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Abstract In this paper we construct arbitrarily large families of smooth projective varieties
and closed Riemannian manifolds that share many algebraic and analytic invariants. For
instance, every non-arithmetic, closed hyperbolic 3-manifold admits arbitrarily large collec-
tions of non-isometric finite covers which are strongly isospectral, length isospectral, and
have isomorphic integral cohomology where the isomorphisms commute with restriction and
co-restriction. We can also construct arbitrarily large collections of pairwise non-isomorphic
smooth projective surfaces where these isomorphisms in cohomology are natural with respect
to Hodge structure or as Galois modules. In particular, the projective varieties have isomor-
phic Picard and Albanese varieties, and they also have isomorphic effective Chow motives.
Our construction employs an integral refinement of the Gassman—Sunada construction that
has recently been utilized by D. Prasad. One application of our work shows the non-injectivity
of the map from the Grothendieck group of varieties over Q to the Grothendieck group of
the category of effective Chow motives. We also answer a question of D. Prasad.
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1 Introduction

The main purpose of the present article is the construction of geometric objects which share
a large class of algebraic, analytic, geometric, and topological invariants. Our main tool is a
refinement of a construct that dates back to Gassman which has been utilized by Perlis [33],
Sunada [42], and others. Given a commutative ring R with identity, a group G, and a pair
of subgroups Pj, P, < G, we say that P;, P, are R-equivalent if R[G/P;] and R[G/P;]
are isomorphic as left R[G]-modules. When G is finite and P;, P are Q-equivalent, the
associated triple (G, Py, P») is called a Gassman triple. For general R, (G, Py, P>) is called
an R-Gassman triple.

Scott [39] found non-conjugate Z-equivalent subgroups P;, P> of PSL(2, F»9). The sub-
groups Py, P, areisomorphic to Alt(5) and are conjugate in PGL (2, F»9). Prasad [35] recently
employed this Z-Gassman triple (PSL(2, F29), P, P>) to construct non-isometric Riemann
surfaces with isomorphic Jacobian varieties viewed only as unpolarized abelian varieties.
He also constructed a pair of non-isomorphic finite extensions of Q with isomorphic idele
class groups and adele rings. In particular, these finite extensions are arithmetically equiva-
lent (i.e. have the same Dedekind zeta functions). Recently, the third author with Linowitz
and Miller [26] used non-isomorphic fields with isomorphic adele rings to construction iso-
morphisms between various Galois cohomology sets that arise in the study of K-forms of
semisimple Lie groups. One instance of this was the construction of an isomorphism between
the Brauer groups of the fields which was compatible with the restriction and co-restriction
maps. The bijections between other Galois cohomology sets was also compatible with respect
to the restriction and co-restriction maps.

1.1 Differential geometric examples

Our results split across algebraic and differential geometry. We state our differential geometric
results first. Before doing so, we require some additional notation and terminology. Given a
closed, Riemannian manifold M with associated Laplace—Beltrami operator A s, the operator
A acts on the space of L? functions or L2 k-forms ¥ (M). We denote the associated
eigenvalue spectrum for the operator Ay acting on Qk(M) by &x(M). In the case of k = 0,
we denote the eigenvalue spectrum by & (M) and refer to this as the eigenvalue spectrum.
The spectrum & (M) is a well studied analytic invariant of the Riemannian manifold M
and is known to determine the dimension, volume, and total scalar curvature. A related
geometric invariant is the primitive geodesic length spectrum £, (M) of M. Assuming
for simplicity that M is negatively curved, each free homotopy class of closed curves on
M has a unique geodesic representative. We define .Z, (M) to be the set of lengths (with
multiplicity) of each geodesic representative in each free homotopy class. We denote by
H*(M, Z) the kth singular cohomology group of M with trivial Z-coefficients. Given a
finite cover M’ — M, we have induced homomorphisms Res: H* M,Z) — H* (M',Z)
and Cor: H*(M',Z) — H*(M,Z). For a pair of finite covers M1, M, — M, we say
that a morphism v : H*(M,Z) — H*(M,, Z) is compatible if the diagram commutes.
Finally, M is called large if there exists a finite index subgroup I'g < 1 (M) and a surjective
homomorphism of 'y to a non-abelian free group. We now state our first result and refer the
reader to Sect. 2 for a brief review of real/complex hyperbolic manifolds and the definition
of non-arithmetic manifolds.
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Integral Gassman equivalence of algebraic and hyperbolic manifolds 181

Res Hk(M,Z) Res
(1
Hk(M]’Z) Cor Cor Hk(Mz,Z)
Yk

Theorem 1.1 Let M be a closed hyperbolic n-manifold that is large and non-arithmetic. Then
foreach j € N, there exist pairwise non-isometric, finite Riemannian covers My, ..., M of
M such that the following holds:

1. & (M;) = &(My) for all k and all i, i'.

2. Lp(M;) = Z»(My) foralli,i’.

3. There exist compatible isomorphisms Y. : H*(M;, Z) — H*(M;:, Z) for all k and for
alli,i'.

When n > 3, it follows from Mostow—Prasad rigidity (see [32,36]) that 1 (M;), 71 (M;)
are non-isomorphic for i # i’. When manifolds M;, M;s satisfy (1), they are referred to
as strongly isospectral. When only &(M;) = &(M;s), the pair is said to be isospectral.
Similarly, when (2) holds, the pair is said to be length isospectral. We note that for every
n > 2, by work of Gromov et al. [19], there are infinitely many commensurability classes
of examples for which Theorem 1.1 can be applied. Moreover, being non-arithmetic or large
are both commensurability invariants.

