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Abstract—Many mobile applications (i.e., apps) include UI
widgets to use or collect users’ sensitive data. Thus, to identify
suspicious sensitive data usage such as Ul-permission mis-
match, it is crucial to understand the intentions of UI widgets.
However, many UI widgets leverage icons of specific shapes
(object icons) and icons embedded with text (fext icons) to
express their intentions, posing challenges for existing detection
techniques that analyze only textual data to identify sensitive UL
widgets. In this work, we propose a novel app analysis frame-
work, ICONINTENT, that synergistically combines program
analysis and icon classification to identify sensitive UI widgets
in Android apps. ICONINTENT automatically associates UI
widgets and icons via static analysis on app’s Ul layout files and
code, and then adapts computer vision techniques to classify
the associated icons into eight categories of sensitive data. Our
evaluations of ICONINTENT on 150 apps from Google Play
show that ICONINTENT can detect 248 sensitive UI widgets in
97 apps, achieving a precision of 82.4%. When combined with
SUPOR, the state-of-the-art sensitive Ul widget identification
technique based on text analysis, SUPOR +ICONINTENT can
detect 487 sensitive UI widgets (101.2% improvement over SU-
POR only), and reduces suspicious permissions to be inspected
by 50.7% (129.4% improvement over SUPOR only).

I. INTRODUCTION

Mobile apps are playing an increasingly important part in
our daily life [1], [2]. Despite the capabilities to meet users’
needs, the increasingly access to users’ sensitive data, such
as location and finance information [3]-[5], raises privacy
concerns. Prior works on smartphone privacy protection
focus on analyzing mobile apps’ code to detect information
leaks of the sensitive data managed by the framework
APIs, such as device identifiers (e.g., IMEI), location, and
contact [6]-[8]. But this line of works are limited because
they cannot address sensitive user inputs, where apps express
their intentions to use or collect users’ sensitive data. Many
apps today include UI widgets such as buttons and text
boxes, which expect users’ consensus to use their sensitive
data (e.g., pressing a button), or users’ input of sensitive data
(e.g., filling financial information in a text box).

It is crucial to understand the intentions of Ul widgets
by analyzing apps’ Uls, for the app stores to inspect sus-
picious permissions (i.e., Ul-permission mismatches [9]),
for lawyers or managers to write more precise privacy
policies [10], and for developers to better inform users
about sensitive data usages. For example, given an app that
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Figure 1: Uls containing icons that indicate the uses of
sensitive data in mobile apps

requests a permission (e.g., microphone), an inspection of
the app’s Uls can determine that the permission is suspicious
if this permission cannot be justified by the text and / or
icons on any UI widget. Recent works have made progress
in detecting disclosure of sensitive user inputs [9], [11], [12]
by analyzing textual data in the Uls. However, UI widgets’
intentions can also be expressed via images, especially icons
of specific shapes (object icons). For example, the icons in
Figure 1 indicate that the app will access users’ contacts
(Figure 1a) and GPS data (Figure 1b).

Understanding the intentions of icons is a challenging
problem. First, there are numerous types of icons in mo-
bile apps. Icons representing the same intention can have
different styles and can be shown in different scales and
angles. Due to small screens of smartphones, icons are
often not co-located with texts that explain their intents.
As exemplified by Figure 1b, Google Map uses the icon
shown in red square to center the map to the user’s current
location, without any text around the button. Second, some
icons are embedded with text, referred to as text icons. For
example, the third button from the top shown in Figure lc
indicates that the app will access users’ GPS data. The
diversified colors and opacities in fonts and backgrounds
(e.g., ghost button [13]) make it difficult to directly apply
Optical Character Recognition (OCR) [14], which works
best for icons having black texts and white backgrounds.

To address this problem, we propose a novel framework,
ICONINTENT, that synergistically combines program analy-



sis and icon classification to associate icons with UI widgets
and classify the intentions of icons (both object icons
and text icons) into eight pre-defined sensitive user input
categories (including Camera, Contacts, Email, Location,
Phone, Photo, SMS, and Microphone). The classified icons
can be directly used to detect the mismatch of Ul intentions
and permissions. We target Android since they are the most
popular mobile platform with the most users, but the general
research is applicable to other mobile platforms such as iOS.
Our proposed framework is based on three key insights.

First, while Uls contain unstructured information, the
association between icons and Ul widgets can be inferred
from the structured information in UI layout files and app’s
code. This inspires us to develop static analysis techniques
on UI layout files and app’s code to infer such associations.
Second, mobile apps are expected to have an intuitive Ul
where most usage scenarios of an app should be evident to
average users, so icons indicating the same type of sensitive
user input should have similar looks. This inspires us to
develop object icon classification techniques to detect similar
icons based on the sensitive icons collected from interactive
widgets. Third, in order for users to easily recognize the
objects or text in icons, the colors / opacity between the
foreground and the backgrounds must be contrasted. This
inspires us to develop icon mutation techniques to amplify
and normalize this contrast, making icons easier to be
recognized by the icon classification techniques.

ICONINTENT consists of three modules: icon-widget as-
sociation module, icon mutation module, and icon classifica-
tion module. The icon-widget association module provides
a Ul layout analysis technique to identify the associations
between icons and UI widgets defined in the UI layout
files. This module further provides a dataflow analysis
technique that analyzes the program code to identify such
associations. The icon mutation analysis module extracts
icons from an app, and produces mutated icons for each
of the extracted icon. The icon classification module adapts
SIFT [15], a state-of-the-art image feature engineering tech-
nique, with our novel key-location increasing and relative
one-to-one matching techniques to enhance its effectiveness
in classifying icons. Additionally, this module adapts OCR
techniques to extract text from the icons, and then classifies
the icons using the edit-distance based similarity between
the extracted text and the keywords in each category.

