki ← πχ{xk−1
i − ηkgk−1

i }.
9: Send uki to the neighbor processors.

10: if received {ukj }j∈N(i) from all the neighbors. then
11: Set xki ← akiiu

k
i +

∑
j∈N(i) a

k
iju

k
j for some

akii ∈ [0, 1], akij ∈ [0, 1].
12: end if
13: else
14: Set uki ← xk−1

i and process other tasks.
15: if received {ukj }j∈N ′(i) from all the active neigh-

bor(s). then
16: Send uki to the active neighbor(s) and set xki ←

akiiu
k
i +

∑
j∈N ′(i) a

k
iju

k
j for some akii ∈ [0, 1], akij ∈ [0, 1].

17: end if
18: end if
19: end for

Section V, we will see the examples where the computation
cost has almost no change when Algorithm 2 is applied.

It is insightful to consider Erdős-Renyi networks for char-
acterizing the communication cost reduction of Algorithm 2.
To that end, consider the G(n, q) model where n processors
connect with each other with probability q. We can choose
q = (1 + ε) log(n)/n for some ε > 0 to guarantee that the
graph is strongly connected with high probability [5]. For this
model we have the following proposition:

Proposition 1. For Erdős-Renyi networks G(n, q), the expected
communication cost in each iteration of Algorithm 2 is q

2 (2p−
p2)(n2 − n)τ .

Proof. In Algorithm 2, a link is in communication for dis-
tributed optimization if and only if it exists and at least one
of its two vertexes is active. Then

P{a link in communication} = q(1− (1− p)2) = q(2p− p2).

So the number of the links in communication follows a
binomial distribution B

((
n
2

)
, 2qp− qp2

)
. Now we can obtain

the expected communication cost in one iteration:

Ecomm =
q

2
(2p− p2)(n2 − n)τ

In contrast, when all the processors are involved in the
communication operation, the expected communication cost

will be
(
n
2

)
qτ . So the decrease is q

2 (p − 1)2(n2 − n)τ . If n
and τ are large, this amount can be significant.

V. NUMERICAL RESULTS

In this section, we will show the advantages of PUSD
and its variant for linear regression problems using two loss
functions, l1-norm loss and l2-norm loss, in the regression
setting. These two objectives represent two types of functions
we discussed in Section III: one satisfying Assumption 1
and one satisfying Assumption 1, 2 and 3. Therefore we
can examine the performance of PUSD and its variant in
a more comprehensive framework. For all the experiments, we
use a network consisting of 100 processors, represented by a
strongly connected 10-regular graph. Meanwhile for simplicity
and practicality, we use fixed stepsizes in the experiments.
Stepsizes may be chosen differently in each algorithm so that
the best performance can be achieved.

A. Linear Regression: l1-norm Loss

Suppose each processor has a training set consisting of
20 data points (xi,m, yi,m), where xi,m ∈ Rd and yi,m ∈ R
belong to the mth data point stored in Processor i. Then the
empirical risk minimization for the l1-norm loss is to solve
the following optimization problem:

min
θ∈Rd

f(θ) =
1

20n
||y −XT θ||1 (17)

where X ∈ Rd×20n is the matrix whose (20(i − 1) + m)th
column is xi,m and y ∈ R20n is the vector whose (20(i− 1) +
m)th entry is yi,m. n(= 100) is the number of processors in
the network. It is easy to check that l1 norm functions satisfy
Assumption 1.

First, we consider that two tasks are processed by the
network, which both solve Problem (17) with different datasets.
For Task 1, we set yi,m = xTi,m

[30
20
10

]
+ ξi,m, where xi,m is

generated by a uniform distribution taking values in [0, 10]3,
and ξi,m ∈ R follows a uniform distribution in [0, 5]. For Task
2, both xi,m and ξi,m are generated by a uniform distribution
taking values in [0, 1]3. With different datasets, these two
tasks differ in the fraction of the noise ξi,m in yi,m. When
applying PUSD (Algorithm 1) to these two tasks, we let
each processor process Task 1 with probability p and Task
2 otherwise, both using (3) for the weight matrix. As two
sequential counterparts, the traditional DSD [14] is used to
process two tasks sequentially with Task 1 first or with Task 2
first using the same weight matrix. When the optimality gap of
one task is less than 10−1, the network proceeds to process the
other task with the DSD. 2 The optimality gap in iteration k is
measured by f(

∑K
k=1 θ

k
i

K)− f(θ∗) (Option II in Algorithm 1)
where θki is the value of Processor i in iteration k. Processor
i is randomly chosen at the beginning of the experiment, and
kept tracked afterwards.