Remark 1 The compatible isomorphism in singular cohomology with trivial Z-coefficients is
a special case of a more general result that relates the cohomology of manifolds M, M that
arise from this refined Gassman/Sunada construction; see Lemma 3.4 which also answers
Question 2 in [35]. In particular, there is a large class of coefficients for which compatible
isomorphisms exist and the coefficients need not be trivial.

That one can construct non-isometric manifolds that satisfy (1) and (2) has been known
since [42]; see also [25] for a variant on [42]. Additionally, it was known that when two man-
ifolds arise from this construction, besides satisfying (1) and (2), they have H kM, Q) =
H¥(M;, Q). However, it need not be the case that the pair have isomorphic integral cohomol-
ogy. Bartel-Page [4] (see also [3]) found examples of pairs arising from a Sunada construction
which do not have isomorphic cohomology groups with coefficients in F,. Specifically, given
a finite set of primes S, there exist strongly isospectral closed hyperbolic 3-manifolds with
non-isomorphic F ,-cohomology for every p € § and isomorphic F,-cohomology for every
p & S (see [4, Thm 1.2]). Also, Lauret et al. [24] prove that strongly isospectral pairs need
not have isomorphic cohomology rings.

By work of Agol [1, Thm 9.2], every closed hyperbolic 3-manifold is large; that hyperbolic
surfaces are large is well known. As aresult, we obtain the following corollary of Theorem 1.1.

Corollary 1.2 Let M be a closed, non-arithmetic real hyperbolic 2- or 3-manifold. Then for
each j € N, there exist pairwise non-isometric, finite Riemannian covers My, ..., M; of M
such that the following holds:

1. &(M;) = &(M;r) forall k and all i, i’.
2. Zy(My) = Ly(My) forall i, i".
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182 D. Arapura et al.

3. There exist compatible isomorphisms W, : H*(M;, Z) — H*(M;, Z) for all k and for
alli,i’.

Whenn = 2, Corollary 1.2 is a small generalization of [35]. In this setting, Borel [7] proved
that there are only finite many non-isometric arithmetic hyperbolic surfaces of area at most A
for any A > 0. In particular, for each genus g > 2, there are only finitely many points in ./,
the moduli space of hyperbolic structures on X, that correspond to arithmetic hyperbolic
structures. However, .#, has real dimension 6g — 6 and so we see that a typical hyperbolic
structure on X, is non-arithmetic. A closed hyperbolic 3-manifold is typically non-arithmetic
as well. For each positive real number V > 0, Borel [7] proved that there are only finitely
many non-isometric arithmetic hyperbolic 3-manifolds of volume at most V. However, it
follows by work of Thurston that when V is sufficiently large, there exist infinitely many
closed hyperbolic 3-manifolds of volume at most V. For instance, if My is the complement
of the figure-eight knot, for all but finitely many Dehn surgeries on d My, the resulting closed
3-manifold will admit a complete hyperbolic structure by Thurston’s Dehn Surgery theorem
(see [44]). The figure-eight knot complement also admits a complete hyperbolic structure on
its interior and the volumes of the closed hyperbolic manifolds obtained by Dehn surgery
on My are strictly smaller than Vol(My). Consequently, only finitely many of these closed
hyperbolic 3-manifolds can be arithmetic by Borel’s finiteness theorem. For n > 4, the
number of non-isometric, complete, finite volume hyperbolic n-manifolds of volume at most
V is finite by Wang [46]. In this case, we can count the number of non-isometric complete,
finite volume hyperbolic n-manifolds of volume at most V. Restricting to only the arithmetic
or non-arithmetic manifolds, we obtain two counting functions and it is known that these
functions have the same growth type (see [17] and the references therein for more on this
topic).

Returning to the main topic of this subsection, we end with another family of examples.

Corollary 1.3 Let M be a closed complex hyperbolic 2-manifold that is non-arithmetic and
large. Then for each j € N, there exist pairwise non-isometric, finite Riemannian covers
My, ..., M; of M such that:

1. &(M;) = &(M;) forallk and all i, i’.

2. Lp(M;) = Z,(My) foralli,i’.

3. There exist compatible isomorphisms Vyy : HYM;,Z) — Hk(Mi/, Z) for all k and for
alli,i’.

By work of Deligne-Mostow [13], there are commensurability classes of complex hyper-
bolic 2-manifolds for which Corollary 1.3 can be applied. At present, there are only finitely
many known commensurability classes of non-arithmetic complex hyperbolic 2-manifolds;
see [15] for more on this topic.

1.2 Algebro-geometric results and examples

We now describe some results that relate various algebro-geometric invariants for pairs of
smooth projective varieties that are constructed via R-equivalence for certain rings R. The
examples from Corollary 1.3 provide non-trivial examples of such pairs for R = Z. Large
families of examples of non-isomorphic smooth projective varieties for R = Q were con-
structed in [30, Thm 1.1]. These examples arise in all possible dimensions and the universal
cover of these examples can be taken to be any irreducible, non-compact Hermitian symmetric
space.
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Integral Gassman equivalence of algebraic and hyperbolic manifolds 183