We evaluate the effectiveness of ICONINTENT using a
dataset of 150 Android apps that collect sensitive data. We
manually labeled 5,791 icons from the apps as ground truth.
The results show that ICONINTENT detects 248 sensitive
UI widgets (achieving 82.4% precision) from 97 apps, indi-
cating that both sensitive icons and sensitive Ul widgets are
common. We also evaluate the effectiveness of ICONINTENT
in complementing SUPOR [9], the state-of-the-art sensitive
UI widget detection technique based on text analysis. The
results show that SUPOR +ICONINTENT identifies 487 sensi-

tive Ul widgets, which achieves 101.2% improvement over
242 sensitive Ul widgets identified by SUPOR. Also, we
evaluate the effectiveness in reducing the inspection effort
of suspicious permissions: if an identified intention of a Ul
widget matches a requested permission, then the permis-
sion is considered not suspicious. The results show that
SUPOR +ICONINTENT reduces suspicious permissions to
be inspected by 50.7%, compared with 22.1% identified by
SUPOR, achieving 129.4% improvement. We further evaluate
the effectiveness of icon classification techniques on the
5,791 icons. The results show that ICONINTENT effectively
identifies object icons with the average F-score of 87.7%,
compared with 48.6% of off-the-shelf SIFT. ICONINTENT
identifies text icons with the average F-score of 89.8%,
compared with 36.6% of off-the-shelf OCR.

This paper makes the following major contributions:

« We are the first to investigate the intents of icons in
mobile apps’ Uls, and study their uses in UI widgets.

e We propose a novel framework, ICONINTENT, that
synergistically combines program analysis and icon
classification to associate icons with the corresponding
UI widgets and classify the intents of the icons into
eight pre-defined sensitive categories.

« We conduct evaluations on 150 market apps. The results
show that ICONINTENT effectively detects sensitive Ul
widgets (82.4% in precision) and reduces 50.7% of the
suspicious permissions detected by SUPOR.

II. BACKGROUND AND MOTIVATING EXAMPLES
A. Android UI Rendering

An Android app usually consists of multiple activities,
where each activity provides the window to draw the UI [16].
A Ul is defined by a layout, which consists of Ul widgets
(e.g., buttons and image views) and layout models (e.g.,
linear layout) that describe how to arrange UI widgets. The
Ul framework provides a declarative language based on
XML for developers to define UI layouts.

Example UI with a Sensitive Icon. Figure 2 shows
a simplified UI layout file from Animated Weather and
its rendered Ul This UI layout file contains three Ul
widgets: an image view widget (imageview), a text box that
accepts user inputs (editText), and a button (Button). They
are aligned horizontally based on the vinearrayout at Line
1. Figure 3 shows the code snippet of the corresponding
activity for the layout file. Line 3 indicates the activity class
searchForm Uses the layout file identified by the resource id
R.layout.search. Line 4 first finds the imageview widget using
the API findviewyzd with the resource id r.id.img, Which
refers to the Imageview widget with the attribute android:id="
@+id/img". Line 4 then binds the event handler onciick to the
click event of the widget via setonclickListener. The handler
onclick simply calls startasinesearc (Line 5), which in turn
calls ManagerofLocation.findPosition (Line 9) that retrieves
users’ current location.
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<LinearLayout android:orientation="horizontal">
<ImageView android:id="@+id/img" android:src="@drawable/
loc" .../>
<EditText android:id="Q@+id/TxtCity" ... />
<Button android:text="@string/search" .../>

5 </LinearLayout>

(a) UI layout file (search.xml)

®

(b) Rendered Ul
Figure 2: Simplified layout file for a search Ul

SEARCH

public class SearchForm extends Activity {
public void onCreate (Bundle savedInstanceState) ({
setContentView (R.layout.search); // bound to layout
file search.xml in Fig. 2
((ImageView) findViewById(R.id.img)).
setOnClickListener (new OnClickListener () {
public void onClick(View v) {startAsincSearch();} })

.} // bound to OnClick handler
private void startAsincSearch() ({

b.déxllagerOfLocation.findPosition(); // use GPS data
-1}

Figure 3: Simplified UI Handler for Animated Weather

In the rendered Ul (Figure 2b), the ImageView widget
shows the icon 1oc.png specified by the resource id drawable
/10c, Which indicates to use users’ current locations. Note
that the UI does not have descriptive texts to explain the
intention of the icon (i.e., retrieving users’ current location).
Such UI design indicates that for widely used icons, the Ul
assumes the users’ knowledge in the semantics of the icon.
This motivates us to collect a set of commonly used sensitive
icons, and propose icon classification techniques that detect
sensitive icons based on the collected icons.

Example UI with a Sensitive Text Icon. Figure 1c shows
a Ul from Favorite.Me. This Ul has four buttons that use
stylish text icons. The third icon from the top is embedded
with the text “View Current Location”, indicating the use
of a user’s GPS data. When a user clicks on the icon, the
app retrieves users’ current location. Existing works [9],
[11], [12] that analyze texts in the Uls face challenges in
identifying this sensitive UI widget, since no sensitive texts
can be extracted from the Ul This motivates us to adapt
OCR techniques to extract texts from text icons, and perform
text classification to identify sensitive UI widgets.

B. App Icon Varieties

To make apps’ Ul unique and stylish in the small
screen, app icons have different combinations of colors and
transparencies in texts, backgrounds, and object shapes. As
such, icons in Android apps are usually small, diversified,
and partially or totally transparent. Figure 4 shows seven
sensitive icons that pose different challenges for the icon
classification technique and the OCR technique: (1) the SMS
icon in Figure 4a and location icon in Figure 4b are too
small; (2) the SMS icon in Figure 4c and the contact icon
in Figure 4d have low contrast between the colors of the
texts/objects and the background; (3) the Email icon in

Figure 4e shows the text in bright color and the background
in dark color, while OCR performs better with deep color
texts in bright color backgrounds; (4) the Photo icon in
Figure 4f is a ghost button, which uses transparencies to
hide the background color. (5) the Camera icon in Figure 4g
is an icon with low color contrast and uses transparency and
shadow to show contrast.

