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On The Matlis Duals of Local Cohomology Modules

Gennady Lyubeznik and Tuğba Yıldırım

Abstract

Let (R,m) be a Noetherian regular local ring containing a field of
characteristic p > 0 and I a nonzero ideal of R. In this short note, we
prove that if Hi

I(R) 6= 0, then SuppR(D(Hi
I(R))) = Spec(R).
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1 Introduction

Let (R,m) be a Noetherian local commutative ring with unity, I an ideal of
R and E := ER(R/m) an R-injective hull of the residue field R/m. Then
for any R-module M , we denote by Hi

I(M) the i-th local cohomology mod-
ule of M supported in I and by D(M) := HomR(M,E) the Matlis dual of M .

Suppose now that Hi
I(R) = 0 for all i 6= c and let x= {x1, x2, ..., xc} be

a regular sequence in I. Hellus [[3], Corollary 1.1.4] proved that I is a set
theoretic complete intersection ideal defined by xi if and only if xi form a
D(Hc

I(R))-regular sequence. Motivated by this result, Hellus studied the as-
sociated primes of Matlis duals of the top local cohomology modules and
conjectured the following equality:

AssR(D(Hc
(x1,x2,··· ,xc)(R))) = {p ∈ Spec(R) | Hc

(x1,x2,··· ,xc)(R/p) 6= 0}
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It has been shown that this conjecture holds true in many cases; see eg. [2],
[5], [6], [7].
Furthermore, Hellus proved that the above conjecture is equivalent to the
following condition [[3], Theorem 1.2.3]:

• If (R,m) is a Noetherian local domain, c ≥ 1 and x1, x2, · · · , xc ∈ R,
then the implication
Hc

(x1,x2,··· ,xc)(R) 6= 0 =⇒ 0 ∈ AssR(D(Hc
(x1,x2,··· ,xc)(R))

holds.

We conjecture that if R is regular, then the above implication holds for all
non-zero ideals independently of the number of generators, i.e.

Conjecture 1. Let (R,m) be a Noetherian regular local ring and I be a

non-zero ideal of R. If Hi
I(R) 6= 0, then 0 ∈ AssR(D(Hi

I(R))).

Note that Conjecture 1 is not true for non-regular rings. For a con-
crete example of a Noetherian local ring (A,m) of dimension > 1 such that
H1

m
(A) = A/m, hence 0 /∈ AssR(D(H1

m
(A))), see [[1], Example 2.4]. The au-

thors would like to thank M. Asgarzadeh for bringing this example to our
attention.
We prove the following:

Theorem 1.1. Let (R,m) be a complete Noetherian regular local ring con-

taining a field of characteristic p > 0 and M be an F -finite module such that

0 /∈ Ass(M). Then 0 ∈ Ass(D(M)).

We would like to point out that 0 /∈ Ass(M) is a necessary condition of
Theorem 1.1. Indeed, R itself is an F -finite module and 0 ∈ Ass(R) but
0 /∈ Ass(D(R)) = Ass(E) = {m}.

As an immediate consequence of Theorem 1.1, we obtained the main
result of this paper which establishes Conjecture 1 in the equicharacteristic
p > 0 case:

Corollary 1.2. Let (R,m) be a Noetherian regular local ring containing a

field of characteristic p > 0 and I a non-zero ideal of R. If Hi
I(R) 6= 0, then

SuppR(D(Hi
I(R))) = Spec(R).
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2 Preliminaries

Throughout, R is a commutative Noetherian regular ring containing a field
of characteristic p > 0.
Let R

′

be the additive group of R regarded as an R- bi-module with the
usual left action and with the right R- action defined by r

′

r = rpr
′

for all
r ∈ R and r

′

∈ R
′

. The Frobenius functor

F : R−mod −→ R−mod

of Peskine-Szpiro [10] is defined by

F (M) = R
′

⊗R M

F (M N) = (R
′

⊗R M R
′

⊗R N)h id⊗Rh

for all R-modules M and all R-module homomorphisms h, where F (M)
acquires its R-module structure via the left R-module structure on R