For a field K € C, we denote the category of smooth projective varieties over K by
Varg. The set of complex points X (C) of a variety X € Varg can be regarded as a
complex manifold. These spaces carry the usual topological invariants such as the (topo-
logical) fundamental group or singular cohomology. However, the singular cohomology of
an algebraic variety X € Varg is endowed with more structure than just an abelian group.
Hodge theory provides the singular cohomology groups with a canonical decomposition
H(X,Z) ® C = ®p+q=i HP? such that HP4 = HYP (see [45] for instance). Such a
decomposition is referred to as a Hodge structure. The subspace HP? can be defined as
the space of de Rham cohomology classes represented by closed complex valued differential
forms of type (p, ¢). If X is equipped with a Kéhler metric, then H”9 is isomorphic to the
space of harmonic (p, g)-forms. For k odd, the Hodge structure can be used to construct a
complex structure on the real torus H k(x(C),R) /H k(X (C), Z) which turns it into a com-
plex torus called the Griffiths intermediate Jacobian. When k = 1, 2dimc(X) — 1, these
tori are in fact abelian varieties called the Picard and Albanese varieties of X. Setting Q,,
to be the field of p-adic numbers and Z, to be the ring of p-adic integers, via the comparison
isomorphisms with étale cohomology (see [31]), we have

HY(X(C), Z,) = H}\(Xg, Zp) = 1im H}, (X, Z/(p")),

HY(X(0),Q)) = HX (X%,Q,) == H (X%, Z,) ® Q.

where K denotes the algebraic closure of K and X = X Xgpec k Spec K . The étale cohomol-
ogy groups carry natural Gal(K / K )-actions which encode important arithmetic information
about X. When K is a number field, these Galois modules determine the Hasse—Weil zeta
function (see [40]). At a more basic level, the fundamental homological invariant of a variety
is its motive; see Sect. 6 for more details. Rational cohomology with its Hodge structure or
Q—étale cohomology with its Galois action depend only on the motive.

Theorem 1.4 Suppose (G, P, P») is an R-Gassman triple, p: X — Y is a Galois étale
cover with X, Y € Varg and with Galois group G, and X; = X/ P; fori =1,2.

1. If K = C, then there is an R-module isomorphism of singular cohomology groups
H'(X1(C), R) = H'(X»(C), R). If R = Z (resp. Q), then the isomorphism respects
the canonical integral (resp. rational) Hodge structures. In particular, the intermediate
Jacobians of X; are isomorphic (resp. isogenous).

2. If R =17, (resp. Q) and K is the algebraic closure of K, then there is a Gal(K /K)-
equivariant isomorphism of étale cohomology H},(X| %, Zp) = H;, (X, %+ Zp) (resp.
Hg, (X, 7, Qp) = He (X5 7, Qp)):

3. If R = Q, then the effective Chow motives M (X;) of X; are isomorphic.

Remark 2 The last statement of case (1), when dim X; = 1, is due to Prasad [35]. In case (2)
and R = Q,,, this result is due to Prasad—Rajan [34], who also observed that this implies that
the Hasse—Weil zeta functions agree when K is a number field. Note that case (3) actually
implies the previous two statements when Q C R.

Combining this theorem with (the proof of) Corollary 1.3 yields:

Theorem 1.5 Fix an embedding Q ) C C. Thenforevery j € N, there exists smooth projective
surfaces X1, ..., X defined over Q such that

1. HY(X;(C), Z) = H*(X;/(C), Z) as Hodge structures for all k and all i, i'.
2. HE(X;,Z,) = HY (X1, Z),) as Galois modules for all k and all i, i'.
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184 D. Arapura et al.

3. The motives M(X;) = M (X)) alli,i’.
4. The topological fundamental groups of X;(C) are pairwise non-isomorphic.

In Sect. 6, we will use Theorem 1.5 to show the non-injectivity of the map from the
Grothendieck group of varieties over Q to the Grothendieck group of the category of effective
Chow motives (see Theorem 6.6). The differences [ X;] — [X;/] will give nonzero elements
in the kernel.

2 Preliminaries

Real and complex hyperbolic n-space are examples of symmetric spaces of non-compact
type. We refer the reader to [18,37] for a thorough introduction to these spaces. The isometry
group Isom(HEg) of real hyperbolic n-space Hy, is isogenous to the subgroup SO(n, 1) of
SL(n + 1, R) that preserves the bilinear form

n
By a(x,y) = —Xp1yn+1 + Zx./‘y./‘~
Jj=1

Given a discrete subgroup I' < Isom(Hpg), the quotient space Hg /I is a real hyperbolic
n-orbifold. When I' is torsion free (i.e. contains no non-trivial elements of finite order),
the quotient space is a complete, real hyperbolic n-manifold. We say that I" is a lattice if
Hy /T has finite volume. If Hy / T is also compact, we say that I is cocompact. Conversely,
given a complete, finite volume real hyperbolic n-manifold M, via the action of 71 (M) on
the universal cover Hg, we obtain an injective homomorphism (M) — Isom(HEg). The
image under this representation is a lattice. We note that because this representation depends
on the choice of a lift p € H of the base point p € M, this representation is unique only up
to conjugation in Isom(Hy).