Our preliminary study on 300 text icons extracted from
apps in Google Play shows that directly applying existing
OCR techniques can infer semantic information from less
than 10% of the studied icons [17]. This further motivates us
to perform image mutations on the icons such as converting
the transparency differences to color differences, and apply
the icon classification technique on the mutated icons.

III. APPROACH
A. Overview

Figure 5 shows the overview of ICONINTENT. ICONIN-
TENT consists of three modules: icon-widget association,
icon mutation, and icon classification. ICONINTENT accepts
an app APK file as input and outputs the identified sensitive
UI widgets with the associated icons, where each icon is
annotated with the corresponding categories of sensitive
data. The icon-widget association module performs static
analysis on the UI layout files and the code to identify
the associations between Ul widgets and the icons. The
icon mutation module extracts the icons from the resources,
and performs image mutations on the extracted icons to
generate a set of mutated icons. The icon classification
module accepts the mutated icons as input, and classifies
icons into eight categories of sensitive data.

B. Icon-Widget Association

ICONINTENT performs static analysis on both the Ul
layout files and the code to identify the associations between
icons and UI widgets. We next formally define Android’s Ul
layouts and our static analysis.

UI layouts and UI widgets. We first formally define UI
layouts and their IDs.

Definition 1 (UI Layout): A Ul layout is a tree L(W, E),
where each node w € W denotes a Ul element and each
edge e(a,b) € E denotes a parent-child relationship from a
to b. L is uniquely identified by the layout ID L.id.

Figure 2a shows a UI layout loaded from search.xmi,
and its layout ID can be referenced in the code via wr.
layout.search. In this layout, there are four UI elements:
a LinearLayout, dll ImageView, Al EditText, and a Button. The
LinearLayout 1S the parent of the other three Ul elements.
Based on these definitions, we next define UI widgets.

Definition 2 (UI Widget): In a Ul layout L(W, E), a Ul
widget w € W is a type of Ul element that can interact with
the user (e.g., a button). w is uniquely identified by a pair
(L.id, w.id), where w.id represents the element ID of w.
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Figure 4: Icon varieties in mobile apps
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In Figure 2a, all the UI elements except the LinearLayout
are UI widgets. In particular, the ID of the imageview widget
is (R.layout.search, R.id.img). Based on the definitions of
UI layouts, we next formally define the binding from the Ul
widgets in the layout to the variables in the code.

Variable Binding. The UI layout files are loaded into
activities at runtime via the layout-loading API calls, mainly
setContentview and inflate. The layout ID is used as the
parameter to determine which layout file to load into an
activity. We next define the variable-layout binding.

Definition 3 (Variable-Layout Binding): A variable vy, is
said to be bound to a UI layout L(W, E), represented as
vy, ~» L if (1) a layout binding API is invoked with vy, as
the receiver object and L.id as the parameter, or (2) vy, is
an alias to another variable v}, that is bound to L.

Once a layout is bound to an activity, the Ul widgets in
the layout can be bound to variables via invoking the widget-
binding APIs, mainly findaviewsyip, with the UI widget ID.

Definition 4 (Variable-Widget Binding): Given that
vy, ~ L(W, E), a variable v is said to be bound to a Ul
Widget w € W if (1) a widget binding API is invoked with
l as the receiver object , v as the return value, and w.id
as the parameter, or (2) v is an alias to another variable v’
that is bound to w.

In Figure 3, Line 3 loads the layout file with the ID r
.layout.search tO the activity. Line 4 binds the imageview
widget by invoking the API findviewsy1d() With r.id.img as
the parameter to a temporary variable (omitted in Figure 3).

Icon Association. Following the definitions of UI layouts
and widgets, we define icons as follows.

Definition 5 (Icon): An icon c is a type of resource. It is
uniquely identified by c.id, which is the resource ID.

Icons can be associated with UI widgets via specifications
in layout files directly. In the layout files, icons are often
referred to using resource names in the android:src attributes
of Ul widgets. These resource names (e.g., @drawable/loc

in Figure 2a) may be directly mapped to file names in
the resource folder (res/drawable/loc.png). Besides android
:sre, icons can be associated using other attributes. Based
on our preliminary study on icons used in the top 10,000

| <selector>
<item android:state_checked="true" android:drawable="
Q@drawable/btn_radio_to_on_mtrl 015" />
<item android:drawable="@drawable/
btn_radio_to_on mtrl 000" />
i </selector>

Figure 6: Example Resource XML File for Icons

| void onCreate (Bundle savedInstance) {
View g = this.findViewById(R.id.button_esc); // FindView
ImageView h = (ImageView) g; // cast to ImageView

4 h.setImageResource (R.drawable.icon2); // change icon

5 ...}
Figure 7: Example OnCreate Event Handler

apps downloaded from Google Play, most of the icons
of interest are used in interactive Ul widgets, with the
top frequent widgets being imageview, Button, Textview, and
ImageButton; While the icons used in container and layout
widgets, such as vistview and LinearLayout, are typically
for beautifying backgrounds. In addition, icons specified in
the attribute android:background Of Ul widgets are mainly
used for beautifying backgrounds and not permission related.
Thus, our work focuses on analyzing the icons specified in
the android:src attributes.

Besides resource names for icons, the android:src at-
tributes can specify drawable objects, which are frequently
observed in check boxes or radio buttons. Drawable objects
manage several different images, organizing the images in
layers or showing different images based on the state of the
UI widgets that use the drawable objects. Figure 6 shows
the definition of a drawable object. This example XML file
specifies two icons via the attributes android:drawable in the
item elements, where the first icon will be shown if the
UI widget’s state is “checked” and the second icon will
be shown otherwise. Based on the android:sre attribute, we
define the icon-widget association via UI layout files as:

Definition 6 (Icon-Widget Association (Ul Layout)):
Given a layout L(W, E), an icon c¢ is associated with a Ul
widget w € W if (1) c.id is specified in the attribute w.src
where w.src represents the android:sre attribute of w, or
(2) a drawable object d is specified in the attribute w.src
and c.id € Dg, where Dy represents the set of resources
IDs contained in the drawable object d.