2In practice each processor has no access to the optimality gap and terminates
when the value changes little. The switching criteria used here is for simplicity
and comparison.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
iterations

10-2

10-1

100

101

102

103

to
ta

l o
pt

im
al

ity
 g

ap

p=0.1
p=0.6
p=0.9
DSD with Task 2 first
DSD with Task 1 first

(a) The comparison of PUSD with p = 0.1, p = 0.6, p = 0.9 and the two
sequential processing algorithms for l1 norm loss

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
iterations

10-2

10-1

100

101

102

103

op
tim

al
ity

 g
ap

Task 1
Task 2

(b) The evolution of two tasks using PUSD with p = 0.6 for l1 norm loss

Fig. 2. PUSD applied to two concurrent optimization tasks for l1 norm loss

In Figure 2(a) we compare PUSD using different p with
the two sequential counterparts. The total optimality gap is
defined as the sum of the optimality gap of two tasks. From
the figure we can see that p = 0.6 gives a faster rate than
p = 0.1, p = 0.9 and the sequential counterparts. This is
because when approaching the optimal point, DSD has a very
slow rate if one task is processed alone. During this phase,
it is unwise to still process this task using all the processors.
In contrast, PUSD has a fast rate in the initial phase because
of its similarity to SGD (It is the characteristic of SGD [1]).
When both tasks are close to the optimum, PUSD can split the
computing resources to let both tasks approach the optimum
concurrently. Meanwhile, for fairness and efficiency, p should
not be too extreme since we do not want one of the tasks to
drag the global performance. So p = 0.6 gives the best result
for this concurrent optimization setup. From Figure 2(b) we can
also see that the optimality gaps of both tasks decrease below
10−1 finally when p = 0.6. Their curves are not apart from
each other, so the fairness is maintained with this choice. This
experiment shows the advantages of PUSD when dealing with
concurrent optimization problems for nonsmooth functions.

In the rest of the subsection, we assume that Task 2 is
processed along with other kinds of tasks. Now we apply
Algorithm 2, PUSD with less communications, to Task 2
with the weight matrix defined in (16). We compare this
algorithm with Algorithm 1 using (3) for different p to show
how the computation cost is impacted. The measurement of
the optimality gap is the same with the above experiment, but
now only for Task 2.

0 1000 2000 3000 4000 5000 6000 7000 8000
iterations

10-2

10-1

100

101

102

op
tim

al
ity

 g
ap

Algorithm 2 with p=0.2
Algorithm 2 with p=0.6
Algorithm 2 with p=1
Algorithm 1 with p=0.2
Algorithm 1 with p=0.6
Algorithm 1 with p=1

Fig. 3. The comparison of Algorithm 1 and Algorithm 2 with different p for
l1 norm loss

In Figure 3, we plot the optimality gap of Task 2 versus
iterations for Algorithm 1 and Algorithm 2 when p = 0.2,
p = 0.6 and p = 1 (which is also the traditional DSD).
We can see that for the same p, the performance of the two
algorithms is almost the same. So empirically, the decrease
of γ in Assumption 4 does not impact the convergence rate
too much when (3) and (16) are used in the 10-regular graph.
In this case, Algorithm 2 can reduce the communication cost
while not increasing the computation cost of Task 2. It is of
significant value when the system has high communication
costs. Meanwhile we can compare the computation cost of
PUSD with the traditional DSD (p = 1) in this figure. For
example, when the optimality gap is 10−1, PUSD with p = 0.6
needs about 3900 iterations while the traditional DSD needs
about 2300 iterations. So the expected network computation
cost to reach 10−1 gap is 2.34× 105 for PUSD with p = 0.6
and 2.3 × 105 for the traditional DSD, which is almost the
same for two cases. But our algorithm allows for the parallel
processing of other tasks with the same cost for the distributed
optimization.

B. Linear Regression: l2-norm Loss

With the same definition in Subsection V-A, the empirical
risk minimization for the l2-norm loss is to solve the following
optimization problem:

min
θ∈χ

f(θ) =
1

20n
||y −XT θ||22 (18)

Here we assume a compact constraint χ = [0, 100]3 for θ,
which makes Assumption 1, 2 and 3 all satisfied.

First, we still consider the situation where two optimization
problems like (18) are being processed by the network with
two datasets respectively. They are referred to as Task 3 and
Task 4 in this subsection. The datasets of Task 3 are the same
with Task 1 and Task 4 same with Task 2 in Subsection V-A.
Here the optimality gap is measured by f(θki)−f(θ∗) (Option
I in Algorithm 1) where Processor i is still randomly chosen at
the beginning of the experiment and kept tracked afterwards.