The isometry group Isom(H{) of complex hyperbolic n-space H¢, is isogenous to the
subgroup SU(n, 1) of SL(n + 1, C) that preserves the hermitian form

n
Hy (W, 2) = w1 Zug1 + ) wjZ).
Jj=1

Complex hyperbolic n-manifolds and orbifolds are constructed similarly to those in the real
hyperbolic setting but taking discrete subgroups of Isom(H). One important difference
between real and complex hyperbolic n-manifolds that will be relevant is the existence of
complex projective structures. First, a complex hyperbolic n-manifold is a complex manifold
of real dimension 2n. Due to an exceptional isogeny between SL(2, R) and SU(1, 1), real
hyperbolic 2-manifolds coincide with complex hyperbolic 1-manifolds. In particular, real
hyperbolic 2-manifolds come with a natural complex structure. For all n > 2, real hyperbolic
n-manifolds are not naturally complex. When I' is a torsion free cocompact lattice in SU(n, 1),
the associated complex hyperbolic n-manifold is a non-singular, complex projective algebraic
variety.

Taking G to be either Isom(H”R) or Isom(H’é), given a pair of subgroups I'1, I'2 < G, we
say that 'y, I'; are commensurable if 'y N ", is a finite index subgroup of both I'y, I';. We
define the commensurator of I" in G to be the subgroup

Comm(I') = {g eG: g_ng, I' are commensurable} .
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Integral Gassman equivalence of algebraic and hyperbolic manifolds 185

One sees that I' < Comm(I"). It follows from work of Margulis [29, Thm 1, pp. 2] that
either [Comm(I") : I'] < oo or Comm(I") is dense in G in the analytic topology. When
[Comm(I") : T'] is finite, we say that " is non-arithmetic and when Comm(I") < G is
dense, we say that I' is arithmetic.

We end this section with a short remark concerning the cohomology/homology of I" and
its associated real or complex hyperbolic manifold. When I' is discrete and torsion free,
the associated manifold M = Hy/TI" or H{./ T is a K(I', 1)-space for I' since Hy, H{, are
contractible. As a result, we can establish the cohomology isomorphisms for the spaces by
establishing them for the cohomology of the associated lattices.

3 Isomorphisms in group cohomology

In this section, we record some basic results that relate the group cohomology of Z-equivalent
subgroups of finite and infinite groups. We refer the reader to [9] for a more complete treatment
of group cohomology.

Given a group G and a subgroup P < G, we denote the restriction functor by Resg.
Restriction has left and right adjoints given by the induction and co-induction functors
Indg, CoIndg. Explicitly, for a Z[ P]-module A, the underlying modules are Indg A) =
Z[G] ®z1p) A and COIndg(A) = Homgz(p(Z[G], A), with respective G actions given by
the Z-linear extensions of g - (x ® a) = gx ® a and (g - ¢)(x) = P(xg).

We start with a pair of well known results.

Lemma 3.1 If G is a group and P < G is finite index, then induction and co-induction are
isomorphic as Z|G]-modules.

Lemma 3.2 If G is a group, P < G is of finite index, and A is a Z[G]-module, then
Colnd$ (Res$ (A)) = A ®z Z[G/ P].

We note that P, P, < G are Z-equivalent if and only if CoIndg1 (Resg] (1)),
CoInd(,f2 (Resgz(l)) are isomorphic as Z[G]-modules. Given a Z[G]-module A, we say that
a morphism V : H*(Py, ReslcjI (A)) — HK(P,, Resg2 (A)) is compatible if the diagram

Res Hk(G,A) Res
H (Pl-,ReSgl (A)) Colnd Colnd HF* (P27Resg2 (A))

~_ 7

Vi

commutes.

Lemma 3.3 Let G be a finite group and Py, P, < G be Z-equivalent subgroups. Then
for any Z[G]-module A and any nonnegative integer k, there is a compatible isomorphism
HE(Py, Res§, (A)) — HY(Py, Res§ (A)).

Proof By Shapiro’s lemma (see [9, I1L8]), we have H*(P;, ResZ (A)) = H*(G, Colnd§,
(Res(P;’_ (A))). By Lemma 3.2, the coefficients for the latter cohomology groups are A ®z
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186 D. Arapura et al.

Z[G/P;], viewed as Z[G]-modules. Since P; and P, are Z-equivalent, these coefficient
modules are Z[G]-isomorphic. Thus, the right hand side of the equality above is actually
independent of i, providing the isomorphism as claimed. Compatibility follows from the nat-
urality of the isomorphism in Shapiro’s lemma. Specifically, upon choosing an isomorphism
of the Z[G]-modules Z[G/ P1] and Z[G/ P,], isomorphisms in cohomology groups

H"(P1, Resf, (A)) — H*(G, Colnd, (Resf, (A))) — H*(G, Colndf, (Res$, (A)))
— H*(P,,Resf (A))
are induced by isomorphisms of coefficients. O

We now deduce a few corollaries of the above. First, we observe thatif : ' — G isa
surjective homomorphism and I'; = v ~!(P;) for Z-equivalent subgroups Py, P, < G, then
I'1, Ty < T are also Z-equivalent subgroups. In particular, via the previous subsection, we
obtain the following lemma.

Lemma 3.4 Let v: ' — G be a surjective homomorphism, Py, P, < G be Z-equivalent
subgroups, and Ty = = (P;). Then for any Z[T']-module A and any nonnegative integer k,
there is a compatible isomorphism Hk (T, ResII:1 (A)) —> HX(,, Resll:2 (A)).

One case of Lemma 3.4 of particular interest is when A is a trivial Z[I']-module (i.e. the
I"-action is trivial).

Corollary 3.5 Let: I' — G be a surjective homomorphism, P, P, < G be Z-equivalent
subgroups, and T; = =" (P;). Then for any trivial Z[T']-module A and any nonnegative
integer k, there is a compatible isomorphism HK(y, A) = HY(, A).