Besides specified using XML, UI widgets may use dif-
ferent icons when certain events occur (e.g., switching
activities). Based on our preliminary study, on average each
app uses the image loading API set Imageresource 7.4 times'.
We next define the icon-widget association via API calls.

IThe other image-loading APIs set ImageBitmap and set ImageBitmap
are mainly used to load images through network or external storages but
not resources included in the app’s APK file.



may _alias(x,y)

T+ newwid(y, x,w.id) : [y — T(y) J{wid}]
I' F newwid(y;, x, w.id) : T;(y; € dom(T"))

I' -2 = findViewBylD(w.id) : |J;T';

Figure 8: Transfer functions for finaviewsyip

Definition 7 (Icon-Widget Association (API Calls)):
Given that v, ~» L(W,E), w € W and v ~» w, an icon
c is associated to a Ul widget w if an image loading API
is invoked with v as the receiver object and c.id as the
parameter.

As shown in Figure 7, Lines 2 and 3 associate the
ImageView widget to variables g and n, and Line 4 indicates
that n will use the icon identified by r.drawable.icon2.

Static Analysis on UI Layout Files. We develop a static
analysis technique that leverages a XML parser to parse the
extracted Ul layout files to build the formal UI layouts,
and inspects all the UI widgets in each layout to identify
the associations between the icons and the UI widgets.
Figure 2a shows an example Ul layout file, where the layout
model LinearLayout is used to place three Ul widgets. The
UI widget imageview at Line 2 is associated with an icon
identified by the resource name @drawable/loc, Which refers
to the icon loc.png in the res/drawable folder. By traversing
the Ul tree from the root vinearLayout to its child node
Imageview, OUr analysis can infer the association between
the 1mageview widget with id eid/img and the icon with the
resource name @drawable/loc.

The analysis technique identifies the resource names of
icons and the UI widgets. These resource names may be
directly mapped to file names in the resource folder, or XML
files that represents drawable objects as shown in Figure 6.
To handle drawable objects, our analysis further parses the
XML resource files and identifies all the resource names
from the attribute android:drawable in each XML element.

Static Analysis on App Code. To compute the icon-
widget associations, ICONINTENT provides a data flow
analysis technique that overapproximates the associations
between variables and the widget IDs and the associations
between variables and the icon IDs. Figures 8 and 9 show
the transfer functions of findviewByip and setImageResource

in the form of inference rules. The data flow value for
each variable is initialized as {_L} and the join operator is
defined as set union. If the variable = may alias the variable
y, we simply union the data flow facts from = to y. We use
the environment I' to denote data flow facts as a mapping
from each variable to widget IDs. Given the statement x =

findviewByID (w.id) Where x is a variable and w.id is the
ID of w, we may infer the fact that x is bound to the
Ul widget w whose widget ID is w.id (i.e., * ~» w and
I'(x) = T'(z) J{w.id}). If another variable y is an alias of
x, then y is associated with the widget ID w.id as well (i.e.,
I'(y) = I'(y) U{w.id}). The association between widget IDs
and variables can also be done via the API setip, which

may _alias(x,y)

Y F newrid(y, x, c.id) : [y — X(y) U{rid}]
Y b newrid(y;, x, cid) : L(y; € dom(X))

Y x.setImageResource(c.id) : |J; X

Figure 9: Transfer functions for setImageResource
follows the similar rules as findviewByID’S.

Our analysis also infers the association between image
resource IDs and variables that represent Ul widgets. This
is done via using the similar transfer function as £indviewsy1p
’s to analyze the API method setImageresource. We use the
environment Y to denote data flow facts as a mapping from
each variable to its resource IDs. Consider the statement x
.setImageResource (c.id) where z is a variable bound to a
UI widget w (i.e., z ~ w) and c.id is the resource ID of
the icon c. Whenever we observe such API in the code, we
may infer the fact that x is associated with the icon ¢ whose
resource ID is c.id (i.e., X(z) = X(z) U{c.id}) and w is
associated with ¢ since x ~» w. Similarly, if y may alias z,
then y is associated with ¢ (i.e., X(y) = X(y) U{c.id}).

Based on the analysis result, ICONINTENT can determine
which UI widgets are associated with a given icon. Specifi-
cally, if ¥(x;) does not contain L, the UI widgets identified
by the widget IDs (i.e., I'(z;)) are considered to be associ-
ated with the resource IDs X(x;). That is, we will have the
icon-widget associations {wy > it|w; € T'(x4), 4 € L(w4) }.

Example Analysis. Consider the example shown in Fig-
ure 7. For the UI widget variable g, we have I'(g) = {r.
id.button_esc}. Since g and n are aliases (Line 3), we have
F(h) = {R.id.buttoniesc}. Due to the setImageResource at
Line 4, we have X(g) = {r.drawable.icon2}, and X(h) = {r
.drawable.icon2}. Thus, we have the icon-widget association
{R.id.button_esc — {R.drawable.iconz}}.

C. Icon Mutation

This module extracts icons from the input APK file and
performs image mutations to produce a set of mutated
icons for each of the extracted icons. Motivated by the app
icon variety shown in Figure 4, ICONINTENT leverages five
commonly-used image mutation techniques [18], [19]. These
techniques mutate the colors and transparencies of images
in different ways, and can be combined together to produce
different mutated icons (thus producing 2° = 32 mutated
images for each icon). We next briefly describe the color
model used in digital images and the mutation techniques.