′

.
The iteration of a Frobenius functor on R leads one to the iterated Frobenius
functors F i(−) which are defined for all i ≥ 1 recursively by F 1(−) = F (−)
and F i+1 = F ◦ F i(−) for all i ≥ 1.
Note that the Frobenius functor F (−) is exact [[8], Theorem 2.1]; F (R) ∼= R
and for any ideal I of R, F (R/I) = R/I [p], where I [p] is the ideal of R
generated by p-th powers of all elements of I [[10], I.1.3d].
Note also that for any Artinian moduleN , F (D(N)) = D(F (N)) [[9], Lemma
4.1] and so R = F (R) = F (D(E)) = D(F (E)) implies F (E) = E. Then it
follows from Remark 1.0.(f) of [9] that for any finitely generated R-module
M , F (D(M)) = D(F (M)).
Now, for an R-module M , define a Frobenius map ψM : M −→ F (M) on M
by ψM(m) := 1⊗m ∈ F (M) for all m ∈ M . It is worth pointing out that if
ann(m) = I ⊆ R, then ann(ψM(m)) = Ip.
An F -module M is an R- module equipped with R-module isomorphism
θ : M −→ F (M) which we call the structure morphism.
A generating morphism of an F module M is an R-module homomorphism
β : M −→ F (M), where M is some R-module, such that M is the limit of
the inductive system in the top row of the commutative diagram

M F (M) F 2(M) · · ·

F (M) F 2(M) F 3(M) · · ·

β

β F (β)

F (β)

F 2(β)

F 2(β)

F (β) F 2(β) F 3(β)
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and θ : M −→ F (M), the structure isomorphism of M, is induced by the
vertical arrows in this diagram.
If β is an injective map, then the exactness of F implies that all maps in
the direct limit system are injective, so that M injects into M. In this
case, we shall refer to β as a root morphism of M, and M as a root of M.
If M is an F -module possesing a root morphism β : M −→ M with M
finitely generated, then we say that M is F -finite. In particular, R, with
any F -module structure, is an F -finite module.

3 Proofs

We begin this section by giving the proof of Theorem 1.1:

Proof of Theorem 1.1. Since M is an F -finite R module, it follows from
Proposition 2.3. of [9] that there exists a root morphism β : M → F (M)
such that

M = lim
−→

(M F (M) F 2(M) · · · ).
β F (β) F 2(β)

Then applying Matlis dual functor D(−) = HomR(-,E(R/m)) to M, we
obtain

D(M) = lim
←−

(D(M) D(F (M)) D(F 2(M)) · · · ).
D(β) D(F (β)) D(F 2(β))

But then since Frobenius functor commutes with D(−), we can write D(M)
as

D(M) = lim
←−

(N F (N) F 2(N) · · · ),α F (α) F 2(α)

where N = D(M) and α = D(β). Note that since β is injective and F is
exact, F k(α) is surjective for all k ≥ 0. Note also that since M is a finitely
generated R-module, N is Artinian and so are all F k(N), k > 0.
On the other hand, since 0 /∈ Ass(M), I = Ann(M) = Ann(N) is a nonzero
ideal of R. Then it follows that Ann(F (N)) = I [p] and so Ker(α : F (N) →
N) 6= 0.
Now we claim that there exists an element n

′

= (n
′

0, n
′

1, · · · , n
′

k, · · · ) ∈ D(M)
such that n

′

k ∈ F k(N) and F k−1(α)(n
′

k) = n
′

k−1 and with the property that
ann(n′

k) ⊆ m
k for all k ≥ 4. To construct such an element, first let b1 ∈
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Soc(Ker(α)) ⊆ F (N), where Soc(Ker(α)) := AnnKer(α)(m) denotes the socle
of Ker(α) and define bk, for all k ≥ 2, inductively as the image of bk−1

under the Frobenius map (defined in the preceding section) on F k−1(N),
that is bk := ψF k−1(N)(bk−1) = 1 ⊗ bk−1 ∈ F k(N). Then by induction on k