We note that one deficiency of Lemma 3.4 is the requirement that our initial module A be
a Z[I"]-module. This prevents us from obtaining a bijection between the Z[I"| ]-modules and
Z[T";]-modules in a way that induces compatible isomorphisms in group cohomology.

4 Proof of Theorem 1.1

In this section, we prove Theorem 1.1, Corollaries 1.2 and 1.3.

4.1 Algebraic construction

Throughout this section, for each » € N, we will denote the free group of rank r by F,.
The main goal of this section is the following construction of arbitrarily large families of
finite index subgroups of certain lattices that are pairwise non-isomorphic and pairwise Z-
equivalent.

Proposition 4.1 Let G be a simple Lie group that is not isogenous to SL(2, R) and letT" < G
be a lattice that is large and non-arithmetic. Then for each j € N, there exist finite index
subgroups Ay, ..., Aj < T such that

(a) The subgroups A; are pairwise non-isomorphic.
(b) The subgroups A; are pairwise Z-equivalent.

We note that Proposition 4.1 holds when G is isogenous to SL(2, R) but with (a) changed
to the following:
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Integral Gassman equivalence of algebraic and hyperbolic manifolds 187

(a’) The subgroups A; are pairwise non-conjugate in G.

This subsection is devoted to the proof Proposition 4.1. We start with a basic lemma on
the size of the set Homgy (F;, Q) of surjective homomorphisms from a free group F; to a
finite group Q.

Lemma 4.2 If Q is a finite group that is minimally generated by ro elements, then
[Homgy (Fr, Q)| = |Q|""2 forallr > rQ.

Proof Givenr > rg,let X, = {x1,...,x,} and let F, = F(X,) be the free group generated
by X,. We can view Fry = F by Frop = (X150, xrp). Fixing ¢ € Homgy (Fry, O), for
each gry+1,...,qr € Q, we define ®: F, — Q to be the unique homomorphism induced
by the function f: X, — Q given by

¢(Xj), erQ’

fxj) = .
qj, j>rg.

Since ¢ is surjective, the homomorphisms @ are surjective and distinct for all distinct (as
ordered sets) choices of g, +1, - - -, ¢r. Hence [Homgy (Fy, Q)] > |Q|" 7 "e. O

We also require the following result of P. Hall [20].

Theorem 4.3 Let Q be a non-abelian finite simple group and I be a finitely generated group.
If o1, ..., 0m € Homgy (I, Q) and ¢; # 6 o @j for all & € Aut(Q) and all i # j, then
@1 X - X @y T — Q™ is surjective.

With all of the requisite material assembled, we now prove Proposition 4.1.

Proof of Proposition 4.1 We begin by setting 2, (Q) def Homygy (F, Q)/ Aut(Q) where the
action of Aut(Q) on Homg, (F}-, Q) is given by post-composition. By Lemma 4.2, we see
that B, o = |2, (0)| > aél Q"2 where ag = |Aut(Q)|. For each equivalence class x in
Z:(Q), we fix a representative ¢, € Homgy(Fy, Q). By Theorem 4.3, we have a surjective
homomorphism &, : F, — Qﬂ’»Q given by &, = erﬁ”,(g) @y. Fixing Q = PSL(2, Fy9)
and setting P, P> < Q to be the Z-equivalent subgroups given by Scott [39], foreachm € N
and z = (z;) = {1, 2}"", we define P, < Q™ to be the subgroup P, def [T/L, P It follows
that for any distinct z, 7’ € {1, 2}"" that P,, P, are Z-equivalent and non-conjugate in Q™.
In particular, Q™ has 2™ pairwise non-conjugate, pairwise Z-equivalent subgroups.

Now, given a large, non-arithmetic lattice ' < G and j € N, we must find finite index
subgroups Ay, ..., A; < T that are pairwise non-isomorphic and pairwise Z-equivalent.
Since I is non-arithmetic, combining Mostow—Prasad (see [32,36]) and Margulis [29, Thm
1, p. 2], there exists a constant Cr € N such that if A < T is a finite index subgroup, there
are at most Cr non-conjugate subgroups of I' that are isomorphic to A as an abstract group.
Explicitly, Cr = [Comm(I") : I'] and so when A < T is a finite index subgroup, we have
Cpa = Cr[I" : A]. As T is also large, there exists a finite index subgroup I'» < I' and a
surjective homomorphism ¢ : I'y — F>. Given any r > 3, there exists a subgroup F, < F
of index r — 1 such that F; is a free group of rank r. To see this, we first note that we have a
surjective homomorphism F», — Z given by sending a = 1 and b = 0, where {a, b} is a free
basis for F,. We compose this surjection with the surjective homomorphismZ — Z/(r —1)Z
given by reduction modulo r — 1. The kernel of the homomorphism F» — Z — Z/(r — 1)Z
has index r — 1 in F5. It follows by the Nielsen—Schreier theorem (see [28, Thm 2.10] for
instance) that this subgroup of F is free and of rank r. Setting I', = ¥ ~1(F}.), we see that
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188 D. Arapura et al.

there exists subgroups I', < I'; < T" and surjective homomorphisms ¥, : ', — F, with
[T : T',] = r — 1. Now, for the given j € N, we select r such that 2br0 > Jj(r —1Cr,.
Note that this can be done since 8. o > aél Tolia grows exponentially as a function of
whereas (r — 1)Cr, only grows linearly as a function of 7. By selection of I, and r, we have
the surjective homomorphism