Image Mutation. A digital image is represented as a
rectangular grid of pixels with fixed rows and columns,
where a pixel represents a single color dot. A color in
the RGB color model [20] is expressed as an RGB triplet
(r,g,b), where “r”, “g”, and “b” are the numeric values
that describe how much red, green, and blue are included
in the color, respectively. To express the opacity degree
of the color, the RGBA color model, (r,g,b,a), is used,
which provides an extra numeric value (“a”) besides the
RGB triplet used in the RGB model. Using the RGBA color



Table I: Sensitive user-input categories and keywords

Category Keywords

Camera camera, retake

Contacts contact, group

Email email, mail

Location location, locate,
gps, map, place, address

Microphone microphone, micro,
karaoke, interview,
voice, audio

Phone phone, call

Photo photo

SMS sms, message

model, a digital image with m xn pixels can be represented
as a matrix M with m rows and n columns, where each
cell (i.e., a pixel) in the matrix is a RGBA tuple. Image
mutation techniques apply various transformations to mutate
the RGBA tuples in M to produce a mutated image. We next
describe the five mutation techniques.

o Image Scaling: This technique enlarges or shrinks the
image by changing the resolution (pixels per inch) of
image. A commonly used technique is to resample pixel
values using nearby pixels [21] for the scaled image.

o Grayscale Conversion: This technique converts an
image to another image in which the value of each
pixel just represents only the amount of light [18].

e Color Inversion: This technique inverts the colors of
each pixel in the image.

o Contrast Adjustment: This technique adjusts the con-
trast of colors in the image.

o Opacity Conversion: This technique converts the
transparency differences between the objects(/texts) and
the background to the color differences.

D. Icon Classification

The icon classification module classifies two types of
icons (i.e., object icons and text icons) into one of the eight
sensitive user-input category. We next describe the sensitive
user-input categories and the two techniques in detail.

1) Sensitive User-Input Categories: Table I shows eight
sensitive user-input categories and their keywords. The key-
words are used to search for training icons and identify text
icons. We choose these eight sensitive user-input categories
because the app functionality related to these categories
are popular, represent tangible sensitive resources that users
can understand, and have significant security and privacy
implications [9], [22], [23]. Furthermore, developers often
use these icons in the UI widgets that accept the user inputs.

2) Object Icon Classification: 1CONINTENT leverages
object recognition to classify object icons based on a training
icon set labeled with sensitive user-input categories. Given
an icon as input, the technique recognizes whether the
training icon (deemed as the reference object) appears in
the input icon (deemed as the scene picture), and labels the
input icon using the sensitive user-input category that has
most recognized icons, or labels it as not sensitive if none
are recognized. Algorithm 1 shows this general process.

Algorithm 1: Object Icon Classification

Input: I as the input object icon, C'ategory as the set of sensitive
user-input categories, M as the hashmap that stores the
mapping from the training icons to their corresponding
categories,

Output: Cout as the predicted category for I

1 Cout + null, CatCount + Map.Empty(); // CatCount

records how may icons are recognized in I for each

category
2 foreach c € Category do
3 | CatCountlc] + 0;
4 end
s foreach k € M.keys() do
6 if Recog(k,I) then
7 | CatCount[MIk]] < CatCount[M[k]] + 1;
s end
9 end
10 foreach c € Category do
11 if Cout == null or CatCount|c]) > CatCount[Cout))
then
12 | Cout <+ c
13 end
14 end
15 return Cout; // the category with most recognized icons

Classifying icons based on objects inside it brings new
challenges to object recognition techniques such as Scale-
Invariant-Feature-Transform (SIFT) [15], [24] in com-
puter vision. SIFT is a state-of-the-art technique for ob-
ject recognition from pictures. It extracts key locations

that are invariant with respect

to image translation, scaling,
and rotation. They are often
Figure 10: Rotation

image snippets with enough
details such as tree textures
and fur patterns. When doing
the matching, the key locations
are used as input to a nearest-neighbor indexing method that
identifies candidate object matches. Specifically, we already
use image mutation to resolve icon format and quality issues
such as transparent background and low contrast. However,
such adaptation is not sufficient, and we found that direct
adoption of SIFT is not be effective for the following two
reasons.

o Too Few Key Locations. Compared with common
objects such as animals and human faces in object
recognition, software icons typically consist of basic
shapes with smooth edges, such as lines, ovals and cir-
cles. Thus, SIFT cannot extract sufficient key Locations
from the icons, and too few key locations will lead to
inaccuracy in object recognition.

« Lower Tolerance for Changes. App icons have lower
tolerance of changes such as rotation and distortion. For
example, a cat is still a cat no matter how the image
is rotated. However, the icon in the left sub-figure of
Figure 10 no longer corresponds to “location” if it is
rotated upside-down, which becomes a liquid drop icon
(the right sub-figure) that is often used in weather apps.
On the other hand, certain extent of change tolerance



is still helpful. The left sub-figure of Figure 10 still
represents location if rotated slightly anticlockwise.

To address these two challenges, we propose correspond-
ing techniques as follows.

Increasing Key Locations. To increase the number of key
locations, we first enlarge the icon images. If an image for
matching is smaller than 200x200, we automatically enlarge
it to 200x200. Second, we switch to FAST algorithm [25],
an alternative technique ex-
tracting many low quality key _ !
locations instead of a few high ' '
quality key locations (as in .
SIFT). Figure 11 presents the Q Q
comparison of key locations
(as blue circles) extracted by
SIFT as shown in Column (a)
and FAST algorithms as shown
in Column (b). The low qual- @ SIFT () FAST
ity of key locations will be
addressed together with low
change tolerance in our Rela-
tive One-to-one Matching technique described as follows.

Relative One-to-One Matching. Standard object recog-
nition allows multiple key locations in the sample image to
be matched to one key location in the scene image, which
helps find smaller and blurred instances of the objects in
the scene image (e.g., a cat hiding in the grass). But this is
not suitable for icon classification, where change tolerance
is much lower. Furthermore, the usage of low-quality key
locations extracted by FAST algorithm further increases
noise in key locations. Thus, we propose a novel matching
technique that allows mapping a key location in the object
image to only one key location in the same area in the scene
image (e.g., a key location at the left-top corner of object
image can only be matched to one key location in the left-top
area of the scene image). We use a relative distance threshold
(percentage of image weights and heights) to determine the
size of the area. To achieve one-to-one mapping, we use a
greedy algorithm to match the key-location pairs with the
highest similarity, until no key locations left.