In Figure 4(a) we compare PUSD using different p with
three sequential processing methods: DSD with Task 3 first,
DSD with Task 4 first and DIGing algorithm [13] with Task
3 first. DIGing algorithm is a newly proposed method which

0 50 100 150 200 250 300 350 400 450 500
iterations

10-4

10-2

100

102

104

106

to
ta

l o
pt

im
al

ity
 g

ap

p=0.1
p=0.6
p=0.9
DIGing with Task 3 first
DSD with Task 3 first
DSD with Task 4 first

(a) The comparison of PUSD with p = 0.1, p = 0.6, p = 0.9 and the three
sequential processing algorithms for l2 norm loss

0 50 100 150 200 250 300 350 400 450 500
iterations

10-5

100

105

1010

op
tim

al
ity

 g
ap

Task 3
Task 4

(b) The evolution of two tasks using PUSD with p = 0.6 for l2 norm loss

Fig. 4. PUSD applied to two concurrent optimization tasks for l2 norm loss

can achieve a linear convergence rate for the sum of strongly
convex, smooth functions using a fixed stepsize. The switching
criteria for sequential processing is that when the optimality
gap of one task is less than 10−2, the network proceeds to the
next task. The metric is the total optimality gap of two tasks.

From the figure we can see that larger p gives a faster rate in
the initial phase (In fact Figure 2(a) has the same trend, but not
obviously). This is because Task 3 has a greater decrease in its
optimality gap than Task 4 if processed alone. But when Task
3 is close to its optimum, the rate will decrease dramatically.
Same with Subsection V-A, putting more weight on Task 3
is not a wise decision in this phase. So the rate of PUSD
reduces after an initial phase when p is too extreme. DSD
with Task 3 first and DSD with Task 4 first are also impacted
by the slow final phase. Given this tradeoff, p = 0.6 is the
best choice which only gives a little more emphasis on Task
1. For DIGing algorithm, it can obtain the exact solution in a
linear rate using a fixed stepsize [13]. So it has a much better
performance than DSD. But under our switching criteria where
a certain optimization error is allowed, PUSD with p = 0.6
has a similar performance with DIGing algorithm. Given that
DIGing algorithm needs to store history information and does
not allow parallel processing, our algorithm has its advantages
over DIGing in some applications.

In Figure 4(b), we plot the evolution of two tasks when
PUSD with p = 0.6 is applied. From the figure, we can see
that the optimality gaps of both tasks decrease similarly when
p = 0.6, so the fairness is also guaranteed. The decrease
is approximately in a linear rate before reaching the final

0 50 100 150 200 250 300 350 400 450 500
iterations

10-6

10-4

10-2

100

102

op
tim

al
ity

 g
ap

Algorithm 2 with p=0-2
Algorithm 2 with p=0.6
Algorithm 2 with p=1
Algorithm 1 with p=0.2
Algorithm 1 with p=0.6
Algorithm 1 with p=1

Fig. 5. The comparison of Algorithm 1 and Algorithm 2 with different p for
l2 norm loss

optimality gap, as explained after the statement of Theorem 3.
This experiment shows the advantages of PUSD when dealing
with concurrent optimization problems for strongly convex,
smooth functions.

Now same with previous subsection, we assume that Task
4 is processed along with other kinds of tasks and focus on
the performance of Task 4. We compare Algorithm 2 using
the weight matrix defined in (16) with Algorithm 1 using (3)
for p = 0.2, p = 0.6 and p = 1 (same as the traditional DSD)
in Figure 5. Again, we can find that the performance of two
algorithms are very close to each other for all the choices of p.
In this case, Algorithm 2 is also preferable if the communication
cost is non-negligible. Now we turn to the computation cost
for PUSD with different p when a certain optimality gap is
reached. We take 10−3 for example. From Figure 5, we can
observe that it takes about 30, 50 and 150 iterations to reach
the 10−3 gap for PUSD with p = 1, p = 0.6 and p = 0.2
respectively. It means that the expected network computation
cost of distributed optimization is almost the same for these
three cases. Compared with the traditional DSD, PUSD is more
flexible by allowing parallel processing of other tasks with
different requirements by adjusting p.

VI. CONCLUSION AND FUTURE WORK

In this paper we proposed Partially Updated Subgradient
Descent (PUSD) to enable the split of computing resources for
distributed optimization and concurrent tasks in networks. We
then derived the convergence results of PUSD with different
assumptions on each function, which showed its favorable
convergence and convergence rate characteristics. For one
possible application situation, we developed PUSD with less
communication to get a better performance in communication
costs. The experiments of two machine learning problems
demonstrated the flexibility and efficiency of our algorithms
along with their ability to share computing resources more
fairly amongst concurrent tasks.