(considering that ann(b1) = m and ann(x) = I implies ann(ψ(x)) = I [p]), we

have ann(bk) = m
[pk−1]. On the other hand, since b1 ∈ Ker(α) := Ker(F 0(α)),

an easy induction argument shows that bk ∈ Ker(F k−1(α)) for all k ≥ 0.
For if bk−1 ∈ Ker(F k−2(α)), then F k−1(α)(bk) = F k−1(α)(1 ⊗ bk−1) = 1 ⊗
F k−2(α)(bk−1) = 0.
Let now n′

0 be an element of N and, for every 1 ≤ k ≤ 3, choose n′

k ∈ F k(N)
such that n′

k−1 = F k−1(α)(n′

k). For k ≥ 4, define nk in such a way that

F k−1(α)(nk) = n
′

k−1. Then, either ann(nk) ⊆ m
k or ann(nk + bk) ⊆ m

k.
Indeed, if ann(nk + bk) * m

k, there exists an element y ∈ m \ mk such that
y(nk + bk) = 0. Then it follows that ann(nk) ⊆ ann(ynk) = ann(ybk). Since

y ∈ m \ m
k and ann(bk) = m

[pk−1], we have ann(nk) ⊆ ann(ybk) ⊆ mpk−1
−k.

To prove the fact that ann(ybk) ⊆ mpk−1
−k, suppose on the contrary that

there exists an element z ∈ ann(ybk) such that z /∈ m
pk−1−k. Then clearly,

yz ∈ ann bk. On the other hand as R ∼= κ[[X1, ..., Xn]], κ ∼= R/m a field of

characteristic p > 0, and y /∈ m
k and z /∈ m

pk−1−k, we may write

y = Σk−1
i=1 αiX

i

︸ ︷︷ ︸

f

+Σ∞

i=kαiX
i

︸ ︷︷ ︸

f ′

z = Σpk−1−k−1
j=1 βjX

j

︸ ︷︷ ︸
g

+Σ∞

j=pk−1−kβjX
j

︸ ︷︷ ︸

g′

where f and g are non-zero polynomials over κ[X1, ..., Xn],X
l = X l1

1 X
l2
2 · · ·X ln

n

for any positive integer l = l1+ l2+ ...+ ln. Then yz = fg+ fg′ + gf ′ + g′f ′.
Since κ[X1, ..., Xn] is an integral domain and f and g are non-zero, so is
fg and clearly 0 6= deg(fg) ≤ pk−1 − k − 1 + k − 1 = pk−1 − 2 from

which it follows that yz /∈ m
pk−1

. But then this contradicts the fact that
yz ∈ ann(bk) = m

[pk−1]. Hence ann(nk) ⊆ ann(ybk) ⊆ mpk−1−k, as desired.

Now since pk−1 − k ≥ k for all k ≥ 4, we have ann(nk) ⊆ m
pk−1

−k ⊆ m
k.

Then define

n
′

k =

{
nk, if ann(nk) ⊆ m

k,
nk + bk, otherwise.

Clearly, n
′

= (n
′

0, n
′

1, · · · , n
′

k, · · · ) ∈ D(M) and ann(n′

k) ⊆ m
k for all

k ≥ 4. This proves the claim.
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Finally, ann(n
′

) = 0 for if z ∈ ann(n
′

), then z ∈ ann(n
′

k) for all k ≥ 0 which

implies that z ∈
⋂

n∈N

m
n = {0}. This completes the proof of Theorem 1.1. �

The proof of Corollary 1.2 is an immediate consequence of Theorem 1.1:

Proof of Corollary 1.2. Without loss of generality, we may, and do, as-
sume that R is complete [[3], Remark 4.1.1]. Since R is an F -finite module,
so are its all local cohomology modules and since 0 /∈ AssR(H

i
I(R)) for any

nonzero ideal I of R, the result follows from Theorem 1.1. �
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