3) Text Icon Classification: ICONINTENT analyzes the
embedded texts of the icons to determine whether the texts
are similar to keywords in the sensitive user input categories
(Table I). Based on our preliminary studies on about 300 text
icons collected from top Google Play apps, more than 95%
of the text icons contain 1 to 3 words [17]. This indicates that
most of the text icons contain only short phrases or words.
Therefore, keyword matching [9], [11], [12] can be adapted
to effectively classify the text icons. However, the extracted
texts from the icons are often not accurate, which may
include wrong characters (e.g., “Icafiion”), extra characters
(e.g., “llocation™), or miss some characters (e.g., “emai”).
Thus, it is unlikely for the words in the extracted texts to
exactly match a sensitive keyword.

Figure 11: SIFT vs.

FAST

To address these issues, we develop an edit-distance-based
algorithm to compute similarities between words in the ex-
tracted texts and the keywords, and identify the most similar
keyword based on the computed similarities; if the similarity
is over a pre-defined threshold, then we classify the icon
to the corresponding sensitive user input category. Our
algorithm adapts edit distance [26] with n-gram substring
generation, and relative length computation to compute the
similarity between the extracted text from a text icon and the
keywords in the sensitive user-input categories. Edit distance
is a widely used approach to quantify how dissimilar two
strings are by computing the minimum cost of operations
required to transform one string to another. However, edit
distances faces two problems Redundant Word and Multi
Keyword Matching during the classification.

Redundant Word. The extracted text usually contains
redundant words that do not express intentions in using
sensitive data. For example, for a text icon that contains
the text “enablegps” (extracted without spaces based on
OCR), the word “gps” indicates the intention to use users’
GPS data, which is sensitive, while the word ‘“enable”
is redundant. Redundant words may also come from the
inaccurate character recognition of OCR. To address this
problem, we introduce n-gram substring generation [27].
Given a keyword k, we generate a sequence of substrings
from a word w where the length of each substring is within
[length(k) — 1,length(k) + 1]. We then compare each n-
gram with the keyword “gps” and find an exact match.

Keyword Similarity. Since keywords have different
lengths, in many cases the Levenshtein distance [26] does
not reflect the similarity as expected. For example, given a
word “locatl”, we compare it with two keywords “locate”
and “call”. The edit distance between “locatl” and “locate”
is 1. For the keyword “call”, we generate a n-gram list
which is {“loca”, “ocat”, “catl”}, and the edit distance
between “catl” and “call” is also 1. While they both have
the same distance, we know “locatl” is more similar to
“locate” rather than “call”. To address this issue, we propose
to measure the similarity by considering the keyword length
ki Simyk = 1 — iy, where Ed is the original edit
distance and length(k) is the length of the keyword k.

IV. EVALUATION

We implemented ICONINTENT upon Gator [28]-[30]
for static analysis and upon OpenCV [31] and Asprise
OCR [14], [32] for icon classification. We evaluate ICON-
INTENT on 150 Android apps, and 5,791 manually labeled
icons from the apps. We seek to answer the following
research questions:

« RQ1: Is ICONINTENT effective on identifying sensitive
UI widgets?

« RQ2: How effective is our technique on detecting
suspicious permissions without GUI indication?
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o RQ3: How effective are our techniques on associating
icons with UI widgets?

e RQ4: How effective is our technique on identifying
sensitive object icons?

o RQS5: How effective is our technique on identifying
sensitive text icons?

A. Dataset Construction

1) Training Dataset: Our classification technique of ob-
ject icons requires a training dataset with positive exam-
ples in each sensitive user-input category. We do not need
negative examples in our training set since our algorithm
determines an icon as sensitive if it is similar enough to
any positive examples in a sensitive category. To make
ICONINTENT more extensible, our training set must be
constructed within reasonable effort. We collect positive
examples from two sources. First, we use the name of
each sensitive category (e.g., camera) with the keyword
“icon” to search for representative icons from Google Image
Search, and downloaded the first 100 retrieved icons for each
category. Second, we used the keywords from each category
to search for icons in other apps (top 10,000 apps excluding
the 150 apps in our test dataset), and fetched the first 500
icons for each category. Then, we manually labeled these
icons to identify 776 unique sensitive icons used in the apps.
Combined with the icons from Google Image Search, our
training dataset has 1,576 icons as positive examples.

2) Test Dataset: We build our test dataset from the top
apps in the Google Play market. Since apps that have Ul
widgets to collect sensitive user inputs are not distributed
evenly across app categories [9], [11], [12] and we have
to manually label all the apps in our test dataset to obtain
the ground truth, we choose as our test set the top 150
apps with appearances of sensitive keywords as mentioned
in Section III-D1 in their UI layout files. From the 150 apps,
we manually labeled 5,791 icons, in which we identified 539
sensitive object icons, and 49 sensitive text icons. Note that
during labeling we checked the context information of icons
to confirm whether they are related to a sensitive category.

The distribution of sensitive icons in our test dataset
on different sensitive user-input categories are presented in
Figure 12. From the chart, we can see that among 588
sensitive icons identified from our test dataset, icons from

Table II: Detected Sensitive Icons (SI) and Sensitive Ul
Widgets (SW)

Category #Detected Sls #Apps | #Detected #Apps

Object | Text All | with SIs SWs | with SWs
Camera 148 1 149 47 65 35
Contacts 14 1 15 6 10 6
Email 44 5 49 16 25 12
Location 19 11 30 9 12 9
Microphone 75 3 78 26 65 19
Phone 20 1 21 6 38 4
Photo 41 12 53 13 19 13
SMS 125 11 136 23 24 10
All 486 44 | 530 135 248 97

all sensitive user-input categories exist. Specifically, camera,
SMS, and microphone are the top three categories on the
number of icons being used. The reason is that icons in these
categories are popular, consistent and easy-to-understand, so
they can be easily recognized by end users.