Hr

N

T, F, QFro.
Yr D,

For each z € {1,2}%¢, we define A, = w1 (P;) and note that the subgroups A are
pairwise non-conjugate in I', and are pairwise Z-equivalent. There are 272 such subgroups
and we know that for each A, there are at most Cr, subgroups from this list that can be
abstractly isomorphic to a fixed A;. As Cr, = (r — 1)Cr, and 2Pr0 > j(r — )Cr,, there
is a subset of these subgroups of size at least j that are all pairwise non-isomorphic. O

4.2 Completing the proof of Theorem 1.1

To prove Theorem 1.1 from Proposition 4.1, a few more words are required. As noted in the
introduction, by work of Agol [1, Thm 9.2], every closed hyperbolic 3-manifold is large. In
higher dimensions, using the construction of Gromov et al. [19], there exists infinitely many
commensurability classes of complete, finite volume hyperbolic n-manifolds that are both
non-arithmetic and large. We note that there exist infinitely many commensurability classes of
closed or complete, finite volume non-arithmetic hyperbolic n-manifolds for every n follows
directly from [19]. That these examples are also large is well known. For the readers’ sake, we
briefly recall the construction of these manifolds with largeness in mind. First, we start with a
pair of compact hyperbolic n-manifolds M, M, with connected, totally geodesic boundaries
that are isometric. Gluing M, M> along the common boundaries d M| = d M, = N produces
a closed hyperbolic n-manifold M. By construction, 1 (M) = w1 (M1) %z, (n) 71 (M>) and
is large (see [27, Thm 3.2]). Lastly, using the construction of Deligne—Mostow [13], there
exist complete, finite volume complex hyperbolic 2-manifolds that are both non-arithmetic
and large. As in the construction [19], Deligne-Mostow do not explicitly state that the non-
arithmetic lattices they construct are large. That some of these lattices are large follows from
the fact that they have surjective homomorphisms to hyperbolic triangle groups; see [14, Thm
3.1], [21], and [43, Thm 3.1].

We can apply Proposition 4.1 to any manifold M in the above classes. We have opted to
only write out the case when M is a closed hyperbolic #n-manifold as the complex hyperbolic
setting is logically identical. Given j € N, n > 3, and a closed hyperbolic n-manifold M
which is non-arithmetic and large, we can apply Proposition 4.1 withI" = w1 (M). We obtain j
pairwise non-isomorphic, finite index subgroup Ay, ..., A; that are Z-equivalent. By Corol-
lary 3.5, for any abelian group A endowed with a trivial Z[I"]-module structure, we obtain
compatible isomorphisms between the cohomology groups H¥(A;, A) and H*(A;:, A) for
all k and all i, i". Since M is aspherical, M is a K (T, 1) for I". Setting M; to be the associated
finite covers corresponding to A;, we see that M; isa K (A;, 1) foralli. In particular, we have
that H*(M;, A) and H*(A;, A) are compatibly isomorphic; the compatibility of the isomor-
phisms between H*(A;, A) and H*(A;, A) produce compatible isomorphisms between the
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cohomology groups H*(M;, A) and H*(M;:, A). As the groups A;, A; are not isomorphic,
by Mostow—Prasad rigidity (see [32,36]) the manifolds M;, M;’ are not isometric. Taking
A = Z produces (3) of Theorem 1.1. The proof of Theorem 1.1 is completed by noting
that Z-equivalence implies Q-equivalence and Q-equivalence implies the manifolds M;, M;/
satisfy (1) and (2) by [42].

5 Proof of parts (1) and (2) of Theorem 1.4

Given a commutative ring R, a finite group G, and a finite G-set X, let R[X] =
Homy,;s (X, R). This defines a contravariant functor from finite G-sets to R[G]-modules;
if p: X — Y is G-map, let p*: R[Y] — R[X] denote the corresponding homomor-
phism. When p is onto, we have a homomorphism p.: R[X] — R[Y] defined by
(PeD)D) = Yrep iy d). If X = G and Y = G/P, then (ps o p*)(§) = |P|. It
follows that Q[G/P] is a direct summand of Q[G], which can be identified with the left
ideal Q[Glep, where ep = ﬁ > cepP & is the corresponding idempotent. It is convenient to
normalize p,, p* as follows. Instead of p, use the inclusion tp: Q[Glep — Q, and replace
p* by the projection pp(x) = xep. Given Q-equivalent subgroups Pi, P» < G and set
e =ep,li =tp,and p; = pp, fori = 1,2. Since Q[G/P;] are summands of Q[G] as
Q[G]-modules, it follows that a Q[G]-module isomorphism f: Q[G/P;] — Q[G/P>] can
be extended to Q[G]-module isomorphism f: Q[G] — Q[G] such that the diagram

T

Q[G] Q[G/Pi]
~._u -

f 1
N

Q[G] Q[G/Py]
\/

L)
commutes. By Skolem—Noether, the extension f is necessarily right multiplication by an
invertible element, that we will also denote by f € (Q[G])*. The commutativity implies
that
er=f"eif (D

We record this fact.

Lemma 5.1 (G, Py, Py) is a Gassman triple if and only if there exists f € (Q[G])™ such
that (1) holds.

The converse above is clear. If f € G, then (1) says that P; are conjugate. Thus the
Gassman condition is a weakening of conjugacy. Note that there are plenty of invertible
elements of Q[G] which do not come from G. To see this, observe that by Artin—Wedderburn,
QI[G] is a product of matrix algebras. An element f € Q[G] is invertible if and only the
components of f ® Q are invertible as matrices.