There are some open problems remaining for our algo-
rithms. First, each communication operation must wait for
the completion of the computation operation in PUSD. We
hope to develop an algorithm without this kind of synchronism
while guaranteeing the convergence results of the original
algorithm. Second, it is interesting to study whether PUSD can

be accelerated for smooth functions or strongly convex, smooth
functions. Because of the similarity of PUSD to SGD, variance
reduction methods like SVRG [7] may be promising. But such a
method needs full gradient information every several iterations,
which is difficult to be implemented in our distributed setting.
Thus, new techniques should be developed for this problem.
Last, it is interesting to explore whether we can improve PUSD
by enabling it to identify ”good” processors for each parallel
task and allocate the tasks accordingly.

REFERENCES

[1] D. P. Bertsekas. Convex optimization algorithms. Athena Scientific
Belmont, 2015.

[2] L. Bottou, F. E. Curtis, and J. Nocedal. Optimization methods for
large-scale machine learning. arXiv preprint arXiv:1606.04838, 2016.

[3] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on
large clusters. Communications of the ACM, 51(1):107–113, 2008.

[4] J. C. Duchi, A. Agarwal, and M. J. Wainwright. Dual averaging for
distributed optimization: Convergence analysis and network scaling. IEEE
Transactions on Automatic control, 57(3):592–606, 2012.

[5] R. Durrett. Random graph dynamics, volume 200. Cambridge university
press Cambridge, 2007.

[6] J. Friedman, T. Hastie, and R. Tibshirani. The elements of statistical
learning, volume 1. Springer series in statistics New York, 2001.

[7] R. Johnson and T. Zhang. Accelerating stochastic gradient descent
using predictive variance reduction. In Advances in neural information
processing systems, pages 315–323, 2013.

[8] I. Lobel and A. Ozdaglar. Distributed subgradient methods for convex
optimization over random networks. IEEE Transactions on Automatic
Control, 56(6):1291–1306, 2011.

[9] A. Makhdoumi and A. Ozdaglar. Convergence rate of distributed admm
over networks. IEEE Transactions on Automatic Control, 62(10):5082–
5095, 2017.

[10] A. Mokhtari, Q. Ling, and A. Ribeiro. Network newton distributed opti-
mization methods. IEEE Transactions on Signal Processing, 65(1):146–
161, 2017.

[11] A. Nedić. Asynchronous broadcast-based convex optimization over a
network. IEEE Transactions on Automatic Control, 56(6):1337–1351,
2011.

[12] A. Nedić, A. Olshevsky, and M. G. Rabbat. Network topology and
communication-computation tradeoffs in decentralized optimization.
arXiv preprint arXiv:1709.08765, 2017.

[13] A. Nedić, A. Olshevsky, and W. Shi. Achieving geometric convergence
for distributed optimization over time-varying graphs. SIAM Journal on
Optimization, 27(4):2597–2633, 2017.

[14] A. Nedić and A. Ozdaglar. Distributed subgradient methods for multi-
agent optimization. IEEE Transactions on Automatic Control, 54(1):48–
61, 2009.

[15] G. Qu and N. Li. Accelerated distributed nesterov gradient descent.
arXiv preprint arXiv:1705.07176, 2017.

[16] G. Qu and N. Li. Harnessing smoothness to accelerate distributed
optimization. IEEE Transactions on Control of Network Systems, 2017.

[17] K. Scaman, F. Bach, S. Bubeck, Y. T. Lee, and L. Massoulié. Optimal
algorithms for smooth and strongly convex distributed optimization in
networks. arXiv preprint arXiv:1702.08704, 2017.

[18] W. Shi, Q. Ling, K. Yuan, G. Wu, and W. Yin. On the linear convergence
of the admm in decentralized consensus optimization. IEEE Trans. Signal
Processing, 62(7):1750–1761, 2014.

[19] Z. Shi and A. Eryilmaz. Technical report. http://www2.ece.ohio-state.
edu/∼eryilmaz/papers/FlexibleDistOpt Inf19.pdf, 2019.

[20] D. Tse and P. Viswanath. Fundamentals of wireless communication.
Cambridge university press, 2005.

[21] K. I. Tsianos, S. Lawlor, and M. G. Rabbat. Push-sum distributed dual
averaging for convex optimization. In Decision and Control (CDC), 2012
IEEE 51st Annual Conference on, pages 5453–5458. IEEE, 2012.

[22] J. Tsitsiklis, D. Bertsekas, and M. Athans. Distributed asynchronous
deterministic and stochastic gradient optimization algorithms. IEEE
Transactions on automatic control, 31(9):803–812, 1986.

[23] R. Tutunov, H. B. Ammar, and A. Jadbabaie. A distributed newton method
for large scale consensus optimization. arXiv preprint arXiv:1606.06593,
2016.