B. Evaluation Results

1) Identifying Sensitive Ul Widgets (RQ1): To answer

RQI1, we consider two application scenarios in detecting
sensitive Ul widgets: (1) using ICONINTENT alone and (2)
using ICONINTENT to complement SUPOR.
RQ 1.1: Using ICONINTENT Alone. In Table II, we
present the results of ICONINTENT on identifying sensitive
Ul widgets from our test dataset. Columns 2-5 presents
the number of detected sensitive object icons, sensitive text
icons, all sensitive icons, and the number of apps containing
detected sensitive icons. Columns 6-7 presents the number
of associated sensitive UI widgets, and the number of apps
containing detected sensitive UI widgets. The last row of
the table shows the data combining all categories. Note that
since one app may have icons / Ul widgets from different
categories, sum of the numbers in rows 2-9 of Column 5
and 7 is not equal to the number in Row 10.

From the table, we have the following observations.
First, ICONINTENT effectively detects most sensitive icons
(530 out of 588) from most apps (135 out of 138 apps
that contains sensitive icons) in our test dataset. Second,
ICONINTENT effectively associates the detected icons with
248 UI widgets from 97 apps. Such results indicate that not
only sensitive icons are common, but sensitive Ul widgets
are also common, and ICONINTENT detects many sensitive
UI widgets from most apps in our test dataset. Third, icons
from different categories have different characteristics on the
association with Ul widgets. For example, while 125 SMS
icons are detected, only 24 UI widgets from 10 apps are
associated with some icons. This shows that SMS icons are
often not directly associated with UI widgets. One possible
reason is that SMS icons such as text bubbles are often used
as static labels in chatting apps. By contrast, 20 Phone icons
are associated with 38 UI widgets, which shows that phone
icons are generally associated to Ul widgets (e.g., buttons).

RQ 1.2: Combining with SUPOR. SUPOR is designed
to detect only sensitive input fields that accept textual
user inputs. Thus, to fairly evaluate effectiveness of our
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Figure 13: Effectiveness of our technique on identifica-
tion of sensitive UI widget when combined with SUPOR

technique, we make two improvements to make SUPOR
applicable to other UI widgets: (1) we expand the UI widgets
types to include buttons, radio buttons, check boxes, and
other commonly used UI widgets that accept user inputs; (2)
we leverage dex2jar [33] to convert dex bytecode in APK
files to Java bytecode, so that SUPOR can support custom
widgets. We will use “SUPOR” to refer to this improved
version of SUPOR in the rest of the section.

We applied SUPOR to the apps in our test dataset to
associate text labels with UI widgets. For each category, we
compare the UI widgets associated by SUPOR and by SUPOR
+ICONINTENT. To enable fair comparison, we fed into
SUPOR the keywords defined in Section III-D1 and collected
all the UI widgets associated with sensitive keywords in
sensitive text labels. The results are presented in Figure 13.

We can see that ICONINTENT can effectively complement
SUPOR. SUPOR identified 242 sensitive Ul widgets, while
combining SUPOR and ICONINTENT can identify 487 sensi-
tive UI widgets, achieving 101.2% improvement. Involving
ICONINTENT can help SUPOR to identify 17.4% (Location)
to 3150% (Microphone) more sensitive Ul widgets. Specif-
ically, ICONINTENT results in the most improvement in the
categories of Camera and Microphone where icons instead
of texts are used more often among apps. We also found
that Ul widgets found by SUPOR are almost disjoint with
the UI widgets found by ICONINTENT, as only 3 UI widgets
are identified by both SUPOR and ICONINTENT. It indicates
that developers rarely add textual descriptions to icons for
UI widgets, saving space on mobile screens.

2) Detecting Suspicious Permissions (RQ2): To answer
RQ2, we studied the permissions requested by the subject
apps, and compared them with identified sensitive icons
to detect the suspicious requested permissions that are not
indicated in the user interface. Previous approaches such as
SUPOR [9] can achieve the same goal, but consider only
textual labels on the app’s GUIL Thus, we can check how
many more icon-permission matches ICONINTENT finds,
which reduces the suspicious permissions that require further
inspection. The results are shown in Table III. We consider
the six permissions that can be directly mapped to our
sensitive categories. Note that Email and Photo are not
listed as they cannot be easily mapped to permissions.

Table III: Suspicious Permissions Detected with SUPOR
and ICONINTENT

Permission All SUPOR | SUPOR+ICONINTENT
CAMERA 31 [ 27 ((12.9%) 9 (-71.0%)
CONTACTS 39 | 31 (-205%) 24 (-38.5%)
AUDIO 20 19 (-5.0%) 7 (-80.0%)
LOCATION 68 | 48 (-29.4%) 36 (47.1%)
PHONECALL | 27 | 21 (222%) 16 (-40.7%)
SMS 28 | 20 (-28.6%) 16 (-42.9%)
TOTAL 213 | 166 (22.1%) 105 (-50.7%)

Also, AUDIO permission is related to microphone icons,
and PHONECALL permission is related to phone icons.
Columns 2-4 show all sensitive permissions requested, the
suspicious permissions identified by SUPOR, and identified
by SUPOR +ICONINTENT, respectively.

From the table, we have two observations. First, ICON-
INTENT effectively reduces suspicious permission requests
from 166 to 105 (37%), so much fewer suspicious permis-
sion requests need to be inspected. Second, ICONINTENT
achieves different effectiveness on different categories. In
particular, ICONINTENT is most effective in CAMERA
(reducing 18 of 27) and AUDIO (reducing 15 of 16),
indicating that icons are dominantly used in these categories.
Note that this is not a fair comparison between SUPOR
and ICONINTENT, as we consider only the categories where
icons are commonly used. However, the result does show
that in these popular categories, considering only text is far
from sufficient, and applying ICONINTENT can significantly
reduce the suspicious permissions to be inspected.

3) Associating Icons with Ul Widgets (RQ3): To answer
RQ3, we studied the number of Ul widgets and their icons
associated by ICONINTENT. From the 5,791 icons in the
test dataset, ICONINTENT associated them with 5,408 UI
widgets. Specifically, UI analysis helped to associate 4,165
UI widgets, and icon-association analysis helped to associate
additional 1,243 UI widgets. Among the associated Ul
widgets, 248 are associated with sensitive icons and are
thus sensitive Ul widgets, while 53 are associated with
mistakenly classified icons so they are false positives. Note
that we will evaluate our icon classification techniques in
Sections IV-B4 and IV-BS5, and we only include true posi-
tives in Figure 13. Among these 248 UI Widgets, 234 can
be detected with UI analysis and icon-association analysis
can help to identify additional 14 sensitive Ul widgets.