We now prove the first two parts of Theorem 1.4. The remaining part will be proved in the
next section. Recall that we are given Y € Varg, where char(K) =0, p: X — Y is a Galois
étale cover with Galois group G and X; = X/ P;, where (G, P, P>) is an R-Gassman triple.
These fit into a diagram
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X

ij/ YZ

X 1 p X2 (4)

pw\»y&/z)’

Our goal is to show that the cohomology groups H* (X, R) and H*(X», R) are isomorphic
as Hodge structures or Galois modules. We start with a rather simple proof of part (i) for
rational coefficients.

First proof of Theorem 1.4 (1) when R = Q. In this case, pullback p*;(’ ; gives an isomorphism
of vector spaces HK(X;(C), Q) = HX(X(C), Q)F, with inverse given by the normalized
transfer - P (px.i)«- Fixing a Kdhler metricon Y, we endow the manifolds X, X, and X with
the pullback of this Kéhler metric. The rational Hodge structures on these spaces are given
by the standard Hodge-de Rham isomorphism between H k(X;(C), Q) ® C and the space
of harmonic k-forms on X; in tandem with the decomposition of the latter into (p, g)-parts.
As this data is compatible under pullback, we see that H*(X;(C), Q) = HF(X(C), Q) as
Hodge structures. Applying Lemma 5.1, we deduce HM(X(C), Q)P = HX(X(C), Q)2 as
Hodge structures. O

The above strategy will fail for integer coefficients, because we cannot identify H*(X;, Z)

with H*(X, Z)*i . So instead, we push the coefficients down to Y.

Proof of Theorem 1.4 (1) and (2) Suppose that K = C. By covering space theory, p: X —
Y corresponds to a surjective homomorphism p: 71(Y(C)) — G. Through p, any R[G]-
module gives rise to a local system of R-modules on Y. The local systems corresponding to
the R[G]-module R[G/ P;] are precisely the sheaves (p; y)«(R). Itfollows that (p1.y)«(R) =
(P2.¥)+(R). Hence HX (Y (C), (p1,y)«(R)) = H*(Y(C), (p2.y)«(R)). Since the maps p; y
are finite sheeted covers, the Leray spectral sequences collapse to give isomorphisms

H*(X;(C), R) = H*(Y(C), (pi,y)«(R)) )

Now suppose that R = Z or Q. Using the language of variations of Hodge structure (see [48,
§1-2] for the relevant facts), the argument goes as follows. The local systems (p;,y)«(R) can
be regarded as variations of Hodge structures of type (0, 0) in a natural way. Consequently, the
cohomology groups carry Hodge structures, and the isomorphisms (2) are compatible with
these. In more explicit terms, if V; denotes the unitary flat bundle associated to (p; y)«(R) ®
C, the Hodge structures result from the lattices H kiy (o), (pi.y)«(R)) together with the
isomorphisms of HK(Y (C), (pi,y)«(R)) ® C to the spaces of V;-valued harmonic k-forms,
plus the (p, g) decompositions of the latter. This proves (1).

The proof of (2) is formally identical, except that one works with the correspond-
ing étale notions [12,31]. Let us assume that R = Z, as the argument for Q, is the
same. Etale covers of ¥ are classified by open subgroups of the étale fundamental group
nf’(Y), which is an extension of Gal(K /K) by the profinite completion of 71 (¥ (C)); this
depends on the choice of a base point. In particular, X corresponds to a surjective contin-
uous homomorphism p: nf’(Y) — G. The local systems (more precisely lisse sheaves,
see [12, Rapport]) (p;,y)«(Zp) correspond to the representations of the étale fundamental
groups nf’(Y) — Z,[G/P;] defined as above, and these are isomorphic. The cohomol-
ogy of these sheaves come with canonical Galois actions, and we have isomorphisms
He{‘l (Xi,?’ Z, = Hekt(Yf, (pi,y)«(Zp)) compatible with Galois actions. (This is discussed
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in [12, Rapport, §1.2—1.4] when K is a finite field, but the same reasoning applied here.) This
proves (2). o

Remark 3 If the varieties in (4) are replaced by Z-equivalent manifolds X and X», the same
argument as above shows that H k(X,,Z) = H*(X,, Z). This answers Question 2 in Prasad
[35]. For aspherical manifolds, this also follows from Corollary 3.5.

6 Motives

An additive category C is called pseudo-abelian if every idempotent (i.e. p> = p) morphism
p:V — V hasakernel and V = ker(p) @ ker(1 — p). The image of an idempotent p also
exists, and is given by p(V) = ker(l — p). Fixing a pseudo-abelian Q-linear category C
and object V on which a finite group G acts by automorphisms, we have a homomorphism
Q[G] — Endc (V) of algebras. Given a subgroup P < G, we define V¥ C V to be the
image of the idempotent ep = |17| 2 eer &

Lemma 6.1 IfV isas above with Pi, P, < G are Q-equivalent subgroups, then V1 = VP2,
Proof Let f € Q[G] be as in Lemma 5.1, then f: V> — VP is an isomorphism. O

Let Varg denote the category of smooth projective varieties over a field K and CH*(X)
denote the Chow ring of cycles modulo rational equivalence tensored with Q (see [16] for
instance). We can form the category Corg of (degree 0) correspondences: the objects are
the same as Varg, Cor(X,Y) = CHY(X x Y), where d = dim X (more details can be
found in [16,22,38].) The category of effective Chow motives Mot;'(ff is the pseudo-abelian
completion of the previous category. More concretely, an object of Moti{f is given by a pair
(X, e), where e € Cor(X, X) is an idempotent. Morphisms are given by

{feCor(X,X)| foe=¢ o f}
{(f[foe=¢of=0)
Set M(X) = (X, id), which is the motive associated to X, and (X, ¢) = e(M(X)). Suppose

that a finite group G acts on X € Varg. Then we can embed Q[G] C Cor(X, X), by sending
g to the graph of the corresponding automorphism of X.