4) Object Icon Classification (RQ4): The results of object
icon classification on the test dataset are presented in Ta-
ble IV. Columns 2-4 show the precision, recall, and F-score
of our technique for each icon category. We can observe that
ICONINTENT can achieve an average F-score of 87.7% (with
distance threshold as 0.3). Furthermore, we compare the
effectiveness (F-Score) of our techniques described in Sec-
tion III-D2 with that of default SIFT technique, and turning
off each of our techniques: without increasing key locations
and without change-aware matching. From the figure, we
can see that ICONINTENT’s F-score (87.7%) outperforms
those of SIFT (48.1%), without mutation (75.8%), without



Table IV: Results for Object-Icon Classification
Setting P (%) | R(%) | E (%)
SIFT 43.0 54.5 48.1
Without Mutation 91.2 64.9 75.8
Without Increkey 63.7 90.0 74.6
Without ROM 76.0 | 89.4 82.2
ICONINTENT 88.2 87.3 87.7

Table V: Results for Text-Icon Identification

Setting P (%) | R(%) | F (%)
Without Mutation 91.7 229 36.6
ICONINTENT 89.8 89.8 89.8

key location increase (without Increkey, 74.6%), and without
Relative One-to-one Mapping (without ROM, 82.2%).

5) Text Icon Classification (RQ5): The results of text
icon classification are presented in Table V, which is of
the same format as Table IV. We can see that our text
icon classification results have few false positives and false
negatives, and the image mutation techniques can improve
the recall significantly. We set the threshold for text simi-
larity as 0.8 since it achieves the best results in terms of
precision, recall, and F-score. For false positives, there are
two types of misclassification. First, the OCR recognized
texts from some icons which do not contain any text, and the
extracted texts matched some sensitive keywords. Second,
there is one application breaking apart company English
logos, which confused our keyword matching algorithm. For
false negatives, there are three types of misclassification.
First, we missed some keywords. If we add particular
keywords, it will be solved. Second, when ICONINTENT
performed image mutations, ICONINTENT did not consider
the rotated images. We can implement a new image mutation
to get a better result. Third, OCR cannot recognize the
correct text from some blurred images.

C. Threats to Validity

The main internal threat comes from the mistakes we may
make during icon labeling. To reduce the threat, we check
the context of the icons when we cannot tell whether an icon
is related to a sensitive category. There are two main external
threats to validity. First, our experiment evaluates only the
apps with many sensitive UI widgets, but this is reasonable
because these apps are also the ones ICONINTENT will be
mainly applied to. Second, since the keywords we used as
queries are from eight sensitive categories, our evaluation
may be limited to apps collecting data in these categories.
This threat is unavoidable because the difference between
sensitive data and insensitive data must be defined in some
way. ICONINTENT can be easily extended to support other
categories of sensitive data, but more evaluations will be
required for those categories.

V. RELATED WORK

Computer Vision Techniques for Software Engineering
Tasks. REMAUI [34] applies computer vision techniques
for reverse engineering Uls of mobile apps. Sikuli [35],
[36] uses image recognition to identify and control UI

components for automating UI testing. WebDiff [37] and
XPERT [38] leverage computer vision techniques to detect
visual differences, assisting the task of detecting cross
browser rendering issues. Instead of detecting standard UI
elements and comparing visual appearances, our approach
uses computer vision techniques to find icons similar to
our collected icons and extract texts from icons, which are
combined with program analysis techniques to understand
association between icons and UI widgets.

UI Analysis of Mobile Apps. SUPOR [9], UlPicker [11],
and UiRef [12] are among the first works to analyze the
descriptive texts in apps’ Ul for determining whether the cor-
responding user inputs contain sensitive data. AsDroid [39]
checks the compatibility of the descriptive texts and the
intentions represented by the sensitive APIs. PERUIM [41]
extracts the permission-UI mapping from an app based on
both dynamic and static analysis, helping users understand
the requested permissions. Liu et al. [42] propose an au-
tomatic approach for annotating mobile UI elements with
both structural semantics such as buttons or toolbars and
functional semantics such as add or search. In these works,
the security and privacy implications of icons remained
unexplored, and our approach opens up a new direction
in analyzing sensitive icons in Uls. Furthermore, our static
analysis associates Ul widgets with variables in the code,
which cannot be inferred by just analyzing the UL

Textual Analysis of Mobile Apps. WHYPER [22] and
AutoCog [43] adapt natural language processing techniques
for analyzing apps’ descriptions and infer the mapping
between sentences in app descriptions and permissions.
CHABADA [44] clusters app descriptions’ topics and iden-
tifies outliers in each cluster with respect to their API usage.
BidText [45] detects sensitive data disclosures by performing
bi-directional data flow analysis to detect variables that are
at the sink points and are correlated with sensitive text
labels. ICONINTENT complements these techniques to better
understand apps’ intentions.

VI. CONCLUSION AND FUTURE WORK

In this work?, we present a novel framework ICONINTENT
that performs program analysis techniques to associate icons
and UI widgets and adapts computer vision techniques to
classify the associated icons into eight sensitive categories
for Android apps. We have conducted evaluations on 150
market apps. The results show that ICONINTENT effectively
identifies sensitive UI widgets (248 UI widgets in 97 apps),
and reduces suspicious permissions to inspect. [CONINTENT
can be integrated with various privacy analysis tools, such
as GUILeak [10] to help developers trace information types
mentioned in privacy policies to icons. In future work, we
plan to adopt deep learning techniques to further improve
the accuracy in icon recognition.

2The work is supported in part by NSF grants CNS-1755772 and CNS-
17481009.
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