Homyerr (X, €), (X', €)) =

Lemma 6.2 Suppose that Y € Varg and p: X — Y is an Galois étale cover with Galois
group G. Then [Y] = (X, eg), where eg = ﬁ dec g

Proof The graph of p defines an element of Homy rr ((X, €), Y) that we must show is an
isomorphism. By Manin’s identity principle [38], it is enough to check that CH*((X, ¢) ®
Z) — CH*(Y ® Z) is an isomorphism for every Z € Varg. This map is CH*(X ® Z2)¢ >
CH*(Y ® Z) which is an isomorphism by [16, 1.7.6]. ]

Corollary 6.3 M(Y) = eg(M(X)) = M(X)C.

The next result will complete the proof of Theorem 1.4. Recall, we are given a Q-Gassman
triple (G, P, P»),a G-étalecover X — Y with X; = X/P; and Y € Varg where char(K) =
0.

Proposition 6.4 M(X|) = M(X,) in Mot‘}ff-
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Proof By Lemma 6.1 and Corollary 6.3, we have M (X;) = MX)P = MX)P = M(X,).
O

The category of motives Moty is obtained by inverting the so called Lefschetz object in
Motgf , ¢.f. [22] (in [2,38], Motk is constructed from Corg in one step).

Corollary 6.5 The motives of X1 and X, in Motk are isomorphic.

Remark 6.1 Since H*(X(C), Q) and H},(X, Q) depend on the underlying motives, we
recover Theorem 1.4 (1) and (2) for these coefficients. Although the previous arguments
were more direct.

We now prove Theorem 1.5. Recall that this says that there are arbitrarily large collec-
tions of projective surfaces over Q with distinct fundamental groups (with respect to a fixed
embedding Q C C) but isomorphic motives.

Proof of Theorem 1.5 From Proposition 4.1, we deduce that there are j pairwise non-
isomorphic Z-equivalent compact torsion free lattices A; < SU(2, 1). These act on H2
which can be identified with the complex 2-ball B C C2 Setting X; = B/A;, we note
that these spaces are projective algebraic by Kodaira’s embedding theorem [47, pp 219—
220]. Each X; is also rigid Calabi—Vesentini [10] and hence defined over Q. By construction
71(X;) = A; Z Ay = m1(X) when i # i’. The remaining properties follow from Theo-
rem 1.4. O

Let Ko(Varg) denote the Grothendieck ring of K -varieties. When char(K) = 0, a nice
presentation was given by Bittner [6]: The generators are isomorphism classes [ X] of smooth
projective varieties, and [Blz X] — [E] = [X] — [Z] holds whenever Blz X is the blow up
of X along a smooth subvariety Z C X with exceptional divisor E. Using this presentation
together with the formulas in [22, pp 77, 78], we get a surjective ring homomorphism

i+ Ko(Varg) — KO(Moteff )

sending [X] +— [M(X)]. This can be thought of as the motivic Euler characteristic. It is
natural to ask whether this is an isomorphism; in some form this question goes back to
Grothendieck [11, p 174]. The right side is a Q-algebra because Mota is Q-linear. Therefore
we have and induced homomorphism

1! ® Q: Ko(Varg) ® Q — Ko(Motgh).

Theorem 6.6 The homomorphism ch';f ! ® Q is not injective.

Before proving Theorem 6.6, we require the following lemma. Let Grp be the set of
isomorphism classes of finitely generated groups. This becomes a commutative monoid under
the operation [G1][G2] = [G| x G2]. Let Q[Grp] denote the monoid algebra associated to
Grp.

Lemma 6.7 There is a ring homomorphism Ko(Vara) ® Q — Q[Grp] which sends [X] —
[T (X(C)].

Proof Two varieties X1, X, are stably birational if X x P”" is birational to X, x P" for
some n, m. Let SBg denote the set of stable birational classes of smooth projective varieties

defined over Q. Products of varieties makes this into a commutative monoid. By a theorem

@ Springer



Integral Gassman equivalence of algebraic and hyperbolic manifolds 193

of Larsen—Lunts [23], there exists a homomorphism A : Ko(Vara) RQ — Q[SBG] sending
[X] to the stable birational class of X. Since stably birationally equivalent smooth projective
varieties have isomorphic fundamental groups, X + m1(X (C)) induces homomorphism of
monoids SB — Grp and of rings Q[SBgl — QI[Grp]. Compose this with 2 to get the
desired homomorphism. O

Proof of Theorem 6.6 Taking X; as in Theorem 1.5, we see that [X1] — [X>] lies in the
kernel and is non-zero by Lemma 6.7. O

Corollary 6.8 The composition x, @ Q: Ko (Vara) ®RQ — Ky (Mota) is also not injective.

This statement can also be deduced from work of Borisov [8], who shows that the Lefschetz
class L = [P'] — [pt] € Ko (Vara) is a zero divisor. Elements annihilated by L must lie in
the kernel of yx,, because y;, (L) is invertible.
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